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Abstract

We present a framework for fully automated compositional verification of
µ-calculus specifications over multi-valued systems, based on multi-valued
abstraction and refinement.

Multi-valued models are widely used in many applications of model
checking. They enable a more precise modeling of systems by distinguish-
ing several levels of uncertainty and inconsistency. Successful verification
tools such as STE (for hardware) and YASM (for software) are based on
multi-valued models.

Our compositional approach model checks individual components of a
system. Only if all individual checks return indefinite values, the parts of
the components which are responsible for these values, are composed and
checked. Thus the construction of the full system is avoided. If the latter
check is still indefinite then a refinement is needed.

We formalize our framework based on bilattices, consisting of a truth
lattice and an information lattice. Formulas interpreted over a multi-valued
model, are evaluated with respect to the truth lattice. On the other hand,
refinement is now aimed at increasing the information level of model details,
thus also increasing the information level of the model checking result. Based
on the two lattices and on multi-valued model checking graphs, we suggest
how multi-valued models should be composed, checked, and refined.
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Abbreviations and Notations

D — De Morgan lattice
AP — Set of atomic propositions
Lµ — The µ-calculus
M — Multi-Valued Kripke model
ϕ — µ-calculus formula
Sub(ϕ) — Subformulas of ϕ

fp(Z) — Fixpoint formula associated with variable Z

V — Environment, explaining the meaning of free variables in the formula
‖ϕ‖M

V — Semantics of ϕ w.r.t. a model M and an environment V
G(M, ϕ) — mc-graph on a model M and a formula ϕ

χ — mc-function
≤i — Information order
≤t — Truth order
true — Truth value ‘true’, the top of the truth order
false — Truth value ‘false’, the bottom of the truth order
> — Truth value ‘top’, the top of the information order
⊥ — Truth value ‘bottom’, the bottom of the information order
∧ — Meet of truth lattice
∨ — Join of truth lattice
⊗ — Meet of information lattice
⊕ — Join of information lattice
B(D) — The bilattice induced by De Morgan algebra D
CPDB — Consistent Partial Distributive Bilattice
P(B(D)) — The CPDB induced by bilattice B(D)
¹ — Mixed simulation relation
M1||M2 — Composition of models M1 and M2
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Chapter 1

Introduction

In this work we present a framework for fully automated compositional ver-
ification of µ-calculus specifications over multi-valued systems, based on
multi-valued abstraction and refinement. Our interest in such a framework
stems from the fact that multi-valued modeling is widely used in many ap-
plications of model checking. It is used both to model concrete systems more
precisely and to define abstract models.

Multi-valued models enable a more precise modeling of systems by dis-
tinguishing between several levels of uncertainty and inconsistency [6, 10,
7, 24, 40, 37]. These models have been widely used for abstraction as
well [50, 51, 3, 31, 36, 32]. Tools to provide multi-valued verification such
as YASM ([36]) and STE ( [50]) were developed and successfully applied to
software and hardware verification.

Multi-valued models, both abstract and concrete, may still suffer from
the state explosion problem. Thus, a compositional approach may enhance
the verification of larger systems.

The first step we take in formalizing a compositional multi-valued frame-
work is to consider bilattices [26] as part of our framework. A bilattice
defines two lattices over a given set of elements: the truth lattice and the
information lattice, each accompanied with an order. Formulas interpreted
over a multi-valued model are evaluated with respect to the truth lattice.
On the other hand, the relation of “more abstract” over models is based
on the information lattice: Roughly, a model M2 is more abstract than a
model M1 if values of atomic propositions and transitions in M2 are smaller
or equal by the information order than the corresponding values in M1. Con-
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sequently, the valuation of a formula in M2 will be smaller or equal by the
information order than its value in M1. In fact, since we consider the full
µ-calculus, a bidirectional correspondence between transitions of M1 and
M2 is needed. To capture this, we define a mixed-simulation relation, based
on the information lattice.

Bilattices provide a natural way to identify lattice elements that are con-
sistent, meaning that they represent some concrete elements of the bilattice
(to be formalized later). We can also identify elements that are definite.
Those are the elements that need not be refined anymore. In most of the
work we restrict the discussion to Consistent Partial Distributive Bilattices
(CPDB), which consist of exactly all the consistent elements. In Chapter 7
we consider also full distributive bilattices. In particular, we discuss the
interesting special case of the 4-valued Belnap bilattice.

We attempt to address compositional verification for our context in a
similar manner to [54]. There, abstraction and compositional verification
are joined in the context of 3-valued abstraction: each component Mi of a
composed system M is lifted into a 3-valued model Mi ↑ which forms an
abstraction of M . Model checking a formula ϕ on Mi ↑ can result in either
a definite value true or false, or an indefinite value. In the former case, it is
guaranteed that the result is also the value of ϕ on M . In the latter case,
however, nothing can be deduced about the composed system. If the checks
of all individual components return indefinite values, then the parts of the
components which are responsible for these values are identified, composed,
and model checked. Thus, the construction of the fully composed system
is avoided. Finally, if the check of the partially composed system is still
indefinite then a refinement is applied to each component separately.

For our multi-valued framework, once we establish our setting by means
of bilattices, we can fill in the rest of the framework’s ingredients. First, we
define the notion of composition of multi-valued systems. Next, for model
checking we use the model checking algorithm for multi-valued systems and
the alternation-free µ-calculus, suggested in [53]. We also show, in case the
checks on individual components are indefinite, how to identify, compose,
and check the parts of the models that are needed for the checked formula.
As we exemplify later, the resulting composed system is often much smaller
than the full composed system. Finally, we develop a heuristic for finding a
criterion for refinement, in case the model checking of the composed system
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returns an indefinite result.

In the framework above we do not discuss the construction of multi-
valued abstract models. This is investigated for instance in [38], which
presents a methodology for a systematic construction of an abstract model
for a given concrete one.

Other works deal with several aspects of multi-valued model check-
ing, but none investigate a compositional approach. Multi-valued symbolic
model checking is described in [11]. An alternative definition of (bi)simulation
is suggested in [43]. However, there, the relation returns a value, indicat-
ing how “close” the models are. Our mixed simulation, on the other hand,
returns either true or false, indicating whether one model is an abstrac-
tion of the other. A relation similar to our mixed simulation is defined
in [3]. Preservation of formulas via simulation is described there in terms of
an information order. However, they do not handle a general multi-valued
framework, but rather a 6-valued one. Also, they suggest refinement only if
the result is the smallest element in the information order, ⊥. In contrast,
we allow refinement for any indefinite value in the bilattice. Bilattices are
used also in [38]. However, they are not exploited there for refinement.

To summarize, the main contributions of this work are:

• We present a framework for fully automated compositional verification
of multi-valued systems with respect to µ-calculus specifications. The
framework is based on multi-valued abstraction-refinement. To the
best of our knowledge, this is the first compositional approach for
multi-valued model checking.

• We apply our framework to the alternation-free µ-calculus model check-
ing algorithm. In particular, we develop an algorithm for refinement
in this context.

• We formalize our framework based on bilattices, consisting of a truth
lattice and an information lattice. This allows to naturally define the
consistent and definite elements in the bilattice. It also provides a clear
definition of abstraction and refinement in the multi-valued context. It
thus provides a better understanding of the multi-valued framework.

• Based on the information order of a bilattice, we define a mixed sim-
ulation relation over multi-valued models, preserving µ-calculus spec-
ifications.
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1.1 Related Work

Multi-Valued Model Checking

Multi-valued model checking is a generalization of classical model-checking
[14, 12, 8]. In multi-valued model checking both atomic propositions and
transitions in the model and the satisfaction relation can be multi-valued.

Multi-valued model checking has many important applications within
the verification framework. For example, 3-valued models are used to de-
scribe models with partial information [6]. 4-valued models can model dis-
agreement and their generalizations are used to handle inconsistent views
of a system [24, 40]. Temporal logic query checking [10, 7, 37] can also be
reduced to multi-valued model checking. In probabilistic modeling, tran-
sitions are labelled with values representing the probability that they are
taken. The satisfaction relation then becomes the probability that a desired
property holds [23].

Multi-valued models have been widely used for abstraction as well: 3-
valued (abstract) models allow proving truth as well as falsity of formulas for
the concrete models they represent [51, 31, 32]. The 6-valued models in [3]
are tuned to better achieving proofs of falsification. 4-valued models extend
3-valued abstractions by enabling to capture inconsistencies in software [36]
and hardware (in STE) [50]. Tools to provide multi-valued verification such
as YASM ([36]) and STE ( [50]) were developed and successfully applied to
software and hardware verification.

There are several ways of handling the multi-valued model checking prob-
lem. One way is the reduction approach, where the problem is reduced to
several traditional 2-valued or 3-valued problems [29, 42, 35, 8]. As opposed
to the reduction approach, the direct approach checks the property directly
on the multi-valued structure [15, 13, 53].

In our work we present an algorithm for abstraction-refinement of multi-
valued models, which is based on direct model checking of the property,
specifically, on the algorithm presented in [53].

The domain of logical values used in multi-valued model-checking is given
by a finite distributive lattice. This lattice can be referred to as “truth
lattice”. There are several works where the logical values are presented also
with an information ordering, which is either a lattice or a partial lattice.
This is captured by the notion of bilattices [26]. [38] uses the notion of
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bilattices and information order when presenting a framework for creation
of precise abstractions. In [3] a 6-valued logic is presented as a bilattice, and
the information order is used to define mixed simulation between models.
The 4-valued Belnap logic [4], with both information and truth orders, is
used in software modelling ([36]). There, the 4 values of the logic are used to
distinguish between non-determinism and lack of information. In STE the
4-valued Belnap logic is used for hardware modelling ([50]). The 4 values
are used in STE to distinguish between inconsistency which results from
contradiction of the requirements and the behavior of the circuit, and lack
of information.

We also use bilattices to present multi-valued logics. We define a mixed
simulation relation between models based on bilattices (Section 4.1). The
mixed simulation for the 6-valued logic described in [3] is a particular case of
our mixed simulation. Defining mixed simulation sets the basis for describing
a framework for abstraction-refinement of multi-valued models (Chapter 4),
and a compositional framework (Chapter 6).

Abstraction-Refinement

Abstractions [18] hide certain details of the system in order to result in a
smaller (abstract) model. They are designed to be conservative. That is,
from checking properties on the abstract model, their truth value on the
concrete model can be concluded. Various abstraction techniques are for-
malized in the framework of abstract interpretation [21, 22]. Commonly used
abstractions are conservative with respect to validity of properties, yielding
false-negative results. In contrast, 3-valued abstractions [6, 39, 30] are con-
servative with respect to both validity and falsity of properties. They never
yield false-negative or false-positive results. However, they may produce an
indefinite result.

Multi-valued semantics enable a more precise modeling of systems by dis-
tinguishing several levels of uncertainty and inconsistency. Properties can
then be interpreted over the multi-valued semantics [14, 13, 8]. When us-
ing a multi-valued semantics, the connection between abstract and concrete
models (or between two abstract models) is usually model specific. This
issue is discussed in [43], where the authors define (bi)simulation between
two multi-valued models. There, the relation returns a value, indicating how
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“close” the models are. The “closeness” between the models refers to the
universal fragment of µ-calculus. Our mixed simulation, on the other hand,
returns either true or false, indicating whether one model is an abstraction
of the other. Based on mixed simulation and on bilattices we extend the
notion of preserving properties defined in some temporal logic (specifically,
full µ-calculus formulas).

Mixed simulation for the 3-valued semantics is presented in [22, 29],
which has the property of preserving the full µ-calculus. In [3] the authors
present a mixed simulation relation for a 6-valued semantics. Their mixed
simulation preserves temporal logic formulas consisting of both universal and
existential quantifiers. The preservation of formulas is defined with respect
to information order. Our work generalizes the notion of mixed simulation
for any multi-valued semantics. Similar to [3], preservation of formulas is
defined with respect to information order.

The abstraction is sometimes too coarse, which results in an inconclusive
model checking result. In this case, the abstract model should be refined.
Refinement is done be adding more details into the model, thus making it
more similar to the concrete model. Refinement is traditionally done by
splitting abstract states based on some criterion. The process of creating an
abstract model, model checking it, and refining it iteratively is referred to
as abstraction-refinement.

The traditional abstraction-refinement framework, referred to as CE-
GAR [44, 17] considers a 2-valued abstraction, which is conservative for
true. Thus, false may be a false-alarm, and refinement is then aimed at
eliminating false results. The framework is designed for universal tempo-
ral logics, and is less suitable for temporal logics with both universal and
existential operators, such as the full µ-calculus.

Several works investigate abstraction-refinement algorithms for temporal
logics that combine both existential and universal quantifiers. Most of these
works deal with either the 2-valued semantics or the 3-valued semantics.
[45, 47, 2] suggest abstraction-refinement mechanisms for the µ-calculus over
2-valued semantics, for specific abstractions. In [51, 52] an automatic refine-
ment mechanism, which is based on finding a failure cause, is presented. [3]
suggest an abstraction-refinement framework for a specific 6-valued seman-
tics.

In our work we generalize the discussion to abstract models over any
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multi-valued semantics, and present an abstraction-refinement algorithm for
specifications in the full µ-calculus.

Compositional Verification

Another promising approach for fighting the state explosion problem is com-
positional model checking, where parts of the system are verified separately
in order to avoid the construction of the entire system and to reduce the
model checking cost. Evidence of the importance of the compositional ap-
proach can be found in the special issue of the journal Formal Methods in
System Design, dedicated to the subject [28].

Usually, it is impossible to verify a component of the system in com-
plete isolation from the rest of the system. This is because the behavior of
one component depends on the interaction it has with its environment. To
take into account dependencies between system components, the Assume-
Guarantee (AG) paradigm [41, 49, 33] suggests how to verify one module
based on an assumption on the behavior of its environment, where the envi-
ronment consists of the other system components. The environment is then
verified in order to guarantee that the assumption is actually satisfied.

Learning [1] has been a major technique to construct assumptions for
the AG paradigm automatically. The learning-based AG framework is first
described in [20]. It uses iterative AG reasoning, where in each iteration
the assumption is modified based on the learning algorithm. Many works
suggest optimizations of the basic framework and apply it in the context of
different AG rules ([9, 27, 55, 25, 46, 34, 19, 48, 16]). These works are all
designed for universal safety properties, with the exception of [25], which
learns the full class of ω-regular languages.

[5] proposes an alternative approach for AG style compositional verifi-
cation. It presents automated assume-guarantee reasoning by abstraction-
refinement. There, the assumptions are computed as an over-approximating
abstraction of the interface behavior of one of the components. When the
abstraction is too coarse, refinement is done in a manner similar to CEGAR
[17].

In contrast to approaches based on the AG paradigm, the compositional
technique presented in [54] is based on a 3-valued abstraction. There, the
property is evaluated on each component separately with respect to the 3-
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valued semantics. The result of the evaluation is a 3-valued marking of
the states of the component. If the evaluation on the initial state of any
component results in a definite value (true or false), then the same value
holds for the composed system and the verification terminates. However,
the evaluation may result in an indefinite value. In this case, only those
component states where indefinite results have been obtained are identified
and composed. As a result of using 3-valued abstraction, no false-negative
or false-positive is obtained. This framework can verify and falsify the full
µ-calculus.

To the best of our knowledge, all works which present a compositional
approach deal with either 2-valued or 3-valued models. As opposed to that,
we present a compositional framework to handle multi-valued models. Our
framework generalizes the compositional approach in [54].

1.2 Organization

The rest of the thesis is organized as follows. In the next chapter we give the
necessary background for multi-valued models, including the multi-valued
µ-calculus, and a multi-valued model checking algorithm [53]. In Chapter 3
we describe bilattices, define Consistent Partial Distributive Bilattices and
present their attributes. We then use bilattices as the basis for presenting
mixed simulation for multi-valued models in Chapter 4. This sets the ground
for describing the connection between a concrete model and its abstraction
and for refinement. A refinement algorithm is presented in Chapter 4 as
well. Our abstraction-refinement algorithm is based on the model checking
graph.

Once abstraction-refinement for multi-valued models is defined, we can
then present our compositional framework. We first investigate properties of
partial model checking graphs in Chapter 5. Partial model checking graphs
will later be used as part of our compositional framework. We then continue
to describe composition of multi-valued models, and present our composi-
tional framework in Chapter 6. Our compositional framework deals with
the general case where the model which we want to verify is both an ab-
stract model, and a composition of models. As the models at hand might
be abstract, our compositional framework includes use of the abstraction-
refinement algorithm presented in Chapter 4.
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Both the abstraction-refinement algorithm, and the compositional frame-
work presented in Chapters 4-6 deal with models defined over a CPDB. In
Chapter 7 we discuss our framework with respect to full bilattices. Finally,
we present our conclusions in Chapter 8.
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Chapter 2

Preliminaries

In this chapter we introduce the concepts of lattices, multi-valued Kripke
models, µ-calculus and multi-valued model checking graphs.

Definition 2.1 Let (L,≤) be a partially ordered set. A subset B of L has
a least upper bound a ∈ L, if the following holds:

• For every b ∈ B, b ≤ a.
• If there exists a′ ∈ L such that for every b ∈ B, b ≤ a′, then a ≤ a′.

