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Abstract

SAT-based model checking is currently one of the most successful approaches

to checking very large systems. In its early days, SAT-based (bounded) model

checking was mainly used for bug hunting. The introduction of interpolation

and IC3\PDR enable efficient complete algorithms that can provide full ver-

ification as well.

In this thesis, we preset several approaches to enhancing SAT-based model

checking. They are all based on iteratively computing an over-approximation

of the set of reachable system states. They use different mechanisms to

achieve scalability and faster convergence (empirically).

The first approach uses interpolation-sequence, rather than interpolation,

in order to obtain a more precise over-approximation of the set of reachable

states and avoids the addition of interpolants into the BMC formula.

The second approach extracts interpolants in both forward and back-

ward manner and exploits them for an intertwined approximated forward

and backward reachability analysis. The approach is also mostly local and

avoids unrolling of the checked model as much as possible. By that, the size

of interpolants is mostly kept small. This results in an efficient and complete

SAT-based verification algorithm.

The third approach takes a different direction. It suggests a new method

for interpolant computation which is specific for model checking. As a first

step, it approximates the interpolant using a proof generated by the SAT

solver. The second step transforms the approximated interpolant into a real
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interpolant by using the structure of the model checking problem and apply-

ing inductive reasoning. This results in an efficient procedure that generates

compact interpolants in Conjunctive Normal Form.

The last approach we present integrates lazy abstraction with IC3 in order

to achieve scalability. Lazy abstraction, originally developed for software

model checking, is a specific type of abstraction that allows hiding different

model details at different steps of the verification. We find the IC3 algorithm

most suitable for lazy abstraction since its state traversal is performed by

means of local reachability checks, each involving only two consecutive sets.

A different abstraction can therefore be applied in each of the local checks.

The techniques presented in this thesis make SAT-based model check-

ing more scalable. The thesis focuses on hardware model checking, but the

presented ideas can be extended to other systems as well.
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Chapter 1

Introduction

Computerized systems dominate almost every aspect of our lives and their

correct behavior is essential. Model checking [21, 51, 20] is an automated

verification technique for checking whether a given system satisfies a desired

property. The system is usually described as a finite-state model in a form

of a state transition graph. The specification is given as a temporal logic

formula. Unlike testing or simulation based verification, model checking tools

are exhaustive in the sense that they traverse all behaviors of the system, and

either confirm that the system behaves correctly or present a counterexample.

Model checking has been successfully applied to verifying hardware and

software systems. Its main limitation, however, is the state explosion problem

which arises due to the huge state space of real-life systems. The size of the

model induces high memory and time requirements that may make model

checking not applicable to large systems. Much of the research in this area

is dedicated to increasing model checking applicability and scalability.

The first significant step in this direction was the introduction of BDDs [12]

into model checking. BDD-based Symbolic Model Checking (SMC) [13] en-

abled model checking of real-life hardware designs with a few hundreds of

state elements. However, current design blocks with well-defined functional-

ity typically have thousands of state elements and more. To handle designs
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of that scale, model checking has been reduced to satisfiability (SAT) and

SAT-based Bounded Model Checking (BMC) [5] has been developed. Its main

drawback, however, is its orientation towards “bug-hunting” rather than full

verification.

Several approaches have been suggested to remedy the problem and make

it applicable for verification. Induction [54], interpolation [43, 59, 60], inter-

polation sequence [57, 16], IC3/PDR [8, 28], and L-IC3 [58] developed dif-

ferent techniques for SAT-based Unbounded Model Checking (UMC), which

provide full verification. All techniques are based on finding an inductive

invariant that proves the correctness of the verified property. More precisely,

most of these techniques explicitly find the inductive invariant by approxi-

mating the reachable states in the verified system.

Of these SAT-based unbounded model checking techniques, L-IC3 and [16]

also use Abstraction-refinement [22], which is another well known methodol-

ogy for tackling the state-explosion problem. Abstraction hides model details

that are not relevant for the checked property. The resulting abstract model

is then smaller, and therefore easier to handle by model checking algorithms.

Lazy abstraction [41, 44], developed for software model checking, is a spe-

cific type of abstraction that allows hiding different model details at different

steps of the verification.

We now go through challenges in SAT-based model checking and our

techniques for improvements.

1.1 Challenges in SAT-based Model Check-

ing

This work focuses on improving Interpolation based model checking as was

first introduced in [43], and improving IC3/PDR [8, 28]. These methods

compute an over-approximated sets of the system’s reachable states while

checking that the specification is not violated. The approximation of reach-
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able states is done via a form of generalization. Basically, generalization is

the process of deducing a general fact from knowledge about a single case.

The algorithm that appears in [43], which we refer to as ITP, com-

putes over-approximations of reachable states using Craig interpolants [23].

The interpolants are extracted from a proof of unsatisfiability, generated

by a SAT-solver when solving a BMC formula, and they represent an over-

approximation of states reachable from the initial states after one transition.

The computed over-approximations are used to perform a SAT-based reach-

ability analysis and to fully verify a specification.

In the context of ITP, interpolants are used as a generalization mecha-

nism. By solving a BMC formula of a specific length, and knowing that there

is no counterexample of this specific length, interpolants help to generalize

this fact into general information about the system’s reachable states.

ITP works iteratively and is based on a nested loop. The outer loop con-

trols the bound of the BMC formulas that are checked inside the inner loop.

The inner loop iteratively solves a fixed bound BMC formulas. If a BMC for-

mula is unsatisfiable, an interpolant representing an over-approximation of

reachable states is extracted1. These over-approximations are used to check

whether all reachable states in the system have been checked. In case all

reachable states are checked we say that a fixpoint is found. In this case,

the algorithm terminates concluding that the property holds. Otherwise,

the computed interpolant replaces the set of initial states from which the

bounded search starts and a new BMC formula is checked (with new initial

states). Due to the usage of “new” initial states in the BMC formula, there

are cases where such a modified BMC formula is satisfiable. Since the in-

terpolants represent an over-approximation of reachable states, ITP cannot

conclude that a counterexample exists when a modified BMC formula is sat-

isfiable. In these cases the inner loop is stopped and the bound is increased

by the outer loop.

1In these settings interpolants can only be computed for an unsatisfiable formula.
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There are, therefore, two inherent weaknesses we try to solve. The first

weakness is the sensitivity of ITP to the size of the interpolants. Since inter-

polants are fed back into the BMC formula (when replacing the initial states

with an interpolant), their size may render the BMC problem intractable.

The second weakness is the need to constantly increase the bound of the

checked BMC formula in order to increase the precision of the computed

over-approximations.

In [8] an alternative SAT-based algorithm, called IC3, is introduced. Sim-

ilarly to ITP, IC3 also computes over-approximations of sets of reachable

states. However, while ITP unrolls the model in order to obtain more pre-

cise approximations, IC3, improves the precision of the approximations by

performing many local reachability checks between consecutive time frames

that do not require unrolling.

While ITP blindly relies on the SAT-solver to search for a counterexample

and generate information about reachable states (in the form of interpolants),

IC3 approaches the problem in a different manner. Instead of blindly relying

on the SAT-solver, it guides both the search for the counterexample and the

computation of reachable states.

Conceptually, IC3 is based on a backward search. Starting with a bad

state, it uses a SAT-solver to repeatedly find a one-step predecessor state.

Thus, all SAT-queries are local, involving only one instance of the transition

relation, and no BMC-unrolling is used. If, when performing the backward

search, the bad suffix can be extended all the way to the initial states -

a counterexample is found. Otherwise, when a suffix cannot be extended

further, a process called inductive generalization [9, 7, 8], is used to learn a

consequence that blocks the current suffix. More precisely, due to inductive

generalization, IC3 generalizes the fact that a single state is unreachable to

a consequence representing a set of unreachable states. The conjunction of

all such learned consequences is used to represent an over-approximation of

reachable states.
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While inductive generalization is what enables IC3 to learn strong conse-

quences, it is also its weakness. When inductive generalization fails to gener-

alize a single unreachable state into a set of unreachable states efficiently, IC3

falls into a form of state-enumeration, thus making the algorithm inefficient.

1.2 Our Approaches for SAT-based Model Check-

ing Enhancements

We aim at solving the weaknesses of SAT-based methods as described in the

previous section. In the context of interpolation, we deal with interpolants’

size by using them or computing them differently, such that their size is either

reduced or has less affect on the underlying model checking problem. In the

context of IC3, we integrate abstraction into the algorithm in order to make

it more efficient. We now go into more detail about the content of this thesis.

In Chapter 3, we present an interpolation-sequence [38, 44] based algo-

rithm. The algorithm, referred to as ISB, combines BMC with interpolation-

sequence. ISB works by searching for a counterexample via repeatedly posing

BMC queries to a SAT-solver. If a BMC query is satisfied, a counterexample

is found. Otherwise, the SAT-solver generates a proof of unsatisability. An

interpolation procedure is then used to extract an interpolation sequence.

The sequence is used to over-approximate sets of reachable states at differ-

ent depths. If at any point a fixpoint is reached, ISB terminates indicating

the validity of the checked property. Otherwise, the process repeats with

another, longer, BMC query. ISB can be viewed as a simple addition to the

BMC loop that enables termination.

Unlike ITP, ISB does not require to inject the interpolants into the BMC

formula, and thus the size of interpolants does not influence the ability to

solve a BMC query. Even though ISB is insensitive to the size of interpolants,

it does not outperform ITP on average [16].

In Chapter 4, we present the algorithm Dual Approximated Reachability
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(DAR), that can be viewed as an evolution of ISB. The algorithms ITP, IC3

and ISB are all based on a froward reachability analysis. DAR adds back-

ward reachability analysis and tightly combines it with forward analysis. By

doing so, DAR can execute mostly local reachability checks that are similar

in a sense to the reachability queries executed by IC3. DAR can therefore

avoid unrolling of the model in most cases. Like ITP and ISB, DAR uses in-

terpolation to compute over-approximations of sets of reachable states. But,

due to the fact that it can avoid unrolling, it manages to keep interpolants

smaller. In addition, since unrolling is avoided, the queries solved by the

SAT-solver are simpler.

In Chapter 5, we introduce a novel technique for computing interpolants

specifically suitable to model checking. Our approach uses both the proof of

unsatisfiability generated by the SAT-solver and information about the un-

derlying problem. Our method computes interpolants in Conjunctive Normal

Form (CNF) that are small in size compared to interpolants computed by

the traditional method [43]. We evaluate this approach in the context of ITP.

We have developed an algorithm, called CNF-ITP, which is similar to ITP

but uses our method for interpolant computation. In addition, it exploits

the fact that interpolants are given in CNF.

In the last chapter (Chapter 6), we present the algorithm L-IC3, which

provides a SAT-based lazy abstraction-refinement algorithm based on IC3/PDR.

Originally introduced for software verification, lazy abstraction enables to

use different abstractions at different steps of verification. To the best of our

knowledge, L-IC3 is the first to use lazy abstraction for hardware verification.

The local reachability checks that lie in the core of IC3 makes it a natural

candidate to be used with lazy abstraction. Thus, L-IC3 is developed on top

of IC3.

As was mentioned before, IC3 uses many local reachability checks that

only contain one instantiation of the transition relation. L-IC3 uses the

visible variable abstraction [40], and by that enables the usage of different
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sets of visible variables for the different local reachability checks that are

used by IC3. In contrast to the generic CEGAR framework [22], L-IC3 is

tightly integrated in IC3 and uses IC3-specific features (like the locality of

the reachability checks).

Integrating abstraction into IC3 enables us to not only execute more

efficient SAT queries (since we use an abstract model), but also makes the

process of inductive generalization more effective. This enables L-IC3 to learn

stronger consequences when it proves that a given state is unreachable, and

by that reduce the effort needed when searching for an inductive invariant.

This helps L-IC3 to converge faster.
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Chapter 2

Preliminaries

Temporal logic model checking [20] is an automatic approach to formally

verifying that a given system satisfies a given specification. The system is

often modelled by a finite state transition system and the specification is

written in a temporal logic. Determining whether a model satisfies a given

specification is often based on an exploration of the model’s state space in a

search for violations of the specification.

In this thesis we focus on hardware. As such we consider finite state

transition systems defined over Boolean variables, as follows.

Definition 2.0.1. A finite transition system or a model is a triple M =

(V, INIT,TR) where V is a set of boolean variables, INIT(V ) is a formula

over V , describing the initial states, and TR(V, V ′) is a formula over V and

the next-state variables V ′ = {v′|v ∈ V }, describing the transition relation.

Throughout the thesis we assume that for a given modelM , the transition

relation TR is total.

The set of Boolean variables of M induces a set of states S = {0, 1}|V |,

where each state s ∈ S is given by a valuation of the variables in V . A

formula over V (resp. V, V ′) represents the set of states (resp. pairs of

states) obtained by its satisfying assignments. With abuse of notation we
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will refer to a formula η over V as a set of states and therefore use the notion

s ∈ η for states represented by η. Similarly for a formula η over V, V ′, we

will sometimes write (s, s′) ∈ η.
The formula η[V ← V ′], or η′ in short, is identical to η except that

each variable v ∈ V is replaced with v′. In the general case V i is used to

denote the variables in V after i time units (thus, V 0 ≡ V ). Let η be a

formula over V i, the formula η[V i ← V j] is identical to η except that for

each variable v ∈ V , vi is replaced with vj. Throughout the paper we denote

the value false as ⊥ and the value true as ⊤. For a propositional formula η

we use Vars(η) to denote the set of all variables appearing in η. For a set

of formulas {η1, . . . , ηn} Vars(η1, . . . , ηn) denotes the variables appearing in

η1, . . . , ηn. That is, Vars(η1, . . . , ηn) = Vars(η1) ∪ . . . ∪ Vars(ηn).

A path in M is a sequence of states π = s0, s1, . . . such that for all

0 ≤ i ≤ |π|, si ∈ S and (si, si+1) ∈ TR. The length of a path is denoted by

|π|. If π is infinite then |π| = ∞. If π = s0, s1, . . . , sn then |π| = n. A path

is an initial path when s0 ∈ INIT. We sometimes refer to a prefix of a path

as a path as well.

We use the following notation to describe a path in M of length j − i by
means of propositional formula:

Formula 1. pathi,j = TR(V i, V i+1) ∧ . . . ∧ TR(V j−1, V j)

where 0 ≤ i < j.

To describe a path of length k starting at the initial states, we will use:

INIT(V 0) ∧ path0,k.

A formula in Linear Temporal Logic (LTL) [49, 20] is of the form Af

where f is a path formula. A model M satisfies an LTL property Af if all

infinite initial paths inM satisfy f . If there exists an infinite initial path not

satisfying f , this path is defined to be a counterexample.

In this thesis we consider a subset of LTL formulas of the form AG p,

where p is a propositional formula. AG p is true in a model M if along every

initial infinite path all states satisfy the proposition p. In other words, all
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states in M that are reachable from an initial state satisfy p. This does

not restrict the generality of the suggested methods since model checking of

liveness properties can be reduced to handling safety properties [3]. Further,

model checking of safety properties can be reduced to handling properties of

the form AG p [39].

As was mentioned before, the model checking problem is the problem of

determining whether a given model satisfies a given property. For properties

of the form AG p this can be done by traversing the set of all states reachable

from the initial states, called reachable states in short. Let M be a model,

Reach be the set of reachable states in M , and f = AG p be a property. If

for every s ∈ Reach, s |= p then the property holds inM . On the other hand,

if there exists a state s ∈ Reach such that s |= ¬p then there exists an initial

path π = s0, s1, . . . , sn such that sn = s. The path π is a counterexample for

the property f .

Model checking has been successfully applied to hardware verification,

and is emerging as an industrial standard tool for the verification of hardware

designs. The main technical challenge in model checking, however, is the

state explosion problem which occurs if the system is a composition of several

components or if the system variables range over large domains.

