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Abstract

The duality between invariance and progress is fundamental in proof techniques for
the verification of programs. Proving invariance requires the construction of invariants,
while progress proofs hinge on the identification of appropriate ranking functions. With
the recent interest in automated verification techniques, the topic of automatic generation
of invariants is facing a revival of interest.

In [14] it has been shown that temporal properties of reactive systems can be proven
via finitary abstractions if those abstractions comprise a notion of acceptance conditions,
like w-automata. Based on this, that paper concludes that there is a strong need for
devising effective heuristics for generating such conditions. In this note, we address this
issue. We suggest a simple heuristic in the spirit of, and combining well with, the popular
predicate abstraction approach to the automatic generation and refinement of invariants.
The presentation is non-technical and guided by examples.

1 Introduction

Model checking is a useful technique to automatically determine whether a finite-state pro-
gram satisfies a temporal logic specification. The technique is often quite efficient in time
but suffers from high space requirements that limit its applicability. One of the most useful
approaches to reducing the space requirements is abstraction. An abstract model is smaller
in size (number of states and transitions) but typically contains more behaviours than the
concrete model. It is therefore suitable for verifying program properties that are universal
in nature, i.e., properties that refer to all behaviours of the program. For every universal
property (written in logics such as ACTL*, ACTL or LTL), if it is true of the abstract model
then it is guaranteed to be true of the concrete model. If, however, the property is false in
the abstract model then nothing can be said about its truth in the concrete model.

Both safety (invariance) and liveness (eventuality) properties are expressible in ACTL*
and therefore can be verified using abstraction. Unfortunately, liveness properties often do not
hold in the abstract model even when they are true of the original program. This is because
the abstract model may contain spurious cycles, i.e. cycles that have no corresponding ones
in the concrete model, along which a desired eventuality is never reached. An abstract model
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containing such cycles will not satisfy the eventuality property, thus, we will be unable to
derive its correctness for the concrete model.

A common way to remove additional cycles is to eliminate abstract transitions by parti-
tioning abstract states ([15, 5]). However, partitioning abstract states alone is not enough in
general. More precisely, given a system and an LTL property which is satisfied by it, in order
to demonstrate this via a finite abstraction of the system, it is necessary to consider abstract
transition system with acceptance conditions — this follows from the results of [14].

In this paper we suggest an approach that is complementary to the partitioning of abstract
states, based on the classical well-founded method used to prove liveness properties (e.g.
termination) for general programs. A ranking function associates with each program state a
value from a well-founded domain. Intuitively, a state gets a smaller rank if it is “closer” to
fulfilling the eventuality and gets a minimal rank when the eventuality is fulfilled.

We suggest an automated heuristic for choosing ranking functions. Based on these func-
tions we then mark an abstract transition with D (decreasing) if every concrete transition
associated with it definitely leads to a smaller rank. We mark it with I (increasing) if some
concrete transition associated with it may lead to a larger rank.

We can now exclude from the abstract model all paths that visit infinitely often D transi-
tions but do not visit infinitely often I transitions. This is done by adding Streett acceptance
conditions to the abstract model and apply a model checking algorithm that considers only
the fair paths ([4, 12]), namely, those that satisfy the Streett conditions.

The excluded paths clearly do not correspond to any concrete path and therefore should
not be considered for verification. The resulting abstract model is still an over-approximation
of the concrete one, but is more precise. Since additional cycles were eliminated, the new
model will satisfy more liveness properties. Thus, we will be able to verify more liveness
properties of the concrete model.

The rest of the paper is organized as follows. Section 2 presents the abstract interpretation
framework and the predicate abstraction approach using a simple example. The example also
demonstrates the difficulty that arises when using abstraction for verifying liveness properties.
Section 3 presents our heuristic for generating ranking functions and applies it to the example.
Finally, Section 4 identifies directions for future research.

2 Abstraction

In this section we recall the main principles of abstraction of state-transition diagrams. The
following small program will serve as a running example. The variables z and y are of type
integer.

