Fair Model Checking of Abstractions
(Extended Abstract)

Dennis Dams* Rob Gerthf Orna Grumberg!

Abstract

Model checking temporal logic over abstracted transition systems under fairness con-
straints needs to be done with some care. This paper discusses why and how.

1 Introduction

This section introduces the concepts of abstraction in model checking and fairness at an
informal level and presents a motivating example. For technical definitions, we refer to [3, 2]
and [6, 9].

1.1 Abstraction

Figure 1 shows a (concrete) transition system consisting of states s; (s; and sy are initial®)
and transitions (thin arrows). Superimposed on it is an abstraction. Each abstract state
represents a set of concrete states, indicated by drawing each abstract state a; as a dashed
ellipse around the concrete states it represents. The abstract transitions (dashed and fat
arrows) are explained further on.

A transition system models the behaviour of some discrete system. Every state is labelled
with a set of propositions formalising what is observable about that state. The transitions
capture the possible changes of state. Thus, the state labels and the transitions represent,
resp., the “static” and “dynamic” of a system. Model checking is answering the question
whether a certain correctness requirement, formalised as a temporal logic formula interpreted
over such transition systems, is satisfied by a given model. In this paper we consider the logic
CTL* — we refer to [5] for its definition. As an example, consider the formula VFp expressing
that along all (infinite) paths, p is true at some point. Clearly, it does not hold in the concrete
system of Figure 1: The only path satisfying Fp is so, s5, S5, .. . ; the other two paths do not.

An abstraction collapses sets of concrete states into single abstract states, thus indicating
that any differences between the concrete states within a single abstract state are ignored. As
such it is a method to reduce the size of a model by ignoring certain static aspects. Such a
reduction is usually necessary to render model checking feasible. In order to define the state

*Dept. of Electrical Engineering & Dept. of Math. & Comp. Science, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven. E-mail: d.dams@tue.nl. Web: http://wuw.ics.ele.tue.nl/"dennis

tIntel Architecture Business Group, SCL, 5200 NE Elam Young Parkway, JFT-104, Hillsboro, OR 97124-
6497. E-mail: robgerth@ichips.intel.com

fComputer Science Dept., Technion, Haifa, Israel. E-mail: orna@cs.technion.ac.il

'The treatment of initiality of states and related issues are suppressed in this extended abstract.

Figure 1: A simple example

labels and the transitions on the abstract level, we must be more precise about the purpose
of abstraction. What we require from it, is that temporal logic formulas can be interpreted
at the abstract level in such a way that they are preserved: If a formula is concluded to hold
at the abstract level, it must be true that it also holds on the underlying concrete transition
system. Regarding the static aspect, this requirement leads to what can be seen as a 3-valued
logic for the valuation of propositions in abstract states: A proposition may be true, false,
or unknown. For the abstract states in Figure 1, this is captured by giving truth values to
literals; a literal is a proposition or its negation. Formally, the value of a literal ¢ in an
abstract state a is defined as follows: a = ¢ iff Vee, ¢ = g (we write ¢ € a to denote that ¢
is in the set of concrete states that a represents). For example, in state ag, the literal —p is
true (meaning —p is true in all concrete states in as), and consequently the literal p is false.
On the other hand, both ¢ and —q are false, reflecting that the value of ¢ is indeed unknown
if concrete states s3 and s, are identified.

In such a 3-valued setting, one could say that positive and negative information are present
independently from each other. This also holds for the transition relation at the abstract
level: In order to guarantee the preservation of all CTL* formulas, it turns out that we need
to introduce two abstract transition relations, called the free and the constrained relations.
Universal properties, i.e. properties of the form Vi, then have to be interpreted along free
paths, these are paths formed by repeating free transitions. Ezistential properties (J¢) are
interpreted along constrained paths. As a result, all formulas that can be expressed in CTL*
are preserved from abstract to concrete models. However, formulas need to be in positive
normal form, i.e. negations may only occur directly in front of propositions. The reason is
that the usual definition of negation, 7 = - iff T [~ ¢ (for a model 7 and a formula ¢),
fails in the context of preservation.