2.1 Satisfiability

Many problems, including some versions of model checking, can naturally be

translated into the satisfiability problem of the propositional calculus. The

satisfiability problem is known to be NP-complete. Nevertheless, modern

SAT-solvers, developed in recent years, can check satisfiability of formulas

with several thousands of variables within a few seconds. SAT-solvers such as

Grasp [55], Chaff [48], MiniSAT [29], Glucose [1], and many others, are based

on sophisticated learning techniques and data structures that accelerate and

increase the efficiency of the search for a satisfying assignment, if it exists.
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Definition 2.1.1 (Conjunctive Normal Form). Given a set U of Boolean

variables, a literal l is a variable u ∈ U or its negation and a clause is a

disjunction of literals. A formula F in Conjunctive Normal Form (CNF) is

a conjunction of clauses.

With abuse of notation, we sometimes refer to a clause as a set of literals

and to a CNF formula as a set of clauses.

A SAT-solver is a complete decision procedure that given a propositional

formula, determines whether the formula is satisfiable or unsatisfiable. Most

SAT-solvers assume a formula in CNF. A CNF formula is satisfiable if there

exists a satisfying assignment for which every clause in the set is evaluated

to ⊤. If the clause set is satisfiable then the SAT solver returns a satis-

fying assignment for it. If it is not satisfiable (unsatisfiable), meaning, it

has no satisfying assignment, then modern SAT-solvers produce a resolution

refutation comprising the proof of unsatisfiability [62, 30, 45]. The proof of

unsatisfiability has many useful applications. We will introduce one of them

in a following section.

2.2 Bounded Model Checking

We now describe how to exploit satisfiability for bounded model checking of

properties of the form AG p, where p is a propositional formula.

Bounded model checking (BMC) [5] is an iterative process for checking

properties of a given model up to a given bound. Let M be a model and

f = AG p be the property to be verified. Given a bound k, BMC either finds

a counterexample of length k or less for f in M , or concludes that there is

no such counterexample. In order to search for a counterexample of length

k the following propositional formula is built:

Formula 2. φk
M(f) = INIT(V 0) ∧ path0,k ∧ (¬p(V k))

φk
M(f) is then passed to a SAT-solver which searches for a satisfying

13



1: function BMC(M ,f ,k)
2: i := 0
3: while i ≤ k do
4: build φi

M(f)
5: result = SAT (φi

M(f))
6: if result == true then
7: return cex // returning the counterexample
8: end if
9: i = i+ 1
10: end while
11: return No cex for bound k
12: end function

Figure 2.1: Bounded model checking

assignment. If there exists a satisfying assignment for φk
M(f) then the prop-

erty AG p is violated, since there exists a path of M of length k violating

the property. In order to conclude that there is no counterexample of length

k or less, BMC iterates all lengths from 0 up to the given bound k. At each

iteration a SAT procedure is invoked.

When M and f are obvious from the context we omit them from the

formula φk
M(f) denoting it as φk. The BMC algorithm is described in Fig-

ure 2.1.

The main drawback of this approach is its incompleteness. It can only

guarantee that there is no counterexample of size smaller or equal to k. It

cannot guarantee that there is no counterexample of size greater than k.

Thus, this method is mainly suitable for refutation. Verification is ob-

tained only if the bound k exceeds the length of the longest path among all

shortest paths from an initial state to some state in M . In practice, it is

hard to compute this bound and even when known, it is often too large to

handle. As mentioned before, several methods for full verification with SAT

have been suggested, such as induction [54], ALL-SAT [46, 31], interpola-

tion [43, 47, 57], and Property Directed Reachability (PDR/IC3) [8, 28, 58].
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In the rest of the thesis we will focus on SAT-based verification with inter-

polation and PDR.

2.3 Interpolation

In this section we introduce two notions, interpolation [23] and interpolation-

sequence [38] that, when combined with BMC, can provide full program

verification.

Given a pair of unsatisfiable propositional formulas A(X, Y ) and B(Y, Z),

where X,Y and Z are sets of Boolean variables, an interpolant I(Y ) is a for-

mula that fulfills the following properties: A(X,Y )⇒ I(Y ); I(Y ) ∧B(Y, Z)

is unsatisfiable; and I(Y ) is a formula over the common variables of A(X, Y )

and B(Y, Z) [23]. Modern SAT-solvers are capable of generating an unsat-

isfiability proof of an unsatisfiable formula. The proof is in the form of a

resolution refutation [61, 30, 45]. It is possible to compute an interpolant

from a resolution refutation of A(X, Y ) ∧B(Y, Z) [50, 43].

Definition 2.3.1. Let (A,B) be a pair of formulas such that A ∧ B ≡ ⊥.
The interpolant for (A,B) is a formula I such that:

• A⇒ I.

• I ∧B ≡ ⊥.

• Vars(I) ⊆ Vars(A) ∩ Vars(B).

The interpolant can be viewed as the part of A that is sufficient to con-

tradict B. Note that different proofs yield different interpolants.

A similar notion can be defined when we have a sequence of formulas

whose conjunction is unsatisfiable.

Definition 2.3.2. Let Γ = ⟨A1, A2, . . . , An⟩ be a sequence of formulas such

that
∧
Γ ≡ ⊥. That is

∧
Γ = A1∧ . . .∧An is unsatisfiable. An interpolation-

sequence for Γ is a sequence ⟨I0, I1, . . . , In⟩ such that:
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1. I0 ≡ ⊤ and In ≡ ⊥

2. For every 0 ≤ j < n it holds that Ij ∧ Aj+1 ⇒ Ij+1

3. For every 0 < j < n it holds that Vars(Ij) ⊆ Vars(A1, . . . , Aj) ∩
Vars(Aj+1, . . . , An)

Computing an interpolation-sequence for a sequence of formulas is done

in the following way: given a proof of unsatisfiability π, for each Ii, 0 < i < n,

the sequence of formulas is partitioned in a different way such that Ii is the

interpolant for the formulas A(i) =
i∧

j=1

Aj and B(i) =
n∧

j=i+1

Aj, obtained

based on π. In fact, all interpolants Ii in the sequence can be computed

efficiently at once, by a single traversal of a given proof of unsatisfiability [57].

Before proving the above, we provide some resolution-related definitions.

The resolution rule states that given clauses α1 = β1 ∨ v and α2 = β2 ∨ ¬v,
where β1 and β2 are also clauses, one can derive the clause α3 = β1 ∨ β2.
Application of the resolution rule is denoted by α3 = α1 ⊗v α2. v is called

the pivot variable.

Definition 2.3.3 (Resolution Derivation). A resolution derivation of a tar-

get clause α from a CNF formula G = {α1, α2, . . . , αq} is a sequence

π = (α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ α), where each clause αi for i ≤ q is

initial and αi for i > q is derived by applying the resolution rule to αj and

αk, for some j, k < i.

A resolution derivation π can naturally be conceived of as a directed

acyclic graph (DAG) whose vertices correspond to all the clauses of π and in

which there is an edge from a clause αj to a clause αi iff αi = αj ⊗v αk for

some k. A clause β ∈ π is a parent of α ∈ π iff there is an edge from β to α.

Definition 2.3.4 (Resolution Refutation). A resolution derivation π of the

empty clause □ from a CNF formula G is called the resolution refutation of

G.
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An interpolant can be produced out of a resolution refutation [43]. We

define ⟨c|B⟩ =
∨
{l ∈ c|var(l) ∈ Vars(B)} as the projection clause achieved

by removing all literals such that their variable does not appear in B. We

can also generalize the projection to sets of variables.

Definition 2.3.5 (Partial Interpolant). Let (A,B) be a pair of clause sets.

Given a proof of unsatisfiability π for A ∪ B and a clause c in the proof

(c ∈ π), the partial interpolant p(c) is defined as:

• if c is a leaf in π, i.e. c ∈ A ∪B:

– if c ∈ A then p(c) = ⟨c|B⟩

– else p(c) = ⊤

• else, let c1, c2 be parent nodes of c and let v be their pivot variable, i.e.

c = c1 ⊗v c2:

– if v is local to A then p(c) = p(c1) ∨ p(c2)

– else p(c) = p(c1) ∧ p(c2)

If c is a clause, and l is a literal that does not appear in c, we write ⟨l, c⟩
to indicate the clause that results from adding l as a literal to the clause c.

Definition 2.3.6. Clause interpolation sequence has the form (A1, . . . , An) ⊢
⟨c⟩[φ1 . . . , φn−1] where (A1, . . . , An) are clause sets, c is a clause, and φ1, . . . , φn−1

are formulas. It is said to be valid when φi∧Ai+1 ⇒ (φi+1∨⟨c|Ai+1, . . . , An⟩).

Let us define the pair (A(i), B(i)) for 1 ≤ i < n such that A(i) = A1∧. . .∧
Ai and B(i) = Ai+1 ∧ . . . ∧ An. If the sequence (A1, . . . , An) is unsatisfiable

(i.e. the conjunction of all formulas is unsatisfiable), then every such pair

is unsatisfiable. More precisely, A(i) ∧ B(i) is unsatisfiable for 1 ≤ i < n.

Given a resolution refutation π for the sequence (A1, . . . , An), let us define

pi(c) for c ∈ π as the partial interpolant with respect to the pair (A(i), B(i))

(Definition 2.3.5).
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Lemma 2.3.7. Let (A1, . . . , An) be an inconsistent sequence of formulas

and let π be a proof of unsatisfiability. For a clause c ∈ π (A1, . . . , An) ⊢
⟨c⟩[p1(c), . . . , pn−1(c)] is valid.

Proof. Let π be a resolution refutation for the sequence (A1, . . . , An). We

prove by induction on the structure of π. The base case is where c is a root

clause of π, meaning, c ∈ A1 ∪ . . . ∪ An. We therefore want to show that

pi(c) ∧ Ai+1 ⇒ pi+1(c) ∨ ⟨c|Ai+1, . . . , An⟩. Let us assume that c ∈ Aj:

• j ≤ i: We need to show that ⟨c|Ai+1, . . . , An⟩∧Ai+1 ⇒ ⟨c|Ai+2, . . . , An⟩∨
⟨c|Ai+1, . . . , An⟩, which is equivalent to ⟨c|Ai+1, . . . , An⟩∧Ai+1 ⇒ ⟨c|Ai+1, . . . , An⟩.
Clearly, this holds (ψ ∧ η ⇒ ψ).

• j = i + 1: We need to show that ⊤ ∧ Ai+1 ⇒ ⟨c|Ai+2, . . . , An⟩ ∨
⟨c|Ai+1, . . . , An⟩. Since c ∈ Ai+1, ⟨c|Ai+1, . . . , An⟩ is equivalent to c.

Thus, we need to show that Ai+1 ⇒ c. This trivially holds since c ∈
Ai+1.

• j > i + 1: We need to show that ⊤ ∧ Ai+1 ⇒ ⊤ ∨ ⟨c|Ai+1, . . . , An⟩,
which is equivalent to Ai+1 ⇒ ⊤ - trivially holds.

For the induction step, let ⟨v, c1⟩ and ⟨¬v, c2⟩ be children of c and let v

be the pivot variable. We therefore have the following assumptions:

• pi(⟨v, c1⟩) ∧ Ai+1 ⇒ pi+1(⟨v, c1⟩) ∨ ⟨v ∨ c1|Ai+1, . . . , An⟩

• pi(⟨¬v, c2⟩) ∧ Ai+1 ⇒ pi+1(⟨¬v, c2⟩) ∨ ⟨¬v ∨ c2|Ai+1, . . . , An⟩

Considering Definition 2.3.5, if v ∈ Vars(Ai+2, . . . , An) then pj(c) =

pj(⟨v, c1⟩)∧pj(⟨¬v, c2⟩) for j ∈ {i, i+1}, otherwise if v ∈ Vars(Ai+1, . . . , An)

then pi(c) = pi(⟨v, c1⟩)∧pi(⟨¬v, c2⟩) and pi+1(c) = pi+1(⟨v, c1⟩)∨pi+1(⟨¬v, c2⟩).
In all other cases pj(c) = pj(⟨v, c1⟩)∨pj(⟨¬v, c2⟩). We consider different cases

according to v.
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• v ∈ Vars(Ai+2, . . . , An): We need to show that (pi(⟨v, c1⟩)∧pi(⟨¬v, c2⟩))∧
Ai+1 ⇒ (pi+1(⟨v, c1⟩) ∧ pi+1(⟨¬v, c2⟩)) ∨ ⟨c1 ∨ c2|Ai+1, . . . , An⟩. Let

us assume that the above does not hold. There is therefore an as-

signment such that (pi(⟨v, c1⟩) ∧ pi(⟨¬v, c2⟩)) ∧ Ai+1 is evaluated to

⊤ and (pi+1(⟨v, c1⟩) ∧ pi+1(⟨¬v, c2⟩)) ∨ ⟨c1 ∨ c2|Ai+1, . . . , An⟩ is eval-

uated to ⊥. Thus, pi(⟨v, c1⟩) and pi(⟨¬v, c2⟩) are evaluated to ⊤.
By our induction hypothesis pi+1(⟨v, c1⟩) ∨ ⟨v ∨ c1|Ai+1, . . . , An⟩ and
pi+1(⟨¬v, c2⟩) ∨ ⟨¬v ∨ c2|Ai+1, . . . , An⟩ are evaluated to ⊤. Due to our

assumption, we know that pi+1(⟨v, c1⟩) and pi+1(⟨¬v, c2⟩) are both ⊥.
By that, ⟨v ∨ c1|Ai+1, . . . , An⟩ and ⟨¬v ∨ c2|Ai+1, . . . , An⟩ are ⊤. With-

out loss of generality, let us assume that v is evaluated to ⊥. By that

we get that ⟨c1|Ai+1, . . . An⟩ is evaluated to ⊤. This contradicts our

assumption that ⟨c1 ∨ c2|Ai+1, . . . , An⟩ is evaluated to ⊥.

• v ∈ Vars(Ai+1, . . . , An): We need to show that (pi(⟨v, c1⟩)∧pi(⟨¬v, c2⟩))∧
Ai+1 ⇒ (pi+1(⟨v, c1⟩)∨pi+1(⟨¬v, c2⟩))∨⟨c1∨c2|Ai+1, . . . , An⟩. This case
is proved in a similar manner to the previous case.

• Otherwise: We need to show that (pi(⟨v, c1⟩) ∨ pi(⟨¬v, c2⟩)) ∧ Ai+1 ⇒
(pi+1(⟨v, c1⟩) ∨ pi+1(⟨¬v, c2⟩)) ∨ ⟨c1 ∨ c2|Ai+1, . . . , An⟩. Let us assume

to the contrary, that it does not hold. This means that there exists an

assignment such that (pi(⟨v, c1⟩)∨pi(⟨¬v, c2⟩))∧Ai+1 is evaluated to ⊤
and (pi+1(⟨v, c1⟩) ∨ pi+1(⟨¬v, c2⟩)) ∨ ⟨c1 ∨ c2|Ai+1, . . . , An⟩ is evaluated
to ⊥. Without loss of generality, let us assume that pi(⟨v, c1⟩) is evalu-
ated to ⊤, then by the induction hypothesis ⟨v∨c1|Ai+1, . . . , An⟩ is also
evaluated to ⊤. Since we assume that ⟨c1 ∨ c2|Ai+1, . . . , An⟩ is evalu-

ated to ⊥ (our contradictory assumption), we get that ⟨c1|Ai+1, . . . , An⟩
is evaluated to ⊥. But, since v ̸∈ Vars(Ai+1, . . . , An) we get that

⟨c1|Ai+1, . . . , An⟩ = ⟨v ∨ c1|Ai+1, . . . , An⟩. This leads to a contradic-

tion.
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Theorem 2.3.8. Let Γ = ⟨A1, A2, . . . , An⟩ be a sequence of formulas such

that
∧

Γ ≡ ⊥ and let π be a proof of unsatisfiability for
∧

Γ. For every

1 ≤ i < n let us define A(i) = A1 ∧ . . . ∧ Ai and B(i) = Ai+1 ∧ . . . ∧ An.