<0 = y:=y+1

Suppose that we are interested in formally verifying that the program satisfies the temporal
logic ([16, 11]) property GFat_£y, which says that infinitely often, control must be at location
£y. Obviously, we cannot establish this by finite-state model checking, as the part of the state



space that is relevant to this property consists of infinitely many states. Namely, the state-
transition graph induced by this program is (¢y,-,1) — (¢1,1,1) = (£1,0,1) — (£,0,2) —
(01,2,2) — (41,1,2) = (£1,0,2) — - -, consisting of states (¢, z,y), each giving the program
location and the values of the two variables, and that are connected by transitions as generated
by executing the program’s transformations (statements) occurring along its edges. Note that
in this case the state-transition graph is a linear structure; in general it may display branching
behaviour and cycles.

One way to deal with this is to abstract the infinite state-transition graph that captures
the program’s behaviour into a finite, “abstract”, structure which can then be model checked.
This approach must obviously satisfy two criteria. First, it should come with a notion of
preservation, that tells us which correctness properties (temporal logic formulae), if they
can be established to hold for the abstract structure, hold for the original structure as well.
Second, there must be a way to construct the abstract structure that circumvents explicitly
building the infinite concrete structure as an intermediate step.

The notion of preservation we use here is based on a well-known result from automata
theory, namely that the existence of a simulation relation between the states of two state-
transition graphs guarantees that the traces (behaviours, executions) of one are included in
those of the other. We use an instantiation of this where the simulation relation is indeed a
function « from concrete to abstract states. Such an abstraction function induces a partition-
ing of the concrete state space, where an abstract state a is said to describe all concrete states
which « maps to a. By requiring « to be a simulation relation, there must be an (abstract)
transition between two abstract states ¢ and b if there is a transition from some concrete
state mapped to a to some concrete state mapped to b. Furthermore, in order to be able to
interpret temporal logic formulae over abstract structures, we need to specify how the truth
of propositions is defined in abstract states. We require that if a literal ¢ (a literal is either a
proposition or its negation) is defined to be true in abstract state a, then it must be true in
all concrete states described by a. In addition, we require formulae to be brought in negation
normal form before being evaluated over an abstract structure. These requirements suffice
for the preservation of properties expressed in universal temporal logics, which do not use
existential quantification over behaviours, see e.g. [6, 10]. Observe that the ¢ruth of formulae
is preserved from the abstract to the concrete structure. However, if a formula does not hold
over an abstract structure, this may be because the abstraction is too coarse. In other words,
we may have false negatives.

In order to construct the abstract structure we use abstract interpretation. Here, the
idea is that given a representation of the abstract states, the abstract transition relation is
computed by symbolically interpreting the program’s state transformations over these states
([7]). This will be illustrated below.

A topic that is drawing considerable attention recently is the identification of heuristics
for the automatic generation of abstractions, given a program and a correctness property
to verify. The quality of such heuristics is determined by the extent to which they produce
abstract structures that are small enough to be manageable by a model checker, yet contain
enough detail to allow to establish the property.

A popular approach is predicate abstraction, introduced in [13] and inspired by work on
the automatic generation of invariants ([17, 3]) and on partition refinement ([9, 10]). In this
method, the abstract states are represented by predicates that are formulae in some decidable
logic that is supported by automated decision procedures. If in addition the state transforma-



tions performed by the program are expressed in the same logic, then the decision procedures
can be used to automatically compute the abstract transition relation, i.e., to perform the
abstract interpretation of the program’s instructions over the predicates representing the ab-
stract states, thus constructing the reachable part of the abstract state space by “symbolic
execution”. Examples of tools that offer (some of) these capabilities are STeP [18], InVeSt
[2], and Bandera [1].

