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Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for hard-
ware model checking. It is based on a 3-valued symbolic simulation, using 0,1 and X
(”unknown”), where the X is used to abstract away values of the circuit nodes.
Most STE tools are BDD-based and use a dual rail representation for the three possible
values of circuit nodes. SAT-based STE tools typically use two variables for each
circuit node, to comply with the dual rail representation.
In this work we present a novel 3-valued Circuit SAT-based algorithm for STE. The
STE problem is translated into a Circuit SAT instance. A solution for this instance
implies a contradiction between the circuit and the STE assertion. An unSAT instance
implies either that the assertion holds, or that the model is too abstract to be verified.
In case of a too abstract model, we propose a refinement automatically.
We implemented our 3-Valued Circuit SAT-based STE algorithm and applied it suc-
cessfully to several STE examples.

1 Introduction
Symbolic Trajectory Evaluation (STE) [18] is a powerful model checking technique for
hardware verification, which combines symbolic simulation with 3-valued abstraction. Con-
sider a circuit M , described as a Directed Acyclic Graph (DAG) of nodes that represent
gates and latches. For such a circuit, an STE assertion is of the form A → C, where the
Antecedent A imposes constraints over nodes of M at different times, and the Consequent
C imposes requirements on M ’s nodes at different times.

The antecedent may introduce symbolic Boolean variables, and the assertions it imposes
on M depends on them. For each node n and time t, STE computes the symbolic represen-
tation of (n, t), according to the constraints imposed by A, and the behavior of M . The
nodes that are not restricted by A are initialized by STE to the value X (”unknown”), and
thus an abstraction of the checked model is obtained.

For an assertion A→ C and a circuit M , STE may return “pass”, “fail”, or “unknown”
(X) result. If the computed values of all nodes (n, t) comply with the requirements of C
for these nodes, then the assertion passes. If, for some requirement of C on (n, t), STE
computes a definite value (0 or 1) which contradicts the requirement, then “fail” is returned,
together with a counterexample. If, on the other hand, STE computes X for (n, t), though
C contains requirements for (n, t), then an “unknown” result is returned. The latter case
means that the abstraction induced by A is too coarse, and requires some refinement.

STE is successfully used in the hardware industry for verifying very large models with
wide data paths [19, 17, 22]. The common method for performing STE is by representing
the values of each node in the circuit by Binary Decision Diagrams (BDDs) that depend on
the symbolic variables [19]. In this method, the dual rail representation is used, where two
BDDs represent the three possible values of a node. The main drawback of this method is



the unpredictability of the BDDs’ sizes, and their tendency to explode when a large number
of symbolic variables is used. Another limitation in common STE methods is the need for
manual refinement, which is time consuming and requires close familiarity with the checked
circuit.

For general model checking problems, it has been recognized for quite some time that
SAT-based algorithms can often handle much larger models than BDD-based ones. It is
therefore very appealing to try and implement SAT-based algorithms for STE as well. How-
ever, only a few works took this direction. In [21], non-canonical Boolean expressions are
used instead of BDDs during the simulation, and a SAT solver is used to check if the re-
sulting expressions meet the requirements of the STE assertion. The Boolean expressions
used in this method might be too large to handle, and might require a theorem prover for
reducing their size. In [2] and [4], the dual rail encoding is used to create a CNF formula for
STE. This representation uses two Boolean variables for each node in the circuit, which we
avoid in our algorithm. In [15], a 3-valued SAT solver was suggested, which did not perform
well. Additionally in [15], an approximation for a 3-valued SAT solver is computed. This
approximation, however, does not completely correspond to the semantics of STE. None of
the methods discussed above performs automatic refinement. We further elaborate on these
works in Section 7.

Particularly interesting for hardware verification is the Circuit-SAT method [8, 11, 10],
which gets its input in the form of a circuit rather than a CNF formula. A circuit SAT solver
is based on justification of nodes, as described in [7]. For a node n in a circuit, and a Boolean
value d, it searches for a justification for [n, d]. That is, it looks for a (partial) assignment to
some of the circuit inputs, under which n evaluates to d.

Our contribution is a novel framework for STE, which is based on a 3-valued justifica-
tion algorithm. Our algorithm exploits the abstraction induced by using X values, without
using the dual rail encoding. It is far less sensitive to the number of symbolic variables than
BDD methods. Furthermore, it provides automatic refinement.

For a circuit M and an STE assertion A → C, we create a circuit that represents M ∧
A ∧ ¬C. A justification to the value 1 at the output of the circuit represents a run of M
that agrees with the constraints of A, and does not satisfy the requirements of C. This
implies that the STE assertion does not hold on M . If no such justification exists, it implies
either that A → C holds on M , or that the abstraction implied by A is too coarse for
verifying A → C. If no justification is found, our algorithm produces a core for the proof
of un-justifiability. If this proof does not depend on variables whose values are X , then
we conclude that A → C holds. Otherwise, the core indicates which variables should be
refined.

Our algorithm uses a hybrid representation of the problem: as a set of constraints in
CNF, and as the DAG of the circuit. The CNF representation is used for efficient Boolean
Constraint Propagation and for learning, as in common SAT solvers [13, 24]. The DAG
representation is a higher level description of the circuit than the CNF representation. It is
used for branching as in [8, 10, 11], for propagating X values, and for deciding termination.

We exploit the fact that for each variable, a Boolean solver holds three possible values,
true, false and unspecified. Thus, we can represent each circuit node by a single variable
in the CNF formula. Additional information is used to distinguish between the case the
variable has the value X and the case it is unspecified. An X value at a specific node is
marked so in the DAG. Additionally, it is represented by special constraints added to the
CNF formula. New X values can be learnt both on the DAG and on the CNF formula. They
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are used to avoid traversal of abstracted parts of the circuit, thus reducing the amount of
work.