Let Ii be the interpolant for the pair (A(i), B(i)) extracted using π then the

sequence ⟨⊤, I1, I2, . . . , In−1,⊥⟩ is an interpolation sequence for Γ.

Proof. The proof is immediate from Lemma 2.3.7.

2.4 Interpolation Based Model Checking (ITP)

In [43], interpolation has been suggested for the first time in order to obtain

a SAT-based model checking algorithm for full verification. Before going into

details, and in order to better understand the algorithm and the motivation

behind it, we first review some basic concepts of Symbolic Model Checking

(SMC).

2.4.1 Symbolic Model Checking

SMC performs forward reachability analysis by computing sets of reachable

states Sj, where j is the number of transitions needed to reach a state in Sj

when starting from an initial state. More precisely, S0(V ) = INIT(V ) and for

every j ≥ 1, Sj+1(V
′) = ∃V (Sj(V )∧TR(V, V ′)). The computation of Sj+1 is

referred to as an image operation on the set Sj. Once Sj is computed, if it

contains states violating p (recall that f = AGp), a counterexample of length

j is found and returned. Otherwise, if for j ≥ 1 Sj ⊆
j−1∪
i=0

Si then a fixpoint

has been reached, meaning that all reachable states have been found already.

If no reachable state violates the property then the algorithm concludes that

M |= f .
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2.4.2 ITP Detailed

The algorithm, referred to as Interpolation Based Model Checking (ITP),

combines BMC and Interpolation [23].

As we have seen, BMC alone is only sound and not complete. In order to

be able to determine ifM |= f , current SAT-based model checking algorithms

are based on a computation that over-approximates the reachable states of

M . We use the notion of Reachability Sequence:

Definition 2.4.1. A Forward Reachability Sequence (FRS) of length k with

respect to a modelM and a property AG p, denoted F̄[k](M, p), is a sequence

⟨F0, . . . , Fk⟩ of propositional formulas over V such that the following holds:

• F0 = INIT

• Fi ∧ TR⇒ F ′
i+1 for 0 ≤ i < k

• Fi ⇒ p for 0 ≤ i ≤ k

A reachability sequence F̄[k] is said to be monotonic (MFRS) when Fi ⇒ Fi+1

for 0 ≤ i < k.

Recall that the formula F ′
i+1 is equivalent to Fi+1[V ← V ′], and that

implication between formulas corresponds to inclusion between the set of

states represented by the formulas. Thus, for non-monotonic reachability

sequence, the set of states represented by Fi over-approximates the states

reachable from INIT in exactly i steps. When F̄[k] is monotonic Fi represents

all the states that are reachable from INIT in i steps or less. We refer to i

as time frame (or frame) i. When M , p and k are clear from the context we

omit them and write F̄ .

Definition 2.4.2 (Fixpoint). 1 Let F̄ be a FRS of length n. We say that F̄

is at fixpoint if there exists 0 < k ≤ n s.t. Fk ⇒
∨k−1

i=0 Fi.

1Note that this is an abuse of the fixpoint notation.

21



ITP uses interpolants to compute a forward reachability sequence (Defini-

tion 2.4.1). The algorithm concludes that the property holds when a fixpoint

is reached during the computation of the reachable states and none of the

computed states violates the property.

Informally, we will use the notion of fixpoint when we can conclude that

all reachable states in the model have been visited2. Using a FRS enables us

to determine wether a fixpoint has been reached or not.

Theorem 2.4.3. Let F̄ be a FRS of length n for M and AGp. If F̄ is at

fixpoint then M |= AGp.

Proof. Suppose F̄ is at fixpoint, i.e., there exists 0 < k ≤ n s.t. Fk ⇒∨k−1
i=0 Fi. Denote by R the set of all states reachable from INIT (in any

number of steps). Recall that Fi ⇒ p for every 0 ≤ i ≤ n, which ensures∨k−1
i=0 Fi ⇒ p. It therefore suffices to show that R ⇒

∨k−1
i=0 Fi in order to

conclude that R⇒ p and thus M |= AGp.

We show that R ⇒
∨k−1

i=0 Fi. Assume to the contrary that there exists a

state in R which is not in
∨k−1

i=0 Fi. Consider such a state s whose distance

from INIT is shortest. Let sp be the predecessor of s along a shortest path

from INIT to s. The distance of sp from INIT is shorter than the distance of

s. Thus, since s is the closest to INIT which is not in
∨k−1

i=0 Fi, it has to be

that sp ∈
∨k−1

i=0 Fi, which means there exists some 0 ≤ j ≤ k− 1 s.t. sp ∈ Fj.

Since Fj ∧ TR ⇒ F ′
j+1 and s is a successor of sp, this implies that s ∈ Fj+1

where 1 ≤ j + 1 ≤ k. Therefore, s ∈
∨k

i=0 Fi. Since Fk ⇒
∨k−1

i=0 Fi, we have

that
∨k−1

i=0 Fi ≡
∨k

i=0 Fi. We conclude that s ∈
∨k−1

i=0 Fi, in contradiction.

The following definition is useful in explaining the interpolation based

algorithm. Recall that the verified property is of the form f = AG p.

2Since an over-approximated sets of reachable states are computed, the computed sets
are not monotonic. Therefore, a monotonic function g for which the existence of a fixpoint
is guaranteed cannot be defined.
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1: function ITP(M ,p)
2: if INIT ∧ ¬p == SAT then
3: return cex
4: end if
5: k = 1
6: while true do
7: result = ComputeReachable(M, p, k)
8: if result == fixpoint then
9: return V alid
10: else if result == cex then
11: return cex
12: end if
13: k = k + 1
14: end while
15: end function

Figure 2.2: Interpolation-Based Model Checking (ITP)

Definition 2.4.4. For a set of states X, a natural number N ∈ N and

1 ≤ j ≤ N , X is a Sj-approximation w.r.t N if the following two conditions

hold: Sj ⊆ X and there is no path of length (N − j) or less violating p,

starting from a state s ∈ X. We write Sj ⪯N X to denote that X is a

Sj-approximation w.r.t N .

Note that the formula φk is used in BMC to represent a counterexample

of length exactly k. This formula can be modified to represent a counterex-

ample of length l for 1 ≤ l ≤ k. We denote this formula by φ1,k and write

BMC(M, f, 1, k) when BMC runs on φ1,k.

Formula 3. φ1,k = INIT(V 0)∧TR(V 0, V 1)∧path1,k(V 1, . . . , V k)∧(
k∨

j=1

¬p(V j))

Consider the following partitioning for φ1,k:

• A = INIT (V 0) ∧ TR(V 0, V 1)

• B =
k−1∧
i=1

TR(V i, V i+1) ∧ (
k∨

j=1

¬p(V j)).
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16: function ComputeReachable(M ,p, k)
17: Rk

0 = INIT, Jk
0 = INIT, n = 1

18: if Jk
0 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT then

19: return cex
20: end if
21: repeat
22: A = Jk

n−1(V
0) ∧ TR(V 0, V 1)

23: B = path1,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k))
24: Jk

n = GetInterpolant(A,B)
25: if Jk

n ⇒ Rk
n−1 then

26: return fixpoint
27: end if
28: Rk

n = Rk
n−1 ∨ Jk

n

29: n = n+ 1
30: until Jk

n−1 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT
31: end function

Figure 2.3: Inner loop of ITP

Clearly φ1,k ≡ A ∧ B. Assume that φ1,k is unsatisfiable. By the interpo-

lation theorem [23], there exists an interpolant Jk
1 which, by Definition 2.3.1,

has the following properties:

• Jk
1 is defined over the variables of Vars(A) ∩ Vars(B), namely, V 1.

• A⇒ Jk
1 . Hence, S1 ⊆ Jk

1 .

• Jk
1 (V

1)∧B is unsatisfiable. This means that there is no path of length

k − 1 or less, starting from Jk
1 , which violates p.

By the above we get that S1 ⪯k J
k
1 . At this point, we get the reachability

sequence ⟨INIT, Jk
1 ⟩. We can now proceed by replacing the initial states

of M with the computed interpolant Jk
1 . BMC is reinvoked with the same

bound k and with the modified model M ′ = (V, Jk
1 [V

1 ← V ],TR) in which

the initial states are Jk
1 . A new interpolant Jk

2 is then extracted. Jk
2 satisfies

S2 ⪯k+1 J
k
2 . The reachability sequence is then updated and contains a new

element ⟨INIT, Jk
1 , J

k
2 ⟩.
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It is important to notice that Jk
1 now satisfies S1 ⪯k+1 J

k
1 since the BMC

run on M ′ did not find a counterexample of length k starting from a state in

Jk
1 . In the general case we replace INIT with Jk

i and get Jk
i+1. By that, at

the end of the i-th iteration, for a given bound k, the reachability sequence

is ⟨INIT, Jk
1 , J

k
2 , . . . , J

k
i ⟩.

Figure 2.3 presents, for a given bound k, the computation of an over-

approximated set of reachable states. Note that after L iterations of the main

loop in CheckReachable we get L interpolants and for every 1 ≤ i ≤ L,

Si ⪯k+L J
k
i . All computed states are collected in R. If at any iteration, the

interpolant J is contained in R, then all reachable states have been found

with no violation of f . CheckReachable then returns “fixpoint”.

On the other hand, if a counterexample is found on a modified model, then

ComputeReachable(M ,f ,k) is aborted, the reachability sequence is dis-

carded, and ComputeReachable(M ,f ,k+1) is initiated. CheckReach-

able now tries to construct a new reachability sequence. Recall that the

counterexample has been obtained on an over-approximated set of states and

therefore might not represent a real counterexample in the original model. In

case a real counterexample exists, it will be found during a BMC run on the

original model M for a larger bound. The complete ITP algorithm appears

in Figure 2.2
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Chapter 3

Exploiting

Interpolation-Sequence in

Model Checking

In this section we present a SAT-based algorithm for full verification (some-

times also called unbounded model checking (UMC)), which combines BMC

and interpolation-sequence [57]. BMC is used to search for counterexamples

while the interpolation-sequence is used to produce over-approximated sets

of reachable states and to check for termination.

Interpolation-sequence has been introduced and used in [38] and [44]. In

[38] it is used for computing an abstract model based on predicate abstrac-

tion for software model checking. In [44] interpolation-sequence is used for

software model checking and lazy abstraction and is applied to individual

execution paths in the control flow graph. The method presented in this sec-

tion exploits interpolation-sequence in a different manner. In particular, it

is applied to the whole model for imitating symbolic model checking (SMC).

From this point and on, we will useM to denote the finite state transition

system and f = AG p for a propositional formula p, as the property to be

verified.
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3.1 Interpolation-Sequence Based Model Check-

ing (ISB)

Note that, an interpolation-sequence exists for a bound N only when the

BMC formula φN is unsatisfiable, i.e. when there is no counterexample of

length N . In case a counterexample exists, BMC returns a counterexample

and the interpolation-sequence is not needed.

Definition 3.1.1 (BMC-partitioning). A BMC-partitioning for φN is the

sequence Γ = ⟨A1, A2, . . . , AN+1⟩ of formulas such that A1 = INIT(V 0) ∧
TR(V 0, V 1), for every 2 ≤ i ≤ N Ai = TR(V i−1, V i) and AN+1 = ¬p(V N).

Note that φN =
N+1∧
i=1

Ai (=
∧
Γ).

For a bound N , consider a BMC formula φN and its BMC-partitioning

Γ. In case φN is unsatisfiable, the interpolation-sequence of Γ is denoted by

ĪN = ⟨IN0 , IN1 , . . . , INN+1⟩. Note that Γ contains N +1 elements and therefore

the interpolation-sequence contains N + 2 elements where the first element

and the last one are always ⊤ and ⊥, respectively.
Next, we intuitively explain our method. We start with N = 1. Consider

the formula φ1 and its BMC-partitioning: ⟨A1, A2⟩. In case φ1 is unsatisfi-

able, there exists an interpolation-sequence of the form Ī1 = ⟨I10 = ⊤, I11 , I12 =

⊥⟩. By Definition 2.3.2, ⊤ ∧ A1 ⇒ I11 where A1 = INIT(V 0) ∧ TR(V 0, V 1).

Therefore S1 ⊆ I11 , where S1 is the set of states reachable from the initial

states in one transition. Also, I11 ∧¬p(V 1) is unsatisfiable, since I11 ∧A2 ⇒ ⊥,
where A2 = ¬p(V 1). Therefore, I11 |= p.

In the next BMC iteration, forN = 2, consider φ2 and its BMC-partitioning

⟨A1, A2, A3⟩. In case φ2 is unsatisfiable, we get Ī2 = ⟨⊤, I21 , I22 ,⊥⟩. Here too,
S1 ⊆ I21 and the states reachable from it in one transition are a subset of

I22 since I21 ∧ A2 ⇒ I22 . Also, S2 ⊆ I22 and I22 |= p. Let us define the sets

F1 = I11 ∧ I21 and F2 = I22 . These sets have the following properties, S1 ⊆ F1,

S2 ⊆ F2, F1 |= p and F2 |= p. Moreover, F1[V
1 ← V ]∧TR(V, V ′)⇒ F2[V

2 ←
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V ′].

In the general case if φN is unsatisfiable then for every 1 ≤ j ≤ N ,

Sj ⊆ INj . If we now define Fj =
N∧
k=j

Ikj then for every 1 ≤ j ≤ N we get:

• Fj |= p since Ijj |= p.

• Fj ∧ TR(V, V ′)⇒ F ′
j+1 since Ikj (V

j) ∧ TR(V j, V j+1)⇒ Ikj+1(V
j+1) for

every 1 ≤ k ≤ N

• Sj ⊆ Fj since Sj ⊆ Ikj for every 1 ≤ k ≤ N .

As a result, the sequence ⟨F0 = INIT, F1, F2, . . . , FN⟩ is a FRS (Defini-

tion 2.4.1) and can be used to determine ifM |= f . Similarly to the sequence

obtained from ITP, the sets Ij are over-approximations of Sj computed by

SMC. Therefore, these sets can be used to imitate the forward reachability

analysis of the model’s state-space by means of an over-approximation. This

is done in the following manner. BMC runs as usual with one extension.

After checking bound N , if a counterexample is found, the algorithm termi-

nates. Otherwise, the interpolation-sequence ĪN is extracted and the sets Fj

for 1 ≤ j ≤ N are updated. If Fj ⇒
j−1∨
i=1

Fi for some 1 ≤ j ≤ N , then we

conclude that a fixpoint has been reached and all reachable states have been

visited. Thus, M |= f . If no fixpoint is found, the bound N is increased

and the computation is repeated for N + 1. We elaborate mode on fixpoint

computation later.

Next, we explain why the algorithm uses Fj =
N∧
k=j

Ikj rather than INj

in its Nth iteration. Informally, the following facts are needed in order to

guarantee the correctness of the algorithm. For every 1 ≤ j ≤ N we need

the following:

1. Fj should satisfy p.

2. Fj(V ) ∧ TR(V, V ′)⇒ Fj+1(V
′) for j ̸= N .
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1: function UpdateReachable(k,F̄[k],Ī
k)

2: j = 1
3: while (j < k) do
4: Fj = Fj ∧ Ikj
5: F̄[k][j] = Fj

6: j = j + 1
7: end while
8: F̄[k][k] = Ikk
9: end function

Figure 3.1: Updating the reachability sequence F̄[k]

3. Sj ⊆ Fj.

This means that the algorithm cannot be implemented using the extracted

interpolation sequence ĪN alone. This is because ĪN does not satisfy condi-

tion (1): while INN |= p, INj for j ̸= N , does not necessarily satisfy p. This

can be remedied by conjoining each INj with Ijj . However, now condition

(2) no longer holds. Taking Fj =
N∧
k=j

Ikj results in a sequence with all three

properties. By that, the sequence follows the properties of Definition 2.4.1.