Definition 2.2 Let (L,≤) be a partially ordered set. A subset B of L has
a greatest lower bound a ∈ L, if the following holds:

• For every b ∈ B, a ≤ b.
• If there exists a′ ∈ L such that for every b ∈ B, a′ ≤ b, then a′ ≤ a.

Definition 2.3 A lattice L=(L,≤) consists of a set L with a partial order
≤ over L, where every finite subset B of L has a least upper bound, join,
denoted tB, and a greatest lower bound, meet, denoted uB, both in L.
A lattice is distributive if t and u distribute over each other. That is,
(a u b) t c = (a t c) u (b t c), and (a t b) u c = (a u c) t (b u c).

Examples of lattices are shown in Figure 3.1(a),(b),(c),(e),(g) and (h).

Definition 2.4 A De Morgan algebra is a structure D=(L,≤,¬), where
(L,≤) is a finite distributive lattice, ¬ : L → L is a negation function that
satisfies for each a,b: ¬¬a = a, a ≤ b ⇔ ¬b ≤ ¬a, and De Morgan laws are
satisfied: ¬(a u b) = ¬a t ¬b, and ¬(a t b) = ¬a u ¬b.
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All De Morgan algebras have a greatest (top) element, denoted true, and
a least (bottom) element, denoted false.

Definition 2.5 Let (L,≤) be a partially ordered set. Function f : Ln → L

is monotone with respect to ≤ iff a1 ≤ a′1,. . . ,an ≤ a′n implies f(a1, .., an) ≤
f(a′1, ..., a

′
n).

Definition 2.6 Let (L,≤) be a partially ordered set. Function f : Ln →
L is anti-monotone with respect to ≤ iff a1 ≤ a′1,. . . ,an ≤ a′n implies
f(a′1, .., a

′
n) ≤ f(a1, ..., an).

2.1 Multi-Valued Models and µ-calculus

Definition 2.7 A Multi-Valued Kripke model is a 6-tuple M = 〈L, AP, S,

s0, R,Θ〉, where:

• L= (L,≤,¬) - a De Morgan algebra,
• AP - a set of atomic propositions,
• S - a finite set of states,
• s0 - the initial state,
• R : S × S → L - a mapping of transitions to values in L,
• Θ : AP → (S → L) - a mapping which associates with each atomic

proposition p, a mapping from S to L, describing the truth value of p

in each state.

Definition 2.8 Let AP be a set of atomic propositions and V ar a set of
propositional variables. We consider the logic µ-calculus in negation normal
form, defined as follows:

ϕ ::= p | ¬p | Z | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 2ϕ | ♦ϕ | µZ.ϕ | νZ.ϕ

where p ∈ AP and Z ∈ V ar.

Let Lµ denote the set of all formulas generated by the above grammar.
Fixpoint quantifiers µ and ν are variable binders. We write η for either µ or
ν. We assume formulas are well-named, i.e. no variable is bound more than
once in any formula. Thus for a closed formula ϕ ∈Lµ, every variable Z
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identifies a unique subformula fp(Z) = ηZ.ψ of ϕ. The set Sub(ϕ) includes
all subformulas of ϕ.

An environment V : V ar → (S → L) defines the meaning of free vari-
ables. For a variable Z ∈ V ar and a mapping l : S → L, we write V[Z = l]
for the environment that agrees with V except that it maps Z to l.

We consider the multi-valued semantics of µ-calculus with respect to a
multi-valued Kripke model M and an environment V [8]. Given such M and
V, a formula ϕ induces a mapping S → L, denoted ‖ϕ‖M

V , in which each
state s of M is mapped to a value in L describing the truth value of ϕ in s.
In the following, lfp, gfp stand for least and greatest fixpoints respectively,
which exist based on [56].

The interpretation ‖ϕ‖M
V of ϕ ∈Lµ in a multi-valued Kripke model M

and environment V is defined as follows:

‖p‖M
V = λs.Θ(p)(s)

‖¬p‖M
V = λs.¬Θ(p)(s)

‖ϕ1 ∨ ϕ2‖M
V = λs.‖ϕ1‖M

V t ‖ϕ2‖M
V

‖ϕ1 ∧ ϕ2‖M
V = λs.‖ϕ1‖M

V u ‖ϕ2‖M
V

‖♦ϕ‖M
V = λs.

⊔

s′∈S

(R(s, s′) u ‖ϕ‖M
V (s′))

‖2ϕ‖M
V = λs.

l

s′∈S

(¬R(s, s′) t ‖ϕ‖M
V (s′))

‖Z‖M
V = V(Z)

‖µZ.ϕ‖M
V = µ(λg.‖ϕ‖M

V[Z=g])

‖νZ.ϕ‖M
V = ν(λg.‖ϕ‖M

V[Z=g])

For closed formulas we drop the environment, and refer to ‖ϕ‖M . If M

is clear from the context, we refer to ‖ϕ‖V .

Definition 2.9 Approximants of Lµ formulas are defined in the usual way:
if fp(Z) = µZ.ϕ then Z0 := λs.false, Zi+1 := ‖ϕ‖V[Z=Zi] for any i ∈ N and
any V. Dually, if fp(Z) = νZ.ϕ, Z0 := λs.true and Zi+1 := ‖ϕ‖V[Z=Zi].
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Note that for every i ∈ N, if fp(Z) = ηZ.ϕ then, by abuse of notation,
Zi can be viewed as a formula. That is, Z0 = false(true) (depending on
η), and Zi+1 = ‖ϕ[Z = Zi]‖V , where ϕ[Z = Zi] represents the syntactic
assignment of the formula Zi instead of every occurrence of Z in ϕ. Thus,
if ψ ∈ Sub(ϕ), ‖ψ‖V[Z=Zi] = ‖ψ[Z = Zi]‖V , and Z is not free in ψ[Z = Zi].

Theorem 2.10 [56] Given a Kripke model M with a finite state set S, for
every µ-calculus formula ϕ there exists α ∈ N such that for every s ∈ S,
‖ηZ.ϕ‖M

V (s) = Zα(s).

2.2 Multi-Valued Model-Checking Algorithm

A multi-valued model checking algorithm for a closed Lµ formula over a
multi-valued Kripke model is suggested in [53]. There, multi-valued games
are introduced, and a multi-valued model checking problem is translated
into a problem of finding the value of a multi-valued game.

In this work, we only use the model-checking graph (further referred to
as mc-graph) defined in [53], with its connections to the model checking
algorithm.

Let M = 〈L, AP, S, s0, R,Θ〉 be a multi-valued Kripke model over L=
(L,≤,¬) and let ϕ0 be a closed Lµ formula. The mc-graph is defined by
G(M, ϕ0) = (n0, N,E), where N is a set of nodes, E ⊆ N ×N is the set of
edges in the graph and n0 ∈ N is the initial node.

Nodes in the mc-graph are elements of S × Sub(ϕ0), denoted t ` ψ and
n0 = s0 ` ϕ0. Nodes are divided into ∨-nodes and ∧-nodes. Nodes of type
s ` ϕ0 ∨ ϕ1 or s ` ♦ϕ are ∨-nodes, whereas nodes of type s ` ϕ0 ∧ ϕ1 or
s ` 2ϕ are ∧-nodes. Nodes of type s ` Z or s ` ηZ.ϕ can be either ∨-nodes
or ∧-nodes. The edges of the mc-graph are defined by the following rules.

s ` ϕ0 ∨ ϕ1

s ` ϕi
i ∈ {0, 1} s ` ϕ0 ∧ ϕ1

s ` ϕi
i ∈ {0, 1}

s ` ♦ϕ

t ` ϕ
R(s, t) 6= false

s ` 2ϕ

t ` ϕ
R(s, t) 6= false

s ` ηZ.ϕ

s ` Z

s ` Z

s ` ϕ
if fp(Z) = ηZ.ϕ

Every edge (n, n′) ∈ E corresponds to a rule where n, n′ are of the form
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of the upper, respectively lower, part of the rule. If no rule is defined from
some node n, then there are no outgoing edges from n in the mc-graph. This
happens in terminal nodes of the form t ` p or t ` ¬p, or in terminal nodes
of the form t ` ♦ϕ or t ` 2ϕ where there are no transitions from the state
t in the Kripke model.

Each edge in E is associated with a value from L: edges that refer to
a transition of the model get the value of that transition. The rest get the
value true. By abuse of notation we use R(n, n′) to refer to the value of an
edge (n, n′) ∈ E.

Definition 2.11 ([53]) Let n be a terminal node in G, val(n) is defined as
follows. val(t ` q) = Θ(q)(t), val(t ` ¬q) = ¬Θ(q)(t), val(t ` ♦ϕ) = false

and val(t ` 2ϕ) = true.

In [53] an algorithm for computing a value of nodes on a mc-graph is
presented. The algorithm handles the alternation-free fragment of Lµ, where
no nesting of fixpoints is allowed. Given a mc-graph G(M,ϕ0) = (n0, N, E)
and a function val : N → L which maps terminal nodes in G to values in L

(Definition 2.11), the algorithm returns a mc-function χ : N → L that maps
each node to a value from L.

Algorithm 2.12 (mc-algorithm [53]) G is partitioned to Maximal Strongly
Connected Components (MSCCs) and a (total) order on them is determined,
reflected by their numbers: Q1,...,Qk. The order fulfills the rule that if i < j

then there are no edges from Qi to Qj. The components are handled by
increasing values of i. Consider a single Qi. Each node n ∈ Qi is associated
with a value χ(n) as follows.
For a terminal node n, χ(n) = val(n).
For a ∨-node n we set χ(n) to be

∨{R(n, n′)∧χ(n′)|R(n, n′) 6= false}. Sim-
ilarly, if n is a ∧-node then χ(n) =

∧{¬R(n, n′) ∨ χ(n′)|R(n, n′) 6= false}.
If Qi is a non-trivial MSCC then it contains exactly one fixpoint variable
Z. In this case, first label the nodes in Qi with temporary values, temp(n),
that are updated iteratively. For nodes of the form n = s ` Z, initialize
temp(n) to true if Z is of type ν, or to false if Z is of type µ (the rest
remain uninitialized). Then apply the previous rules for ∨,∧-nodes until the
temporary values do not change anymore. Finally, set χ(n) = temp(n) for
every node n in Qi. Return χ as the mc-function.
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In [53], the connection between χ and the model checking problem is
proved, by showing that χ(n0) = ‖ϕ0‖M (s0). In the context of this work we
will also be interested in the internal nodes of G. We therefore generalize
the correspondence between χ and the multi-valued semantics to all nodes
in G.

For ψ ∈ Sub(ϕ0), we use ψ∗ to denote the result of replacing every free
occurrence of Z ∈ V ar in ψ by fp(Z). Note that, ψ∗ is a closed formula,
and if ψ is closed then ψ∗ = ψ.

Theorem 2.13 Let G(M, ϕ0) be a mc-graph, such that ϕ0 is an alternation-
free closed Lµ formula. Let χ be the mc-function returned by the mc-

algorithm, then for every s ` ψ ∈ N , χ(s ` ψ) = ‖ψ∗‖M (s).

Proof: For some node n = s ` ψ ∈ N , the subgraph induced by n is the
subgraph that includes all sons of n, recursively.

Since the valuation of the mc-graph is done bottom-up, and by the con-
struction of the mc-graph, we can conclude that χ is correct for all nodes
n = s ` ψ such that ψ is a closed Lµ formula ([53]).

We now consider subformulas which are not closed. Let ψ ∈ Sub(ϕ0)
be a Lµ formula. Let G′(M, ψ∗) be the mc-graph created for the closed Lµ

formula, ψ∗. Let χ′ be the mc-function of G′ (based on the mc-algorithm).
We show that χ(s ` ψ) = χ′(s ` ψ∗). If we look at G′ and at the subgraph
of G induced by n, the only difference between these graphs is an additional
transitions in G′ from nodes of the form s′ ` fp(Z) to node of the form
s′ ` Z. According to the algorithm, these transitions do not change the
value of all the rest of the nodes. In particular, χ′(s ` ψ∗) = χ(s ` ψ).

2

Let G(M,ϕ0) be a mc-graph. We say that χ : N → L is semantically
correct if for every s ` ψ ∈ N , χ(s ` ψ) = ‖ψ∗‖M (s).
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Chapter 3

Bilattices and Partial

Bilattices

In this chapter we introduce bilattices, consider several of their attributes,
and define the notion of partial bilattices. The use of bilattices (or partial
bilattices) for defining a multi-valued structure will then help us to describe
a relation between two multi-valued Kripke models. The definition of such a
relation is the basis for describing an abstraction-refinement algorithm, and
for the compositional verification framework.

3.1 Bilattices and Partial Bilattices

Definition 3.1 [26] A distributive bilattice is a structure B=(B,≤i,≤t,¬)
such that:

1. Bi=(B,≤i) is a lattice and Bt=(B,≤t,¬) is a De Morgan algebra.
2. meet(⊗) and join(⊕) of Bi, and meet(∧) and join(∨) of Bt are mono-

tone with respect to both ≤i and ≤t.
3. all meets and joins distribute over each other.
4. negation (¬) is ≤i monotone.

Note that requirement (4) defines the monotonicity of ¬ with respect to
≤i, whereas ¬ is anti-monotone with respect to ≤t (this is a result of Bt

being a De Morgan algebra).
The bilattices considered in this work are distributive, thus the use of

the term bilattice refers to distributive bilattice. In our context, the relation
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≤t is an order on the “degree of truth”. The bottom in this order is denoted
by false and the top by true. Thus false ≤t x ≤t true for any x ∈ B. The
meet and join operations for ≤t are denoted by ∧ and ∨ respectively. The
relation ≤i is an order on the “degree of information”. Thus, if x ≤i y, y

gives us at least as much information as x (and possibly more). The meet
and join operations for ≤i are denoted ⊗ and ⊕ respectively. The bottom
in the ≤i order is denoted by ⊥ and the top by >.

Definition 3.2 [26] Let D=(D,≤,¬) be a De Morgan algebra. The bilat-
tice induced by D, denoted B(D), is a structure (D × D,≤i,≤t,¬) such
that:

• 〈a, b〉 ≤i 〈c, d〉 , a ≤ c and b ≤ d

• 〈a, b〉 ≤t 〈c, d〉 , a ≤ c and d ≤ b

• ¬〈a, b〉 , 〈b, a〉

Theorem 3.3 [26] Let B(D) be the bilattice induced by some De Morgan
algebra D. Then, B(D) is a distributive bilattice. Furthermore, every dis-
tributive bilattice is isomorphic to B(D) for some De Morgan algebra D.

Intuitively, for a De Morgan algebra D, an element 〈x, y〉 of B(D) is
interpreted as a value whose “degree of truth” is x and “degree of falsity” is y.
If we view D as a concrete truth domain, B(D) can be viewed as its abstract
truth domain. Given an element c ∈ D, 〈x, y〉 ∈ D ×D approximates c if
x is no more true than c, and y is no more false than c. Thus, 〈c,¬c〉 is
the best approximation of c, and 〈x, y〉 approximates c if 〈x, y〉 ≤i 〈c,¬c〉.
We say that 〈x, y〉 ∈ D ×D is consistent if 〈x, y〉 ≤i 〈c,¬c〉 for some c ∈ D.
By the defintion of ≤i, 〈x, y〉 ≤i 〈c,¬c〉 iff x ≤ c and y ≤ ¬c. Since ¬ is
anti-monotone in De Morgan algebras (Definition 2.4), then 〈x, y〉 ≤i 〈c,¬c〉
iff c ≤ ¬x and y ≤ ¬c. As a result, 〈x, y〉 is consistent iff y ≤ ¬x (similarly
to the definition presented in [38]). We say that 〈x, y〉 ∈ D ×D is definite
if 〈c,¬c〉 ≤i 〈x, y〉 for some c ∈ D. Thus 〈x, y〉 is definite iff y ≥ ¬x. If
〈x, y〉 ∈ D ×D is both definite and consistent, then 〈x, y〉 = 〈c,¬c〉 for some
c ∈ D.

Example 3.4 Figure 3.1(a),(b) present an example of the distributive bi-
lattice for the 4-valued Belnap structure ([4]). This bilattice is isomor-
phic to the bilattice B(D) created from the 2-valued De Morgan algebra
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D= ({T, F},≤,¬), where F ≤ T , ¬T = F . Thus, t , 〈T, F 〉, f , 〈F, T 〉,
> , 〈T, T 〉 and ⊥ , 〈F, F 〉. t, f are best approximations of T , respectively
F . >, representing maximal degree of truth and falsity, is inconsistent. t,f
and > are definite elements. ⊥ is indefinite.
Figure 3.1(g),(h) present the distributive bilattice for a 〈2{a,b}, 2{a,b}〉 struc-
ture. This bilattice is generated from the De Morgan algebra D= (2{a,b},≤
,¬), where ≤ is interpreted as the set-inclusion order, and ¬ is set comple-
mentation relative to {a, b}.

When referring to a bilattice B, we sometimes implicitly refer to the
structure B(D) isomorphic to B (which exists by Theorem 3.3). In particular,
we use ‘≤’ to denote the order on the elements in the De Morgan algebra D
of B(D).