We implemented our 3-valued justification algorithm on top of zChaff [13], which is a
state of the art CNF SAT solver, and of [9]. We employed our tool for solving several STE
problems, and compared it to other methods. Using our algorithm, we managed to solve
problems that could not be solved by BDDs, and in most cases it outperformed other SAT
based methods. A characterization of such problems is given in Section 6.

The rest of this paper is organized as follows: In Section 2 we present preliminaries. In
sections 3 and 4 we describe our justification algorithm, and show how to use it for STE. In
Section 5 we explain how automatic refinement can be performed. In Section 6 we present
our experimental results, and in Sections 7 and 8 we discuss related work, conclusions, and
future research.

2 Preliminaries

A hardware model M is a circuit, represented by a directed graph. The graph’s nodes N
are input and internal nodes, where internal nodes are latches and combinational gates. A
combinational gate represents a Boolean operator. The graph of M may contain circles, but
not combinational circles. Given a directed edge (n1, n2), we say that n1 is an input of n2.
We denote by (n, t) the value of node n at time t. The value of a gate (n, t) is the result of
applying its operator on the inputs of n at time t. The value of a latch (n, t) is determined
by the value of its input at time t− 1.

2.1 Symbolic Trajectory Evaluation (STE)

In STE, a node can get a value in a quaternary domain Q = {0, 1, X,⊥}. X(”unknown”)
is given to a node whose value cannot be determined by its inputs. ⊥ is used to describe an
over constrained node. This might occur when there is a contradiction between an external
assumption on the circuit and its actual behavior.

A state s in M is an assignment of values from Q to every node, s : N → Q.
A trajectory π is an infinite series of states, describing a run of M . We denote by

π(i), i ∈ N, the state at time i in π, and by π(i)(n), i ∈ N, n ∈ N , the value of node n in
the state π(i). πi, i ∈ N, denotes the suffix of π starting at time i.

AND X 0 1 ⊥

X X 0 X ⊥

0 0 0 0 ⊥

1 X 0 1 ⊥

⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥

X X X 1 ⊥

0 X 0 1 ⊥

1 1 1 1 ⊥

⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X

0 1
1 0
⊥ ⊥

Fig. 1. Quaternary Operations

Let V be a set of symbolic Boolean variables
over the domain {0, 1}. A symbolic expression over
V is an expression consisting of quaternary opera-
tions, applied to V ∪ Q. The truth tables of the qua-
ternary operators is given in Figure 1. A symbolic
state over V is a mapping from each node of M to a symbolic expression. A symbolic state
represents a set of states, one for each assignment to V . A symbolic trajectory over V is a
series of symbolic states, compatible with the circuit. It represents a set of trajectories, one
for each assignment to V . Given a symbolic trajectory π and an assignment φ to V , φ(π)
denotes the trajectory that is received by applying φ to all of the symbolic expressions in π.

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V as follows:
f ::= n is p | f1 ∧ f2 | p → f | Nf , where n ∈ N , p is a Boolean expression over V , and
N is the next time operator. The maximal depth of a TEL formula f is the maximal time t
for which a constraint exists in f on some node n, plus 1.
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Given a TEL formula f over V , a symbolic trajectory π over V , and an assignment φ to
V , we define the satisfaction of f as defined in [20]:
[φ, π |= f ] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(π)(i)(n) = ⊥. Otherwise:
[φ, π |= n is p] = 1 ↔ φ(π)(0)(n) = φ(p)
[φ, π |= n is p] = 0 ↔ φ(π)(0)(n) 6= φ(p) and φ(π)(0)(n) ∈ {0, 1}
[φ, π |= n is p] = X ↔ φ(π)(0)(n) = X φ, π |= p→ f ≡ ¬φ(p) ∨ φ, π |= f

φ, π |= f1 ∧ f2 ≡ (φ, π |= f1 ∧ φ, π |= f2) φ, π |= Nf ≡ φ, π1 |= f

Note that given an assignment φ to V , φ(p) is a constant (0 or 1).
We define the truth value of π |= f as follows:
[π |= f ] = 0 ↔ ∃φ : [φ, π |= f ] = 0
[π |= f ] = X ↔ ∀φ : [φ, π |= f ] 6= 0 and ∃φ : [φ, π |= f ] = X

[π |= f ] = 1 ↔ ∀φ : [φ, π |= f ] 6∈ {0, X} and ∃φ : [φ, π |= f ] = 1
[π |= f ] = ⊥ ↔ ∀φ : [φ, π |= f ] = ⊥

This definition creates an order of importance between 0 and X . If there exists an as-
signment such that [φ, π |= f ] = 0, the truth value of π |= f is 0, even if there are other
assignments such that [φ, π |= f ] = X .

t n1 n2 n3 n9 n5 n6

1 X X X 0 X 0

2 X X 0 X 1 X

Fig. 2. Symbolic Simu-
lation

STE assertions are of the form A → C, where A (the an-
tecedent) and C (the consequent) are TEL formulae. A expresses
constraints on circuit nodes at specific times, and C expresses re-
quirements that should hold on circuit nodes at specific times.
M |= (A → C) iff for all trajectories π of M and assignments
φ to V , [φ, π |= A] = 1 implies that [φ, π |= C] = 1. When ap-
plying A to M , if a node n is evaluated to X , but is also constrained to a Boolean value 0
or 1 by A, then n is assigned with the value imposed by A. If n is evaluated to 0(1) and A
constraints it to 1(0), then n is assigned ⊥. As in [20], an antecedent failure is a case where
for every trajectory π and every assignment φ to the symbolic variables, there is a node n
and time t such that (n, t) is over constrained by π, φ and A. Consider the circuit in Figure
3(a), and the STE assertion A → C, where A = (n4, 1) is 0 and C = (n5, 2) is 1. The
table in Figure 2 corresponds to a symbolic simulation of this assertion. (n5, 1) is evaluated
to 1, and thus the assertion holds.