The algorithms for updating the FRS and checking for a fixpoint are

described in Figure 3.1 and Figure 3.2, respectively. The complete model

checking algorithm using the method described above is given in Figure 3.3.

We refer to it as Interpolation-Sequence Based Model Checking (ISB).

It is important to note that a call to UpdateReachability changes all

elements of the FRS F̄[k]. Therefore, the function FixpointReached cannot

count on inclusion checks done in previous iterations and needs to search for

a fixpoint at every point in F̄[k]. Moreover, it is not sufficient to check for

inclusion of only the last element IN of F̄[k]. Indeed, if there exists j ≤ N

such that Fj ⇒
j−1∨
i=1

Fi then all reachable states have been found already.

However, the implication FN ⇒
N−1∨
i=1

Fi might not hold due to additional

unreachable states in IN . This is because for all 1 ≤ j < N , Fj+1 is an over-
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10: function FixpointReached(F̄[n])
11: j = 1
12: while (j ≤ F̄[k].length) do

13: R =
j−1∨
i=0

Fi

14: φ = Fj ∧ ¬R // Negation of Fj ⇒ R
15: if (SAT(φ) == false) then return true
16: end if
17: j = j + 1
18: end while
19: return false
20: end function

Figure 3.2: Checking if a fixpoint has been reached

21: function ISB(M ,f)
22: k := 0
23: result = BMC(M, f, 0)
24: if (result == cex) then
25: return cex
26: end if
27: F̄[k] = ⟨INIT⟩ // Reachability sequence
28: while (true) do
29: k = k + 1
30: result = BMC(M, f, k)
31: if (result == cex) then
32: return cex
33: end if
34: Īk = ⟨⊤, Ik1 , . . . , Ikk ,⊥⟩
35: UpdateReachable(F̄[k],Ī

k)
36: if (FixpointReached(F̄[k]) == true) then
37: return true
38: end if
39: end while
40: end function

Figure 3.3: The ISB Algorithm
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approximation of the states reachable from Fj and not the exact image (that

is, Fj(V ) ∧ TR(V, V ′) ⇒ Fj+1[V ← V ′] rather than Fj(V ) ∧ TR(V, V ′) ≡
Fj+1[V ← V ′]).

Theorem 3.1.2. Assume there is no path of length N or less violating f in

M . If there exist 1 < j ≤ N such that Fj ⇒
j−1∨
i=1

Fi, then M |= f .

Proof. By assumption, there is no path inM of length N or less that violates

f . We now show that given Fj ⇒
j−1∨
i=0

Fi we can conclude that there is no path

of any length violating f . Let R =
j−1∨
i=0

Fi. By assumption, Fj ⇒ R and for

every 0 ≤ i < j, Fi(V ) ∧ TR(V, V ′)⇒ Fi+1(V
′). Thus, R(V ) ∧ TR(V, V ′)⇒

R(V ′) (1). Moreover, for every 1 ≤ i ≤ j Fi ⇒ p. Hence, R ⇒ p is

unsatisfiable (2).

We can show by induction that all reachable states are in R. The base

case handles an initial state. This holds trivially by the definition of R. Now

let us assume it holds for all states reachable in k steps. It should be proved

for states reachable in k + 1 steps. Let sk+1 be a state reachable in k + 1

steps from an initial state. Let π = s0, s1, . . . , sk, sk+1 be an initial path to

sk+1. By the induction hypothesis sk ∈ R. By the fact that (sk, sk+1) ∈ TR

and by (1) we can conclude that sk+1 ∈ R.
By that and (2), the set of reachable states satisfy p which implies that

M |= f .

Lemma 3.1.3. Suppose M |= f then there exists a bound N such that F̄ =

{INIT, F1, F2, . . . , FN} and there exists an index 1 < j ≤ N such that Fj ⇒
j−1∨
i=1

Fi.

Proof. The set of states S is finite. Let us define N = j = |S| + 1. M |= f

hence for every 0 ≤ k ≤ N , φk is unsatisfiable. Thus, the interpolation-
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sequence Īk exists for every 0 ≤ k ≤ N and by that the FRS F̄ = {INIT, F1, F2, . . . , FN}

exists. Since |S| <∞ we get Fj ⇒
j−1∨
i=1

Fi.

Theorem 3.1.4. There exists a path π of length N such that π violates f if

and only if ISB terminates and returns cex.

Proof. Assume that the minimal violating path is of length N . For N − 1

there is no path in M violating f . By Theorem 3.1.2 we get that for ev-

ery j such that 1 ≤ j < N , Fj ⇒
j−1∨
i=1

Ii does not hold. Therefore, the

algorithm cannot terminate by returning true in the first N − 1 iterations.

When the algorithm reaches the N -th iteration, BMC(M, f,N) will return

a counterexample and the algorithm terminates. The other direction is im-

mediate.

Theorem 3.1.5. For every model M and property f = AG p there exists a

bound N such that ISB terminates. Moreover,

• M |= f if and only if there exists an index 0 < j ≤ N such that

Fj ⇒
j−1∨
i=0

Fi.

• There exists a path π of length N such that π violates f if and only if

ISB returns cex.

Proof. The proof is immediate from Lemma 3.1.3 and Lemma 3.1.4.

3.2 Comparing Interpolation-Sequence Based

MC to Interpolation Based MC

In the previous section we presented ISB, an algorithm, which combines BMC

and interpolation-sequence [57], and in the previous chapter we described the

Interpolation based algorithm (ITP) [43]. Both algorithms are based on the
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use of interpolation for computing a reachability sequence. In this section

we analyze the differences between the algorithms.

Both methods compute an over-approximation of the set of reachable

states. However, their state traversals are different. As a result, none is

better than the other in all cases. In specific cases, though, one may converge

faster.

Several technical details distinguish ISB from ITP. First, the formulas

from which the interpolants are extracted are different. For a given bound

N , ISB uses the formula φN while ITP uses φ1,N .

Second, the approximated sets are computed in different manners. ISB

computes the sets Fj incrementally and refines them after each iteration of

BMC, as part of the BMC loop. ITP, on the other hand, recomputes the

interpolants whenever the bound is incremented (that is, whenever Check-

Reachable is called with a larger bound).

Third, ISB can be viewed as an addition to the BMC loop. At each

application of BMC (with a different bound), the addition includes the ex-

traction of an interpolation-sequence and the check if a fixpoint has been

reached. Indeed, after N iterations of the BMC loop in ISB, there are N

over-approximated sets of states, F1, . . . , FN satisfying, for each 1 ≤ j ≤ N ,

Sj ⪯N Fj.

On the other hand, ITP consists of two nested loops. The outer loop

increments the bounds while the inner loop computes over-approximated

sets of reachable states. If the outer loop is at some bound N > 1 and the

inner loop performs L iterations then there are L sets of states JN
1 , . . . , J

N
L ,

each satisfying Si ⪯N+L JN
i (1 ≤ i ≤ L). Table 3.1 summarizes the above

differences.

In summary, ITP can compute, at a given bound N , as many sets as

needed as long as no counterexample is found (not necessarily a real coun-

terexample). On the other hand, for bound N , ISB can only compute N

sets. However, it does not need recurrent BMC calls for each bound (only
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SMC ISB ITP

⟨S1, . . . , SN⟩ ⟨F1, F2, . . . , FN⟩ ⟨J1
1 , J

1
2 , . . . , J

1
N⟩

Si ⪯N Fi Si ⪯N J1
i

After checking N iterations at
bounds 1 to N bound 1, if possible

⟨S1, . . . , SN+L⟩ ⟨F1, . . . , FL, . . . , FN+L⟩ ⟨JN
1 , J

N
2 , . . . , J

N
L ⟩

Si ⪯N+L Fi Si ⪯N+L J
N
i , (1 ≤ i ≤ L)

After checking L iterations at
bounds 1 to N + L bound N , if possible

Table 3.1: The correlation between the interpolants computed by ISB and
ITP to the sets computed by SMC

one is needed). Thus, we can conclude that in cases ITP can compute all the

needed sets at a low bound it performs better than ISB. However, for exam-

ples where the needed sets can only be computed using higher bounds, ISB

has an advantage. This fact is reflected in the experimental results reported

in the next section.

As mentioned before, when a counterexample exists the over-approximated

sets of reachable states are not needed. If a property is violated then there

exists a minimal bound N for which a violating path of length N exists.

Both algorithms have to reach this bound in order to find the counterexam-

ple. Here, ISB has a clear advantage over ITP. This is because after each

BMC run on the original model, ITP executes at least one additional BMC

run on a modified model. Thus, ITP invokes at least two BMC runs for each

bound from 1 to N − 1. Clearly, the second BMC run is more demanding

than the inclusion check performed by ISB. In all experiments of [57], falsified

properties always favored ISB.
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Figure 3.4: Runtime (in seconds) of falsified properties on Intel’s micro-
architecture.

3.3 Implementation Details and Experimen-

tal Results

3.3.1 Implementation Details

Both the ISB and the ITP algorithms were implemented within Intel’s ver-

ification system using a SAT-based model checker which is based on Intel’s

in-house SAT solver Eureka. The interpolants are represented by a data-

structure similar to an And-Inverter Graph (AIG) and are simplified and

optimized using known methods such as constant propagation and sharing

of redundant expressions.

3.3.2 Experimental Results

The two algorithms have been checked on various models taken from two

of Intel’s CPU designs. The characteristics of the checked models appear
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Figure 3.5: Runtime (in seconds) of verified properties on Intel’s micro-
architecture.

Name ♯Vars B BITP ♯I ♯IITP ♯BMC ♯BMCITP Time [s] TimeITP [s]
f1 3406 16 15 136 80 16 80 970 5518
f2 1753 9 8 45 40 9 40 91 388
f3 1753 7 6 28 28 7 28 49 179
f4 1753 16 15 136 94 16 94 473 1901
f5 3406 6 5 21 13 6 13 68 208
f6 1761 2 1 3 2 2 2 5 4
f7 3972 3 1 6 3 3 3 19 14
f8 2197 3 1 6 3 3 3 10 7
f9 1629 23 6 276 39 23 39 2544 1340
f10 4894 5 1 15 3 5 3 635 101

Table 3.2: Verified properties and their running parameters.
Unindexed columns refer to the ISB algorithm; columns indexed with ITP
refer to the ITP algorithm. ♯Vars stands for the number of state variables in
the cone of influence. B - bound at convergence, ♯I - number of interpolants
computed, ♯BMC - number of calls to the BMC algorithm, and Time[s] - the
runtime in seconds.
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in Table 3.3. The 136 properties chosen for the experiments were all real

safety properties used to verify the correctness of the designs. The cone of

influence for the properties contains thousands of state variables and tens of

thousands of gates and signals. The properties vary in that some are true

and some are false. During all checks, a timeout of 10,000 seconds has been

set. Experiments were conducted on systems with a dual core Xeon 5160

processors (Core 2 micro-architecture) running at 3.0GHz (4MB L2 cache)

with 32GB of main memory. Operating system running on the system is

Linux SUSE.

Figure 3.4 and Figure 3.5 show the runtime in seconds for the two algo-

rithms. Each point represents a property from the set of chosen properties.

The X axis represents runtime for ITP while the Y axis represents the run-

time using ISB. We can see that the results vary. Figure 3.4 shows the

runtime for the falsified properties. Figure 3.5 shows the runtime for the ver-

ified properties. All falsified properties (total of 67) favor ISB. There are five

properties that can be verified by ISB and not by ITP (due to timeout) and

two properties that can be falsified using ISB while cannot be falsified using

ITP. On the other hand, there are seven properties that cannot be verified

by ISB but can be verified by ITP. The rest of the properties (57 total) are

all verified by both algorithms.

A more accurate analysis of the algorithms is shown in Table 3.2 that

presents running parameters (number of state variables in the cone of in-

fluence, bound at convergence, number of interpolants computed, number

of calls to BMC and runtime) on various properties for both ITP and ISB.

For some cases, even though ITP converges at a lower bound, and computes

fewer interpolants than ISB, ISB still converges faster by means of runtime.

This is due to the fact that BMC calls are computationally heavier than the

extraction of the interpolants. Since ITP issues more calls to BMC than

ISB in these cases, the influence on its runtime is noticeable. Through all

our experiments, when convergence for ITP could be achieved only at high
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Name ♯ Latches ♯ Inputs ♯ Gates
M1 3611 3 84570
M2 4968 2079 133255
M3 12806 402 89392
M4 1672 459 11195
M5 19213 305 146717

Table 3.3: Models used for testing

bounds, ISB always performed better while for convergence at lower bounds,

ITP performs better. This result is supported by the analysis presented in

the previous section.
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Chapter 4

Intertwined Forward-Backward

Reachability Analysis Using

Interpolants

The work we present in this chapter appeared in [59]. We develop a novel

SAT-based verification approach which is based on interpolation. The novelty

of our approach is in extracting interpolants in both forward and backward

manner and exploiting them for an intertwined approximated forward and

backward reachability analysis. Our approach is also mostly local and avoids

unrolling of the checked model as much as possible. This results in an efficient

and complete SAT-based verification algorithm.

In previous chapters we showed how ITP uses interpolation to extract an

over-approximation of a set of reachable states from a proof of unsatisfiability,

generated by a SAT-solver. The set of reachable states computed by the

reachability analysis is used by ITP to check if a system M satisfies a safety

property AGp.

In [8] an alternative SAT-based algorithm, called IC3, is introduced. Sim-

ilarly to ITP, IC3 also computes over-approximations of sets of reachable

states. However, ITP unrolls the model in order to obtain more precise ap-
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proximations. In many cases, this is a bottleneck of the approach. IC3, on

the other hand, improves the precision of the approximations by performing

many local checks that do not require unrolling. We will go into more details

about IC3 in Chapter 6.

Both ITP and IC3 compute over-approximations of the sets of states

obtained by a forward reachability analysis. The forward analysis starts from

the initial states ofM , and iteratively computes successors while making sure

that no bad state violating p is reached. Verification based on reachability can

also be performed in a dual manner using a backward reachability analysis.

The backward analysis starts from the states satisfying ¬p and iteratively

computes ancestors while making sure that no initial state is reached.

Traditionally, BDD-based verification methods [20] use both forward and

backward analyses [15, 56], while SAT-based methods mainly implement the

forward one. Recently, a few works considered backward analysis in the

context of SAT as well (e.g. [14, 26]). Most such works use forward and

backward analyses independently of each other, or use a weak combination

of the two, such as replacing the role of the initial states in the backward

analysis by the reachable states computed by a forward analysis.

In the work presented in this chapter, we propose an interpolation-based

verification method that applies mostly local checks and avoids unrolling of

the model as much as possible. Our approach combines approximated for-

ward and backward analyses in a tight and intertwined way, and uses each

of them to enhance the precision of the other. Thus, the tight combina-

tion of the two analyses replaces unrolling in enhancing the precision of the

computed over-approximated sets of states.

Our work uses the observation that a single SAT check entails infor-

mation both about states reachable from the initial states (via post-image

operations) and about states that reach the bad-states (via pre-image opera-

tions). We exemplify this observation by examining the propositional formula

INIT(V )∧TR(V, V ′)∧¬p(V ′) where INIT and ¬p describe the sets of initial
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states and bad states, respectively, and TR(V, V ′) describes the transition

relation. If this formula is satisfiable, then there exists a path of length one

from the initial states to the bad states. If it is unsatisfiable, then all states

reachable from the initial states in one transition are a subset of p. This fact

is often used in forward reachability. We now note that the unsatisfiability

of this formula can be used in backward reachability as well. This can be

done by interpreting it as “all states that can reach the bad states in one

transition are disjoint from the initial states”.