Corollary 3.5 Let B(D)=(D ×D,≤i,≤t,¬) be a distributive bilattice, for
every 〈a, b〉, 〈c, d〉 ∈ B(D) the following holds:

• 〈a, b〉 ∧ 〈c, d〉 = 〈a u c, b t d〉
• 〈a, b〉 ∨ 〈c, d〉 = 〈a t c, b u d〉
• 〈a, b〉 ⊗ 〈c, d〉 = 〈a u c, b u d〉
• 〈a, b〉 ⊕ 〈c, d〉 = 〈a t c, b t d〉

Proof: We will prove this for the operator ∧, the proof for the rest of the
operators is similar. Assume 〈a, b〉 ∧ 〈c, d〉 = 〈e, f〉. Thus, by definition of
greatest lower bound the following holds:

• 〈e, f〉 ≤t 〈a, b〉
• 〈e, f〉 ≤t 〈c, d〉
• For every 〈e′, f ′〉 if 〈e′, f ′〉 ≤t 〈a, b〉 and 〈e′, f ′〉 ≤t 〈c, d〉 then 〈e′, f ′〉 ≤t

〈e, f〉
Observe the element 〈au c, bt d〉. Since D is a De Morgan algebra then

a u c ≤ a and a u c ≤ c. Similarly, b ≤ b t d and d ≤ b t d. Thus, by the
definition of truth order on B(D), 〈au c, bt d〉 ≤t 〈a, b〉 and 〈au c, bt d〉 ≤t

〈c, d〉. We can then conclude that 〈a u c, b t d〉 ≤t 〈e, f〉.
By the definition of truth order on B(D), since 〈e, f〉 ≤t 〈a, b〉 and

〈e, f〉 ≤t 〈c, d〉, we conclude that e ≤ a and e ≤ c. But since D is a De
Morgan algebra, this means that e ≤ a u c. Similarly we can conclude that
b t d ≤ f . We can then conclude that 〈e, f〉 ≤t 〈a u c, b t d〉.
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Based on the above we conclude that 〈e, f〉 = 〈a u c, b t d〉.
2

Definition 3.6 P= (B,≤) is a partial lattice if it is a lattice, except that
join is not always defined. A partial distributive bilattice is a structure
P=(B,≤i,≤t,¬) defined similarly to a distributive bilattice (Definition 3.1),
except that Pi=(B,≤i) is a partial lattice, and requirements (2) and (3) hold
for join of Pi only if it is defined.

Definition 3.7 Let B(D)=〈D×D,≤t,≤i,¬〉 be a bilattice, and let P ⊆ D×
D be the set of all consistent elements in B(D). Then P(B)=〈P,≤t,≤i,¬〉
is the consistent structure induced by B(D), where ≤t, ≤i and ¬ in P(B)
are as in B(D), restricted to consistent elements.

Note that in consistent structures we do not have >, the top element in the
information order. However, ⊥, true and false always exist.

3.2 Attributes of Bilattices and Partial Bilattices

We first show that consistent elements are closed under ∧, ∨, ¬ and ⊗.

Lemma 3.8 Let B=〈D ×D,≤t,≤i,¬〉 be a bilattice, and let x, y ∈ D ×D

be consistent elements, then x ∧ y, x ∨ y, ¬x and x ⊗ y are consistent as
well.

Proof: We prove this on each of the operators:
Let 〈a, b〉, 〈c, d〉 ∈ D × D be consistent elements. Then, b ≤ ¬a and

d ≤ ¬c.

• ¬〈a, b〉: 〈a, b〉 is consistent, thus b ≤ ¬a. Since D is a De Morgan
algebra we can conclude that ¬b ≥ ¬¬a, thus a ≤ ¬b. This means
that 〈b, a〉 is consistent as well.

• v = 〈a, b〉∧〈c, d〉: By definition v = 〈a, b〉∧〈c, d〉 = 〈auc, btd〉. As t is
monotone with respect to ≤ we can conclude that (bt d) ≤ (¬at¬c).
By De Morgan, this means that (btd) ≤ ¬(auc), thus v is consistent.

• v = 〈a, b〉∨〈c, d〉: By definition v = 〈a, b〉∨〈c, d〉 = 〈atc, bud〉. As u is
monotone with respect to ≤ we can conclude that (bu d) ≤ (¬au¬c).
By De Morgan, this means that (bud) ≤ ¬(atc), thus v is consistent.
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• v = 〈a, b〉⊗〈c, d〉: By definition v = 〈a, b〉⊗〈c, d〉 = 〈au c, bud〉. As t
is monotone with respect to ≤ we can conclude that (btd) ≤ (¬at¬c).
By De Morgan, this means that (bt d) ≤ ¬(au c). We also know that
(b u d) ≤ (b t d), thus v is consistent.

2

We will now show that the consistent structure induced by some bilattice
B is a partial distributive bilattice. This is formalized by the following
theorem.

Theorem 3.9 Let B=〈D×D,≤t,≤i,¬〉 be a bilattice, and let P(B)=〈P,≤t

,≤i,¬〉 be the consistent structure induced by it, then P(B) is a partial dis-
tributive bilattice.

For the proof of Theorem 3.9, we need the following Lemma.

Lemma 3.10 Let B=〈D×D,≤t,≤i,¬〉 be a bilattice, and let P(B)=〈P,≤t

,≤i,¬〉 be the consistent structure induced by it. Let a, b ∈ D×D be consis-
tent values, then the values of a∨ b, a∧ b, a⊗ b and ¬a on B and P(B) are
the same. Also, if the value of a ⊕ b is defined on P(B), then it is equal to
the value of a⊕ b on B as well.

Proof: According to Lemma 3.8, the values of a ∨ b, a ∧ b, a⊗ b and ¬a on
B are consistent. Since ≤i, ≤t and ¬ for P(B) are the same as for B reduced
to the consistent elements, and since P consists of all consistent elements in
D ×D, then the values on these operators are the same for B and P(B).

For a⊕ b, by definition, if a = 〈a1, a2〉 and b = 〈b1, b2〉, then a ⊕ b =
〈a1 t b1, a2 t b2〉. If this is a consistent value, and since P(B) includes all
consistent elements, then this value will be the result on P(B). But this will
also be the value of a⊕ b on B. Thus, the values on P(B) and on B are the
same. 2

We now return to the proof of Theorem 3.9.

Proof: We show that each of the requirements on partial distributive bilat-
tice (Definition 3.6) hold on P(B):
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1. We show that Pi=(P,≤i) is a partial lattice. That is, Pi consists of
a set P with partial order ≤i over P , where every finite subset of P

has a greatest lower bound, called meet. According to Lemma 3.8, if
a, b ∈ D ×D are consistent, then a⊗ b is consistent as well. a⊗ b is
the greatest lower bound of a and b, and since P includes all consistent
elements in D ×D, then every finite subset of P has a greatest lower
bound.

2. We show that Pt=(P,≤t,¬) is a De Morgan algebra. By Lemma 3.10,
for a, b ∈ P , the result of a ∧ b, a ∨ b and ¬a is the same on P(B) and
B, thus since Bt=(D ×D,≤t,¬) is a De Morgan algebra, so is Pt.

3. We show that meet(⊗) and join(⊕) of Pi, and meet(∧) and join(∨) of
Pt are monotone with respect to both ≤i and ≤t, if they are defined
(join of Pi might be undefined). By Lemma 3.10, if these operations
are defined, then their value on P(B) is equal to their value on B.
Also, based on the definition of a consistent structure, the orders ≤i

and ≤t on P(B) are the same as on B, reduced to consistent elements.
Thus, the monotonicity applies here as well.

4. We show that all meets and joins distribute over each other. Again, by
Lemma 3.10, if these operations are defined, then their value on P(B)
is equal to their value on B. Thus since they distribute over each other
under B, then they also distribute over each other under P(B).

5. We show that negation (¬) is ≤i monotone. By Lemma 3.8, for
a ∈ D ×D a consistent element, ¬a is consistent as well, and since
≤i under P(B) is equal to its definition under B, reduced to consis-
tent elements, then negation is ≤i monotone under P(B), since it is
monotone under B.

2

We refer to consistent structures, which, by Theorem 3.9, are also partial
distributive bilattices, as consistent partial distributive bilattices (CPDB).
Note that for CPDBs, the set of maximal elements with respect to the
information order is exactly the set of definite elements, all of the form
〈c,¬c〉 for some c ∈ D. This is because for every consistent 〈x, y〉, y ≤ ¬x

and therefore 〈x,¬x〉 ≥i 〈x, y〉.
Another attribute which we will need is that definite values are closed

under ∧, ∨ and ¬, as formalized in the following theorem.
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Theorem 3.11 Let B= 〈B,≤t,≤i ¬〉 be either a distributive bilattice or a
CPDB, and let a, b ∈ B be definite values. Then a ∧ b, a ∨ b and ¬a are
definite as well.

Proof: For B which is a CPDB, if a ∈ B is definite, then a = 〈c,¬c〉, for
some c ∈ D. Thus, for proving the theorem, it enough to prove the following.

Let B=〈D×D,≤t,≤i,¬〉 be a bilattice, and let a, b ∈ D×D be definite
values. Then a ∧ b, a ∨ b and ¬a are definite as well. Furthermore, if
a = 〈c,¬c〉 and b = 〈d,¬d〉 for some c, d ∈ D, then a ∧ b, a ∨ b and ¬a are
〈e,¬e〉 for some e ∈ D.

We prove both parts according to the different operators:

• v = ¬〈a, b〉: By definition of negation v = 〈b, a〉 (Definition 3.2). Since
we assume 〈a, b〉 is definite, then b ≥ ¬a. Based on De Morgan, a ≥ ¬b,
thus v is definite as well.
For v = ¬〈a,¬a〉 we get v = 〈¬a, a〉, which, clearly, is of the required
form.

• v = 〈a, b〉 ∧ 〈c, d〉: By definition v = 〈a u c, b t d〉. We assume b ≥ ¬a

and d ≥ ¬c, then since the t operator is monotone with respect to ≤,
b t d ≥ ¬a t ¬c. By De Morgan b t d ≥ ¬(a u c), thus v is definite.
For v = 〈a,¬a〉 ∧ 〈c,¬c〉 we get v = 〈a u c,¬a t ¬c〉, and by De
Morgan, this means that v = 〈a u c,¬(a u c)〉, which is of type 〈e,¬e〉
for e = a u c ∈ D.

• v = 〈a, b〉 ∨ 〈c, d〉: By definition v = 〈a t c, b u d〉. We assume b ≥ ¬a

and d ≥ ¬c, then since the u operator is monotone with respect to ≤,
b u d ≥ ¬a u ¬c. By De Morgan b u d ≥ ¬(a t c), thus v is definite.
For v = 〈a,¬a〉 ∨ 〈c,¬c〉 we get v = 〈a t c,¬a u ¬c〉, and by De
Morgan, this means that v = 〈a t c,¬(a t c)〉, which is of type 〈e,¬e〉
for e = a t c ∈ D.

2

Example 3.12 Examples of CPDBs appear in Figure 3.1. The CPDB in-
duced by the bilattice of the Belnap structure is described in Figure 3.1(a)
and (b), as the un-boxed elements, which are all the consistent elements.
This CPDB is isomorphic to the standard 3-valued structure ([30]), where
? , ⊥, T , t and F , f .
The structure 3×3 is defined by the CPDB in Figure 3.1(e) and (f). This
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CPDB is isomorphic to the CPDB induced by the bilattice B(D) created from
the 2-views De Morgan algebra D= ({T, F} × {T, F},≤,¬), where ≤ and ¬
are defined bitwise. That is, for a1a2, b1b2 ∈{T, F} × {T, F}, a1a2 ≤ b1b2 iff
a1 ≤ b1 and a2 ≤ b2. Also, ¬(a1a2) , ¬a1¬a2. The 2-views De Morgan al-
gebra is a special case of presenting inconsistent viewpoints ([24, 40]), when
only 2 viewpoints are represented. That is, for a1a2 ∈ {T, F} × {T, F}, a1

represents the first view and a2 represents the second view.
The 3×3 structure also represents two different views, which may be con-

tradictory (e.g. TF). However, such elements should not be confused with
inconsistent elements in B(D) such as 〈TT, TT 〉. The consistent elements
of B(D) are mapped into pairs over {T,F,?} in the 3×3 structure. E.g.,
〈TF, FF 〉 is represented by T? and 〈TT, FF 〉 is represented by TT. The
resulting structure contains both representations of the elements of the con-
crete 2-views domain (e.g. TT), and their approximations (e.g. T?).
The CPDB induced by the bilattice of the 〈2{a,b}, 2{a,b}〉 structure is de-
scribed in Figure 3.1(g) and (h), as the un-boxed elements, which are all
the consistent elements. Note that the CPDB describing the 3×3 structure
is isomorphic to the CPDB induced by the 〈2{a,b}, 2{a,b}〉 structure. These
two structures present a different way for presenting the same information.
For example, the element 〈{a}, {b}〉 is equivalent to the element TF in the
sense that they both represent a similar evaluation. For the elements in the
〈2{a,b}, 2{a,b}〉 structure, a represents the first view and b represents the sec-
ond view. Thus both elements 〈{a}, {b}〉 and TF represent the case of true
by the first view and false by the second view. The use of a specific structure
will depend, for example in this case, on the implementation. That is, we
may represent an element of the logic as a vector (where its size depends
on the number of views represented), or as two groups, a group of elements
whose value is true and a group of elements whose value is false (the don’t
know elements are all the rest).

Multi-valued Kripke models as well as the semantics of Lµ formulas and
mc-graphs are defined over a De Morgan algebra L. These definitions can
easily be extended to a multi-valued structure, which is either a distributive
bilattice or a CPDB. Thus, we have both the information and truth lattices.
In this case, the lattice L used in the multi-valued semantics is the truth
lattice. This does not restrict the generality of our work since even if the
multi-valued model is defined over a De Morgan algebra L which is not

25



t

f
(a)

ft

(b)

T

T

M

F

F

(c)

T M F

FT

(d)

TT

T? ?T

TF ?? FT

?F F?

FF

(e)

FF

?F F? T?

TF FT TT

?T

??

(f)

φ

φ

φ φ

φ

<{a,b},{b}> <{a,b},{a}>

<{b},{b}><{a},{a}><{a,b},{a,b}>

<{a},{a,b}> <{b},{a,b}>

<{b},{a}><{a},{b}> φ φ<   ,   >

<{a},   > <{b},   >

<   ,{b}> <   ,{a}>φ

<   ,{a,b}>

<{a,b} ,  >

(g)

φ φφ

<{a},{a,b}>

<{a,b},{a,b}>

<{b},{a,b}> <{a,b},{b}> <{a,b},{a}>

<{b},{b}> <{a},{a}> φ

φ

<{a},{b}> <{b},{a}>

φ φ

<   ,{b}> <   ,{a}> <{a},   >

<   ,   >

<{b},   >

<{a,b},   >φ<   ,{a,b}>

(h)

Figure 3.1: Truth (a) and information (b) orders of 4-valued Belnap
structure; Truth (c) and information (d) orders of 6-valued structure; Truth
(e) and information (f) orders of 3×3 structure; Truth (g) and information

(h) orders of 〈2{a,b}, 2{a,b}〉 structure; Boxed nodes are inconsistent
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(isomorphic to) a truth lattice of a bilattice (or a CPDB), then L can be
lifted into B(L), resulting in a bilattice which contains both the original
elements of L and their approximations. The model over L can then be
interpreted as a model over B(L) or its CPDB, where each value of L is
represented by its best approximation, and the semantics is maintained.
For example, consider the 2-views De Morgan algebra which is lifted to a
bilattice in Example 3.12.

In the rest of this work we use CPDBs. We will discuss this work with
regards to full bilattices in Chapter 7.
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Chapter 4

Mixed Simulation and

Refinement of Multi-Valued

Models

In this chapter we define a mixed simulation relation between two multi-
valued Kripke models M1 and M2. Based on the mixed simulation relation,
we describe the connection between abstract and concrete models. The
mixed simulation relation also enables us to define the connection between
two different abstractions of a model, where one is more precise than the
other. Describing the connection between (abstract) models sets the ground
for presenting a refinement algorithm. Our refinement algorithm, presented
in Section 4.4, is based on the multi-valued model checking algorithm.

4.1 Multi-Valued Mixed Simulation

We first define a relation between two multi-valued Kripke models, both de-
fined over the same multi-valued structure. This relation guarantees preser-
vation of Lµ formulas with respect to the multi-valued semantics. The sim-
ulation relation is defined by means of the information order. Intuitively, it
identifies the fact that M2 contains less information than M1. Thus, M2 is
an abstraction of M1.

Definition 4.1 Let M1 = 〈L, AP, S1, s
1
0, R1, Θ1〉 and M2 = 〈L, AP, S2, s

2
0,
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R2,Θ2〉 be two multi-valued Kripke models. H ⊆ S1 × S2 is a mixed simu-
lation from M1 to M2 if (s1, s2) ∈ H implies:

1. For every p ∈ AP : Θ2(p)(s2) ≤i Θ1(p)(s1).
2. For every t1 ∈ S1 such that R1(s1, t1) 6= false there exists t2 ∈ S2

such that (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).
3. For every t2 ∈ S2 such that R2(s2, t2) 6≤i false there exists t1 ∈ S1

such that (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).