Most STE implementations use the dual rail encoding in order to represent the 4 values.
In this encoding, the value of each node (n, t) is determined by the evaluations of two
Boolean functions f1

n,t, f
2
n,t : V → {0, 1} over the set of symbolic variables V .

2.2 The SAT Problem

The Boolean satisfiability problem (SAT) is the problem of finding an assignment φ to a set
of Boolean variables V such that a Boolean formula ϕ(V ) will have the value ’1’ under this
assignment. φ is called a satisfying assignment for ϕ.

We discuss formulae presented in the conjunctive normal form (CNF). That is, ϕ is a
conjunction of clauses, where each clause is a disjunction of literals over V . A literal l is an
instance of a variable or its negation: l ∈ {v,¬v | v ∈ V }. We shall consider a clause as a
set of literals, and a formula as a set of clauses.

A clause cl is satisfied under an assignment φ iff ∃l ∈ cl, φ(l) = 1. For a formula ϕ
given in CNF, an assignment satisfies ϕ iff it satisfies all of its clauses. Hence, if, under an
assignment φ (or a partial assignment), all of the literals of some clause in ϕ are 0, than φ
does not satisfy ϕ. We call this situation a conflict.
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For an unsatisfiable formula ϕ = C, where C is a set of clauses, an unSAT core C ′ is a
set of clauses C′ ⊆ C such that C′ is unSAT.

For two clauses cl1 = (w1, v1 . . . vn) and cl2 = (¬w1, z1 . . . zm) ((v1 . . . vn) and
(z1 . . . zm) are not necessarily disjoint), their resolvent is clres = (v1 . . . vn) ∪ (z1 . . . zm).
It is easy to show that cl1 ∧ cl2 ∧ clres ≡ cl1 ∧ cl2. For an unSAT formula, there exists a
series of resolutions that leads to the empty clause. This series is the proof of the formula’s
unsatisfiability. This series is called resolution tree, where the root is the empty clause, and
the rest of the nodes are the clauses in the series that led to it. The antecedents of a node are
the clauses that were involved in the resolution that create it. The leaves are a subset of the
original clauses of the formula. This subset of clauses is an unSAT core.

Davis-Putnam-Logemann-Loveland Backtrack Search (DPLL) We begin by describing
the Boolean Constraint Propagation (bcp). Given a partial assignment φ and a clause cl, if
there is one literal l ∈ cl with no value, while the rest of the literals are all 0, then in order
to avoid a conflict, φ must be extended such that φ(l) = 1. cl is called a unit clause, and the
assignment to l is called an implication. bcp computes all possible implications at a given
moment. This procedure is efficiently implemented in [13, 23, 12].

The DPLL algorithm [6, 5] iteratively chooses an assignment to some variable, and com-
putes its implications. If no conflict occurs, a new assignment is chosen, and so on. If a
conflict occurs, the algorithm invalidates the last chosen assignment, and tries another one
instead. Choosing an assignment to a variable is called branching, and invalidating a deci-
sion is called backtracking. DPLL terminates in the following cases: If all of the variables
are assigned without causing a conflict, ϕ is satisfiable, and the current assignment to the
variables is a satisfying assignment. On the other hand, if a conflict occurs but there are no
decisions to invalidate, it is concluded that ϕ is unsatisfiable.
Optimizing DPLL

Modern SAT solvers apply several optimization on the basic DPLL backtrack search.
Such optimizations are conflict based learning, conflict driven backtracking, restarts and
more. These optimizations result in a significant speedup of the SAT solving tools.

Learning is performed upon the occurrence of a conflict. At this point, two clauses im-
plicate conflicting values to the same variable. The resolution of the clauses describes the
cause to the conflict. Thus, it is added to the formula, and prevents the conflict from reoc-
curring. Different learning strategies yield different conflict clauses. 1UIP is a common and
very efficient strategy[24].

2.3 Bounded Model Checking

We shall briefly describe Bounded Model Checking (BMC)[1] for a modelM and a property
P , which is a commonly used model checking technique. In BMC, the transition relation
of M is described as a Boolean formula R(x, x′), where x and x′ are the current and next
state variables, respectively. The property P is also described as a Boolean formula P (x).
Additionally, the set of initial states of M is described by a boolean formula I0(x).

BMC is an iterative algorithm. At iteration k, the formulaϕk = I0(x0)
∧k−1

i=0
R(xi, xi+1)∧

¬P (xk) is constructed, and is given to a SAT solver. A solution for ϕk represents a path of
length k from an initial state in M , along which the property P does not hold. Thus, a solu-
tion represents a bug in the model. If ϕk is unSAT, then no such path of length k exists, and
the algorithm continues to the next iteration.
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If P describes only finite paths, BMC terminates when k reaches the length of the
longest path in P . Otherwise, BMC terminates when k reaches the diameter of M . In prac-
tice, the diameter of the model is not reached, and BMC stops due to memory limits or
timeouts.

2.4 Circuit SAT Solvers
Justification of Assignments For a circuit node n and value d, we say that [n, d] is justified
by the inputs to n if d is implied by them according to the semantics of n. On that case,
we say that n is justified by its inputs. For example, consider a node n, associated with an
“AND” operator, and its inputs in1 . . . inm. [n, 0] is justified iff ∃ i s.t. ini = 0, regardless
of the values of the rest of the inputs. [n, 1] is justified iff ∀ i, ini = 1. We generalize this
definition for the set of nodes in the graph that may effect the value of n. When given a
(partial) assignment to the inputs of a circuit, we say that [n, d] is justified if d is implied
by those inputs. An input is thus trivially justified. Throughout the rest of this paper, an
assignment is considered a partial assignment.

Circuit SAT A Circuit SAT Solver [8, 11, 10] is a solver that uses a graph representation of
the circuit instead of a CNF formula. Given a circuit, a node n and a value d. A circuit SAT
solver returns a justification for [n, d] if one exists, or “unjustifiable” otherwise. Branching,
bcp, learning and other procedures are performed over the graph.