The predicates for the initial abstraction are usually derived from syntactic clues in the
program text and the correctness property. For example, the abstract states are taken to be
conjunctions of predicates expressing that control is at a certain point with the set consisting of
all conditions occurring in the program, together with all predicates occurring in the property.
We illustrate this by (manually) applying it to our example. The “control predicates” are
at_fy and at_¢;, the two guards are z > 0 and = < 0, and the predicate in the correctness
property is at_¢y again. Together, these give the abstract states at_fy Az > 0, at_£y Az <0,
at_i Az > 0, and at_¢; Az < 0. These states and the abstract transitions induced are depicted
below. Consider for example the abstract transition from at_fy Az > 0 to at_¢; Az < 0. The
predicate at_fo Az > 0 puts no constraints on the value of y, so a concrete state like (£g, 5, —2)
is described by it. There is a concrete transition from this state to (¢1, —2, —2) (by performing
the transformation z := y), which in turn is described by at_¢; A 2z < 0. Note that even in
cases where not everything can be expressed in the decidable logic, the decision procedures
can be used to produce overapproximations of the abstract structure, which may still contain
valuable information.

The formula GFat_¢y does not hold in this model, the counterexamples being those exe-
cutions that end up cycling in state at_¢; A x > 0. For a human it is easy to see that this
is a false counterexample: The guarded command that is responsible for the transition from
this abstract state to itself, z > 0 — z := z — 1, can clearly not be executed infinitely often
without leaving the state.

In addition to heuristics for constructing an initial abstraction, the method of predicate
abstraction is characterised by a recipe for refining an abstract structure in cases as this,
where false negatives are present. However, in the case of this example, it is not possible to
get rid of this spurious loop by refining the predicates that make up the abstract states and
keep the abstraction finite at the same time. In order to do so, predicates £ = n would have
to be introduced for every value n that z may take, i.e., for every positive n, thus leading to
an infinite-state structure.



3 Generating Ranking Functions

Instead of making the invariants, i.e. the abstract states, more precise, we need to define
fairness or acceptance conditions that will exclude abstract paths that do not correspond to
any concrete path. In [14], so-called progress monitors are introduced to this purpose. Here,
we will attach the progress information more directly to the abstract structure, namely by la-
belling transitions with I (for “possibly increasing”) or D (for “definitely decreasing”). These
notions are relative to a ranking function mapping concrete states into some well-founded
domain. If an abstract transition is labelled D then this means that along all corresponding
concrete transitions, the value of the ranking function decreases strictly (this explains the
“definite”). An I label means that along some corresponding concrete transition, the value
of the ranking function may increase (hence the “possibly”). So, it is indeed the absence of
an I label on an abstract transition that conveys the definite information that none of the
corresponding concrete transitions increases the ranking. Clearly, an infinite abstract path
can only have a corresponding infinite concrete path if it satisfies the following linear-time
temporal formula which means “infinitely often decreasing implies infinitely often increasing”.

GFD = GFI (1)

Converting the formula to a Streett acceptance condition and adding the condition to the
abstract model will identify as non-fair all paths that do not satisfy the formula. The model
checking algorithm will then ignore these paths. These paths indeed should be ignored since
they do not represent any real concrete behaviour.

Observe that any ranking function, mapping into any well-founded domain, may give
useful progress information, as long as the D /I markings are correct. Indeed, multiple ranking
functions! rf, may be introduced, leading to multiple D;/I; markings, each coming with a
Streett acceptance condition of the form (1). This is comparable to the case of finding abstract
states as e.g. given by the predicate abstraction method: Any set of predicates may be useful
in proving invariance properties, as long as the abstract transitions are computed correctly.
Of course, there is a trade-off: just as the introduction of too many predicates may lead
to a state explosion, the introduction of too many ranking functions may complicate model
checking.

The discussion above brings up the following two questions.
1. Given a program, how can we automatically identify useful ranking functions?

2. Given a ranking function, how to automatically compute the D/I effect of a concrete
transformation?

We propose a method that is in the same spirit as the idea of predicate abstractions. It relies
on a heuristic to generate ranking functions, based on syntactic clues in a program. Then,
decision procedures are used to compute the D/I markings.