If there is a mixed simulation H such that (s1
0, s

2
0) ∈ H, then M2 abstracts

M1, denoted M1 ¹ M2.

Note that requirements (2) and (3) are not symmetrical. By require-
ment (2), every transition in M1 has a representation in M2, whereas by
requirement (3), only transitions in M2 such that R2(s2, t2) 6≤i false have
a representation in M1. These requirements are similar to the requirements
of mixed simulation in the 3-valued case ([29, 22]). There, every may tran-
sition in M1 has a representation in M2, and every must transition in M2

has a representation in M1. In the multi-valued case transitions which are
may and not must are transitions for which R(s, t) ≤i false.

Example 4.2 Consider the models in Figure 4.1(a) and Figure 4.1(b). The
underlying multi-valued structure is the 3 × 3 structure (described in Fig-
ure 3.1(e),(f)). The mixed simulation is given by:
H = {(s00, s0), (s01, s0), (s10, s1), (s11, s1), (s20, s2), (s30, s3), (s31, s3)}. Since
(s00, s0) ∈ H, we can conclude that MC ¹ MA.

Note that the transition from s3 to s1 in MA does not have a matching
transition in MC . This complies with requirement (3) of the mixed simula-
tion, as in the 3×3 structure, false = FF, and F? ≤i FF. RA(s3, s1) = F?,
thus by (3) there is no requirement for a matching transition.

The mixed simulation relation guarantees preservation of Lµ formulas,
as formalized in the following theorem.

Theorem 4.3 Let H ⊆ S1 × S2 be a mixed simulation relation from M1

to M2, and let ϕ be a closed Lµ formula. Then for every (s1, s2) ∈ H,
‖ϕ‖M2(s2) ≤i ‖ϕ‖M1(s1).
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Proof: The proof is done by induction on the structure of the formula.
In order to avoid handling the environment in subformulas, we will use the
following formula transformation. Let ϕ′ ∈ Sub(ϕ) such that ϕ′ = ηZ.ϕ1(Z)
for η ∈ {µ, ν}, and let t1, t2 be states in S1, S2 respectively. According to
Theorem 2.10, there exists α1 ∈ N such that ‖ϕ′‖M1(t1) = Zα1(t1). Similarly
there exists α2 ∈ N such that ‖ϕ′‖M2(t2) = Zα2(t2). Let α∗ = max(α1, α2).
Then ‖ϕ′‖M1(t1) = Zα∗(t1) and ‖ϕ′‖M2(t2) = Zα∗(t2). Note that Zα∗ is a
new formula which does not include the variable Z.

For the given formula ϕ, we use the above transformation on all sub-
formulas of type ηZ.ϕ1(Z). This results in a new formula ϕ′ for which
‖ϕ‖M1(t1) = ‖ϕ′‖M1(t1) and ‖ϕ‖M2(t2) = ‖ϕ′‖M2(t2). Furthermore, since ϕ

is a closed Lµ, then ϕ′ does not include any variables.
We will prove the theorem on the transformed ϕ′, by induction on the

structure of the formula.
Base: ϕ = p ∈ AP : ‖p‖M2(s2) = Θ2(p)(s2) and ‖p‖M1(s1) = Θ1(p)(s1).
By definition of H as mixed simulation: Θ2(p)(s2) ≤i Θ1(p)(s1). Thus,
‖p‖M2(s2) ≤i ‖p‖M1(s1).

Step:

• ϕ = ¬p where p ∈ AP :
By definition, ‖¬p‖M2(s2) = ¬Θ2(p)(s2) and ‖¬p‖M1(s1) = ¬Θ1(p)(s1).
By definition of H as mixed simulation, Θ2(p)(s2) ≤i Θ1(p)(s1). Since
¬ is monotone with respect to ≤i, we can conclude that ‖¬p‖M2(s2) ≤i

‖¬p‖M1(s1).
• ϕ = ϕ1 ∧ ϕ2:

By definition, ‖ϕ1∧ϕ2‖Mi(si) = ‖ϕ1‖Mi(si)∧‖ϕ2‖Mi(si) for i ∈ {1, 2}.
By the induction hypothesis, ‖ϕ1‖M2(s2) ≤i ‖ϕ1‖M1(s1) and ‖ϕ2‖M2(s2) ≤i

‖ϕ2‖M1(s1). The induction hypothesis holds since ϕ1, ϕ2 ∈ Sub(ϕ1 ∧
ϕ2).
Since ∧ is monotone with respect to≤i, we can conclude that: ‖ϕ1‖M2(s2)∧
‖ϕ2‖M2(s2) ≤i ‖ϕ1‖M1(s1) ∧ ‖ϕ2‖M1(s1).
Thus, ‖ϕ1 ∧ ϕ2‖M2(s2) ≤i ‖ϕ1 ∧ ϕ2‖M1(s1).

• ϕ = ϕ1 ∨ ϕ2: Dual to the case of ϕ = ϕ1 ∧ ϕ2.
• ϕ = 2ϕ1:

By definition, ‖2ϕ1‖Mi(si) =
∧

ti∈Si

(¬Ri(si, ti) ∨ ‖ϕ1‖Mi(ti)
)

for i ∈
{1, 2}.
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We first notice that proving
∧n

j=1 aj ≤i
∧m

j=1 bj is identical to proving∧n
j=1 aj ≤i

∧m
j=1 bj ∧ true. For proving that, since ∧ is monotone with

respect to ≤i, it suffices to show that:

– ∀j∃k.aj ≤i bk or aj ≤i true and
– ∀k∃j.aj ≤i bk

Note that it does not suffice to prove only one of the requirements,
since the conjunction is done based on the truth order, whereas both
conjuncts are compared with respect to the information order.
We need to prove

∧
t2∈S2

(¬R2(s2, t2)∨‖ϕ1‖M2(t2)
) ≤i

∧
t1∈S1

(¬R1(s1, t1)∨
‖ϕ1‖M1(t1)

)
.

We first prove that for all t2 ∈ S2, either
(¬R2(s2, t2)∨‖ϕ1‖M2(t2)

) ≤i

true or there exists t1 ∈ S1 such that
(¬R2(s2, t2) ∨ ‖ϕ1‖M2(t2)

) ≤i(¬R1(s1, t1) ∨ ‖ϕ1‖M1(t1)
)
.

We then prove that for all t1 ∈ S1 there exists t2 ∈ S2 such that(¬R2(s2, t2) ∨ ‖ϕ1‖M2(t2)
) ≤i

(¬R1(s1, t1) ∨ ‖ϕ1‖M1(t1)
)
.

For each t2 ∈ S2:
If R2(s2, t2) 6≤i false, then by the definition of mixed simulation, there
exists t1 ∈ S1 such that (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1). As
negation is monotone with respect to ≤i, we have: ¬R2(s2, t2) ≤i

¬R1(s1, t1).
Since (t1, t2) ∈ H, then by the induction hypothesis: ‖ϕ1‖M2(t2) ≤i

‖ϕ1‖M1(t1).
Since ∨ is monotone with respect to≤i, then

(¬R2(s2, t2)∨‖ϕ1‖M2(t2)
) ≤i(¬R1(s1, t1) ∨ ‖ϕ1‖M1(t1)

)
.

For the case where R2(s2, t2) ≤i false, since negation is monotone
with respect to ≤i, then ¬R2(s2, t2) ≤i true.
Since ∨ is monotone with respect to≤i, we can conclude that:

(¬R2(s2, t2)∨
‖ϕ1‖M2(t2)

) ≤i

(
true ∨ ‖ϕ1‖M2(t2)

)
= true

Thus, we can conclude that for every t2 ∈ S2 at least one of the
following is true:

– there exists t1 ∈ S1 such that (t1, t2) ∈ H and
(¬R2(s2, t2) ∨

‖ϕ1‖M2(t2)
) ≤i

(¬R1(s1, t1) ∨ ‖ϕ1‖M1(t1)
)
.

–
(¬R2(s2, t2) ∨ ‖ϕ1‖M2(t2)

) ≤i true

For each t1 ∈ S1:
If R1(s1, t1) 6= false then by the definition of mixed simulation, there
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exists t2 ∈ S2 such that (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).
Thus, again we can conclude that:

(¬R2(s2, t2) ∨ ‖ϕ1‖M2(t2)
) ≤i(¬R1(s1, t1) ∨ ‖ϕ1‖M1(t1)

)
.

If R1(s1, t1) = false, then ¬R1(s1, t1) ∨ ‖ϕ1‖M1(t1) = true, thus t1
does not affect the value of

∧
t1∈S1

(¬R1(s1, t1) ∨ ‖ϕ1‖M1(t1)
)
.

This means that:
∧

t2∈S2

(¬R2(s2, t2)∨‖ϕ1‖M2(t2)
) ≤i

∧
t1∈S1

(¬R1(s1, t1)∨
‖ϕ1‖M1(t1)

)
.

We conclude, ‖2ϕ1‖M2(s2) ≤i ‖2ϕ1‖M2(s1).
• ϕ = ♦ϕ1:

By definition, ‖♦ϕ1‖Mi(si) =
∨

ti∈Si

(
R(si, ti) ∧ ‖ϕ1‖Mi(ti)

)
for i ∈

{1, 2}.
We first notice that proving

∨n
j=1 aj ≤i

∨m
j=1 bj is identical to proving∨n

j=1 aj ≤i
∨m

j=1 bj ∨ false. For proving that, since ∨ is monotone
with respect to ≤i, it suffices to show that:

– ∀j∃k.aj ≤i bk or aj ≤i false and
– ∀k∃j.aj ≤i bk

We need to prove
∨

t2∈S2

(
R2(s2, t2)∧‖ϕ1‖M2(t2)

) ≤i
∨

t1∈S1

(
R1(s1, t1)∧

‖ϕ1‖M1(t1)
)
.

We first prove that for all t2 ∈ S2, either
(
R2(s2, t2)∧‖ϕ1‖M2(t2)

) ≤i

false or there exists t1 ∈ S1 such that
(
R2(s2, t2) ∧ ‖ϕ1‖M2(t2)

) ≤i(
R1(s1, t1) ∧ ‖ϕ1‖M1(t1)

)
.

we then prove that for all t1 ∈ S1 there exists t2 ∈ S2 such that(
R2(s2, t2) ∧ ‖ϕ1‖M2(t2)

) ≤i

(
R1(s1, t1) ∧ ‖ϕ1‖M1(t1)

)
.

For each t2 ∈ S2:
If R2(s2, t2) 6≤i false, then by the definition of mixed simulation, there
exists t1 ∈ S1 such that (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).
Since (t1, t2) ∈ H, then by the induction hypothesis: ‖ϕ1‖M2(t2) ≤i

‖ϕ1‖M1(t1).
Since ∧ is monotone with respect to ≤i, we conclude that R2(s2, t2)∧
‖ϕ1‖M2(t2) ≤i R1(s1, t1) ∧ ‖ϕ1‖M1(t1).
For the case where R2(s2, t2) ≤i false. Since ∧ is monotone with
respect to ≤i, we can conclude that:

(
R2(s2, t2) ∧ ‖ϕ1‖M2(t2)

) ≤i(
false ∧ ‖ϕ1‖M2(t2)

)
= false

Thus, we can conclude that for every t2 ∈ S2 at least one of the
following is true:
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– there exists t1 ∈ S1 such that (t1, t2) ∈ H and
(
R2(s2, t2) ∧

‖ϕ1‖M2(t2)
) ≤i

(
R1(s1, t1) ∧ ‖ϕ1‖M1(t1)

)
.

–
(
R2(s2, t2) ∧ ‖ϕ1‖M2(t2)

) ≤i false

For each t1 ∈ S1:
If R1(s1, t1) 6= false then by the definition of mixed simulation, there
exists t2 ∈ S2 such that (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1). Thus,
again we can conclude that:

(
R2(s2, t2)∧‖ϕ1‖M2(t2)

) ≤i

(
R1(s1, t1)∧

‖ϕ1‖M1(t1)
)
.

If R1(s1, t1) = false, then R1(s1, t1) ∧ ‖ϕ1‖M1(t1) = false, thus t1
does not affect the value of

∨
t1∈S1

(
R1(s1, t1) ∧ ‖ϕ1‖M1(t1)

)
.

This means that:
∨

t2∈S2

(
R2(s2, t2)∧‖ϕ1‖M2(t2)

) ≤i
∨

t1∈S1

(
R1(s1, t1)∧

‖ϕ1‖M1(t1)
)
.

We conclude, ‖♦ϕ1‖M2(s2) ≤i ‖♦ϕ1‖M1(s1).

2

4.2 Concrete and Abstract Multi-Valued Models

Abstraction refers to removing or simplifying details of the original model in
order to obtain a smaller (abstract) model. In an abstract model, an abstract
state may represent 0 or more states in the concrete model. A transition
from one abstract state to another represents the transitions between the
corresponding concrete states. It is, however, possible to add transitions
in the abstract model that do not represent concrete transitions. We will
not discuss how abstract models are constructed. This is investigated for
instance in [38].

A model is more abstract than another model if the prior model has less
information than the latter one. Recall that when presenting distributive
bilattices we discussed that given a De Morgan algebra D= (D,≤,¬), then
for any element c ∈ D, we have that 〈x, y〉 ∈ D × D approximates c if
〈x, y〉 ≤i 〈c,¬c〉. Since 〈c,¬c〉 is consistent, and all 〈x, y〉 where 〈x, y〉 ≤i

〈c,¬c〉 are consistent as well, we can conclude that for any given element
c ∈ D all elements approximating c are in P(B(D)). Thus, for a model M

defined over D, a model MA, which is an abstraction of M , is defined over
P(B(D)).

The mixed simulation relation is used to describe the relation between a
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model M defined over D, and its abstraction, MA: M ¹ MA. This is since
the mixed simulation relation captures the notion of one model including
less information (being more abstract) than the other. Note, however, that
when defining the mixed simulation relation both models are defined over the
same multi-valued structure, whereas in our case M is defined over D and
MA is defined over P(B(D)). To overcome the above problem, we interpret
M as a model over P(B(D)), instead of over D. Note that M is defined
over P(B(D)), in which all values are definite. Following Theorem 3.11,
evaluating M over either D or over P(B(D)) will have the same results.

Resulting from the above, the mixed simulation relation can, indeed, be
used to describe the relation between a model M and its abstraction MA.
The mixed simulation relation can also be used to describe the connection
between two abstract models, both defined over P(B(D)), where one model
is an abstraction of the other model.

We will sometimes refer to the model M , defined over D, as the concrete
model, and mark it MC . We refer to this model as concrete since all its
values are definite, and not approximated.

Example 4.4 Consider the model MC in Figure 4.1(a). The underlying
multi-valued structure is the 3× 3 structure (described in Figure 3.1(e),(f)).
Figure 4.1(b) describes an abstraction of the model, MC ¹ MA (the mixed
simulation relation H is given in Example 4.2). Each (abstract) state sA in
MA represents one or more states in MC . These are the states which are in
H with sA. Thus, s0 in MA represents both s00 and s01 in MC . Similarly,
s1 in MA represents s10 and s11 in MC . Note that indeed, s1 includes less
details than s10 and s11, since the value of i is indefinite in s1. The transition
between s0 and s1 in MA represents all transitions from s00 and s01 to s10

and s11 in MC . Indeed, the value of the abstract transition from s0 to s1 is
smaller by information order than the corresponding transitions.

Note the dashed transition from s3 to s1 in MA. This transition does not
correspond to a transition in the concrete model MC . This does not effect the
mixed simulation between the models, as based on requirement 3 transitions
whose value is less than or equal to false by information order might not
have a corresponding transition. Such transitions may still be created during
the building of the abstract model due to abstraction which is not precise.
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Figure 4.1: A concrete model MC and its abstractions MA and M ′
A
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4.3 Refinement of Models

Given an abstract model, the information order enables us to capture the
notion of a model checking result being “not good enough”. This is a result
that does not give us the maximal information possible. That is, it is indef-
inite. Such a result needs to be refined. On the other hand, a definite result
is a result that gives us the maximal information possible.

Works such as [31, 32] present how to refine a model based on the mc-
graph for 3-valued models. There, an indefinite result is accompanied with a
failure cause. The failure cause is either an atomic proposition whose value
is indefinite, or an outgoing transition whose value is indefinite. Refinement
is then performed by splitting the abstract states in a way that eliminates
the failure cause.

Similarly, our refinement is also performed by splitting states. The re-
finement consists of two parts. First, we choose a criterion for model re-
finement. Then, based on the criterion, the model is refined by splitting
states. Splitting states is aimed at increasing the information level of some
transition or of an atomic proposition in some state, based on the criterion.
Note, however, that splitting states can, as a by-product, cause decreasing
of the information level of some transitions.

Example 4.5 Figure 4.1(c) describes a refinement of the abstract model
MA given in Figure 4.1(b). The refinement is done by state splitting: s0

is split into s00 and s01. Splitting these states enables us to increase the
information level of the transition from s0 to s2. The value of this transition
in MA is ?T , whereas after the refinement the transition is described by the
two transitions from s00 to s2 with value TT , and from s01 to s2 with value
FT .