Technically, the definitions of the abstract transition relations are refinements of the notion
of simulation. Let R be the concrete transition relation, ,RY and .RY be the free and
constrained abstract transition relations resp., s be a concrete state, and a an abstract state
containing s. We have that if R(s, s’) for some s', then ,Rf(a,a’) for some a’ containing s'.
For the constrained relation, we have that if ,R¢(a,a’) for some a’, then R(s,s') for some s’
contained in a'. We stress that these are consequences of the definitions of ,R¥ and ,R¢; for
the definitions themselves see [3]. As an example, in Figure 1 the free transitions are shown
as dashed arrows and the constrained as thick arrows.

1.2 Fairness

Although every execution run of a system is obtained by iterating state transitions from
the transition relation R, one often does not want to consider just any sequence of steps
from R as a valid execution. For example, assumptions about scheduling strategies exclude
behaviours that forever ignore a particular process. Or, in systems that model real time by
distinguishing instantaneous, discrete transitions from time-elapse steps, time should proceed
after every finite number of instantaneous transitions. Such an assumption is captured by
a so-called fairness constraint: A predicate on execution sequences that is true exactly for
those sequences that are to be considered valid executions. Verification under fairness then
means that path properties are evaluated over fair execution sequences only.

We follow [4] and define a fairness constraint to be any boolean combination of the operator
GF (“infinitely often”) applied to a literal. Given a fairness constraint, the path quantifiers
of CTL* can now be relativised to fair paths, resulting in Fair CTL* (FCTL*). For example,
if we take the formula ® = GFq (“infinitely often ¢”) as fairness constraint, then the formula
VFp from above is relativised so that the quantifier V only ranges over the paths satisfying ®.
This property is still not satisfied by the concrete system in Figure 1: The path s, s3, s3, ...
complies to ® but does not satisfy Fp.

1.3 Abstraction and fairness

Having introduced separately the concepts of abstraction and of fairness, let us now combine
them. Consider the abstract system in Figure 1. The ®-relativised property VFp from above
is satisfied by it: The only free path complying to GFq is a1, a3, as, ..., and this path satisfies
Fp. So, ¢ holds on the abstract but not on the concrete system; in other words: Preservation
does not hold for FCTL*.

This outcome is not surprising. Observe that model checking the property VFp under
fairness constraint ® = GFg can be restated as the problem of model checking the property
V(GFq = Fp) without fairness constraints. Recall from Section 1.1 that in order to interpret
this formula over the abstract transition system, we need to bring it in positive normal form:
V(FG—q V Fp). Now, this formula is not satisfied in a;: There is a free abstract path, namely
a1,a2, a9, ..., that satisfies neither FG—g nor Fp. Nevertheless, this approach is not completely
satisfactory. It requires reasoning in a logic that allows to express the kinds of fairness one is
interested in. Although CTL* enjoys this property, this need in general not be the case, as
e.g. for the logic Fair CTL, on which the model checker SMV is based. Furthermore, model
checking tools often treat fairness separately from the temporal logic properties to be checked
(also called algorithmically), for a number of reasons. First, it is often computationally more
efficient to deal with fairness algorithmically: In order to encode fairness in the correctness
formula, it is often required to introduce auxiliary variables in a model, and also the increased
size of the formula may lead to an unacceptable blow-up of the state space. For example,
the SPIN model checker ([7]) deals algorithmically with (weak) fairness for these reasons,
even though the logic LTL that it uses is expressive enough for fairness. Second, fairness
constraints often belong rather to the model than to a particular property being checked.
Technically, transition system models are often w-automata, i.e. they are accompanied by
acceptance conditions which are a particular form of fairness constraints. As a practical
consequence, the fairness constraints often remain the same while different properties are
being checked.

In summary, we can say that on abstract systems, the negation in CTL*, and hence
the algorithmic treatment of fairness, needs to be approached with care. The reason is
the non-complementarity of positive and negative (or: definite and possible) information in
abstract systems. This phenomenon occurs not only for the static aspect — the valuation
of propositions in states —, but also for the dynamic — the information conveyed by the
two types of abstract transitions. Requiring formulas to be in positive normal form (as in
[3]), hence limiting the use of negation, is not possible if we want to consider formulas with
relativised path quantifiers. Therefore, we define, in Section 2, the interpretation over abstract
systems of CTL* with general negation in such a way that the central preservation result from
[3] is recovered. Based on this, we can then define what it means for an abstract path to be
fair, and extend the interpretation of formulas to FCTL* while maintaining preservation.