Just like in the case of the heuristic for choosing a set of predicates in the case of predicate
abstraction, also the ranking functions are chosen based on the conditions that occur in the
program text. The idea is to view a condition as a goal or eventuality, something that must

'From now on we will assume the definition of the well-founded domain to be part of the definition of the
ranking function.



eventually be reached, and to introduce a measure, ranging over a well-founded domain, that
decreases as the program gets closer to fulfillment of this goal, and that hits the “bottom”
of the domain as soon as the goal is reached. Consider our example program again. The
condition z < 0 suggests the following ranking function (over IN):

f rz ifx >0,
T .
<0 0 ifz<0

As the condition z < 0 guards the transition from ¢; to £y in the program, the intuition
behind viewing it as a goal is that we are interested in “eventually getting out of ¢;” — which
is precisely what is needed in order to break the selfloop on state £, A z > 0 in the abstract
structure. The associated ranking function rf,., is positive when z > 0, and decreases as
the program “gets closer” to < 0. As soon as z < 0 has been reached, it is 0. Computing
the effect of the transformations occurring in the program, it turns out that, in the abstract
state graph, the selfloop on state /; A z > 0 and the abstract transition from ¢; A z > 0
to 1 A x < 0 are labelled with Dy<g, and all other transitions with I;<g. It is not hard
to see that under the condition GFD,<9 = GFI,<g, the formula GFat_¢y now holds on the
abstract structure.

More generally, we suggest the following rules to generate ranking functions for a number
of simple (in)equality conditions over integers; z is a program variable and N a constant. The
ranking functions have been “scaled” so that their domain is always IN.

‘ condition ¢ ‘ ranking function rf, ‘

z—N ifz >N,
<N
0 ifxe <N
v < N r+1—-N ifz >N,
0 ife <N
N — if N
e>N r Hx <IN,
0 ifx >N
s N N+1—z ifz <N,
0 ife >N
r=N |z — NJ|

We could also consider the other condition in our example program, x > 0, to generate a
ranking function. According to the table, this would then be 1 — z. In that case, the selfloop
on state £;1 A x > 0 would be marked with I,~(, and hence it would not help in establishing
the correctness property GFat_/;.

In order to compute the D/I labels for a given ranking function, decision procedures
may be used, again much in the same way they are used in the automatic generation of
the transition relation. Also here, approximation may be used to circumvent undecidable or
too-costly cases. In that case, one starts with an abstract structure in which all transitions
are labelled with I and none with D. Only if it can be decided that a transformation does
definitely not increase a ranking function, the corresponding I label may be removed. If in
addition it can be guaranteed that the transformation causes a strict decrease in the ranking,
a D label is added.



4 Reflections

To evaluate the usefulness of the heuristic we have suggested, it needs to be implemented and
experimented with. Existing tools that incorporate facilities for automatically generating
invariants, like STeP ([18]) or InVeSt ([2]), are probably convenient platforms for a prototype
implementation. The reason is that our heuristic is closely related, both in aim and in
structure, to such methods.

In order for the heuristic to be practically applicable, it is imperative that it is generalised
to other data types beside integers, like arrays, queues, stacks, (linked) lists, tables, sets, etc.
Case studies that we are currently undertaking indicate that such generalisations exist and
are in many cases in terms of simple rules, like the table on page 6, based on the form of
conditions occurring in a program.

Another issue that deserves further investigation is how to “refine” ranking functions
or D/I labels in case they do not provide enough information to establish the property of
interest. One possibility would be to associate D/I labels with sequences of transformations.
For example, consider the loop do = := z + 1;2 := z — 2 until z < 0. The ranking function
generated by the termination condition is z if z > 0 and 0 otherwise. Labelling the individual
statements would lead to an I label associated with z := x4+ 1 and a D label with z := z — 2,
the result being that termination of the loop might still not be provable, even under the
constraint GFD = GFI. However, the effect of the sequence =z := z+ 1;2 :=z — 2 is D,
which could suffice for proving termination.

On the theoretical side, an interesting topic is the integration of the idea of “abstracting
into w-automata” into the theory of Abstract Interpretation ([7, 8]).
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