3 3-Valued Justification
In this section we describe our 3-valued algorithm for justifying a value of a node in a
circuit. Our algorithm uses a dual representation of the circuit. The first is a graph G of the
circuit’s gates and latches, and the other is a CNF description of it, denoted ϕ. ϕ is built
as described in [1]. ψ1

and in Figure 6 is an example for a CNF description of an “AND”
gate n, with inputs in1 and in2. There is a 1-1 mapping between the variables of ϕ and the
nodes of G. Thus, we can refer to a node by its corresponding variable and vice versa. The
graph and the CNF representations are maintained throughout the computation in order to
keep the correlation between them. The pseudo code of our algorithm is given in Figure 4.
Throughout this Section we refer to the example of circuit t1 in Figure 3(b).

3.1 not-0 and not-1 Variables
When working in a 3-valued domain, a variable being not-1 does not imply being 0, and
vice versa. Therefore, we introduce the notions of not-0 and not-1. A variables is not-0 or
not-1 if it is not allowed to be assigned 0 or 1, respectively. Consequently, a node which
is both not-0 and not-1 can only be assigned X . Such restrictions can be derived from
external constraints, or learned during the search. We denote not-0 and not-1 by |!0 and |!1,
respectively.

In the graph representation G we have a mechanism for marking |!0 and |!1 nodes. We
need a mechanism for marking and manipulating |!0 and |!1 variables in ϕ. Therefore, we do
not consider the clauses to be sets of literals, as defined in Section 2.2. Instead, we consider
the clauses to be multi-sets of literals. The definition of a conflict and constraint propagation
remain as in Section 2.2. |!0 and |!1 variables are marked by adding the clauses (n ∨ n) and
(¬n∨¬n), respectively. When applying constraint propagation, each of these clauses causes
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a conflict if we try to assign n with a value 0 or 1, respectively. However, since they never
become unit clauses, neither of the clauses forces any value on n. In the Boolean domain,
the propositional formula (n∨n)∧(¬n∨¬n) is not satisfiable. In contrast, in our algorithm,
these clauses correctly represent X values, since our algorithm does not necessarily satisfy
all the clauses, as we describe in Section 3.2. In particular, our algorithm does not assign
a value to a variable that is both |!0 and |!1. Note that though a variable may have multiple
instances in a clause, we only have to distinguish between single and multiple instances.
Thus, if a variable has more than one instance in a clause, we only keep two instances.

|!0 and |!1 restrictions are propagated on G. Consider n5 in the example. i1 is |!0. There-
fore, n5 cannot be assigned 0, and is also |!0. Similarly, n6 is also |!0. In addition, since
all the inputs to n7 are |!0, n7 is also |!0. We do not propagate the restrictions directly on
ϕ. However, when propagating them on G, we also create the appropriate clauses for the
implied restrictions, and add them to ϕ. For example, i1 is |!0 implies that n5 is |!0. Thus
we add the clause (n5, n5). Additionally, i1 being |!1 changes the relation between i2 and
n5: Since i1 is |!1, n5 = 1 implies i2 = 1. This new relation is expressed by the clause
(i2,¬n5,¬n5). Note that i2 is only one of the inputs to an “OR” gate, and therefore i2 = 0
should not imply n5 = 0. The two instances of ¬n5 prevent that. Similarly, the clause
(n9,¬n6,¬n6) is created.

Fig. 3. Circuits

 1n
 4n

 5n  6n
 3n
 2n

 5n
 7n

 8n

10n

 6n

  !0  !1

  !0  !1

  !0

  !0

  !0

 5n
 7n

 8n

 10n

 6n

2t1t =

=

1

i2

i3
i4

 11n

i4
i3

1

i2

 11n

V1
!C

A g

i i

 9n  9n

(a) A circuit (b) An Unrolled Circuit

In section 2.2 we defined the resolution tree for clauses that are created by resolution.
In our context, clauses can be created by propagating |!0 and |!1 on G. The propagation on
G corresponds to the semantics of the nodes, which is also expressed by the clauses of the
nodes in ϕ. Thus, the generated clauses are considered as the result of applying resolution
on the relevant clauses in ϕ. In the example, the clause (n5, n5) can be created by applying
resolution on the clauses (i1, i1) and (¬i1, n5), and on their resolvent and (¬i1, n5) again.
The definition of the resolution tree thus remains unchanged.

3.2 3-Valued Justification Algorithm
Given a DAG G of a circuit, a CNF description of it ϕ, a node r ∈ G, and a Boolean value
d, our 3-valued justification algorithm (3VJA) returns a justifying assignment for [r, d], or
unjustifiable if [r, d] is not justifiable. We call r the root of G. 3VJA performs an iterative
backtrack search over G. The information in G about the structure of the model is used
for branching during the search, and allows propagation of |!0 and |!1 restrictions. It is also
used for correct termination of the algorithm. The CNF representation ϕ is used for efficient
constraint propagation, detection of conflicts and for learning. X values are described by
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using clauses representing the |!0 and |!1 constraints, and can be learned during the solving
process. Next we describe and explain 3VJA.

3VGA (G,ϕ,n,d)
1) while true
2) if (¬branch on G)
3) return justification
4) if (bcp on ϕ⇒conflict){
5) learn conflict clause
6) if learned X clause {
7) mark X on G
8) propagate X on G
9) add clauses to ϕ
10) }
11) if possible
12) backtrack
13) else
14) return unjustifiable
15) }

Fig. 4. 3VJA. Lines 2, 7 and 8
are executed on G. Lines 4, 5
and 9 are executed on ϕ.