In [8], a similar result appears for the less general temporal logic LTL. The results
presented below offer a more general framework, though it should immediately be said that
the treatment of fairness in the context of abstraction is not the central issue of [8].

2 General Negation

It is possible to allow negations in front of arbitrary subformulas as long as we make sure that,
in abstract systems, the interpretation of any path quantifier and any proposition is sensitive
to the number of negations in whose scope it occurs. This is formalised by introducing
annotations on path quantifiers and propositions, which we write as superscripts: -¢ and -F.
A proposition p® is interpreted in the same way as p; p” gives the dual information: it is
true in every abstract state that does not have —p in its label. For a path quantifier (3 and
V), a C annotation indicates that it should be evaluated over constrained paths, while an F’
annotation prescribes the evaluation over free paths. Also, we introduce a syntactic operator
t on formulas that toggles all annotations: Cs become F's, and conversely. In the sequel,
an unannotated formula will be seen as an abbreviation of its “default” annotated form, i.e.
all propositions and ds are annotated with C, and all Vs with F'. Note that we then have
t(t(p)) = ¢ for both annotated and unannotated .

The interpretation of CTL* formulas with arbitrary negation over abstract transition
systems can now be formally defined. We give here the essential clauses; the rest is the same
as in the standard case.

2.0.1 DEFINITION Let a be an abstract state, p a proposition, and @, € CTL*, where v is
a path formula.

(1¢) a |= p© iff p has value true in a (i.e. a |=p).
(1) a |= p iff —p has value false in a (i.e. a [~ —p).
(neg) a |= —p iff a [~ t(p).

(67) a |= VI iff for every free a-path m, we have © |= 1; a |= 35 iff there exists a free
a-path 7 such that 7 |= .

(6%) a |= VY4 iff for every constrained a-path 7, we have m |= 1; a |= 3% iff there exists a
constrained a-path 7 such that 7 |= .

As can be seen from clause neg, the syntactic negation, —, does not coincide with its semantic
counterpart. As a result, certain formulas that are equivalent (over all models) in the concrete
case, are not equivalent anymore over all abstract models. A typical example is the formula
¢ V = (where @ is an arbitrary formula) versus the formula ¢rue. On the other hand, many
other equivalences remain intact. The following lemma gives some of those.

2.0.2 LEMMA Let ¢ € CTL* be an unannotated formula and let ¢’ be any formula obtained
from ¢ by introduction and removal of double negations and application (in any direction)
of De Morgan’s laws and duality rules for the path quantifiers and temporal operators. Then
for all abstract states a, we have a |= ¢’ iff a = .

One consequence of this lemma is that, for unannotated formulas, V may be defined as an
abbreviation for =3 (also for relativised quantifiers). So, in retrospect we may drop the cases
for V¥ and V¢ from Definition 2.0.1. Also, disjunction may be defined in terms of conjunction.

We can now extend the preservation result to formulas that are not necessarily in positive
form:

2.0.3 THEOREM For every unannotated o € CTL*, every abstract state a, and every c € a,
we have a =@ = c = o.

3 Fairness in Abstractions

We can now formalise the answer to the question what is a fair path in the context of
abstracted transition systems. Like the valuation of propositions and the abstract transition
relations, also the notion of fairness comes in two, dual flavours.

3.0.4 DEFINITION Let ® be a fairness constraint. A path 7 is ®C-fair iff 7 |= @ ; 7 is ®F -fair
iff T = t(P).

The interpretation of relativised path quantifiers over abstract transition systems can now be
defined as follows. Only the replacements for clauses 6 and 67 in Definition 2.0.1 are given;
the others remain the same. Also, we use the fact that V is an abbreviation for —3—, giving
only the cases for 3.

3.0.5 DEFINITION Let a be an abstract state, 1 a path formula, and ® a fairness constraint.

(6F) a = 374 under fairness constraint ® iff there exists a free ®F -fair a-path m such that

T = 1.

(6€) a |= 3% under fairness constraint ® iff there exists a constrained ®C-fair a-path = such
that m = 1.

We can now state the main result of this paper.