We exploit this dual observation by extracting two different interpolants

from the unsatisfiabe formula INIT(V ) ∧ TR(V, V ′) ∧ ¬p(V ′). The forward

interpolant (the one used in ITP) provides an over-approximation of the

post-image of INIT which is disjoint from ¬p. The backward interpolant,

computed for the same formula when it is read backward, from right to left,

provides an over-approximation of the pre-image of ¬p which is disjoint from

INIT.

We use the above observation as a key element in traversing the state

space in a dual fashion, both forward from the initial states and backwards

from the bad states.

Our algorithm, Dual Approximated Reachability (DAR), computes a For-

ward Reachability Sequence F̄ = ⟨F0, F1, . . .⟩, and a Backward Reachability

Sequence B̄ = ⟨B0, B1, . . .⟩. The set Fi represents an over-approximation of

the set of states which are reachable from INIT in exactly i transitions. Fur-

ther, Fi is disjoint from ¬p. Similarly, Bi represents an over-approximation

of the set of states that can reach ¬p in exactly i transitions, and it is also

disjoint from INIT. Thus, the existence of either F̄ or B̄ of length n ensures

that no counterexample of length n exists in M .

The goal of DAR is to gradually strengthen (make more precise) and ex-

tend F̄ and B̄, until a counterexample is found or until one of F̄ or B̄ reaches

a fixpoint, that is, no new states are found when the sequence is further ex-

tended. To do this, DAR employs local strengthening phases, assisted by
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a global strengthening phase, when needed. Only the global strengthening

involves unrolling. Thus, the number of unrolling applications is limited. In

addition, the depth of the unrolling is also limited.

Initially, F̄ = ⟨F0⟩ and B̄ = ⟨B0⟩, where F0 = INIT and B0 = ¬p. At

iteration n, we define the sequence Π = ⟨ INIT, F1∧Bn, F2∧Bn−1, . . . , Fn∧
B1, ¬p ⟩. Π represents an over-approximation of the set of all possible paths

from INIT to ¬p of length n+1 in M . That is, Π over-approximates the set

of all counterexamples in M of length n+ 1. DAR attempts to show that Π

represents no counterexample.

The local strengthening phase checks whether there are in fact transitions

between every two consecutive sets in Π. It turns out that this can be done

by applying local checks of the form Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V
′). If such

a formula is unsatisfiable, then no transition exists from Fi ∧ Bn−i+1 to its

successor along Π, thus no counterexample of length n + 1 exists. This

can also be understood by observing that the unsatisfiability of Fi(V ) ∧
TR(V, V ′)∧Bn−i(V

′) means that the states reachable from the initial states

in i transitions cannot reach Bn−i in one transition. Since Bn−i includes all

states reaching ¬p in n − i transitions, no counterexample of length n + 1

exists.

In this case, the forward interpolant of Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V
′) is

used to strengthen Fi+1 while the backward interpolant strengthens Bn−i+1.

Strengthening is now propagated along F̄ and B̄. This reflects the fact that

the components of one sequence are strengthened based on the components

of the other everywhere along the sequences, making the analyses closely

intertwined. Next, F̄ and B̄ are extended by initializing Fn+1 to be the for-

ward interpolant of Fn(V )∧TR(V, V ′)∧B0(V
′) and Bn+1 to be the backward

interpolant of F0(V ) ∧ TR(V, V ′) ∧Bn(V
′).

The global strengthening phase is applied when Fi(V )∧TR(V, V ′)∧Bn−i(V
′)

is satisfiable for all i. This implies that a transition exists between every two

consecutive sets in Π, making local reasoning insufficient. We therefore grad-
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ually unroll the model M and check whether the states in Fi ∧ Bn−i+1 are

unreachable from INIT via i transitions of M . Once we find such an i, the

unrolling can stop. We are certain that no counterexample of length n + 1

exists. We strengthen F̄ up to depth i using an interpolation-sequence [38],

and return to the local strengthening phase for further strengthening and for

extending F̄ and B̄ to length n+ 1.

We implemented our DAR algorithm and compared it to both ITP and

IC3, on real-life industrial designs as well as examples from the HWMCC’11

benchmark. In many cases, our algorithm outperformed both methods. We

noticed that the number of iterations where global strengthening was needed,

as well as the depth of the unrolling in the global strengthening phase is often

smaller relative to the length of F̄ and B̄. This reflects the fact that our use

of unrolling is limited.

To summarize, the novelty of our approach is twofold. It suggests a

SAT-based intertwined forward-backward reachability analysis. Further, the

reachability analysis is interpolation-based. Yet, it is mostly local and avoids

unrolling as much as possible.

4.1 Related Work

Several works use interpolation in the context of model checking. Interpolation-

based model checking (ITP) was initially introduced in [43]. Similarly to ITP,

DAR also uses interpolation to compute over-approximated sets of reachable

states. However, ITP computes interpolants based on an unrolled formula

and increases unrolling to make the over-approximation more precise. DAR,

on the other hand, mostly avoids unrolling and uses backward and forward

interpolants from local checks for strengthening. In addition, ITP restarts

when it finds a spurious counterexample, increasing the depth of unrolling. In

contrast, DAR keeps strengthening the computed over-approximations from

previous iterations. In [14] improvements for ITP are suggested. They im-
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plement a backward-traversal using interpolants. Unlike our method, their

backward traversal is an adaptation of ITP and is not tightly integrated with

the forward traversal.

The work in [26] is also based on ITP in the sense of computing in-

terpolants based on unrolling of the model, where the depth of unrolling

increases in each iteration. Their work integrates the use of forward and

backward analyses: in each iteration the result of the backward analysis is

used to restrict the initial states and the result of the forward analysis is used

to restrict the bad states. Our approach, on the other hand, uses the result

of the forward analysis to strengthen all intermediate sets of B̄. Similarly

the result of the backward analysis stregthens F̄ .

Interpolation-sequence, which extends the notion of an interpolant for a

sequence of formulas has been proposed and used for model checking [38,

44, 57, 16]. DAR makes a similar use of interpolation-sequence in its global

strengthening phase. In contrast to the other methods, interpolation-sequence

is not a key element of DAR since it is only applied occasionally. Further, it

is applied to a restricted depth of unrolling.

The introduction of IC3 [8] suggested a different way to compute informa-

tion about reachable states. During this process, sets of states that are similar

in characteristics to interpolants are computed. Unlike interpolation-based

approaches IC3 requires no unrolling and is based on inductive reasoning.

The main difference between DAR and IC3 is in the way they strengthen

the over-approximated sets of states. IC3 finds a state that can reach ¬p
and if it concludes that this state is not reachable, it tries to generalize this

fact and removes more than just one state. DAR on the other hand finds

an over-approximation of all states that can reach ¬p, rather than a single

state. It then tries to prove that the entire set is unreachable. Also, when

DAR fails to strengthen using local reasoning, it applies a limited unrolling

in the global phase. On the other hand, IC3 can fall into state enumeration

if generalization is not successful.
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4.2 Using Interpolants for Forward and Back-

ward Analysis

Let Q be a propositional formula over V . The post-image of Q w.r.t. M

is the set of all states reachable from Q in one transition, defined by the

formula ∃V [Q(V ) ∧ TR(V, V ′)] (note that this formula is defined over V ′).

The pre-image of Q w.r.t. M is the set of all states that can reach Q in one

transition, defined by ∃V ′[TR(V, V ′) ∧Q(V ′)].

Definition 4.2.1. LetM be a transition system and let φ and ψ be proposi-

tional formulas over V . We define the formula ΓM(φ, ψ) = φ(V )∧TR(V, V ′)∧
ψ(V ′) to be a local reachability check w.r.t. M , φ and ψ.

Whenever M is clear from the context we omit M and write Γ(φ, ψ).

4.2.1 Forward and Backward Interpolants

Let R and Q be propositional formulas over V representing sets of states,

and let TR(V, V ′) be a transition relation. Suppose we would like to know if

the post image of R, i.e., the set of states reachable from R in one transition,

is disjoint from Q. This property can be checked by checking the formula

Γ(R,Q) = R(V ) ∧ TR(V, V ′) ∧ Q(V ′) for unsatisfiability. If the formula is

unsatisfiable then the answer is yes, meaning that Q is not reachable from

R in one step. Moreover, using interpolation enables us to derive from the

unsatisfiable formula an over-approximation of the post image of R that is

still disjoint from Q. Specifically, let φ− = R(V ) ∧ TR(V, V ′) and φ+ =

Q(V ′). An interpolant I = I(φ−, φ+) satisfies R(V ) ∧ TR(V, V ′) ⇒ I(V ′)

and I(V ′) ∧ Q(V ′) ≡ ⊥. Therefore, I represents an over approximation of

the states reachable from R in one transition, and it is also disjoint from Q.

The unsatisfiability of the formula Γ(R,Q) = R(V ) ∧ TR(V, V ′) ∧Q(V ′)

can also be interpreted in a different manner, shedding light on the pre-

image of Q. More precisely, the unsatisfiability of the formula states that
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the pre-image of Q, i.e., the set of all states that can reach Q in one tran-

sition, is disjoint from R. This view leads to a different way of using in-

terpolation in this setting. For the backward interpretation, we now define

φ− = TR(V, V ′) ∧ Q(V ′) and φ+ = R(V ). Again, since φ− ∧ φ+ is un-

satisfiable, an interpolant I exists. Formally TR(V, V ′) ∧ Q(V ′) ⇒ I(V ),

therefore I is an over-approximation of the pre-image of Q. Moreover, I ∧R
is unsatisfiable and therefore I is disjoint from R.

We conclude that interpolation gives us a way to approximate both post-

image and pre-image computations. Formally, we define forward and back-

ward interpolants:

Definition 4.2.2 (Forward and Backward Interpolants). Let R and Q be

propositional formulas over V s.t. Γ(R,Q) ≡ ⊥. The forward interpolant

of Γ(R,Q), denoted FI(R,Q), is I(R(V ) ∧ TR(V, V ′), Q(V ′))[V ′ ← V ]. The

backward interpolant of Γ(R,Q), denoted BI(R,Q), is I(TR(V, V ′)∧Q(V ′), R(V )).

Note that I(R(V ) ∧ TR(V, V ′), Q(V ′)) is defined over V ′. Therefore, we

substitute V for V ′ in the definition of a forward interpolant. As explained

above:

Theorem 4.2.3. FI(R,Q) over-approximates the post-image of R, and is

disjoint from Q. Similarly, BI(R,Q) over-approximates the pre-image of Q,

and is disjoint from R.

Proof. By definition, FI(R,Q) = I(R(V ) ∧ TR(V, V ′), Q(V ′))[V ′ ← V ]. By

the properties of an interpolant, R(V )∧TR(V, V ′)⇒ I(R(V )∧TR(V, V ′), Q(V ′)).

Recall that I(R(V ) ∧ TR(V, V ′), Q(V ′)) is defined over V ′ only. There-

fore, the above implication implies that ∃V [R(V ) ∧ TR(V, V ′)]⇒ I(R(V ) ∧
TR(V, V ′), Q(V ′)) which ensures that the interpolant over-approximates the

post-image of R. In addition, I(R(V )∧TR(V, V ′), Q(V ′))∧Q(V ′) ≡ ⊥, which
ensures that the interpolant is disjoint from Q. The proof for BI(R,Q) is

similar.
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4.2.2 Forward and Backward Reachability Sequences

Our model checking algorithm for safety properties, described in Section 4.3,

uses forward and backward interpolants for the computation of over-approximated

sets of forward and backward reachable states. Technically, we consider both

forward and backward reachability approximations:

Recall the definition of a FRS (Definition 2.4.1). We now define the dual

backward reachability sequence.

Definition 4.2.4. A Backward Reachability Sequence (BRS) w.r.t. M and

a property AGp is a sequence B̄[n] = ⟨B0, B1, . . . , Bn⟩ of sets of states s.t.

• B0 = ¬p.

• Bi+1(V )⇐ TR(V, V ′) ∧Bi(V
′) for 0 < i ≤ n.

• Bi ⇒ ¬INIT for 0 ≤ i ≤ n.

We define the length of F̄[n] and B̄[n] to be n. When n is clear from the

context, we omit it from the notation and simply use F̄ and B̄. The second

condition in Definition 2.4.1 (Definition 4.2.4) states that Fi+1 (Bi+1) is an

over-approximation of the post(pre)-image of Fi (Bi) w.r.t. M . Iterating

these properties, we conclude that Fi over-approximates the set of states

reachable from INIT in i steps, and Bi over-approximates the set of states

reaching a violation of p in i steps. The following properties hold for FRS

and BRS:

Theorem 4.2.5. A FRS of length n for M and AGp exists iff there is no

counterexample of length n or less in M for AGp. Similarly for a BRS.

Proof. Consider a FRS of length n. Denote by Ri the set of states reachable

from INIT in exactly i steps. It can be shown inductively that Ri ⇒ Fi:

Initially, F0 = INIT = R0, and for the induction step: Ri(V ) ∧TR(V, V ′)⇒
Fi(V ) ∧ TR(V, V ′) ⇒ Fi+1(V

′). Since the right-hand side is defined over
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V ′ only, this implication implies that Ri+1(V
′) = ∃V [Ri(V ) ∧ TR(V, V ′)] ⇒

Fi+1(V
′).

Now suppose there exists a FRS of length n. For every 0 ≤ i ≤ n,

Ri ⇒ Fi ⇒ p (the second implication is due to the third property of a FRS).

This means that all states reachable from INIT in n steps or less satisfy p.

Hence no counterexample of length n or less exists.

For the other direction, suppose there is no counterexample of length

n or less. Then a FRS of length n can be defined by setting Fi = Ri for

every 0 ≤ i ≤ n. The sequence ⟨R0, . . . , Rn⟩ satisfies all the requirement

of a FRS: R0 = INIT. Ri+1(V
′) = ∃V [Ri(V ) ∧ TR(V, V ′)]. Therefore,

Ri+1(V
′) ⇐ Ri(V ) ∧ TR(V, V ′). Finally, since no counterexample of length

≤ n exists, Ri ⇒ p for every 0 ≤ i ≤ n.

The proof for a BRS is similar, when replacing Ri with the set Qi of states

that reach ¬p in exactly i steps.

Next we extend the definition of a fixpoint (Definition 2.4.2) and the

resulting theorem (Theorem 2.4.3) to include also the BRS:

Definition 4.2.6 (Fixpoint). Let F̄ be a FRS and B̄ a BRS of length n.

We say that F̄ is at fixpoint if there exists 0 < k ≤ n s.t. Fk ⇒
∨k−1

i=0 Fi.

Similarly, we say that B̄ is at fixpoint if there exists 0 < k ≤ n s.t. Bk ⇒∨k−1
i=0 Bi.

Theorem 4.2.7. Let F̄ be a FRS and B̄ a BRS of length n for M and AGp.

If F̄ or B̄ is at fixpoint then M |= AGp.

Proof. The proof for F̄ is similar to the one appearing for Theorem 2.4.3.

The proof for B̄ is similar, where instead of R we use the set Q of all

states that can reach ¬p in any number of steps.

Note that a fixpoint in one of the sequences suffices to conclude that

M |= AGp.
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4.3 Dual Approximated Reachability

In this section we describe our Dual Approximated Reachability (DAR) algo-

rithm for model checking safety properties. DAR computes over-approximated

sets of reachable states for both forward and backward reachability analysis

by means of a FRS and a BRS, using interpolants. The computations are in-

tertwined where each of them is used to make the other tighter. DAR avoids

unrolling of the transition system unless it is really needed.

Technically, DAR computes a FRS F̄ and a BRS B̄ and gradually extends

them until either a counterexample is found or a fixpoint is reached on either

F̄ or B̄. Since the state-space of M is finite, one of the above is bound to

happen, which ensures that:

Theorem 4.3.1. Given a model M and a safety property φ = AGp, DAR

always terminates. Moreover, M |= φ if and only if DAR returns “Verified”.

We defer the proof of Theorem. 4.3.1 to the end of the section. We now

describe DAR in detail. The pseudocode of DAR appears in Figure 4.1.