We begin by describing the branching procedure, which is
a 3-valued variation of the justification procedure described in
[7]. Our branching procedure traversesG, assigning the nodes
with values in a pre-order manner, starting from the root. For
each node it chooses values only to its inputs that are needed
in order to justify it. The rest of the input nodes are not as-
signed and are not traversed. The branching procedure does
not assign |!0 and |!1 nodes with the values 0 and 1, respec-
tively. In the example, justification of [n8, 0] will not be done
by assigning n7 = 0. If it is impossible to justify a node with
any of its inputs, 3VJA invalidates the last branching and tries
another path. The root of G is assigned either 1 or 0. There-
fore, we never justify an X value, nor do we have to assign a
node with the value X for justification of a node.

After each branching, the assigned value has to be prop-
agated through the variables. We exploit the fact that a value
of a variable in a Boolean SAT solver can be either 1, 0, or
unassigned in order to represent 3 values in a Boolean con-
text. Thus, we use ϕ to propagate the branching assignment
through the circuit. The propagation and the definition of a
conflict remain as defined for Boolean SAT. If the propagation does not cause a conflict,
3VJA continues to the next iteration. If a conflict occurs, 3VJA learns a new conflict clause,
and backtracks accordingly.

When a conflict occurs, the resolvent of the clauses that were involved in the conflict
is added to the problem. In the 3-valued context, we define the resolvent of clauses cl1 =
(w1, v1 . . . vn) and cl2 = (¬w1, z1 . . . zm) to be cl3res = (v1 . . . vn, z1 . . . zm). Note that
the clauses are considered to be multi-sets, and clauses may have multiple instances of
a variable. For example, the resolvent of (v1, v2, v3) and (¬v1, v3, v4) is (v2, v3, v3, v4).
Adding a resolvent as defined above to ϕ does not change the set of justifying assignments
to [r, d]. Due to space limitations, we omit the proof of this claim. This resolution is similar
to the resolution described in [15]. We elaborate on this in Section 7.

It is possible to learn conflict clauses such as (n, n) and (¬n,¬n). When learning such
clauses, we mark the corresponding nodes inG as |!0 and |!1, respectively. We propagate this
information on G, thus extracting additional information from the learned conflict clause.
We then generate the appropriate clauses, as described in Section 3.1, and thus maintain the
correlation between G and ϕ.

By learning (n, n) and (¬n,¬n) clauses we can conclude that a node is forced to X
even if such a conclusion can not be explicitly derived from G. This is an important result,
because it prevents the branching procedure from trying to use the constrained node for
justification in the future. It also helps detecting conflicts earlier. We demonstrate this on
our example. Assume that the branching procedure assigned n8 = 1. A possible series of
implications from this assignment is n7 = 1, n5 = 1, n6 = 1, n9 = 1, i2 = 0. Other series
could be computed, depending on the order of computing the implications. The result of
these implication is that all the literals in the clause (i2,¬n5,¬n5) are 0. That is, a conflict
has occurred. We show the series of resolutions that is performed upon this occurrence in

8



Figure 5. The learned conflict clause is (¬n7,¬n7), and it is added to ϕ. We also mark that
n7 is |!1 in G and propagate it, implying n8 is |!1 and n11 is |!1. These implications are also
added as the clauses (¬n8,¬n8) and (¬n11,¬n11) to ϕ. The result is that n7 is assigned X ,
and n8 and n11 are |!1.

1. (i2,¬n5,¬n5)
2. (¬n9,¬i2)
3. (n9,¬n6,¬n6)
4. (¬n7, n6)

5. (¬n7, n5)
6. (¬n8, n7)
7. 1

⊎
2 = (¬n9,¬n5,¬n5)

8. 7
⊎

3 = (¬n5,¬n5,¬n6,¬n6)

9. (8
⊎

4)
⊎

4 = (¬n7,¬n7,¬n5,¬n5)
10. (9

⊎
5)

⊎
5 = (¬n7,¬n7)

11. (¬n8,¬n8)
12. (¬n11,¬n11)

Fig. 5. Learning X clauses.
⊎

denotes the resolution operation. Refer to the circuit t1 in Figure 3(b).
n8 = 1, implies n7 = 1, n5 = 1, n6 = 1, n9 = 1, i2 = 0, by using clauses 1 − 6. Clauses 1, 3
originate from propagating |!1 for i1 and i3, respectively, as described in Section 3.1. Clause 2 is a
part of the description of the “NOT” gate. Clauses 4, 5 and 6 are the relevant clauses of the “AND”
and “OR” gates. Clauses 7 − 10 are created by applying resolution on the original clauses. Clause 10
is the conflict clause derived by the 1UIP strategy. Having n7 is |!1 on G implies that n8 and n11 are
|!1, and thus clauses 11 and 12 are created.

Note that unlike implications computed by constraint propagation, nodes that are as-
signed X remain X throughout the solving process, and are not effected by backtracking.
This is because the conclusion about X nodes is derived from the problem itself, regardless
of the current partial assignment. Therefore, a mechanism for invalidating X assignments
is not required.

A justifying assignment for [r, d] is found when we complete the traversal of G. This
traversal does not necessarily include all the nodes in G, but rather only the nodes that
were required for this justification. Alternatively, if the traversal can not be completed, we
conclude that [r, d] can not be justified.

4 STE with 3-Valued Justification
In this section we show how to employ our 3-valued justification algorithm for STE. We
start by describing the construction of circuits to represent an STE problem, and then show
how to use the algorithm from Section 3 for solving it.

4.1 Constructing Circuits for STE Assertions
Consider a model circuit M , and an STE assertion A → C. A and C are given in TEL, as
described in Section 2.1. In order to prove or falsify the assertion, M has to be simulated k
times, where k is the maximal depth of A and C.