3.0.6 THEOREM For every unannotated o € FCTL*, every abstract state a, and every c € a,
we have a =@ = c = o.

We illustrate our results by applying them to our running example. The question is
whether the formula VFp under fairness constraint ® = GFq, holds on the concrete system.
According to Theorem 3.0.6, it suffices to check it on the abstract system. As we are using
Y as an abbreviation for —3—, we should replace the formula by =3-Fp — as explained after
Lemma 2.0.2, this should be done before annotating it. The resulting formula is in basic
syntax, without any abbreviations. Now, we adorn it by the default annotations (see the
beginning of Section 2), getting ~3¢—=Fp®. We then interpret the formula over the abstract
system, using Definition 2.0.1. Using clause neg, we need to check that it is not the case
that 3 =Fp’', under fairness constraint ®. Using clause 6/ (Definition 3.0.5), this amounts
to checking that it is not the case that there exists a free ®F -fair path 7 such that 7 |= —~Fp"".
Le., using clause neg once more, it is not the case that there exists a free ®F -fair path © such
that it is not the case that 7 |= Fp©. Applying Definition 3.0.4, this rewrites to: it is not the
case that there evists a free path m such that: (a) ™ |= GFq, and (b) it is not the case that
T = Fp®. Finally, by using the clauses for F, G (which have not been explicitly mentioned),
and the clauses 1¢ and 17 (Definition 2.0.1), this rewrites to: it is not the case that there
exists a free path m such that: (a) along 7 there are infinitely many states in which —q does
not have value false, and (b) it is not the case that in some state along ™, p has value true.
This does not hold for the abstract system of Figure 1, because indeed there does exist such
a free path 7, namely a1, a3,as,....

4 Discussion

We have extended the framework of model checking over abstractions of transition systems as
developed in [2, 3], to systems with fairness constraints specified external to the correctness
formula. The practical relevance of this result is that it allows to incorporate formal abstrac-
tion into model checkers that treat fairness algorithmically. Technically, the interpretation
of temporal logic over abstract systems is done in a 3-valued world, and by this the naive
application of the standard definitions for interpreting fair versions of temporal logics fails.

A question that follows naturally from this discussion, is whether the algorithmic ap-
proaches to model checking under fairness are correct in the context of abstraction. For
example, the approach proposed in [1] is based on the observation that in a formula in which
the path quantifiers are relativised to fair paths, the fairness can be “factored out”, resulting
in an equivalent formula in which the only relativised quantifiers are of a special form. These
special cases are then dealt with by an extension of the standard model checking algorithm,
which is often considered as a kind of preprocessing phase. It will be shown in the full pa-
per that the rewrite rules used, are based on equivalences that are also valid over abstract
systems.

Finally, we would like to raise a question concerning the relation between abstraction
and fairness on one hand, and logic programming on the other, for discussion in the VCL
workshop: Do logic programming languages have the appropriate level of abstraction to serve
as a finite-state modelling formalism for verification purposes? In particular: Is it possible to
express fairness constraints (e.g. & la Biichi or Streett acceptance conditions for w-automata)
within a finite-state logic program?

Acknowledgements We would like to thank Yassine Lakhnech for some useful comments.

References

[1]

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, April 1986.

Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of reactive sys-
tems: Abstractions preserving VCTL*, JCTL* and CTL*. In E.-R. Olderog, editor, Pro-
ceedings of the IFIP WG2.1/WG2.2/WG2.3 Working Conference on Programming Con-
cepts, Methods and Calculi (PROCOMET), IFIP Transactions, Amsterdam, June 1994.
North-Holland/Elsevier. Full version available as Computing Science Note 95/16, Eind-
hoven University of Technology, Dept. of Math. and Comp. Sc.

Dennis René Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands, July 1996.

E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching time
logic strikes back. Science of Computer Programming, 8:275-306, 1987.

E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branching versus
linear time. Journal of the Association for Computing Machinery, 33(1):151-178, 1986.

Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag,
1986.

Gerard Holzmann. Spin package. http://netlib.bell-labs.com/netlib/spin/
whatispin.html.

Yonit Kesten and Amir Pnueli. Verification by augmented finitary abstraction. Informa-
tion and Computation. To appear in special issue.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York, 1992 (Vol. 1), 1995 (Vol. 2).