A different refinement of the abstract model MA is given in Figure 4.1(d).
The refinement is done by state splitting: s3 is split into s30 and s31. This
state splitting causes decreasing of the information level of the transition
from s1 to s3. In MA this transition has the value FT . In the refined model,
this transition is replaced with two transition from s1 to both s30 and s31,
both with the value F?. Note that if the value of these transitions in M ′′

A

had remained FT , then the mixed simulation relation between MC and M ′′
A

would not have been maintained.
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4.4 Choosing Criterion for Refinement

In the rest of the section we study the first part of the refinement, which
is choosing a criterion for model refinement. Consider a mc-graph G =
(n0, N,E). For a mc-function χ : N → L, such that χ(n0) is indefinite, our
goal in the refinement is to find and eliminate at least one of the causes
of the indefinite result. The criterion for the refinement is obtained from a
failure node for n0.

Definition 4.6 Let G = (n0, N, E) be a mc-graph and let χ : N → L be a
mc-function on G such that χ(n) is indefinite. A node n′ = s ` ϕ ∈ N is a
failure node for n if the following holds.

1. χ(n′) is indefinite.
2. There is a path from n to n′ on G, such that for every node n′′ on the

path, χ(n′′) is indefinite.
3. χ(n′) can be changed by either increasing the information level of an

atomic proposition in s or by increasing the information level of some
transition from s.

Intuitively, if n is a failure node for n′ then requirement 3 means that n

itself is responsible for introducing (some) uncertainty. (1) and (2) require
that this uncertainty is relevant to χ(n′).

We adapt the mc-algorithm (Algorithm 2.12) to remember for each
node whose value is indefinite a failure node and a failure reason. The
failure node and reason of n0 will be used as a criterion for refinement.

For every terminal node n, if χ(n) is indefinite, the failure node and
reason attached to it are the node itself. To handle nonterminal nodes, we
define an auxiliary function f : N → L that keeps for each node n ∈ N its
most updated value in the algorithm: If χ(n) is defined, then f(n) = χ(n).
Otherwise, if temp(n) is defined, then f(n) = temp(n).

Let n be a node for which f(n) has been updated last. If f(n) is definite,
then no failure node and reason are attached to it. If f(n) is indefinite, do
the following:

1. If n is a ∨-node, find some node n′ with R(n, n′) 6= false and for which
the following requirements hold:

(a) ∀n′′ ∈ N where R(n, n′′) 6= false one of the following holds:
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i. (R(n, n′′) ∧ f(n′′)) ≤t (R(n, n′) ∧ f(n′)). Or
ii. (R(n, n′′) ∧ f(n′′)) and (R(n, n′) ∧ f(n′)) are uncomparable.

(b) R(n, n′) ∧ f(n′) is indefinite.

Intuitively, for some n′, if requirement (a) holds then R(n, n′) ∧ f(n′)
is maximal, and thus affects f(n). Requirement (b) ensures that it is
possible to refine R(n, n′) or f(n′). For the given node n and a chosen
node n′ satisfying (a),(b) define a failure node and reason for n as
follows:

i If f(n′) is definite or R(n, n′) �t f(n′): n is a failure node, and
the edge (n, n′) is the failure reason.

ii If R(n, n′) is definite or f(n′) �t R(n, n′), then the failure node
and reason of n are those of n′.

iii Otherwise, arbitrarily choose either n as a failure node and the
edge as a failure reason, or the failure node and reason of n′ as
the failure node and reason of n.

2. The case where n is a ∧-node is dual, where instead of searching for
a maximal R(n, n′) ∧ f(n′), we now try to find a minimal ¬R(n, n′) ∨
f(n′):
If n is a ∧-node, find some node n′ with R(n, n′) 6= false and for which
the following requirements hold:

(a) ∀n′′ ∈ N where R(n, n′′) 6= false one of the following holds:

i. (¬R(n, n′) ∨ f(n′)) ≤t (¬R(n, n′′) ∨ f(n′′)). Or
ii. (¬R(n, n′)∨f(n′)) and (¬R(n, n′′)∨f(n′′)) are uncomparable.

(b) ¬R(n, n′) ∨ f(n′) is indefinite.

For the given node n and a chosen node n′ satisfying (a),(b) define a
failure node and reason for n as follows:

i If f(n′) is definite or f(n′) �t ¬R(n, n′), then n is a failure node,
the edge (n, n′) is the failure reason.

ii If R(n, n′) is definite or ¬R(n, n′) �t f(n′), then the failure node
and reason of n are those of n′.

iii Otherwise, arbitrarily choose either n as a failure node and the
edge as a failure reason, or the failure node and reason of n′ as
the failure node and reason of n.
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Definite values are closed under ¬, ∧ and ∨ (Theorem 3.11), thus if a
node is given an indefinite value, this indefinite value results from an indef-
inite value of either a son n′ of n, or an edge from n. For example, consider
case 1(i). If f(n′) is definite, then R(n, n′) is necessarily indefinite (Theo-
rem 3.11). Similarly, if R(n, n′) �t f(n′), then R(n, n′) ∧ f(n′) = R(n, n′),
which again, means that R(n, n′) is indefinite. Either way, R(n, n′) can be
refined and is therefore the failure reason. The correctness of the search for
the failure node and reason is formalized by the following two lemmas.

Lemma 4.7 For every nonterminal node n, if f(n) is given an indefinite
value, then there exists n′ such that R(n, n′) 6= false, which satisfies re-
quirements (a),(b). Furthermore, f(n′) is already defined at that time. In
addition, if the updating of failure node and reason of n is based on n′, then
n′ also has a failure node and reason.

Proof: We prove each part of the lemma separately.
First, we prove that if f(n) is given an indefinite value, then f(n′) is

defined. The updating of f(n) follows the updating of temp(n) and χ(n).
The only case where f(n) is updated for a non-terminal node n ∈ Qi, and
updating does not depend on the sons of n, is when n is of the form s ` Z,
for some variable Z, during the initialization of temp for Qi. Based on the
algorithm, in this case temp(n) is either true or false (depending on the
type of fp(Z)), and thus f(n) is given a definite value. All other updates
on internal node n are done based on the sons of n, thus are done only if
either temp(n′) or χ(n′) are updated, for n′ son of n. As a result, f(n′) is
defined on n′.

Second, we prove that for every node n, if f(n) is given an indefinite
value, then there exists n′ such that R(n, n′) 6= false, which satisfies re-
quirements (a),(b). We prove the lemma according to the type of the node
n for which f(n) is indefinite. We first consider the case of a ∨-node. We first
show that only sons complying with requirement (a) influence f(n). Assume
a son n′ of n that does not comply with requirement (a). Thus, there exists
n′′ which is a son of n for which (R(n, n′′)∧f(n′′)) and (R(n, n′)∧f(n′)) are
comparable. Furthermore, (R(n, n′) ∧ f(n′)) �t (R(n, n′′) ∧ f(n′′)). Recall
that if b ≤t a then a ∨ b = a. We conclude that n′ does not influence f(n).
Therefore, only sons complying with requirement (a) influence f(n).
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Assume by way of contradiction that there does not exist a son n′ which
satisfies both requirements (a) and (b). Since all sons influencing f(n) com-
ply with requirement (a), we conclude that they all do not comply with
requirement (b). Thus, for all sons influencing f(n), R(n, n′) ∧ f(n′) is def-
inite. By Theorem 3.11, since all the values influencing f(n) are definite,
then f(n) is definite as well. This contradicts the assumption that f(n) is
indefinite. We conclude that if f(n) is indefinite, then there exists n′ which
satisfies requirements (a),(b).

Third, we prove that if the updating of failure node and reason on n is
based on the failure node and reason of n′, then a failure node and reason is
defined on n′. By the definition of the failure node and reason, if the failure
node and reason of n is based on the failure node and reason of n′, then
f(n′) is indefinite. By induction on the updating steps of f(n), it is possible
to prove that for all nodes, if f(n) is indefinite, then it has a failure node
and reason. 2

A failure node and reason for n is updated every time f(n) is updated.
Thus, when the mc-algorithm terminates, for every n, if χ(n) is indefinite,
then the failure node and reason for n is based on χ.

Lemma 4.8 For every node n, if n is updated with a failure node n′, then
n′ is a failure node for n (Definition 4.6).

Proof: We prove by induction on the updating steps of f(n) that for every
n, if f(n) is given an indefinite value and n is updated with a failure node
n′ = s ` ϕ then the following holds:

1. f(n′) is indefinite.
2. There is a path from n to n′ on G, such that for every node n′′ on the

path, f(n′′) is indefinite.
3. f(n′) can be changed by either increasing the information level of an

atomic proposition in s or by increasing the information level of some
transition from s.

Base: For terminal nodes, if f(n) is indefinite, the failure node and reason
attached to it are the node itself. Clearly, n complies with requirements 1-3.
Step: For nonterminal nodes, if f(n) is given an indefinite value and up-
dated with a failure node and reason n′. By Lemma 4.7 and based on the
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updating algorithm, f(n′) is already defined for n′. By the hypothesis as-
sumption, if f(n′) is indefinite then n′ is updated with a failure node and
reason n′′ = s′′ ` ϕ′′, which complies with requirements 1-3.

The failure node and reason for n can be either those of n′ or n is the
failure node and the edge to n′ is the failure reason.

If the failure node and reason is that of n′, then the failure node and
reason for n is n′′ and the following is true:

1. Based on hypothesis assumption, f(n′′) is indefinite.
2. Based on the algorithm, f(n′) is indefinite. Based on the hypothesis

assumption, there is a path from n′ to n′′ on G, such that for every
node m on the path, f(m) is indefinite. Thus, there is a path from n to
n′′ on G, such that from every node m on the path, f(m) is indefinite.

3. By the hypothesis assumption, f(n′′) can be changed by either in-
creasing the information level of an atomic proposition in s′′ or by
increasing the information level of some transition from s′′.

If the failure node is n and the edge to n′ is the failure reason, then the
following holds:

1. Based on the algorithm, f(n) is indefinite.
2. Trivially, there is a path from n to itself where f(n) is indefinite.
3. Based on the algorithm, the value of the edge to n′ influences f(n) and

is indefinite. Thus, f(n) can be changed by increasing the information
level of this transition.

The failure node and reason for n is updated every time f(n) is updated.
Thus, when the mc-algorithm terminates, for every n, if χ(n) is indefinite,
then the failure node for n is indeed a failure node. 2

Altogether there are two cases in which we consider the node itself as a
failure node. The first case is when the node is a terminal node whose value
is indefinite, for which the failure reason is clear. The second case is when
the node has an indefinite edge to n′ which is the failure reason. In this
case n is the failure node since refining the value of the edge may change the
value of n. The failure reason is then defined to be an atomic proposition
with an indefinite value in the first case, and to an indefinite transition in
the second case. Note that the algorithm is heuristic in the sense that it
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Figure 4.2: mc-graph for ♦i on MA

does not guarantee that all or any possible refinements of the failure node
and reason will increase the information level of the result. Furthermore, it
may even be the case that a refinement step decreases the information level
of the result. The algorithm greedily searches for a failure node and reason
which is most likely to increase the result with respect to the information
order. On the other hand, the algorithm will not return as a failure node
a node whose refinement will certainly not affect the result. For instance,
subtrees in which the root node is definite are ignored, and their nodes will
not be returned as failure node and reason.

Example 4.9 Consider the mc-graph in Figure 4.2. This is a mc-graph cre-
ated for verifying the property ♦i on the abstract model MA in Figure 4.1(b).
For the node n0 = s0 ` ♦i there are three possible failure nodes and reasons.
The first is n0 itself being the failure node and the edge to node n2 being the
reason. The second is node n1 being the failure node and reason, and the
third is node n0 itself and the edge to n1 being the reason.
Assume that the first possibility has been chosen, namely, the node n0 is the
failure node and the edge to node n2 is the reason. A refinement of MA

based on this choice results in the model M ′
A (Figure 4.1(c)). Increasing the

information level of the edge from s0 to s2 has been done here by splitting
the state s0 into two states.

Recall that refinement is done by splitting states. Thus, every abstract
state of the model will represent less concrete states. If the underlying
concrete model is finite, then there is only a finite number of possible such
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refinements. We conclude that there is a finite number of refinement steps
possible. This is formalized in the following lemma.

Lemma 4.10 If MC is finite then in a finite number of refinement steps the
model checking result will be the same as the one in the underlying concrete
model, MC .

Proof: At each refinement step we split states. These means that every
abstract state of the model will abstract less concrete states. Since the
underlying concrete model is finite, then there is a finite number of splitting
refinements available.

Thus, after a finite number of refinement steps, the value of all transi-
tions and the value of every atomic proposition from the formula will be
definite. By Theorem 3.11, the value of the formula on the refined model
will be definite as well. Each refined model, M ′

A is created such that it is an
abstraction of the concrete model, MC , thus MC ¹ M ′

A. By Theorem 4.3,
for every closed Lµ formula ϕ, ‖ϕ‖M ′

A ≤i ‖ϕ‖MC . We can then conclude
that if the result on the abstract model is definite, then it is equal to the
result on the concrete model.

2
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Chapter 5

Partial Coloring and

Subgraphs

In this chapter we investigate properties of the mc-algorithm (Algorithm 2.12).
In particular, we present sufficient conditions under which a subgraph of a
mc-graph can be evaluated “correctly” (the notion “correct” will be formally
defined later) without considering the full mc-graph. The results presented
in this chapter will assist us when presenting our compositional model check-
ing framework in Chapter 6. There, we will construct a subgraph of the mc-
graph of the composed system, based on the mc-graphs of the components.
We will exploit the results from model checking the components in order to
model check the subgraph of the composed system. Thus, we will avoid the
construction of the full mc-graph for the composed system.

In the rest of the chapter, G denotes a multi-valued mc-graph over a
multi-valued structure B= (L,≤t,≤i,¬).

The purpose of the following definition is to identify those nodes in the
mc-graph that can be ignored in the process of model checking, since they
do not change the model checking result. These nodes will not be included
in the subgraph to which we will apply model checking.

Definition 5.1 Let G be a mc-graph and let g : N → L be a function. For
a non-terminal node n in G, and two nodes n′ and n′′ which are sons of n,
n′ covers n′′ under g with respect to n, if one of the following holds:

• n is a ∧-node and
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Figure 5.1: Influencing sons on mc-graph

1. (¬R(n, n′) ∨ g(n′)) ≤t (¬R(n, n′′) ∨ g(n′′)), and
2. For every v′, v′′ ∈ L : if g(n′) ≤i v′ and g(n′′) ≤i v′′ then (¬R(n, n′)∨

v′) ≤t (¬R(n, n′′) ∨ v′′).

• n is a ∨-node and

1. (R(n, n′′) ∧ g(n′′)) ≤t (R(n, n′) ∧ g(n′)), and
2. For every v′, v′′ ∈ L : if g(n′) ≤i v′ and g(n′′) ≤i v′′ then (R(n, n′′)∧

v′′) ≤t (R(n, n′) ∧ v′).

Intuitively, a son n′ covers a son n′′ in the sense that if g defines the value
of the sons, then it suffices to take into account n′ (and ignore n′′) in order
to determine the value of the node n. In our setting, g will sometimes only
provide a lower bound with respect to the information order on the value
of the nodes. However, the second requirement ensures that the covering
holds as well for every g′ such that ∀n ∈ N : g′(n) ≥i g(n). Note that the
notion of covering defines a partial order on the nodes of the mc-graph. As
a result, for every covered node n′′ there exists a covering node n′ such that
n′ is non-covered.

Example 5.2 Consider the mc-graph in Figure 5.1. Assume the under-
lying structure is the 3× 3 structure (Figure 3.1(e), (f)). By the defini-
tion of the model, the value of the edges are R(n0, n1) = R(n0, n2) = TT .
Let g(n1) = T? and g(n2) =?F . We show that n2 is covered by n1 under
g. Clearly, requirement (1) holds. For requirement (2), we need to show
that ∀v1, v2 ∈ L : if g(n1) ≤i v1 and g(n2) ≤i v2 then (R(n0, n2) ∧ v2) ≤t

(R(n0, n1) ∧ v1). Specifically, we need to show that ∀v1 ∈ {T?, TT, TF},
∀v2 ∈ {?F, FF, TF}: TT ∧ v2 ≤t TT ∧ v1, which obviously holds.
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In the example, the value given to n0 based on the sons n1 and n2 is the
same as if only the son n1 had been considered. We will next exploit this
property.

Let G be a mc-graph and let g : N → L be a function. For a non-
terminal node n in G, and a node n′ which is a son of n, we say that n′ is a
non-covered son of n under g if the following holds. For every node n′′ 6= n′

which is a son of n, n′′ does not cover n′ under g.

Definition 5.3 Let G be a mc-graph and χ its mc-function. A subgraph G′

of G is closed if every node n in G′ is either terminal in G′, or G′ contains
all non-covered sons of n under χ and corresponding edges.

Definition 5.4 Let G be a mc-graph, χ its mc-function, and χI : N → L a
partial mc-function. χI is correct with respect to χ if for every node n in
G, if χI(n) is defined, then χI(n) = χ(n).