Initialization of DAR (lines 2-5) starts by checking the formula INIT∧¬p.
If this formula is unsatisfiable, the initial states of M satisfy the property. If

not, a counterexample exists. In the former case, DAR initializes F̄ = ⟨F0 =

INIT⟩ and B̄ = ⟨B0 = ¬p⟩. Clearly F̄ and B̄ are FRS and BRS, respectively.

The iterative part of DAR (lines 8-13) then gradually extends and strength-

ens F̄ and B̄ s.t. they remain a FRS and a BRS respectively. As ensured

by Lemma 4.2.5, this is possible as long as no counterexample of the cor-

responding length exists. In the following, we describe a single iteration of

DAR, strengthening and extending F̄ and B̄, or reporting a counterexample.

4.3.1 First Iteration of DAR

Let us first present the first iteration of DAR. Recall that initially F̄ = ⟨F0 =

INIT⟩ and B̄ = ⟨B0 = ¬p⟩. DAR then checks the formula F0 ∧ TR ∧ B′
0 =

49



1: function DAR(M ,p)
2: if INIT ∧ ¬p == SAT then
3: return cex
4: end if
5: F̄ = ⟨F0 = INIT⟩, B̄ = ⟨B0 = ¬p⟩
6: n = 0
7: while !F̄ .Fixpoint()∧!B̄.Fixpoint() do
8: if LocStrengthen(F̄ , B̄, n) == false then
9: if GlbStrengthen(F̄ , B̄, n) == false then
10: return cex
11: end if
12: end if
13: n = n+ 1
14: end while
15: return Verified
16: end function

Figure 4.1: Dual Approximated Reachability

INIT ∧ TR ∧ ¬p′ for satisfiability. In case this formula is satisfiable a coun-

terexample of length one exists. Otherwise, the formula is unsatisfiable,

meaning all states reachable from INIT in one transition satisfy p. Alterna-

tively, all states that can reach ¬p in one transition are not part of INIT.

Thus, the unsatisfiability of INIT∧TR∧¬p′ entails information both about

the post-image of INIT and about the pre-image of ¬p.
The above gives us an intuition of how to extend both the FRS and the

BRS. For the FRS we define F1 = FI(F0, B0). For the extension of the BRS,

we define B1 = BI(F0, B0). Due to the properties of the interpolants, the

sequences F̄ = ⟨F0, F1⟩ and B̄ = ⟨B0, B1⟩ are a FRS and a BRS respectively.

4.3.2 General Iteration of DAR

Let us now discuss a general iteration n + 1. Consider the FRS F̄[n] =

⟨F0, F1, . . . , Fn⟩ and the BRS B̄[n] = ⟨B0, B1, . . . Bn⟩ obtained at iteration n.

The goal of iteration n + 1 is to check if a counterexample of length n + 1
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exists, and if not, extend these sequences to length n+ 1 s.t. they remain a

FRS and a BRS.

The combination of F̄[n] and B̄[n] provides an approximate description

of all possible counterexamples of length n + 1 in M . Namely, recall that

Fi over-approximates the set of all states reachable from INIT in i steps.

Similarly, Bj over-approximates the set of all states that can reach ¬p in j

steps. Their intersection, Fi ∧ Bj therefore over-approximates the set of all

states that are both reachable from INIT in i steps and can reach ¬p in j

steps. These are states that appear in the i-th step of a counterexample of

length i+j for AGp inM . In particular, when we align F̄ and B̄ one against

the other, conjoining Fi with Bn−i+1, we obtain an over-approximation of the

set of all states that appear in the i-th step of a counterexample of length

n+ 1 for AGp in M . The sequence

Π(F̄[n], B̄[n]) = ⟨INIT, F1 ∧Bn, F2 ∧Bn−1, . . . , Fn ∧B1,¬p⟩

therefore over-approximates the set of all counterexamples of length n+1 in

M for AGp.

We refer to the sequence Π(F̄[n], B̄[n]) as an approximated Counterexample

(aCEX). Whenever clear from the context we write Π and refer to the i-th

element in the sequence as Πi. A sequence of states s0, . . . , sn+1 inM matches

Π if for every 0 ≤ i ≤ n+1, si ∈ Πi. Formally, Π has the following property.

Lemma 4.3.2. Let π = s0, . . . , sn+1 be a counterexample in M . Then, π

matches Π.

Proof. Since π is a path in M , for every 0 ≤ i ≤ n, we have that si is

reachable in i steps from INIT. Therefore, si ∈ Fi. In addition, since π is a

counterexample, sn+1 |= ¬p. This ensures that for every 1 ≤ i ≤ n+1, si can

reach ¬p in n− i+ 1 transitions. Therefore, si ∈ Bn−i+1. We conclude that

s0 ∈ F0 = Π0, sn+1 ∈ B0 = Πn+1, and for every 1 ≤ i ≤ n, si ∈ Fi∧Bn−i+1 =

Πi. Therefore π matches Π.
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By Lemma 4.3.2, checking if a counterexample exists amounts to checking

if some path matches Π. Such a path is necessarily a counterexample of length

n+ 1. If such a path exists, we say that Π is valid.

DAR first attempts to check for (in)validity of the aCEX using local

checks in a local strengthening phase. If this fails, DAR moves on to the

global strengthening phase that applies global checks. In both phases, if the

invalidity of the aCEX is established, the FRS and BRS are strengthened

and extended into a FRS and a BRS of length n+ 1. Otherwise, the aCEX

is found to be valid and a counterexample of length n+ 1 is obtained in the

process.

4.3.2.1 Local Strengthening Phase

The local strengthening phase aims at checking if Π is locally invalid, which

provides a sufficient condition for its invalidity.

Theorem 4.3.3. Π is locally invalid if there exists 0 ≤ i ≤ n s.t. Γ(Πi,Πi+1) ≡
⊥.

Theorem 4.3.4. If Π is locally invalid, then it is also invalid.

Proof. Suppose Γ(Πi,Πi+1) = Πi ∧ TR ∧ Π′
i+1 ≡ ⊥ for some 0 ≤ i ≤. As-

sume to the contrary that a counterexample s0, . . . , sn+1 exists in M . By

Lemma 4.3.2, it matches Π. In particular, si ∈ Πi and si+1 ∈ Πi+1. More-

over, since s0, . . . , sn+1 is a path in M , (si, si+1) ∈ TR, which implies that

Πi ∧ TR ∧ Π′
i+1 ̸≡ ⊥, in contradiction.

In order to check if Π is locally invalid, we use the following observation.

Lemma 4.3.5. Let F̄[n] be a FRS, B̄[n] be a BRS, and 1 ≤ i ≤ n. Then

Γ(Fi ∧ Bn−i+1, Fi+1 ∧ Bn−i) ≡ Γ(Fi, Bn−i). Similarly, Γ(INIT, F1 ∧ Bn) ≡
Γ(F0, Bn), and Γ(Fn ∧ B1,¬p) ≡ Γ(Fn, B0). We conclude that for every

0 ≤ i ≤ n, Γ(Πi,Πi+1) ≡ ⊥ iff Γ(Fi, Bn−i) ≡ ⊥.
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Proof. We first show that Γ(Fi∧Bn−i+1, Fi+1∧Bn−i) ≡ Γ(Fi, Bn−i). This fol-

lows from the property of a FRS, where Fi(V ) ∧TR(V, V ′)⇒ Fi+1(V
′), and

the property of a BRS, where Bn−i+1(V ) ⇐ TR(V, V ′) ∧ Bn−i(V
′). Specifi-

cally, since Fi(V ) ∧ TR(V, V ′)⇒ Fi+1(V
′), we get that Fi(V ) ∧ TR(V, V ′) ∧

Bn−i(V
′) ⇒ Fi+1(V

′), and as a result Γ(Fi, Bn−i) = Fi(V ) ∧ TR(V, V ′) ∧
Bn−i(V

′) ≡ Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V
′) ∧ Fi+1(V

′) (1). Similarly, since

Bn−i+1(V )⇐ TR(V, V ′)∧Bn−i(V
′), we conclude that Bn−i+1(V )⇐ Fi(V )∧

TR(V, V ′) ∧ Bn−i(V
′) ∧ Fi+1(V

′) holds as well, which means that Fi(V ) ∧
TR(V, V ′)∧Bn−i(V

′)∧Fi+1(V
′) ≡ Fi(V )∧Bn−i+1(V )∧TR(V, V ′)∧Bn−i(V

′)∧
Fi+1(V

′) = Γ(Fi ∧ Bn−i+1, Fi+1 ∧ Bn−i) (2). Finally, by concatenating the

sequence of equivalences in (1) and (2) we conclude that Γ(Fi, Bn−i) ≡
Γ(Fi ∧Bn−i+1, Fi+1 ∧Bn−i).

The proof for Γ(INIT, F1 ∧ Bn) ≡ Γ(F0, Bn) is similar, except that only

F0(V ) ∧ TR(V, V ′) ⇒ F1(V
′) is used. Specifically, because of the above,

F0(V ) ∧ TR(V, V ′) ∧ Bn(V
′) ⇒ F1(V

′). Therefore, Γ(F0, Bn) = F0(V ) ∧
TR(V, V ′)∧Bn(V

′) ≡ F0(V )∧TR(V, V ′)∧Bn(V
′)∧F1(V

′) = Γ(F0, F1∧Bn) =

Γ(INIT, F1 ∧ Bn). Dually, in the proof of Γ(Fn ∧ B1,¬p) ≡ Γ(Fn, B0), only

B1(V )⇐ TR(V, V ′) ∧B0(V
′) is used.

The conclusion described in the second part of the lemma results from

the fact that Γ(Π0,Π1) = Γ(INIT, F1 ∧ Bn), Γ(Πn,Πn+1) = Γ(Fn ∧ B1,¬p)
and for every 1 ≤ i ≤ n, Γ(Πi,Πi+1) = Γ(Fi ∧Bn−i+1, Fi+1 ∧Bn−i).

Lemma 4.3.5 implies that if there exists 0 ≤ i ≤ n s.t. Γ(Fi, Bn−i) ≡
⊥, then the aCEX is locally invalid and hence invalid. This can also be

understood intuitively, as the above means that the (over-approximated) set

of states reachable from INIT in i steps and the (over-approximated) set of

states that can reach ¬p in n − i steps are not reachable from one another

in one step. This means that altogether ¬p is not reachable from INIT in

i + (n − i) + 1 = n + 1 steps, and hence no counterexample of length n + 1

exists.

In the local strengthening phase, DAR therefore searches for an index
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0 ≤ i ≤ n s.t. Γ(Fi, Bn−i) ≡ ⊥. It starts by checking the formula Γ(Fn, B0),

setting i = n. In case it is satisfiable, DAR starts to iteratively go back-

wards along F̄ and B̄ decreasing i by 1. The traversal continues until either

Γ(Fi, Bn−i) turns out to be unsatisfiable for some 0 ≤ i ≤ n or until Γ(F0, Bn)

is found to be satisfiable.

If an index i is found s.t. Γ(Fi, Bn−i) ≡ ⊥, then the aCEX is locally

invalid and by Lemma 4.3.4 we conclude that no counterexample of length

n + 1 exists. Moreover, in this case, the FRS and BRS are locally and

gradually strengthened and extended as follows.

Iterative Local Strengthening: Iterative local strengthening is reached

when it is already known that no counterexample of length n+1 exists. Thus,

as Lemma 4.2.5 ensures, there exist a FRS and BRS of length n+1. However,

F̄[n] and B̄[n] cannot necessarily be extended immediately. For example, if

Γ(Fn, B0) = Fn(V )∧TR(V, V ′)∧¬p(V ′) ̸≡ ⊥, then no Fn+1 can be obtained

s.t. Fn(V ) ∧ TR(V, V ′) ⇒ Fn+1(V
′) and in addition Fn+1 ⇒ p. On the

other hand, if Γ(Fn, B0) ≡ ⊥ then Fn+1 can be initialized using FI(Fn, B0)

while maintaining the properties of a FRS (similarly to the initialization of

F1). Dually, if Γ(F0, Bn) ̸≡ ⊥, then no extension of B̄[n] is possible, while if

Γ(F0, Bn) ≡ ⊥, we can set Bn+1 = BI(F0, Bn). We therefore first strengthen

the components of F̄[n] and B̄[n] until Γ(Fn, B0) ≡ ⊥ and Γ(F0, Bn) ≡ ⊥,
which is a necessary and sufficient condition for extending F̄ and B̄.

Recall that Γ(Fi, Bn−i) ≡ ⊥ for some 0 ≤ i ≤ n. This means that even

though the components of F̄[n] and B̄[n] may not be precise enough to enable

their extension, they are precise enough at least in one place that allowed us

to conclude that no counterexample of length n + 1 exists. DAR uses this

“local” precision to strengthen the entire sequences, as described below.

In order to simplify the references to the indices, we replace the use of

i and n − i by 0 ≤ i, j ≤ n s.t. i + j = n. Therefore Γ(Fi, Bj) ≡ ⊥ for

some 0 ≤ i, j ≤ n s.t. i + j = n. This ensures that there exists a forward
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interpolant FI(Fi, Bj), as well as a backward interpolant BI(Fi, Bj). We can

therefore perform a local strengthening step updating Fi+1 and Bj+1:

Definition 4.3.6. Let F̄[n] be a FRS and B̄[n] be a BRS s.t. Γ(Fi, Bj) ≡ ⊥
for some 0 ≤ i, j ≤ n s.t. i + j = n. A forward strengthening step at (i, j)

strengthens F̄[n]: If i < n, Fi+1 = Fi+1∧FI(Fi, Bj). A backward strengthening

step at (i, j) strengthens B̄[n]: If j < n, Bj+1 = Bj+1 ∧ BI(Fi, Bj).

We refer to i, j < n since Fn+1 and Bn+1 are not yet defined and therefore

cannot be updated. The strengthening propagates the unsatisfiability of

Γ(Fi, Bj) one step forward and one step backward:

Lemma 4.3.7. Let F̄[n] and B̄[n] be the result of a forward or backward

strengthening step at (i, j) s.t. i+ j = n. Then

• For a forward strengthening step, if i < n, Γ(Fi+1, Bj−1) ≡ ⊥.

• For a backward strengthening step, if j < n, Γ(Fi−1, Bj+1) ≡ ⊥.

Proof. We first show that F̄[n] remains a FRS. The proof for B̄[n] is sim-

ilar. Recall that F̄[n] was updated by setting Fi+1 = Fi+1 ∧ FI(Fi, Bj).

The other components have not changed. It therefore suffices to show that

after this update the following properties still hold: (1) Fi+1 ⇒ p, (2)

Fi(V ) ∧ TR(V, V ′) ⇒ Fi+1(V
′), and (3) Fi+1(V ) ∧ TR(V, V ′) ⇒ Fi+2(V

′).

For the sake of the proof, we denote by F o
i+1 the old copy of Fi+1, before the

update. We therefore have that Fi+1 = F o
i+1 ∧ FI(Fi, Bj), and in particular

Fi+1 ⇒ F o
i+1.

1. Fi+1 ⇒ p: holds since Fi+1 ⇒ F o
i+1 ⇒ p.

2. Fi(V ) ∧ TR(V, V ′) ⇒ Fi+1(V
′): holds since Fi(V ) ∧ TR(V, V ′) ⇒

F o
i+1(V

′). In addition, by the properties of an interpolant, Fi(V ) ∧
TR(V, V ′)⇒ FI(Fi, Bj)(V

′). Conjoining the two implications, we con-

clude that Fi(V ) ∧ TR(V, V ′)⇒ F o
i+1(V

′) ∧ FI(Fi, Bj)(V
′) = Fi+1(V

′).
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3. Fi+1(V ) ∧ TR(V, V ′) ⇒ Fi+2(V
′): holds since Fi+1 ⇒ F o

i+1, which im-

plies that Fi+1(V ) ∧ TR(V, V ′)⇒ F o
i+1(V ) ∧ TR(V, V ′)⇒ Fi+2(V

′).