We create a new graph by unrolling M k times. Each node n ∈ M has k instances in
the new graph. The ith instance of node n represents node n at time i. In the new graph,
the connectivity of the input and gate nodes remains the same. The latches are connected
such that the input to a latch at time t are the nodes at time t − 1, and the latch is an
input to nodes at time t. Due to the new connectivity of the latches, and since M does not
have combinational circuits, the unrolled graph is a DAG. The inputs to the new graph are
k instances of each of the inputs to the circuit. In Figure 3(b), an unrolling of a circuit is
presented. t1 and t2 are two instances of the circuit. The inputs to the latch n11 in t2 are
the nodes of t1, thus eliminating the circle in t1. The inputs to the new circuit are the two
instances of i1 − i4. From herein we denote by M the unrolled graph of the circuit.
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As mentioned before, A and C are given in TEL. Therefore, we can construct combi-
national circuits that represent them. The inputs to these circuits are nodes in M , and new
constructed nodes that represent the symbolic variables of the STE assertion. The output of
each circuit, denoted the root of the circuit, equals to the evaluation of the corresponding
TEL formula. For example, for a TEL formula A = (n, i) is V1, the input to the circuit of
A is the ith instance of the circuit node n in M , and a node associated with the symbolic
variable V1. The root of the circuit is 1 if the input values are equal, and 0 otherwise. The
construction of circuits for n is p, f1 ∧ f2 and p → f are trivial. The circuit for f = Nf ′

is derived by constructing the circuit for f ′, and replacing each of its input nodes (n, t) by
the node (n, t+ 1). Note that each symbolic variable has only one instance. Also note, that
the constructed circuits for A and C are also DAGs. From herein we denote by A and C the
corresponding circuits, respectively. Also, we refer to a node n at time i by the name of the
ith instance of n in M , instead of by (n, i).

We construct a circuit for M ∧A by connecting the relevant nodes in M to the inputs of
A. The inputs toM∧A are the k instances of the inputs to the hardware model, and the sym-
bolic variables defined in A. The assertions that are imposed by A are in fact assumptions
on the circuit. As defined in Section 2.1, a node n is assigned the Boolean value imposed on
it byA, even if its evaluation on the circuit isX . In our algorithm, this means that the values
of n do not have to be justified, and should not propagate from n to its inputs. We mark
asserted nodes in the graph, such that X values do not propagate through them, and the
branching procedure considers them justified, not trying to assign their inputs. Additionally,
we construct the CNF clauses for an asserted node such that they allow forward propagation
only. This is demonstrated in Figure 6. For a node n = in1 ∧ in2, we create ψ2

and instead
of ψ1

and. For example, if n is assigned the value 1 by A, none of the clauses propagates this
value to in1 and in2. On the other hand, forward propagation is still implied.

ψ1

and = (n,¬in1,¬in2) ∧ (¬n, in1) ∧ (¬n, in2)
ψ2

and = (n,¬in1,¬in1,¬in2,¬in2) ∧ (¬n, in1, in1) ∧ (¬n, in2, in2)

Fig. 6. A CNF representation of an “AND” gate n = in1 ∧ in2. ψ1

and propagates implications in both
directions. ψ2

and propagates implications only forwards.

We construct the circuit Γ = M ∧A ∧ ¬C by connecting the relevant nodes in M ∧A
to the inputs of C. As with M ∧A, the inputs to the new circuit are the inputs to M and the
symbolic variables. We create a new “AND” node such that its inputs are the roots of A and
¬C. This node is considered the root of Γ . An example for such a construction is given in
Figure 3(b). The node associated with “=” represents a combinational circuit that evaluate
to 1 if the values in the inputs are equal, and 0 otherwise. Consider an assertion A → C

such that A = (n5, 1) is V1, and C = (n6, 2) is ¬V1. t1 and t2 are the unrolled circuit. The
node A is the root of the circuit that corresponds to A. The inputs to this circuit are (n5, 1)
and V1. !C is the root of the circuit that corresponds to ¬C. The inputs to this circuit are
(n6, 2) and V1. The node g evaluates to Γ .

4.2 Running STE
We first verify that A does not cause an antecedent failure with M . Therefore, we have to
verify that there is at least one run of the model that does not conflict with the assertions
from A. Consider the circuit M ∧ A, described in the previous section. We apply 3VJA for
justifying [a, 1], where a is the root ofA. A justifying assignment for this problem represents
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a run of M that satisfies the constraints imposed by A. Therefore, if such an assignment is
found, we conclude that there is no antecedent failure. If the problem is unjustifiable, then
no such run exists, which means an antecedent failure.

Assuming no antecedent failure was found,we apply 3VJA on [γ, 1], where γ is the root
of Γ , defined in the previous section.

If a justifying assignment is found, it represents an assignment to the inputs of Γ that
makes γ evaluate to 1. This assignment represents a run of M that satisfies the constraints
imposed by A, but contradicts the requirements of C. Such an assignment means that the
STE assertion A→ C does not hold in M .

If [γ, 1] is unjustifiable, an empty clause was learned. We extract the unSAT core from
the resolution tree of the empty clause, and check if it contains clauses for |!0 or |!1 nodes,
that originate from A. If there are no such clauses in the core, then no X value has partici-
pated in proving the unjustifiability of [γ, 1]. Therefore, we conclude that there is no run of
M that complies with the restrictions of A, but does not satisfy the requirements of C. That
is, the STE assertion A → C holds in M . On the other hand, if the unSAT core includes
clauses for |!0 or |!1 nodes that originate from A, then the proof for unjustifiability depends
on X values. In that case, it might be that we did not find a counter example for A → C

due to a too coarse abstraction. Therefore, we have to refine the model in order to prove or
falsify the STE assertion.

Note that in case of an unjustifiability proof that depends on X values from A, another
proof that does not depend on X values might exist. Therefore, it might be possible to
prove the STE assertion without refining the model. We could avoid this by changing the
justification and traversing larger portions of the circuit. We then have a trade off between
light-weight justification with more refinements, and heavy-weight justification. In our cur-
rent algorithm, we choose to perform the light-weight justification and refine the model if
needed. We discuss refinement in Section 5.