The mc-algorithm evaluates the nodes iteratively, starting from termi-
nal nodes. As a result, if the algorithm is given a correct partial mc-function
which is defined over (at least) all the terminal nodes, then it will extend
the given valuation to the rest of the graph in a correct way.

Theorem 5.5 Let G be a mc-graph and χ its mc-function. Consider a
closed subgraph G′ of G with a partial mc-function χI which is correct with
respect to χ and defined over (at least) all the terminal nodes in G′. Then
applying the mc-algorithm on G′ with χI as an initial valuation (replacing
val) results in a mc-function χ′ of G′ such that for every n in G′, χ′(n) =
χ(n).

Proof: We need to prove that when χI is used as the initial mc-function for
the mc-algorithm, the evaluation of G′ will be the same as the evaluation
of G. For the terminal nodes of G′ this is clear, since the initial value χI is
defined over all terminal nodes and χI is correct with respect to χ for these
nodes.

For a non-terminal node n in G′: We show that the value of n in G

depends only on the non-covered sons. Since all the non-covered sons of n

in G are also in G′, then the value of n in G′ will be the same as its value
in G.
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Recall that ∨ and ♦ nodes are evaluated according to the following:
χ(n) =

∨{R(n, n′) ∧ χ(n′)|R(n, n′) 6= false}. Let n′ and n′′ be sons of n in
G, such that n′ covers n′′ under χ with respect to n. By the definition of
covering, this means that

(
R(n, n′′) ∧ χ(n′′)

) ≤t

(
R(n, n′) ∧ χ(n′)

)
. a ≤t b

implies a ∨ b = b. Thus, χ(n) will not be affected by the removal of the
covered son n′′, if there exists a son n′ that covers n′′. The covering defines
a partial order, thus there always exists a covering son that is non-covered.
By the definition of closed subgraph, all non-covered sons of n are included
in G′. As a result, this is enough to update the value of n correctly.

Similarly, ∧ and 2 nodes are evaluated according to: χ(n) =
∧{¬R(n, n′)∨

χ(n′)|R(n, n′) 6= false}. Again, this means that a valuation based on the
non-covered sons will give the same result as a valuation based on all sons.

2
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Chapter 6

Compositional Model

Checking

In this chapter we define the composition of two models. We then present
our framework for model checking a property on the composed system. The
first step in the framework is presenting how one model can be “lifted” to
be an abstraction of the composed system. The “lifted” model enables us
to model check the required property on a single component, and deduce
from that on the composed system. If nothing can be deduced from model
checking each (lifted) component separately, the composed system should
be considered. Having considered each component separately will help us in
model checking the composed system, without fully constructing it. Based
on the results of Chapter 5, we will be able to deduce about the full system
from a partially constructed composed system.

6.1 Composition of Models

In compositional model checking the goal is to verify a formula ϕ on a
composed system M1||...||Mn. For simplicity, we will consider systems where
n = 2, though our framework can easily be extended to any n. In our
setting the composed system is M1||M2, where M1 and M2 are multi-valued
(abstract) models defined over the same CPDB P(B(D))= (L,≤t,≤i,¬).
Thus, for i ∈ {1, 2} there exists at least one concrete model M c

i defined
over D, for which M c

i ¹ Mi. We assume that if the model Mi is abstract
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(i.e., contains indefinite values), then it can be refined with respect to its
underlying concrete model, M c

i . Let Mi = 〈B, APi, Si, s
i
0, Ri, Θi〉, we use i

to denote the remaining index in {1, 2} \ {i}.

Definition 6.1 Let s1 ∈ S1, s2 ∈ S2 be states in M1 and M2, respectively.
Then, s1, s2 are weakly composable if for every p ∈ AP1∩AP2 : Θ1(p)(s1)⊕
Θ2(p)(s2) is defined.

Note that ⊕ might be undefined since B is a CPDB (Definition 3.7).
Intuitively, if ⊕ is defined, then the composition of the states is consistent
on all atomic propositions.

Definition 6.2 States s1 ∈ S1, s2 ∈ S2 are composable if they are weakly
composable, and for every p ∈ AP1 ∩ AP2 : Θ1(p)(s1) and Θ2(p)(s2) are
definite.

In fact, since the definite values in CPDB are the highest in the infor-
mation order, if s1 and s2 are composable, then for every p ∈ AP1 ∩ AP2,
Θ1(p)(s1) = Θ2(p)(s2).

We say that M1 and M2 are composable if their initial states, s1
0 and s2

0

are composable.

Example 6.3 Consider the two (abstract) models M1 and M2 in Figure 6.1(a).
The underlying multi-valued structure is the 3×3 structure (described in Fig-
ure 3.1(e),(f)). The joint labelling of these models is AP1∩AP2 = {r}. The
states s0 and t0 in M1 and M2, respectively, are composable. Similarly s1,
t1 and s2, t2 are composable as well. However, states s3; t3, s2; t3, s1; t3
and s3; t2 are weakly composable (for example, for s2 and t3 TT⊕?T is de-
fined). Note that states s1 and t0, for example, are not weakly composable
as TT ⊕ FF is not defined.

In our setting M1 and M2 synchronize on the joint labelling of the states.
Based on that, we now define composition of models.

Definition 6.4 Let M1 and M2 be composable models. Their composition,
denoted M1||M2, is the multi-valued Kripke model M = 〈B, AP, S, s0, R,Θ〉,
where:

• AP = AP1 ∪AP2,
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• S = {(s1, s2) ∈ S1 × S2| s1, s2 are weakly composable},
• s0 = (s1

0, s
2
0),

• For each (s1, s2), (t1, t2) ∈ S:
If t1, t2 are composable, then R((s1, s2), (t1, t2)) = R1(s1, t1)∧R2(s2, t2).
Otherwise, if t1, t2 are weakly composable, then R((s1, s2), (t1, t2)) =
R1(s1, t1) ∧R2(s2, t2) ∧ ⊥.

• For each (s1, s2) ∈ S and p ∈ AP :
If p ∈ AP1 ∩AP2 then Θ(p)(s1, s2) = Θ1(p)(s1)⊕Θ2(p)(s2).
If p ∈ APi \APī then Θ(p)(s1, s2) = Θi(p)(si).

Composable states in the abstract model represent a composed state in
the concrete composed model, for every concretization of the models. In
contrast, for weakly composable but not composable states in the abstract
model it is not guaranteed that these states represent a composed state in
the concrete composed model.

Example 6.5 Consider the models M1 and M2 in Figure 6.1(a). States s0

and t0 in M1 and M2, respectively, are composable. Indeed, by the definition
of mixed simulation, since s0 is the initial state, in every concretization of
M1 there exists a state s′0, which is abstracted by s0. The value of r in s′0 is
FF . Similarly, for every concretization of M2 there exists a state t′0, which
is abstracted by t0, for which r is FF . Thus for every concretization of M1

and M2 there exists a concrete state (s′0, t
′
0) in the composed model. This

state is represented by (s0, t0) in the composed abstract model. On the other
hand, consider states s3 and t3 in M1 and M2, respectively. These states
are weakly composable. Possible concretizations M ′

1 and M ′
2 of M1 and M2

are such that s′3 and t′3 which are concretizations of s3 and t3, assign the
value TF and TT to r, respectively. Thus, (s′3,t

′
3) is not a state in M ′

1||M ′
2.

Consequently, (s3, t3) does not represent any concrete state in M ′
1||M ′

2.

The definition of the states in the composed model enables composi-
tion of states that are weakly composable but not composable. Such states
do not exist in a composed concrete model (since the values of all atomic
propositions in a concrete model are maximal with respect to the infor-
mation order). However, they might exist when considering a composed
abstract model. Unlike composable states, the weakly composable states in
a composed abstract model may not have any corresponding state in the
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underlying concrete model. This is because in the concrete model, where
the information level of some atomic propositions increases, the states might
disagree on some p in their joint labelling.

Even though we are enabling weakly composable states which might
not exist in the underlying concrete model, we want the abstract composed
model to be an abstraction of the concrete composed model (i.e., we want to
maintain a mixed simulation relation between these models). This is done
with the definition of R. In the case where the target states are composable,
the definition of R is immediate. If the target states are weakly compos-
able but not composable, then we want to take into account the possibility
that the transition does not exist. Defining its value to be ⊥ achieves this
goal. However, we can in fact guarantee more than that (in terms of the
information order) by taking the meet with respect to truth order with ⊥.
This ensures that the value of the composed transition is not “more true”
than ⊥, but may be “more false” than ⊥, and thus more informative. More
precisely, consider the CPDB P(B(D)) isomorphic to B, where D= (D,≤,¬)
is a De Morgan algebra. Then ⊥ is defined as 〈d⊥, d⊥〉 ∈ D ×D where for
every a in D, d⊥ ≤ a. Thus, for every 〈a, b〉 ∈ D ×D, 〈a, b〉 ∧ ⊥ = 〈d⊥, b〉,
which means that the falsity level of 〈a, b〉 is preserved, whereas the truth
level is minimal.

Allowing weakly composable states gives freedom to the user when ab-
stracting each of the models, as all atomic propositions can be abstracted.
In contrast, in [54], where composition of 3-valued models is discussed, joint
labelling cannot be abstracted, thus all composable states in the abstract
model represent composable states in the concrete model. There is a trade-
off presented with this freedom. On the one hand, the user can define a
very coarse abstraction in each of the separate models. On the other hand,
the abstract composed model might now include more states that do not
represent any state in the concrete model.

Example 6.6 Consider the two (abstract) components described in Fig-
ure 6.1(a). The atomic proposition o(output) is local to M1, i(input) is
local to M2, and r(receive) is a joint atomic proposition that M1 and M2

synchronize on. The composition of these models is given in Figure 6.1(b).
The dashed states in the composed model ((s3, t3), (s2, t3) and (s3, t2)) are
states which are weakly composable but not composable, as in all of these
states the atomic proposition r ∈ AP1 ∩AP2 is not definite in (at least) one
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of the composed states. Note, however, that in all of these states r has a
definite value in the composed state. This refers to the fact that if there is a
concrete state which is represented by, for example (s2, t3), then its value on
r is TT . However, it is not guaranteed that there is such a concrete state.
For instance, if s3 is refined to a (concrete) state s′3 in which r = TF then
s3 cannot be composed with t3 or any refinement of t3.

6.2 Lifting Models

Next, we define lifting of models for the purpose of compositional verifica-
tion. The idea is to view each model Mi as a partial model that abstracts
M1||M2.

From now on we fix AP to be AP1 ∪AP2.

Definition 6.7 The lifted model of Mi = 〈 B, APi, Si, s
i
0, Ri, Θi〉 is Mi ↑= 〈

B, AP, Si, s
i
0, Ri ↑, Θi ↑〉 where:

• For each si, ti ∈ Si: Ri ↑ (si, ti) = Ri(si, ti) ∧ ⊥.
• For each si ∈ Si and p ∈ AP :

If p ∈ APi then Θi ↑ (p)(si) = Θi(p)(si).
If p ∈ AP \APi then Θi ↑ (p)(si) = ⊥.

The value of each literal over AP \APi in each state of Mi ↑ is minimal
with respect to the information order (⊥). Indeed, its value in M will be
determined by Mi. In addition, each transition of Mi is also uncertain, in
the sense that it cannot be “more true” than ⊥. This is because in the
composition it might be removed if a matching transition does not exist in
Mi.

Example 6.8 The lifted models for the components in Figure 6.1(a) are
presented in Figure 6.2. Observing M1 ↑, note that the atomic proposition
o is now defined on all states, and is given the value ??. Note also that all
transitions become uncertain. Similarly, the atomic proposition i is defined
with a value ?? on all states of M2 ↑.

Each of the lifted models is an abstraction of the composed system. This
is formalized in the following theorem.
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Figure 6.1: Components M1, M2 and their composition
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Figure 6.2: Lifted models for M1 and M2

Theorem 6.9 M1||M2 ¹ M1 ↑. The mixed simulation relation H ⊆ S × S1

is given by {((s1, s2), s1)|(s1, s2) ∈ S}. Similarly for M2, M1||M2 ¹ M2 ↑.

Proof: We prove that M1||M2 ¹ M1 ↑. The proof for M2 is similar. Let
H ⊆ S × S1 be the relation defined by {((s1, s2), s1)|(s1, s2) ∈ S}. That is,
a state, s1 ∈ M1 ↑ is related by H to all the states of M1||M2 where the
corresponding state in the pair is s1.

First note that the initial state is in H, since by definition of the com-
position, the initial state of M1||M2 consists of the initial states of both
components.

Let (s, s1) ∈ H. Then:

1. Prove that ∀p ∈ AP : Θ1 ↑(p)(s1) ≤i Θ(p)(s)

• p ∈ AP1 \ AP2: By the definition of the composition: Θ(p)(s) =
Θ1(p)(s1). By the definition of M1 ↑, Θ1 ↑ (p)(s1) = Θ1(p)(s1).
Thus, Θ(p)(s) = Θ1 ↑ (p)(s1), which immediately implies Θ1 ↑
(p)(s1) ≤i Θ(p)(s).

• p ∈ AP1 ∩AP2: By the definition of the composition: Θ(p)(s) =
Θ1(p)(s1) ⊕ Θ2(p)(s2). Since a ≤i a ⊕ b then Θ1(p)(si) ≤i
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Θ1(p)(s1) ⊕ Θ2(p)(s2). By definition of M1 ↑, Θ1 ↑ (p)(s1) =
Θ1(p)(s1). Thus, Θ1 ↑(p)(s1) ≤i Θ(p)(s).

• p ∈ AP2 \ AP1: By the definition of the composition: Θ(p)(s) =
Θ2(p)(s2). By the definition of M1 ↑: Θ1 ↑ (p)(s1) = ⊥. Thus,
Θ1 ↑(p)(s1) ≤i Θ(p)(s).

2. Prove that for every t ∈ S such that R(s, t) 6= false there exists
t1 ∈ S1 such that (t, t1) ∈ H and R1 ↑(s1, t1) ≤i R(s, t).
Let t = (t1, t2) ∈ S and let R(s, t) 6= false.
Since R(s, t) 6= false, we have R1(s1, t1) 6= false. By the definition
of M1 ↑, R1 ↑ (s1, t1) = R1(s1, t1) ∧ ⊥. By definition of the composed
model, R(s, t) = R1(s1, t1) ∧ R2(s2, t2) (if t1 and t2 are composable)
or R1(s1, t1) ∧ R2(s2, t2) ∧ ⊥ (if t1 and t2 are weakly composable and
not composable). Since ⊥ ≤i R2(s2, t2), and since ∧ is monotone
with respect to ≤i, we conclude that R1 ↑ (s1, t1) ≤i R(s, t). For t1,
(t, t1) ∈ H and R1 ↑ (s1, t1) ≤i R(s, t). Thus t1 satisfies the proof
requirement.

3. Prove that for every t1 ∈ S1 such that R1 ↑ (s1, t1) 6≤i false there
exists t ∈ S such that (t, t1) ∈ H and R1 ↑(s1, t1) ≤i R(s, t).
Let t1 ∈ S1 and R1 ↑(s1, t1) 6≤i false.
By definition of M1 ↑, the value of R1 ↑ (s1, t1) = R1(s1, t1) ∧ ⊥.
⊥ ≤i false and R1(s1, t1) ≤i R1(s1, t1). Since ∧ is monotone with
respect to ≤i, we conclude that R1 ↑ (s1, t1) = R1(s1, t1) ∧ ⊥ ≤i

R1(s1, t1)∧false = false. Thus, the proof requirement holds trivially,
there is no t1 such that R1 ↑(s1, t1) 6≤i false in M1 ↑.

2

Example 6.10 Based on Theorem 6.9, we conclude that the lifted model
M1 ↑ (Figure 6.2) is an abstraction of the composed system M1||M2 (Fig-
ure 6.1(b)), that is, M1||M2 ¹ M1 ↑. The mixed simulation is given by: H1 =
{((s0, t0), s0), ((s1, t1), s1), ((s2, t2), s2), ((s2, t3), s2), ((s3, t2), s3), ((s3, t3), s3)}.
Similarly, M1||M2 ¹ M2 ↑, and the mixed simulation is given by: H2 =
{((s0, t0), t0), ((s1, t1), t1), ((s2, t2), t2), ((s3, t2), t2), ((s3, t3), t3), ((s3, t3), t3)}.

Since each Mi ↑ abstracts M1||M2, we are able to first consider each
component separately: Theorem 4.3 ensures that for every closed Lµ formula
ϕ, ‖ϕ‖Mi↑ ≤i ‖ϕ‖M1||M2 . In particular, ‖ϕ‖M1↑ ⊕ ‖ϕ‖M2↑ is defined, and a
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definite result on one of the components suffices to determine a definite value
on M1||M2. Note that a definite value on M1||M2 can be achieved even if
both ‖ϕ‖Mi↑ are indefinite, but ‖ϕ‖M1↑ ⊕ ‖ϕ‖M2↑ is definite.