We now consider the second part of the lemma. Consider first a forward

strengthening step for i < n (and accordingly j > 0), where Fi+1 = Fi+1 ∧
FI(Fi, Bj). By the properties of an interpolant, we know that FI(Fi, Bj) ∧
Bj ≡ ⊥. Therefore, after the update, Fi+1 ∧ Bj ≡ ⊥. This implies that

Γ(Fi+1, Bj−1) ≡ ⊥: Recall that Bj(V ) ⇐ TR(V, V ′) ∧ Bj−1(V
′). Therefore,

Γ(Fi+1, Bj−1) = Fi+1(V ) ∧ TR(V, V ′) ∧ Bj−1(V
′) ⇒ Fi+1(V ) ∧ Bj(V ). Since

the right hand side is unsatisfiable, so is Γ(Fi+1, Bj−1).

The proof for a backward strengthening step is similar: in this case

Bj+1 = Bj+1 ∧ BI(Fi, Bj). By the properties of an interpolant, we know

that BI(Fi, Bj)∧Fi ≡ ⊥. Therefore, after the update Fi ∧Bj+1 ≡ ⊥. Again,
this implies that Γ(Fi−1, Bj+1) ≡ ⊥: Recall that Fi−1(V ) ∧ TR(V, V ′) ⇒
Fi(V

′). Therefore Γ(Fi−1, Bj+1) = Fi−1(V )∧TR(V, V ′)∧Bj+1(V
′)⇒ Fi(V )∧

Bj+1(V ). Hence, unsatisfiability of the right hand side implies that which

implies that Γ(Fi−1, Bj+1) is also unsatisfiable.

Again, the indices are restricted since Fn+1 and Bn+1 are not yet defined.

Moreover, the strengthening maintains the properties of a FRS and a BRS:

Lemma 4.3.8. Let F̄[n] and B̄[n] be the result of a forward or backward

strengthening step at (i, j) s.t. i + j = n. Then F̄[n] and B̄[n] remain a

FRS and a BRS resp.

Proof. We show that F̄[n] remains a FRS. The proof for B̄[n] is similar. Recall

that F̄[n] was updated by setting Fi+1 = Fi+1∧FI(Fi, Bj). The other compo-

nents have not changed. It therefore suffices to show that after this update

the following properties still hold: (1) Fi+1 ⇒ p, (2) Fi(V ) ∧ TR(V, V ′) ⇒
Fi+1(V

′), and (3) Fi+1(V )∧TR(V, V ′)⇒ Fi+2(V
′). For the sake of the proof,

we denote by F o
i+1 the old copy of Fi+1, before the update. We therefore have

that Fi+1 = F o
i+1 ∧ FI(Fi, Bj), and in particular Fi+1 ⇒ F o

i+1.
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1. Fi+1 ⇒ p: holds since Fi+1 ⇒ F o
i+1 ⇒ p.

2. Fi(V ) ∧ TR(V, V ′) ⇒ Fi+1(V
′): holds since Fi(V ) ∧ TR(V, V ′) ⇒

F o
i+1(V

′). In addition, by the properties of an interpolant, Fi(V ) ∧
TR(V, V ′)⇒ FI(Fi, Bj)(V

′). Conjoining the two implications, we con-

clude that Fi(V ) ∧ TR(V, V ′)⇒ F o
i+1(V

′) ∧ FI(Fi, Bj)(V
′) = Fi+1(V

′).

3. Fi+1(V ) ∧ TR(V, V ′) ⇒ Fi+2(V
′): holds since Fi+1 ⇒ F o

i+1, which im-

plies that Fi+1(V ) ∧ TR(V, V ′)⇒ F o
i+1(V ) ∧ TR(V, V ′)⇒ Fi+2(V

′).

Lemma 4.3.7 and Lemma 4.3.8 imply that if Γ(Fi, Bj) ≡ ⊥ for some

0 ≤ i, j ≤ n s.t. i + j = n, then by iterating the forward and backward

strengthening steps, we can eventually ensure that Γ(Fi, Bj) ≡ ⊥ for every

0 ≤ i, j ≤ n s.t. i + j = n, and in particular for i = 0, j = n and i =

n, j = 0. Thus, we apply an iterative local strengthening starting from (i, j),

strengthening and extending F̄ and B̄:

Definition 4.3.9 (Iterative Local Strengthening). Let 0 ≤ i, j ≤ n be indices

s.t. i + j = n and Γ(Fi, Bj) ≡ ⊥. Iterative local strengthening from (i, j)

performs:

1. Forward strengthening steps starting at (i, j), proceeding forward while

increasing i and decreasing j until (n−1, 1) (strengthening Fi+1, . . . , Fn),

and

2. Backward strengthening steps starting at (i, j), proceeding backward

while increasing j and decreasing i until (1, n−1) (strengtheningBj+1, . . . , Bn),

and

3. Finally, once Γ(Fn, B0) ≡ ⊥, Fn+1 is initialized by FI(Fn, B0). Simi-

larly, once Γ(F0, Bn) ≡ ⊥, Bn+1 is initialized by BI(F0, Bn).
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Iterative local strengthening from (i, j) strengthens Fi+1, . . . , Fn and ini-

tializes Fn+1. Similarly, it strengthens Bj+1, . . . , Bn and initializes Bn+1.

Lemma 4.3.7 ensures that forward and backward propagation of the strength-

ening steps is possible, and Lemma 4.3.8 ensures that a FRS and a BRS are

obtained by strengthening.

Lemma 4.3.10. Let 0 ≤ i, j ≤ n be indices s.t. i+j = n and Γ(Fi, Bj) ≡ ⊥.
Iterative local strengthening from (i, j) terminates with a FRS and a BRS of

length n+ 1.

Proof. Termination of iterative local strengthening follows from Lemma 4.3.8

and Lemma 4.3.7 that ensure that after a local strengthening step, we still

have a FRS and a BRS, and in addition, the unsatisfiability of the local reach-

ability check is propagated one step forward or backward. This ensures that

the process can continue until eventually Γ(Fn, B0) ≡ ⊥, and Γ(F0, Bn) ≡ ⊥,
allowing to compute Fn+1 and Bn+1. Lemma 4.2.3 ensures that the initializa-

tion of Fn+1 and Bn+1 using FI(Fn, B0) and BI(F0, Bn) maintains the proper-

ties of a FRS and a BRS. This is because Fn∧TR⇒ FI(Fn, B0)
′ = F ′

n+1 and

in addition Fn+1∧¬p = FI(Fn, B0)∧B0 ≡ ⊥. Similarly, Bn+1 = BI(F0, Bn)⇐
TR ∧B′

n and in addition Bn+1 ∧ INIT = BI(F0, Bn) ∧ F0 ≡ ⊥.

Iterative local strengthening uses the BRS for the strengthening of the

FRS and vice versa, demonstrating how each of them is used to make the

other over-approximation tighter. The complete local strengthening proce-

dure is described in Figure 4.2.

4.3.2.2 Global Strengthening Phase

We now consider the case where Γ(Fi, Bn−i) ̸≡ ⊥ for every 0 ≤ i ≤ n in F̄[n]

and B̄[n]. By Lemma 4.3.5, this means that there is a real transition between

every pair of consecutive sets in the aCEX Π, making local strengthening

inapplicable since the aCEX is not locally invalid. Clearly this does not
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17: function LocStrengthen(F̄ , B̄, n)
18: i = FindStrengthen(F̄ , B̄, n)
19: if i == −1 then
20: // No local strengthening
21: // point was found
22: //Move to GlbStrengthen
23: return false
24: else
25: IterLS(F̄ , B̄, n, i, n− i)
26: return true
27: end if
28: end function

(a) Local Strengthening

29: function IterLS(F̄ , B̄, n, i, j)
30: while i < n do
31: Fi+1 = Fi+1 ∧ FI(Fi, Bn−i)
32: i = i+ 1
33: end while
34: F̄ .Add(FI(Fn, B0))
35: while j < n do
36: Bj+1 = Bj+1 ∧BI(Fn−j, Bj)
37: j = j + 1
38: end while
39: B̄.Add(BI(F0, Bn))
40: end function

(b) Iterative Local Strengthening

Figure 4.2: Local strengthening procedures

imply that the aCEX is valid, and further checks are needed. We therefore

turn to examine the (in)validity of the aCEX in a more global manner.

Similarly to the principle used in CEGAR [19] for an abstract counterex-

ample, here too, if the aCEX Π is invalid, there exists a minimal index

i ≤ n+1 representing the minimal prefix of the aCEX that has no matching

path in M .

The idea behind checking the validity of an aCEX Π0 → . . . → Πn+1 in
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a global manner is therefore to search for such a minimal index where the

aCEX becomes invalid, if such an index exists. In order to find a matching

counterexample for Π0 → . . . → Πn+1 in M or ensure that none exists, we

therefore search for an index where the aCEX becomes invalid, if it exists.

Since in our case the aCEX is known not to be locally invalid, we know that

the prefix Π0,Π1 is necessarily valid. The search therefore starts from the

prefix X0, X1, X2 and goes forward gradually, while extending the prefix. In

the i-th step (starting from i = 2), we consider the prefix Π0, . . . ,Πi. The

goal is to check if Π0 ∧TR∧Π′
1 ∧TR∧Π′′

2 ∧ . . .∧TR∧Π
⟨i⟩
i (*) is satisfiable,

meaning that a matching path to this prefix of the aCEX exists in M .

Recall that for i ≤ n, (*) is actually the formula INIT ∧ TR ∧ (F1 ∧
Bn)

′ ∧ TR ∧ (F2 ∧ Bn−1)
′′ ∧ . . . ∧ TR ∧ (Fi ∧ Bn−i+1)

⟨i⟩. For i = n + 1 the

last conjunct consists of B0 only (without an F̄ -component). In fact, since

in a FRS Fj ∧ TR ⇒ F ′
j+1, then removing all F̄ components except for

the first (INIT) results in an equivalent formula. Similarly, since in a BRS

Bj+1 ⇐ TR ∧ B′
j, removing all B̄ components but the last (Bn−i+1) again

results in an equivalent formula. This simplifies the formula as follows.

Lemma 4.3.11. For every 2 ≤ i ≤ n+1: Π0∧TR(V, V ′)∧Π′
1∧TR(V ′, V ′′)∧

Π′′
2 ∧ . . . ∧ TR(V i−1, V i) ∧ Π

⟨i⟩
i is equivalent to INIT ∧ TR(V, V ′) ∧ . . . ∧

TR(V i−1, V i) ∧B⟨i⟩
n−i+1.

Proof. Similarly to the proof of Lemma 4.3.5, it can be shown that INIT ∧
TR∧(F1∧Bn)

′∧TR∧(F2∧Bn−1)
′′∧ . . .∧TR∧(Fi∧Bn−i+1)

⟨i⟩ is equivalent to

INIT∧TR∧TR∧ . . .∧TR∧B⟨i⟩
n−i+1, where the removal of the F̄ -components

is due to the property Fj ∧ TR ⇒ F ′
j+1 of a FRS, and the removal of the

B̄-components is due to the property Bj+1 ⇐ TR ∧ Bj of a BRS. A similar

equivalence holds for i = n + 1, when the last conjunct in the formula is

B
⟨n+1⟩
0 (without an F̄ -component).

DAR therefore checks formulas of the form INIT∧TR∧ . . .∧TR∧B⟨i⟩
n−i+1

starting from i = 2. It keeps on adding transitions until either the formula
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becomes unsatisfiable, or until i = n + 1 is reached (ending with B0 = ¬p).
If the formula is still satisfiable for i = n + 1, a counterexample of length

n+ 1 is found and DAR terminates.

If for some 2 ≤ i ≤ n+1, INIT∧TR∧ . . .∧TR∧B⟨i⟩
n−i+1 turns out to be

unsatisfiable, making the aCEX invalid, then first F̄[n] is strengthened:

Definition 4.3.12. Let INIT∧TR∧ . . .∧TR∧B⟨i⟩
n−i+1 ≡ ⊥ for some 2 ≤ i ≤

n+1, and let ⟨I0, I1, . . . , Ii+1⟩ be an interpolation-sequence for ⟨A1 = INIT∧
TR, A2 = TR, . . . , Ai = TR, Ai+1 = B

⟨i⟩
n−i+1⟩. A global strengthening step at

index i strengthens Fj for every 1 ≤ j ≤ min{i, n} by setting Fj = Fj ∧ Ij.

The condition 1 ≤ j ≤ min{i, n} ensures that if i = n+ 1, strengthening

is applied only up to Fn since Fn+1 is not yet defined
1. The following Lemma,

along with Lemma 4.3.5 ensures that after a global strengthening step, the

strengthened aCEX is locally invalid.

Lemma 4.3.13. Let F̄[n] be the result of a global strengthening step at index

2 ≤ i ≤ n+ 1. Then F̄[n] remains a FRS. In addition, Γ(Fi−1, Bn−i+1) ≡ ⊥.

Proof. We first show that F̄[n] remains a FRS. Since the Fj’s are only strength-

ened, the implications Fj ⇒ p still hold for every 0 ≤ j ≤ n. We now show

that Fj ∧ TR ⇒ F ′
j+1 still holds as well for every 0 ≤ j ≤ n − 1. For

i+ 1 ≤ j ≤ n− 1 no proof is needed since Fj and Fj+1 have not changed in

this case. We now consider 0 ≤ j ≤ min{i, n − 1}. Prior to strengthening,

it was the case that (1) Fj ∧TR⇒ F ′
j+1 (a property of a FRS). In addition,

for j = 0, I0 ∧ A1 ⇒ I1, meaning that ⊤ ∧ INIT ∧ TR ⇒ I ′1 (a property

of an interpolation-sequence). Therefore F0 ∧ TR = ⊤ ∧ INIT ∧ TR ⇒ I ′1.

Conjoining this with (1), implies that F0 ∧ TR ⇒ (F1 ∧ I1)′. Similarly, for

0 < j ≤ min{i, n − 1}, Ij ∧ Aj+1 ⇒ I ′j+1, meaning that Ij ∧ TR ⇒ I ′j+1 (a

property of an interpolation-sequence). Therefore, by conjoining this impli-

cation with (1) we get that for 0 < j ≤ min{i, n − 1}, (Fj ∧ Ij) ∧ TR ⇒
1If a global strengthening step is performed at i = n+ 1, then Fn+1 can be initialized

to In+1.
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(Fj+1 ∧ Ij+1)
′ ⇒ F ′

j+1. Therefore, the implications required by a FRS still

hold after the updates of Fj to Fj ∧ Ij for 0 < j ≤ min{i, n}.
We now show that Γ(Fi−1, Bn−i+1) ≡ ⊥. By the definition of an interpolation-

sequence, Ii∧Ai+1 ⇒ Ii+1 where Ii+1 ≡ ⊥, which means that ⊥ ≡ Ii∧Ai+1 =

Ii ∧Bn−i+1. In addition, Ii−1 ∧Ai ⇒ Ii, meaning that Ii−1 ∧TR⇒ I ′i. Thus,

due to the strengthening of Fi−1 by conjoining it with Ii−1, we conclude that

after the update Fi−1 ⇒ Ii−1 and hence Fi−1 ∧TR⇒ Ii−1 ∧TR⇒ I ′i. Along

with the property that Ii ∧Bn−i+1 ≡ ⊥, we conclude that Γ(Fi−1, Bn−i+1) =

Fi−1 ∧ TR ∧B′
n−i+1 ⇒ I ′i ∧B′

n−i+1 ≡ ⊥.

DAR now uses iterative local strengthening from (i−1, n− i+1) (Defini-

tion 4.3.9) to strengthen Fi, . . . , Fn and Bn−i+2, . . . , Bn
2, as well as initialize

Fn+1 and Bn+1. The complete global strengthening procedure is described

in Figure 4.3.