5 Refinement

A major strength of STE is the use of abstraction. The abstraction is determined by assigning
nodes in the modelM with the valueX byA, the antecedent of the STE assertion. However,
if the abstraction is too coarse, there is not enough information for proving or falsifying the
STE assertion. We present a “CEGAR” [3] approach for refining such assertions.

For an unjustifiable instance given to 3VJA, the resolution tree, derived for it, is the
proof that the instance is unjustifiable. We define a spurious proof to be a resolution tree
such that the unSAT core defined by it includes clauses for X nodes, that originate from the
antecedent A of the STE assertion.

In our STE method, a too coarse abstraction results in an unjustifiable instance with
a spurious proof of unjustifiability. By associating the X nodes in the unSAT core with
symbolic variables, we refine the model and invalidate the current spurious proof.

Refining only X nodes in the unSAT core, only the variables needed to eliminate the
spurious proof are refined. This means that for an X node n, we only add variables for X
nodes that took part in implyingX on n, rather than all theX nodes in the cone of influence
of n. Refer to the example in Figure 3(b), and consider A that assigns, at t1, X to i1, i3 and
i4, and 1 to n11. This implies n10 = 1, and n8 is |!0. When trying to justify n8 = 1, as
seen in Section 3.2, we learn that n7 = X , and n8 is |!1. Therefore, n8 = X . Note that the
conclusion that n8 is |!1 is independent of i2, i4 and n10. If n8 = X takes part in the proof
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that the whole circuit is unjustifiable, i1 and i3 will be in the unSAT core, while i2 and i4
will not. Thus, when refining, we will not add a variables for i2 and i4.

Our refinement eliminates the proof of unjustifiability that was found. Running the jus-
tification algorithm again, we either find another spurious proof that has to be refined, a
concrete proof of unjustifiability, or proof of justifiability (a justifying assignment).

6 Experimental Results
For evaluating our justification algorithm 3VJA, presented in Section 3.2, we implemented
it on top of zChaff [13], a state of the art SAT solver, and [9], and used it for STE, as
described in Section 4. For comparison, we used the dual rail encoding for solving SAT
based STE [15], and Forte, a BDD based STE tool by Intel [19]. Additionally, we used
BMC for solving the benchmarks, considering the STE assertions as an LTL formulae. For
the SAT based STE and for BMC, we used the same SAT solver zChaff, on top of which
we implemented our algorithm. All experiments use dedicated computers with 3.2Ghz Intel
Pentium CPU, and 3GB RAM, running Linux operating system. Time out was set to one
hour.

For our experiments we used the Memory and CAM circuits from Intel’s GSTE tutorial,
which are large enough to demonstrate various characteristics of the algorithm. The Content
addressable Memory (CAM) has 16 entries, 64 bits data width, and 8 bits tag width. The
memory circuit has a 6 bits address width and 128 bits data width.

The results of our experiments are presented in Table 6. We verified the associative
read property of the CAM by using “full”, “plain” and “cam” symbolic indexing schemes,
as defined in [14]. Additionally, we checked the CAM and the memory against series of
multiple write and read operations. Each assertion has a different set of symbolic variables
and a different depth. Assertions 1 − 14 were verified, whereas assertions 15 − 25 were
falsified. Columns 3V, BDD, DR and BMC present the solving time of our 3VJA based
STE, BDD based STE, Dual Rail SAT based STE, and BMC, respectively.

3VJA has outperformed the BDD based algorithm on most of the assertions, especially
the harder ones. Compared to the BDD algorithm, 3VJA is far less sensitive to the number
of symbolic variables. Consider assertions 1−3 and 4−6. These assertions are different en-
codings for the associative read operation of CAM, defined for depth 2 and 6, respectively.
Each encoding of the assertion requires a different number of symbolic variables. On both
depths, the BDD algorithm timed out for “full” and “plain” encodings, while 3VJA solved
the problems in seconds. On the other hand, 3VJA is more sensitive to the number of nodes
in the circuit, and thus to the depth of the assertions, than BDDs. This is also a character-
istic of the other SAT based algorithms, and is demonstrated by assertions 4 and 10 − 11,
relatively to 1 and 9, respectively. In each of these cases, a similar assertion is checked to
different depths. The number of symbolic variables is about the same, but the number of
nodes in the circuit grows. This affects the SAT based algorithms more than it affects the
BDD based algorithm. Note, however, that in case of a failed assertion with many symbolic
variables, the BDD method may fail due to the need to compute the values of all nodes up to
the depth of the contradiction, while a SAT based algorithm only has to find one erroneous
path. This is demonstrated by assertions 15, 16 and 21 − 25.

We see that BMC outperforms the dual rail method in most of the cases, especially for
verification. The dual rail representation uses two Boolean variables to represent each node.
The result is a very large SAT instance, which is harder to solve. This result matches the
results in [15].
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3VJA outperforms BMC in most cases, especially in falsification. While not very sensi-
tive to the number of symbolic variables, BMC does not useX values, and thus does not use
an abstraction. This makes BMC more sensitive to the width of data paths, and the depth
of the assertions. For verification, we expected 3VJA to return “unjustifiable” faster than
BMC, since the justification is constrained by the X nodes. However, in a few cases, such
as 10, we had to refine the model multiple times until a concrete proof for unjustifiability
was found. In these experiments, refinement was performed manually. In 11, we could not
find such a proof within the time limit. For falsification, we see a clear advantage to 3VJA.
This can be explained by the fact that 3VJA does not try to assign values to X nodes, and
thus does not traverse large portions of the circuits. This advantage increases with the num-
ber of nodes that are abstracted out by the STE assertion, and is demonstrated by assertions
17 − 25.