Example 6.11 Consider the formula ϕ = i ∨ o, the lifted models M1 ↑
and M2 ↑ (Figure 6.2), and the composed model M1||M2 (Figure 6.1(b)).
‖ϕ‖M1↑(s2) = T? and ‖ϕ‖M2↑(t2) =?T , thus the evaluation of ϕ on each of
the lifted models results in an indefinite answer. Since M1||M2 ¹ M1 ↑ we
can conclude ‖ϕ‖M1↑(s2) ≤i ‖ϕ‖M1||M2((s2, t2)), thus T? ≤i ‖ϕ‖M1||M2((s2, t2)).
Similarly, ‖ϕ‖M2↑(t2) =?T ≤i ‖ϕ‖M1||M2((s2, t2)).
Since ‖ϕ‖M1↑(s2)⊕‖ϕ‖M2↑(t2) ≤i ‖ϕ‖M1||M2((s2, t2)), we conclude: T?⊕?T =
TT ≤i ‖ϕ‖M1||M2((s2, t2)). Thus, ‖ϕ‖M1||M2((s2, t2)) = TT , since TT is
maximal by the information order.

A more typical case is when the valuation of ϕ on both M1 ↑ and M2 ↑
is indefinite. This reflects the fact that ϕ depends on both components and
on their synchronization. Typically, such a result requires some refinement
of the abstract model. Considering the composition of the two components
is a refinement of the lifted models. Still, having considered each compo-
nent separately can guide us into focusing on the places where we indeed
need to consider the composition of the components. Thus, we avoid the
construction of the full composed model.

6.3 Building The Product Subgraph

In this section we use the mc-graphs of M1 ↑ and M2 ↑ for building a subgraph
for M1||M2, and by that avoid building the full composed model. The mc-
graphs of the two components present all the information gained from model
checking each component. To resolve the indefinite result, we first try to
compose the parts of the mc-graphs which might be needed to determine
the value of the formula.

Definition 6.12 For every i ∈ {1, 2}, let Gi = (n0
i , Ni, Ei) be the mc-graph

of Mi ↑, with χi its mc-function. χf : N1 ×N2 → L is a function defined by
χf (n1, n2) = χ1(n1)⊕ χ2(n2).
Ef : (N1 ×N2)× (N1 ×N2) → L is a function defined as follows. Let n′i =
(s′i ` ϕ′) ∈ Ni, then Ef ((n1, n2), (n′1, n

′
2)) = R1(s1, s

′
1) ∧R2(s2, s

′
2) if s′1 and
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s′2 are composable, and Ef ((n1, n2), (n′1, n
′
2)) = R1(s1, s

′
1) ∧R2(s2, s

′
2) ∧ ⊥ if

s′1 and s′2 are weakly composable but not composable.

Let G = (n0, N,E) be a mc-graph and let f : N → L and e : N ×N → L

be two functions. For a non-terminal node n in G, and two nodes n′ and
n′′ which are sons of n, we abuse the notion of covering (Definition 5.1) and
say that n′ covers n′′ under f and e with respect to n, if n′ covers n′′ under
f with respect to n when e replaces the transition relation R.

Definition 6.13 (Product Graph) Let M1 and M2 be two composable
models. For every i ∈ {1, 2}, let Gi = (n0

i , Ni, Ei) be the mc-graph of Mi ↑,
with an initial node n0

i = (s0
i ` ϕ) ∈ Ni. Also let χi be the mc-function of

Gi. The product graph of G1 and G2, denoted G‖ = (n0
‖, N‖, E‖), is defined

as the least graph that obeys the following:

• n0
‖ = (s0

1, s
0
2) ` ϕ is the initial node in G‖.

• Let n1 = s1 ` ψ, n2 = s2 ` ψ be such that (n1, n2) ∈ N‖, and χf (n1, n2)
is indefinite. Then for every n′1 = (s′1 ` ψ′) ∈ N1 and n′2 = (s′2 ` ψ′) ∈
N2, if the following holds:

1. s′1, s′2 are weakly composable, and
2. E1(n1, n

′
1) 6= false and E2(n2, n

′
2) 6= false, and

3. (n′1, n
′
2) is not covered under χf and Ef with respect to (n1, n2).

Then:

1. (n′1, n
′
2) ∈ N‖, and

2. E‖((n1, n2), (n′1, n
′
2)) = Ef ((n1, n2), (n′1, n

′
2)).

Lemma 6.14 Let G‖ be the product graph defined above. For every node
n ∈ N‖, χf (n) is defined.

Proof: Recall that the ⊕ operation might be undefined on CPDBs. As-
sume n = (s1, s2) ` ψ. χ1 is a correct mc-function of G1, thus ‖ψ∗‖M1↑ =
χ1(s1 ` ψ). ψ∗ is a closed Lµ formula, then since M1||M2 ¹ M1 ↑ we
conclude that χ1(s1 ` ψ) ≤i ‖ψ∗‖M1||M2(s1, s2). Similarly, χ2(s2 ` ψ) ≤i

‖ψ∗‖M1||M2(s1, s2). As a result, χ1(s1 ` ψ)⊕χ2(s2 ` ψ) ≤i ‖ψ∗‖M1||M2(s1, s2),
which means that the ⊕ operation is defined for n. 2

Note that the value of the edges in G‖ is identical to their value in the
composed model. This is because the product graph already refers to the
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complete system M1||M2. In contrast, the values of the edges in the mc-
graphs of each component are all smaller or equal by the truth order than
⊥.

The product graph is constructed by a top-down traversal on the mc-
graphs of the two models, where, starting from the initial node, nodes that
share the same formulas and whose states are weakly composable, will be
considered. Whenever two non-terminal nodes n1, n2 are composed, if
χf (n1, n2) is indefinite, then the outgoing edges are computed as the product
of their outgoing edges, restricted to weakly composable nodes. In partic-
ular, this means that if a node in one mc-graph has no matching node in
the other, then it will be omitted from the product graph. After comput-
ing all legal sons based on the outgoing edges, the nodes which are covered
under χf will be removed, leaving as outgoing edges and nodes only nodes
which are not covered under χf . In particular, when a terminal node of one
mc-graph is composed with a non-terminal node of the other, the resulting
node is a terminal node in G‖. Note that we compute χf and Ef only by
need. Note also that whenever a definite node is composed with another
node (definite or not), χf of the resulting node is definite, which makes it a
terminal node in the product graph.

Example 6.15 We wish to verify the property 2(¬i ∨ ♦o), which states
that in all the successor states of the initial state, an input signal implies
that there is a successor state where the output signal holds. The mc-graphs
of the lifted models M1 ↑ and M2 ↑ are described in Figure 6.3(a) and Fig-
ure 6.3(b) respectively. The model checking on each of the models does not
result in a definite answer, and we need to consider their composition. The
parts that are actually composed are marked with solid lines. The product
graph is shown in Figure 6.4. The edges get their actual value (based on Ef ).
The value of χf of each node is given on the node (un-parenthesized value).
The nodes which are covered are marked with dashed lines. These nodes are
created and removed on-the-fly, since they are covered, and their successors
are not considered. The actual nodes that are included in the product graph
are marked with solid lines.
Note that the product graph considers only a small part of the compound sys-
tem, as it takes advantage of the information from the separate components.
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Figure 6.3: mc-graphs of M1 ↑ and M2 ↑. Solid lines mark composed
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Figure 6.4: The product graph. Dashed nodes are covered. Solid lines
mark actual product graph.

We accompany G‖ with an initial mc-function, χI , for its terminal nodes,
based on the mc-functions of the two mc-graphs. We use the following
observation:

Let n = (s1, s2) ` ψ be a terminal node in G‖. Then at least one of the
following holds. Either (a) at least one of s1 ` ψ and s2 ` ψ is a terminal
node in its mc-graph; Or (b) χf (s1 ` ψ, s2 ` ψ) is definite; Or (c) both
s1 ` ψ and s2 ` ψ are non-terminal but no outgoing edges were left in their
composition.

Definition 6.16 The initial mc-function χI of G‖ is defined as follows. Let
n = (s1, s2) ` ψ ∈ N‖ be a terminal node. If it fulfills case (a) or (b), then
χI(n) = χ1(s1 ` ψ)⊕ χ2(s2 ` ψ). If it fulfills case (c), then χI(n) = true if
n is a ∧-node, and χI(n) = false if n is a ∨-node. χI is undefined for the
rest of the nodes.

Theorem 6.17 Let G be the mc-graph over M1||M2 with a mc-function χ.
The resulting product graph G‖ is a closed subgraph of G. In addition, χI is
defined over all the terminal nodes of G‖, and is correct with respect to χ.

For the proof of Theorem 6.17 we need the following Lemmas.
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Lemma 6.18 Let H ⊆ S1 × S2 be a mixed simulation relation from M1 to
M2 (M1 ¹ M2). Let G1(M1, ϕ0) and G2(M2, ϕ0) be mc-graphs with their
mc-functions, χ1 and χ2, which are semantically correct. Let ψ ∈ Sub(ϕ0)
be a Lµ formula (not necessarily closed). Let (s1, s2) ∈ H and let s1 ` ψ,
s2 ` ψ be nodes in G1 and G2,respectively. Then χ2(s2 ` ψ) ≤i χ1(s1 ` ψ).

Proof: χ1 is a semantically correct mc-function for G1, thus ‖ψ∗‖M1(s1) =
χ1(s1 ` ψ). Similarly, ‖ψ∗‖M2(s2) = χ2(s2 ` ψ). By definition, ψ∗ is a
closed Lµ, and therefore by Theorem 4.3, ‖ψ∗‖M2(s2) ≤i ‖ψ∗‖M1(s1). Thus,
χ2(s2 ` ψ) ≤i χ1(s1 ` ψ) 2

Lemma 6.19 The initial coloring function χI of G‖ is defined for all ter-
minal nodes, and is well defined.

Proof: Recall the following observation. Let n = (s1, s2) ` ψ be a terminal
node in G‖. Then at least one of the following holds. Either (a) at least
one of s1 ` ψ and s2 ` ψ is a terminal node in its mc-graph; Or (b) χf (s1 `
ψ, s2 ` ψ) is definite; Or (c) both s1 ` ψ and s2 ` ψ are non-terminal but
no outgoing edges were left in their composition.

Based on the observation and by Definition 6.16, the initial coloring is
defined for all terminal nodes. A terminal node can comply to more than
one case of the observation. Thus, we need to show that the definition of
χI is well defined. Specifically, this means that if a node n = (s1, s2) ` ψ

complies to both cases (b) and (c), then we require the definition of χI(n)
for these cases to be equal.
M1||M2 ¹ Mi ↑ for i ∈ {1, 2}. Thus χi(si ` ψ) ≤i χ((s1, s2) ` ψ)
(Lemma 6.18). This means that χ1(s1 ` ψ)⊕ χ2(s2 ` ψ) ≤i χ((s1, s2) ` ψ).
Since n complies with case (b), we know that χf (s1 ` ψ, s2 ` ψ) = χ1(s1 `
ψ)⊕χ2(s2 ` ψ) is definite, thus χ1(s1 ` ψ)⊕χ2(s2 ` ψ) = χ((s1, s2) ` ψ). n

also complies with case (c), thus no outgoing edges were left in their compo-
sition. This means that in M1||M2, the state (s1, s2) has no outgoing edges.
If n is a ∧-node, then χ(n) = true, and if n is a ∨-node, then χ(n) = false.
We can conclude that both definitions result in the same initial valuation,
and thus the initial valuation is well defined for all initial nodes. 2

We now return to the proof of Theorem 6.17.
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Proof: We first show that G‖ is a closed subgraph of G. It is easy to see
that it is a subgraph of G, since the structure in terms of the subformulas
and edges is maintained. We now show that the subgraph is closed. Assume
by way of contradiction that G‖ contains a non-terminal node n whose non-
covered sons are not all included. Let n′′ be such a non-covered son. Thus,
n′′ is a non-covered son in G. The nodes that correspond to the non-covered
son n′′ are included in the mc-graphs of the two components. Thus, n′′

was removed during the building of the product graph. This can be done
only if n′′ is covered under χf . As n′′ is covered under χf , there exists
a node n′, which covers n′′ under χf . For every n = (n1, n2), χf (n) is
defined as χ1(n1) ⊕ χ2(n2). Due to the correctness of the valuation with
respect to the multi-valued semantics, and by the mixed simulation relation,
χ1(n1)⊕ χ2(n2) ≤i χ(n), thus χf (n) ≤i χ(n). This relation holds for every
node in N , thus χf (n′) ≤i χ(n′) and χf (n′′) ≤i χ(n′′). The value of the
edges is the same in both G‖ and G. Then according to the definition of
a covered son (Definition 5.1), n′′ is covered by n′ under χ in G as well.
This contradicts the assumption that n′′ is a non-covered son in G. We can
conclude that G‖ is a closed subgraph of G.

It remains to be proven that χI is defined on all terminal nodes of G‖,
and χI(n) = χ(n) for every terminal node. By Lemma 6.19, χI is defined
for all terminal nodes. We now prove that for every terminal node n =
(s1, s2) ` ψ ∈ N‖: χI(n) = χ(n). We prove this for every case of terminal
node in N‖, based on the observation.

• At least one of s1 ` ψ and s2 ` ψ is a terminal node in its mc-graph.
Assume without loss of generality that n1 = s1 ` ψ is a terminal node
in G1. Then n1 is of the form s1 ` p or s1 ` ¬p for p ∈ AP , or n1 is
of the form s1 ` ♦ϕ or s1 ` 2ϕ where there are no transitions from
s1 in M1. We show that χI(n) = χ(n) based on the type of n1:

– If n1 = s1 ` p for p ∈ AP . By the definition of the composed
model Θ(p)((s1, s2)) = Θ1(p)(s1) ⊕ Θ2(p)(s2). By correctness of
the model checking algorithm, χi(ni) = Θi(p)(si) and χ(n) =
Θ(p)((s1, s2)). χI is defined such that χI(n) = χ1(n1) ⊕ χ2(n2),
and we can then conclude that χI(n) = χ(n).

– The case where n1 = s1 ` ¬p for p ∈ AP is dual.
– If n1 = s1 ` ♦ϕ, then by definition of the mc-graph, χ1(n1) =
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false. Thus, χI(n) = χ1(n1)⊕ χ2(n2) = false.
Since there are no transitions from s1 in M1, then there are no
transitions from (s1, s2) in M1||M2. As a result, by definition
of the model checking algorithm, χ(n) = false. We can then
conclude that χI(n) = χ(n).

– The case where n1 = s1 ` 2ϕ is dual.

• χf (s1 ` ψ, s2 ` ψ) is definite. By definition, χf (n1, n2) = χ1(n1) ⊕
χ2(n2). By correctness of the mixed simulation and correctness of the
mc-functions χi(ni) ≤i χ(n) (Lemma 6.18). Thus χ1(n1)⊕ χ2(n2) ≤i

χ(n). If χ1(n1) ⊕ χ2(n2) is definite, we can conclude that χ1(n1) ⊕
χ2(n2) = χ(n), thus χI(n) = χ(n).

• Both s1 ` ψ and s2 ` ψ are non-terminal nodes but no outgoing edges
were left in their composition. Since no outgoing edges were left in
their composition, we can conclude that there are no outgoing edges
from (s1, s2) in M1||M2. Thus, χ(n) = false(true) if n is a ∨-node(∧-
node), and this is the color given to n in χI . Thus, χI(n) = χ(n).

2

6.4 Compositional Model Checking Framework

Theorems 5.5 and 6.17 imply that applying the mc-algorithm on G‖ with
χI results in a correct mc-function χ with respect to G‖. Thus, χ(n0

‖) is the
value of model checking ϕ on M1||M2. As a result, to model check ϕ on
M1||M2 it remains to evaluate G‖. Note that the full graph for M1||M2 is
not constructed.

Example 6.20 Consider the product graph in Figure 6.4. By Theorem 6.17,
this is a closed subgraph of the mc-graph over M1||M2 with mc-function χ.
By Definition 6.16, the initial mc-function χI of G‖ is: χI(n4) = TT and
χI(n2) = FT . Note that these are the only terminal nodes in G‖.
Since this is a closed subgraph, then by Theorem 5.5, the mc-algorithm can
be applied on it. The mc-function of G‖ is described in Figure 6.4, as the
parenthesized value of each node in the subgraph. The value of the top node
is definite (TT ), and we can thus conclude that ‖2(¬i ∨ ♦o)‖M1||M2 = TT .

If the model checking result is indefinite (which is only possible if M1||M2

is abstract), then refinement is performed on each component separately,
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based on the failure node and reason returned. This is described in the
following steps, which summarize our compositional algorithm for checking
an alternation-free Lµ formula ϕ on M1||M2.

Step 1: Model check each Mi ↑ separately (for i ∈ {1, 2}):

1. Construct the mc-graph Gi for ϕ and Mi ↑.
2. Apply multi-valued model checking on Gi. Let χi be the resulting

mc-function.

If χ1(n0
1) or χ2(n0

2) is definite, return the corresponding model checking
result for M1||M2.

Step 2: Consider the composition M1||M2:

1. Construct the product graph G‖ of the mc-graphs G1 and G2.
2. Apply multi-valued model checking on G‖ (with the initial mc-

function).

If χ‖(n0
‖) is definite, return the corresponding model checking result

for M1||M2.

Step 3: Refine: Consider the failure node and reason returned by model
checking G‖ (where χ‖(n0

‖) is indefinite).
If it is p for some p ∈ APi, then refine Gi;
Else let it be an edge ((s1, s2), (s′1, s

′
2)). Then:

1. If s′1 and s′2 are weakly composable but not composable, refine
both G1 and G2 according to AP1 ∩AP2.

2. If Ri(si, s
′
i) ≤t Rī(sī, s

′̄
i
), refine the edge Ri(si, s

′
i) in Gi.

3. If Ri(si, s
′
i) and Rī(sī, s

′̄
i
) are uncomparable, refine the mc-graph(s)

in which the edge is indefinite.

Go to Step 1(2) with the refined mc-graphs.

Theorem 6.21 For finite components, the compositional algorithm is guar-
anteed to terminate with a definite answer.

Proof: Recall our assumption that every (abstract) model Mi has an un-
derlying concrete model M c

i . Based on the correctness of the failure node
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and reason finding algorithm, if the answer is not definite, then the algo-
rithm returns a failure node and reason. Based on Lemma 4.10, for finite
components, in a finite number of refinement steps the model checking result
will be the same as the underlying concrete model, and thus will be definite,
and the compositional algorithm will terminate. 2
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Chapter 7

Handling Full Distributive

Bilattices

In the previous chapters we have presented the compositional framework for
abstract and concrete models which were defined over CPDBs. In this chap-
ter we discuss how our framework can be used for multi-valued structures
that include inconsistent elements, and are described as full distributive
bilattices.

Models which are defined over full bilattices include either transitions
with inconsistent values, or inconsistent values of atomic propositions in
some states (or both). Two examples where model checking is done based
on models defined over full bilattices are STE ([50]) and YASM ([36]). In
both the multi-valued structure used is the Belnap structure (Figure 3.1(a)
and (b)). We will present our compositional framework in light of these
examples.

In the rest of the chapter we first describe mixed simulation and refine-
ment of multi-valued models over bilattices. We then give some background
on STE and YASM, and continue to present how our compositional frame-
work can be used for full bilattices, exemplifying on the above systems.
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7.1 Mixed Simulation and Refinement of Multi-

Valued Models Over Bilattices

In Chapter 4 we argued that a concrete model, Mc, defined over a De Morgan
algebra D can be interpreted as a model over the CPDB P(B(D)). Similarly,
Mc can also be interpreted over the bilattice B(D)= (D × D,≤i,≤t,¬),
where the values are all definite and consistent. We also argued that the
relation between Mc and its abstraction, MA can be described using the
mixed simulation relation (Definition 4.1), where Mc ¹ MA.

Assume now that the abstract model MA is defined over the bilattice
B(D), and it includes inconsistent values. In this case, the relation between
the concrete model Mc and the abstract model MA cannot be described
using mixed simulation relation. This is because there are values (of either
transitions or atomic propositions in some state) which are not an abstrac-
tion of values in the concrete model. Intuitively, the abstract model MA is
“abstract” in the sense that it does not define a concrete model. However,
it is not an abstraction of any concrete model Mc, as it cannot be stated
that MA contains less information than Mc.

Resulting from the above observation, we will not discuss the connection
between a concrete model Mc, defined over a De Morgan algebra D, and
an abstract model MA, defined over B(D). The connection between these
models depends on the way the abstract model is created.

When discussing models defined over a bilattice B(D), we will use the
mixed simulation relation to describe the connection between two abstract
models both defined over B(D). Both the definition of mixed simulation
(Definition 4.1) and its connection to model checking (Theorem 4.3) remain
the same for models defined over a bilattice B(D). Similarly, the definition of
a closed subgraph (Definition 5.3) and the correctness of the mc-algorithm
with respect to a closed subgraph (Theorem 5.5) remain the same for models
defined over a bilattice B(D).

What is a refinement of a model defined over a bilattice B(D)? As dis-
cussed in Chapter 4, the goal in refinement is to increase the information
level of the result. We also argued that, with regards to CPDBs, definite
values include “all the information possible”, and thus should not be re-
fined. When using distributive bilattices, definite values include values that
are both consistent and inconsistent. Also, there might be two different ele-
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ments, both definite, where one is higher in the information order than the
other. We claim that as long as the value is definite, we do not need to
refine it. Thus, a true or false result (which are definite values, but are not
highest in the information order) are not values we wish to refine. Similar
to true and false, any consistent and definite value gives us a satisfying
result. This is also true for inconsistent and definite values, as they give us
“all the information possible”, and also present inconsistencies.

When modelling this setting, the refinement algorithm described in Chap-
ter 4 can be used for distributive bilattices as well. We will not try to refine
a definite value. Thus, only transitions or atomic propositions under some
state with indefinite value will be suggested as failure node and reason.

Example 7.1 Figure 7.1 presents the bilattice of the 4× 4 structure. This
bilattice is created from the Belnap structure (Figure 3.1(a),(b)). The 4× 4
structure represents two different views, each defined over the Belnap struc-
ture. Note that this structure is isomorphic to the 〈2{a,b} × 2{a,b}〉 structure
(Figure 3.1(g),(h)). Consider the model M in Figure 7.2. For ϕ = ♦q,
‖ϕ‖M = (⊥t ∧ tf) ∨ (⊥f ∧ tf) ∨ (>> ∧ tt) = t>. This is a result in-
dicating that according to the first view the property holds, and accord-
ing to the second view the property is inconsistent. The result is definite
(and inconsistent), thus should not be refined. For ϕ = 2p, ‖ϕ‖M =
(⊥f ∨ tt) ∧ (⊥t ∨ ff) ∧ (>>∨⊥⊥) = ⊥t. This result is not definite. Based
on the refinement algorithm presented in Chapter 4, the failure node is the
node s0 ` 2p, and the failure reason is the edge to the node marked s2 ` p.
This edge corresponds to the transition R(s0, s2) whose value is ⊥f . Indeed,
this is an indefinite transition, which needs to be refined.

7.2 Models over Full Bilattices - STE and YASM

Symbolic Trajectory Evaluation (STE) [50]

Symbolic Trajectory Evaluation (STE) is a symbolic simulation of hardware
circuits with abstraction.

A hardware circuit C is a directed graph. The graph’s nodes N are
primary inputs and internal nodes, where internal nodes are latches and
combinational gates. A node can get a boolean value, and a combinational
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gate represents a boolean operator. Given a directed edge (n1, n2) in a
circuit, we say that n1 is an input of n2. The value of a node n is the
result of applying its operator on its inputs at each clock cycle. The graph
of C may contain loops, but not combinational loops. A circuit is formally
defined as C = 〈V, I0, P I, F 〉, where V is the set of latches in C, I0 is a set
of possible initial values to V , PI is the set of primary inputs, and F is a
set of transition functions such that for every vi ∈ V , fi : 2V ×2PI → {0, 1}.

In STE, a node can get a value in the Belnap structure, B(D)= ({>,⊥, t, f},
≤t,≤i,¬) (Figure 3.1(a),(b)). A node whose value cannot be determined
by its inputs is given the value ⊥. > is used to describe an over con-
strained node. This might occur when there is a contradiction between an
external assumption on the circuit and its actual behavior. Under STE,
F , the set of transition functions is defined such that for every vi ∈ V ,
fi : {>,⊥, t, f}V × {⊥, t, f}PI → {>,⊥, t, f}. Note that inputs cannot get
a value >, contradiction can occur only on the value of the latches.

A circuit can be viewed as a multi-valued Kripke structure M = 〈L, AP, S,

s0, R,Θ〉 where L is the Belnap structure and AP = V ∪PI. A state s in M

is an assignment of values to every latch and every input, for every v ∈ V ,
s(v) ∈ {>,⊥, t, f} and for every in ∈ PI, s(in) ∈ {⊥, t, f}. The transition
relation R is given by F : R(s, s′) ⇔ ∀vi ∈ V [s′(vi) = fi(s |V , s′ |PI)]. Where
s |V refers to the value of the latches in s, and s′ |PI refers to the value of
the inputs in s′. If such assignment does not exist, then R(s, s′) = f . Θ is
defined such that for every a ∈ AP , Θ(a)(s) = s(a).

Due to the way STE (abstract) models are created, the Kripke models
which are constructed in order to verify STE assertions have the following
characteristics:

• Although models are defined over the Belnap structure, only atomic
propositions can be evaluated to any of the four values >,⊥, t, f .

• Transitions are evaluated to either t or f . Intuitively, all transitions
are “must and may” transitions. There is no meaning in STE to
transitions with the value ⊥.

• Inputs are evaluated over 3 values: an input in ∈ PI can be t,f or ⊥,
and cannot be evaluated to >.

• Both the concrete and abstract models are defined over the Belnap
structure. This results from the fact that inconsistencies (evaluation
of some vi to >), which occur if there is an over constrained node, can
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occur also in the concrete model.

YASM - a Software Model-Checker [36]

The authors in [36] present a framework for model checking programs via
Kripke models over the Belnap structure. In their model, atomic proposi-
tions in states are evaluated to t, f or ⊥ (a regular 3-valued semantics),
whereas transitions are evaluated to t, f ,⊥ or >. Intuitively, “may” tran-
sitions are evaluated to ⊥, “may and must” transitions are evaluated to t

and “must but not may” transitions are evaluated to >. Their approach
is based on treating unknowns resulting from abstraction differently from
unknowns resulting from the environment. This approach is implemented
via a symbolic software model checker called YASM.

Example 7.2 [36] Figure 7.3 presents an example for a (partial) model
created for the program y := y−1. The atomic propositions are the predicates
y > 2 and x = 2. Note that the transition R(s0, s0) has the value t, whereas
transitions from state s1 have the value ⊥ to both s0 and s1. This is a result
of the abstraction. If y ≤ 2, then after the execution of y := y − 1 it is
guaranteed that y ≤ 2, on the other hand, if y > 2 then after executing
y := y − 1 the value of y is not guaranteed. The fact that the value of x

does not change is represented in the > transitions to s3. The transitions
from both s0 and s1 (where x = 2) to s3 indicate that after execution of
the program, the program “must” be in a state where x = 2. Based on the
construction of the model described in [36], transitions to states with atomic
propositions evaluated to ⊥ will be given either a value of f or a value of >.

The authors prove that given a program and its corresponding abstrac-
tion, for every Lµ formula ϕ, the evaluation of ϕ on the abstract model will
never be >. Moreover, if the evaluation is t or f on the abstract model
then its evaluation on the program is also t or f , respectively. We can then
conclude that though mixed simulation is not defined between the concrete
program and its abstraction, preservation of Lµ formulas holds.

Note that although the multi-valued Kripke model created by the ab-
straction is defined over the Belnap structure, the atomic propositions and
also formulas are never evaluated to >.
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Figure 7.3: A 4-valued model

7.3 Compositional Model Checking of Multi-Valued

Models Over Bilattices

We now discuss the compositional model checking framework when the mod-
els are defined over a bilattice rather then a CPDB. Recall that when defining
the composition of two multi-valued models, we first defined which states
might be composed. The goal is to compose states whose composition rep-
resents a state in the composed concrete system. In order to do so, we
separated the states to weakly composable and composable states.

As discussed in Section 7.1, the connection between the concrete and
abstract models for full bilattices is not defined through mixed simulation,
but rather based on the specific abstraction. Thus, there is no general way to
define composition of such models. As a result, the composition of models
should be done with respect to the connection between the concrete and
abstract model. We will define composition separately for the two cases we
present here (STE and YASM).

STE

As discussed above, STE models are defined over the Belnap structure, but
only latches can be evaluated to >. Transitions are evaluated to t or f .
In STE, the models synchronize on the value of the inputs (and not the
latches). The reason is that the value of the latches is determined by the
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value of the latches in the previous stage, and by the value of the inputs in
the current state, and also since the set of transition functions used (F ) is
the same for both models. An exception to that are the initial states which
must synchronize on the value of the latches as well.

Recall that transitions in both the abstract and the concrete systems are
always “may and must” transitions. Another characteristic of the system is
that an abstract state in which some input has the value ⊥ represents two
concrete states (which must exist in the concrete model), one for which the
input is t and the other for which the input is f . As a result, states which
are weakly composable (in the abstract system) always represent a state in
the concrete system. Thus, the weakly composable states can be treated as
composable.

Following the above, the definitions of weakly composable states (Defi-
nition 6.1) and of composable states (6.2) should be replaced with the fol-
lowing:

Definition 7.3 Let s1 ∈ S1, s2 ∈ S2 be states in M1 and M2 respectively.
Then s1, s2 are composable if for every p ∈ (AP1 ∩ PI1) ∩ (AP2 ∩ PI2) :
Θ1(p)(s1)⊕Θ2(p)(s2) is consistent.

We say that two models M1 and M2 are composable if their initial states
agree on the value of their joint labeling. I.e., if for every p ∈ AP1 ∩ AP2,
Θ1(p)(s1

0)⊕Θ2(p)(s2
0) is consistent.

Composition of STE models is defined as in Definition 6.4, with the
exception that states cannot be weakly composable and not composable.

The definition of the lifted model, Mi ↑ (Definition 6.7) should be mod-
ified for the specific abstraction. The definition of the transition mapping
should be Ri ↑= Ri. This results from the fact that transitions in the
abstract model all represent transitions in the concrete composed model.
Under this definition for the lifted model, the mixed simulation relation be-
tween the composed model and the lifted model exists. Thus, M1||M2 ¹ Mi ↑
(similar to Theorem 6.9).

The rest of the framework, as presented in Chapter 6, remains the same.

YASM

As described above, the atomic propositions are evaluated over t, f and ⊥,
thus the computation of weakly composable and composable states should
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be done over the 3-valued semantics. On the other hand, the evaluation
of the transition relation is done over the Belnap structure, and the defi-
nition of composition is similar to the composition of models over CPDBs
(Definition 6.4). In the composed model, transitions evaluated to > will be
transitions to composable states, whose transitions in the composed system
were >.

In order to describe the compositional framework, we first have to define
lifting of models (Definition 6.7) such that mixed simulation exists between
the composed and lifted models. Thus, the following should hold: M1||M2 ¹
Mi ↑ (similar to Theorem 6.9). The definition of the states in the lifted
model is similar to Definition 6.4. The definition for the transition relation
is replaced by the following:
For each si, ti ∈ Si:

• If Ri(si, ti) 6= > then Ri ↑ (si, ti) = Ri(si, ti) ∧ ⊥.
• Else (if Ri(si, ti) = >) then Ri ↑ (si, ti) = ⊥.

Under the above definition for lifted models, it is indeed true that M1||M2 ¹
Mi ↑. Note that there are no transitions evaluated to > in the lifted model.
Indeed, when model checking one component, we cannot guarantee that
there “must” be some transition to a state, since the transition can be re-
moved in the composed system.

The rest of the compositional framework remains the same. Note that in
the definition of the product graph (Definition 6.14), the value of the edges
is identical to their value in the composed model. Thus, we might have
edges with the value > in the product graph.
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Chapter 8

Conclusion

In this work we describe a framework for multi-valued model checking of Lµ

formulas with respect to systems composed of several components, based on
multi-valued abstraction and refinement.

We have considered bilattices as part of our framework. Based on the
information order of a bilattice, we defined a mixed simulation relation over
multi-valued models, preserving µ-calculus specifications. Bilattices and the
mixed simulation relation allowed us to naturally define abstraction of mod-
els in the multi-valued context, and to describe the connection between
concrete and abstract multi-valued models.

We have presented an automatic abstraction-refinement algorithm for
multi-valued systems. To the best of our knowledge, this is the first abstraction-
refinement algorithm defined to handle the general case of multi-valued sys-
tems.

Based on multi-valued abstraction and refinement, we presented our
compositional framework, which can be described as follows.

• Lift each individual component Mi into a component Mi ↑ such that
M1||M2 ¹ Mi ↑.

• Model check each of the lifted models separately. If the result is defi-
nite, then this also holds for the full system.

• Construct the product graph of the individual mc-graphs and model
check it correctly.

• If the result on the product graph is definite, then this result holds for
the full system. Otherwise, refine the components as needed.
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We showed how our framework can be implemented for model checking
of CPDBs, and alternation-free Lµ formulas. We applied a specific model
checking and reason finding algorithm (Algorithm 2.12 and Sec. 4), but these
can be replaced by other algorithms.

Our framework is suitable for full Lµ, provided that the model checking
and reason finding algorithm can handle the full Lµ. Examples of such
algorithms for a 3-valued structure can be found in [32]. Indeed, in [54] a
compositional framework such as ours has been presented for the full Lµfor
a 3-valued logic.

We have discussed how our framework can be used for multi-valued struc-
tures that are described as full distributive bilattices. We presented our
framework for two specific applications where models are defined over the
Belnap structure, STE and YASM.

Our framework can also be used for logics other than the µ-calculus.
For example, the full-PML logic, which extends the modal operators with
past operators, AY and EY , is used in [3], along with a 6-valued structure
(described in Figure 3.1(c),(d)). The structure is a CPDB, but since they
use a logic with significantly different semantics, specific adaptations in some
of the framework stages are needed.
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