Verification Time (s) Falsification Time (s)
Assertion D # vars #N x103 3V BDD DR BMC Assertion D # Vars #N x103 3V BDD DR BMC

1 CAM cam 2 124 5 4 0.5 5 1 15 CAM 3 4 320 10 10 437 5 1
2 CAM plain 2 204 5 2 T.O 1 1 16 CAM 4 4 260 10 14 209 19 13
3 CAM full 2 1160 5 1 T.O 1 1 16 CAM 5 5 72 10 32 3 12 3
4 CAM cam 6 128 15 31 1 94 87 17 Mem 3 2 134 110 280 282 832 327
5 CAM plain 6 208 15 15 T.O 27 30 18 Mem 3 5 134 260 536 436 T.O 2753
6 CAM full 6 1164 15 14 T.O 26 34 19 Mem 3 10 134 550 1943 641 T.O T.O
7 CAM 1 10 152 25 349 5 513 493 20 Mem 3 15 134 770 T.O 943 T.O T.O
8 CAM 2 10 242 25 45 T.O 537 473 21 Mem 4 5 168 260 536 T.O 343 2854
9 Mem 1 2 86 110 5 1 9 2 22 Mem 4 10 168 550 1765 T.O 2248 3004
10 Mem 1 5 104 260 773 3 413 320 23 Mem 4 15 168 770 2064 T.O 3440 T.O
11 Mem 1 11 164 550 T.O. 9 T.O T.O 24 Mem 5 10 670 550 3276 T.O 3555 T.O
13 Mem 2 5 304 260 54 455 72 52 25 Mem 5 15 670 770 T.O T.O T.O T.O
14 Mem 2 11 334 550 77 523 142 81

Table 1. Experimental Results. D is the depth of the STE assertion, #Vars is the number of symbolic
variables, #N is the number of circuit nodes in thousands, and 3V, BDD, DR and BMC are the times
required by 3VJA, BDD STE, Dual Rail SAT STE, and BMC, respectively.

7 Related Work
SAT based methods for STE were previously suggested in [2], [21] [4], and [15].

In [21], non-canonical Boolean expressions are used to represent the symbolic expres-
sions of the circuit’s nodes during the simulation. At the end of the simulation, a SAT solver
is used to check if the resulting expressions meet the requirements of the STE assertion. In
this method, the expressions associated with the nodes may grow very large, and even be-
come too large to handle. In such cases, a theorem prover has to be used in order to simplify
them. This method is inherently different than 3VJA.

In [2], the dual rail encoding is used to create a CNF formula for STE. This construc-
tion is referred to in [4] as simulation based SAT STE. In [4], a different construction is
suggested, and is referred to as constraint based STE. The constraint based construction is
equivalent to the construction presented in [1], that we used in our work. This construction
forces propagation of Boolean values through the gates of the circuit. The simulation based
construction forces propagation of X values as well, and results in much larger CNF for-
mulae. In [4], it is shown that the constraint based construction outperforms the simulation
based construction. We compared 3VJA to the constraint based construction in Section 6.

In [15], the constraint based construction is solved by a 3-valued SAT solver. In this
work, Boolean variables of a SAT solver represent 3 values, considering an “unassigned”
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variable as X . The definition of satisfiability is changed respectively. In this work, clauses
are regarded as multi-sets, and the definition of the resolution is also changed. Note that
in our work we do not change the definition of the satisfiability of a formula. Instead, our
algorithm does not satisfy the formula, but rather justifies the root of the graph. Moreover,
in our work we distinguish between unassigned nodes and nodes assigned with X . This
distinction allows us to propagate X values, and to suggest an automatic refinement for
too coarse abstractions. Additionally, while the 3-valued resolution defined in our paper is
similar to the resolution defined in [15], the reasons for their correctness are different. As
described in [15], modifying the SAT solver to fit the new definition of satisfaction and
resolution did not yield good performance.

Additionally in [15], an approximation to 3-valued SAT is computed. This algorithm
corresponds to a different semantics than the STE semantics, and an assertion that holds
by this algorithm might not hold in STE semantics. This algorithm is also not suitable for
refining STE assertions.

An automatic refinement scheme was suggested in [20]. This refinement scheme chooses
a nodes that is assigned with X , and tries to choose a small set of inputs such that this node
will evaluate to 0 or 1. In [16], a method for assisting manual refinement is presented. Our
refinement scheme eliminates a spurious proof of unjustifiability of the circuit in each iter-
ation, and is inherently different than these methods.

8 Conclusions and Future Work

We have presented a 3-valued justification algorithm, 3VJA, that uses a DAG and a CNF
descriptions of a circuit, and finds a 3-valued justification for the value at the root. We
showed how to use 3VJA for STE.

We implemented 3VJA and compared it to other STE tools. It is our opinion that 3VJA is
a valuable complement to BDD based STE, especially for falsification, as is the case in other
model checking problems. 3VJA is far less sensitive to the number of symbolic variables
than BDD methods. Moreover, for falsification, 3VJA may find an erroneous path quickly,
while a BDD engine has to compute the values of all the nodes in all the iterations prior to
the contradiction.

We compared 3VJA to other SAT based algorithms and in many cases showed a signif-
icant speedup. This is the result of introducing the notion of X into the Boolean context,
without doubling the number of variables that are used, by propagating X values over a
graph representation of the circuit, and by learning X values trough 3-valued resolution.
While BMC is a powerful model checking method, it is considered useful mainly for fal-
sification of “shallow” bugs. Exploiting the abstraction used in STE, 3VJA may extend the
capabilities of BMC as well.

Last, we showed that 3VJA can be used for an automatic refinement scheme of STE
assertions. This scheme takes a “CEGAR” approach, where the spurious counter examples
are proofs of unjustifiability of the problem, that depend on X values. The refinement adds
symbolic variables to the nodes that are needed in order to eliminate the proof. We intend to
research heuristics for minimizing the set of variables that have to be refined for eliminating
spurious counter examples.

3VJA also allows us to address the problem of vacuity in STE. Given an STE assertion
A → C, it might hold vacuously if A may never occur in the model. We believe that by
applying our justification algorithm, this problem can be solved efficiently.
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