4.3.3 Correctness of DAR

Having described all the components of DAR, we now return to the proof of

Theorem. 4.3.1, which ensures that DAR terminates with a correct answer.

Theorem. 4.3.1. We first consider iteration n. The iteration performs a fi-

nite number of operations (as described in the local and global strengthening

phases), and hence it necessarily terminates. Moreover, it terminates success-

fully while extending the FRS and the BRS iff no counterexample of length

n exists. This can be seen since a counterexample is reported in the global

strengthening phase when the formula INIT ∧TR ∧TR ∧ . . . ∧TR ∧B⟨n⟩
0 =

2Note that instead of performing a local strengthening of B̄ as part of the iterative local

strengthening, an interpolation-sequence ⟨J0, J1, . . . , Ji+1⟩ for ⟨A1 = TR ∧ B
⟨i+1⟩
n−i , A2 =

TR, . . . Ai = TR, Ai+1 = INIT⟩ can be used to strengthen Bn−i+1, . . . , Bn by setting
Bn−i+j = Bn−i+j ∧ Jj for 1 ≤ j ≤ i, and to initialize Bn+1 to Ji+1. In this case, iterative
local strengthening will be performed only forward, updating F̄ only. For simplicity of the
presentation, we use iterative local strengthening both forward and backward instead of
using an interpolation-sequence for the backward update.
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41: function GlbStrengthen(F̄ , B̄, n)
42: for i = 2→ n+ 1 do // n = 0 does not go into the loop

43: if INIT ∧ TR . . . ∧ TR ∧B⟨i⟩
n−i+1 == UNSAT then

44: Ī = GetInterpolationSeq()
45: for j = 1→ min{i, n} do
46: Fj = Fj ∧ Ij
47: end for
48: IterLS(F̄ , B̄, n, i− 1, n− i+ 1)
49: return true
50: end if
51: end for
52: return false // counterexample
53: end function

Figure 4.3: Global strengthening procedure

INIT∧TR∧. . .∧TR∧¬p⟨n⟩ is satisfiable (see line 43 in Figure 4.3), thus a sat-

isfying assignment to it provides a real counterexample. (An additional case

happens in the first iteration, when n = 0 and the formula INIT ∧ TR ∧ ¬p
is satisfiable). In all other cases, the FRS and BRS are extended successfully

by iterative local strengthening (see Lemma 4.3.10) and by Lemma 4.2.5,

this ensures that no counterexample of length n exists.

Thus, if a counterexample of length n exists, then DAR will find it and

will terminate at iteration n at latest reporting a counterexample (lines 3

and 10 in Figure 4.1). It might terminate earlier if a shorter counterexample

is found, but it cannot terminate with a “Verified” result, since this only

happens if fixpoint is reached, in which case by Lemma 4.2.7, M |= AGp in

contradiction to the existence of a counterexample.

On the other hand, if M |= AGp, all iterations of DAR terminate suc-

cessfully computing a FRS and a BRS (since there is no counterexample of

any length). For every n, at the end of iteration n, if no fixpoint is reached

then in particular Fn+1 includes at least one state that is not in
∨n

i=0 Fi. Now

consider N = 2|V | +1. N is well-defined since V is finite (as M is). Since 2V
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is the set of all states in M and N = 2|V | +1, at iteration N at latest all the

states of M are already in
∨N

i=0 Fi, and a fixpoint must be reached. In this

case, DAR terminates and returns “Verified” (see line 7 in Figure 4.1).

4.4 Experimental Results

To implement DAR we collaborated with Jasper Design Automation3. We

measured the efficiency of DAR by comparing it against two top-tier meth-

ods: ITP and IC3. We used Jasper’s formal verification platform in order to

implement DAR, ITP and IC3. Collaborating with Jasper allowed us to ex-

periment with various real-life industrial designs and properties from various

major semiconductor companies.

Our implementations use known optimizations for the checked methods

(e.g. [14, 28]) and are comparable to other optimized implementations avail-

able online. For DAR we used some basic procedures to simplify the com-

puted interpolants when possible. Our implementation of DAR is preliminary

and can be further optimized.

For the experiments we used 37 real safety properties from real industrial

hardware designs. The timeout was set to 1800 seconds and experiments

were conducted on systems with Intel Xeon X5660 running at 2.8GHz and

24GB of main memory.

Table 4.1 shows different parameters for all three algorithms on various

industrial examples. The parameters presented are: time is the runtime in

seconds; depth represents the number of over-approximated sets of states

computed when the algorithm converges (for ITP, the number of sets com-

puted for the last bound used, and for DAR, the length of F̄ and B̄); maxi-

mum unrolling is shown for ITP and DAR (IC3 does not use unrolling) and

represents the maximum unrolling used during verification; and for DAR

3An EDA company: http://www.jasper-da.com
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(a) Runtime DAR vs. IC3. (b) Runtime DAR vs. ITP.

Figure 4.4: Y-axis represents DAR’s runtime in seconds. X-axis represents
runtime in seconds for the compared algorithm (IC3 or ITP). Points below
the diagonal are in favor of DAR.

we present ♯GS and GSR, which are the number of iterations where Global

Strengthening was used and the ratio between the global strengthening to the

total number of iterations. ♯GS also indicates the number of iterations where

local strengthening was insufficient (requiring to use global strengthening and

therefore unrolling).

Examining the results shows that the use of unrolling in DAR is indeed

limited and that local strengthening plays a major part during verification,

with GSR < 0.5 in most cases, indicating that local strengthening is often

sufficient. Moreover, even when unrolling is used, its depth is usually smaller

compared to the convergence depth, as indicated by maximum unrolling.

Note that the maximum unrolling provides an upper bound on the unrolling,

and the actual unrolling can be smaller in some global strengthening phases.

For falsified properties (counterexample exists) unrolling is necessarily ap-

plied up to the length of the counterexample in the last iteration. Yet, in

many cases local strengthening is still sufficient in previous iterations.

Another conclusion from the table is that a lower depth of convergence

does not necessarily translate to a better runtime. We can see that in many

cases, while ITP converges with less computed sets it takes more time than
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DAR. This is not surprising since the number of computed sets presented

for ITP considers only the sets computed in the last bound that was used,

disregarding sets from previous bounds. The same can be seen with regards

to IC3. While IC3 converges at a lower depth (on some cases), it still does

not necessarily perform better. This is mainly due to the different effort

invested by each algorithm in the strengthening and addition of a new over-

approximated set.

Figure 5.11 shows a runtime comparison between DAR and IC3 (Fig-

ure 4.4a) and ITP (Figure 4.4b) on all 37 industrial examples, including

those from Table 4.1. In 19 out of 37 cases, DAR outperforms ITP, and in 25

out of 37 cases it outperforms IC3. In 18 out of 37 cases DAR outperforms

both methods. DAR could not solve only 5 cases, whereas ITP and IC3

failed to solve 7 and 12 cases respectively. The overall performance, when

summarized, is in favor of DAR with 36% improvement in run time when

compared to ITP and 52% improvement when compared to IC3.

Cases where DAR outperforms ITP can be explained by the following

factors. First, DAR avoids unrolling when not needed, therefore its SAT

calls are simpler. Second, DAR uses over-approximated sets computed in

early iterations and strengthens them as needed, while ITP does not re-use

sets that were computed for lower bounds and restarts its computation when

a spurious counterexample is encountered. Cases where DAR outperforms

IC3 are typically when DAR’s strengthening is more efficient than IC3’s

inductive generalization, requiring less computation power at each iteration.

Since DAR relies heavily on interpolants, the cases where DAR performs

worse than IC3 are usually those where the interpolants grow large and con-

tain redundancies. This is also true when comparing to ITP. Since DAR

computes more interpolants than ITP and also accumulates them, it is more

sensitive to the size of the computed interpolants.

We also used the HWMCC’11 benchmark in our experiments. While

there are a lot of cases where all methods perform the same, there are also
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examples where DAR outperforms both IC3 and ITP (some are shown at the

bottom of Table 4.1). The benchmark also includes examples where IC3 or

ITP perform better than DAR. The majority of these cases are simple and

solved in a few seconds.

67



IC3 ITP DAR
Name ♯Vars Status D Time[s] D MaxU Time[s] D MaxU ♯GS GSR Time[s]
Ind1 11854 true 46 799 41 28 1138 49 35 21 0.42 303
Ind2 11854 true 44 701 41 28 1148 49 35 18 0.36 326
Ind3 11866 true 11 82 5 2 19.1 11 8 4 0.33 29.9
Ind4 11877 true NA TO 33 12 307 36 30 18 0.48 194
Ind5 11871 false NA TO NA 20 88 19 20 10 0.5 77
Ind6 11843 false NA TO NA 19 77 18 19 9 0.47 70
Ind7 1247 true 6 1.5 3 2 2 17 5 9 0.5 56.3
Ind8 1247 true 7 7.8 17 23 1250 NA NA NA NA TO
Ind9 449 true 337 78 NA NA TO 45 12 22 0.48 327
Ind10 331 true 458 305 NA NA TO 26 11 15 0.56 33.9
Ind11 330 true 419 132 NA NA TO 38 12 19 0.49 113
Ind12 450 true 22 32.5 NA NA TO NA NA NA NA TO
Ind13 3837 false NA TO NA 68 369 67 68 33 0.48 305
Ind14 3837 false NA TO NA 69 487 68 69 25 0.36 269
Ind15 3836 true 6 42 4 2 2.3 70 64 32 0.45 243
Ind16 11860 true 9 32.5 5 2 11.4 33 32 16 0.47 144
Ind17 11878 true 14 68 7 4 18.4 11 8 4 0.33 29.5
Ind18 3836 true NA TO 6 17 27.3 15 6 6 0.37 10
intel007 1307 true 5 53.5 NA NA TO NA NA NA NA TO
intel018 491 true NA TO 57 35 695 78 51 33 0.42 64
intel019 510 true NA TO 52 35 515 96 57 43 0.44 310
intel023 358 true NA TO NA NA TO 86 53 35 0.4 66
intel026 492 true 53 47.1 50 35 21.9 70 51 34 0.48 27.8

Table 4.1: Parameters of the experiments. Name: name of the verified prop-
erty; ♯Vars : number of state variables in the cone of influence; Status : true
- verified property, false - indicates a counterexample; D : convergence depth
representing the number of over-approximated sets of states computed when
the algorithm converges (for ITP, the number of sets computed for the last
bound used, and for DAR, the length of F̄ and B̄); MaxU : maximum un-
rolling used during verification; ♯GS: number of times Global Strengthening
is used in DAR; GSR: ratio between iterations using global strengthening to
the total number of iterations; Time[s] : time in seconds. Minimal runtime
appears in boldface. Properties above the full line are from real industrial
designs. Those underneath the line are from HWMCC’11.

68



Chapter 5

Efficient Generation of Small

Interpolants in Conjuctive

Normal Form

The work presented in this chapter appeared in [60]. This chapter describes

a novel approach for interpolant computation in the context of SAT-based

model checking. The main contribution of this work is the ability to produce

small interpolants in Conjunctive Normal Form (CNF) efficiently. In order

to compute an interpolant, our work takes advantage both of the properties

of the resolution refutation, generated by the SAT solver, and of the struc-

ture of the model checking problem at hand. Another contribution of this

work is the algorithm CNF-ITP, which is an enhanced version of the original

interpolation-based model checking algorithm [43] (ITP). CNF-ITP exploits

of the fact that interpolants are given in CNF.

Interpolants are used in various domains. Here, like in previous chapters,

we focus on ITP. In his seminal work [43], McMillan presents a recursive

procedure for interpolant generation from a proof. The procedure initially

assigns a propositional formula to each one of the leaves in the resolution

refutation (hypothesis clauses). It then recursively assigns a propositional
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formula to every node in the refutation by either conjoining or disjoining the

propositional formulas of its predecessors. Choosing between conjunction or

disjunction depends on whether the pivot variable is local to A(X, Y ) or not.

The formula that is assigned for the empty clause represents the interpolant.

While this algorithm is linear in the size of the proof, the resulting in-

terpolant is a non-CNF propositional formula that mirrors the structure of

the resolution refutation. Thus, when the resolution refutation is large, so is

the interpolant. Moreover, the resulting formula is often highly redundant,

meaning that the interpolant can be simplified and be represented by an

equivalent smaller formula.

ITP (Section 2.4) requires the interpolants to be fed back into the SAT

solver for computing the next interpolant. Therefore, in those cases where the

size of interpolants is large, the resulting SAT problem may be intractable.

We strive to solve this problem by directly generating small interpolants

in CNF. One way to compute an interpolant is by existential quantifica-

tion. Considering the unsatisfiable formula A(X, Y ) ∧ B(Y, Z), I(Y ) =

∃X(A(X,Y )) is an interpolant. For a CNF formula A(X,Y ), ∃X(A(X,Y ))

can be created by iteratively applying variable elimination1 on X variables

in A(X,Y ). The problem with this approach is that variable elimination is

exponential, and, therefore impractical, given a large set of variables.

In this work, we provide a novel resolution-refutation-guided method for

variable elimination in order to derive an interpolant in CNF. This procedure,

while creating less clauses than näıve variable elimination procedures, might

still result in an exponential blow-up.

Our solution is first to build an approximated interpolant Iw(Y ) for which

Iw(Y ) ∧ B(Y, Z) may be satisfiable. We refer to such an interpolant as a

Bweak-interpolant. Computing the Bweak-interpolant is based on the method

of resolution-refutation-guided variable elimination but is much more effi-

1Variable elimination [24] is an operation that eliminates all occurrences of a vari-
able v from a CNF formula by replacing clauses containing v with the result of pairwise
resolutions between all clauses containing the literal v and those containing the literal ¬v
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cient. The second stage of our method aims at strengthening Iw(Y ) and

transforming it into an interpolant I(Y ) where I(Y ) ∧ B(Y, Z) is unsatisfi-

able. We refer to this process as B-Strengthing.

In order to transform a Bweak-interpolant into an interpolant we need to

make sure that A(X, Y )⇒ Iw(Y ) and that Iw(Y )∧B(Y, Z) is unsatisfiable.

This can be done by finding all satisfying assignments s(Y ) to Iw(Y )∧B(Y, Z)

and conjoining ¬s(Y ) with Iw(Y ). Clearly, since A(X,Y )∧B(Y, Z) is unsat-

isfiable, A(X,Y )⇒ ¬s(Y ) for all such assignments. Note that an assignment

s is a conjunction of literals, and therefore its negation is a clause. By this

we keep Iw(Y ) in CNF. The number of such assignments may be vast, and

therefore this is an inefficient method.

To overcome this, instead of adding a clause to Iw(Y ) we generalize it to

a sub-clause so as to block a larger set of assignments. In order to perform

an efficient generalization we use the structure of A. In the context of model

checking, A(V, V ′) = Q(V )∧TR(V, V ′) where V is the set of variables in the

checked system and TR is the transition relation. Using this fact allows us

to perform inductive generalization [8].

We implemented CNF-ITP, a model checking algorithm which is a variant

of ITP [43], but which uses the above method to compute the interpolants.

Our goal was to measure the impact of our interpolant computation method

on the underlying model checking algorithm. However, CNF-ITP also ex-

ploits the fact that interpolants are given in CNF in order to improve the

traditional ITP. Our improvements to ITP were inspired by [8].

For the experiments we used the HWMCC’12 benchmark set. The in-

terpolants computed by our method, compared to those computed by the

original ITP algorithm of [43], were much smaller in size in the vast majority

of cases. Sometimes, the size was up to two orders of magnitude smaller.

Our procedure significantly outperformed ITP and solved some test cases

that ITP could not solve. To complete our experiments, we also compared

CNF-ITP to the successful IC3 [8] algorithm. We found that CNF-ITP out-
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performed IC3 [8] in a large number of cases.

5.0.1 Related Work

A well-known problem of interpolants is their size. Several works try to deal

with this problem. The work in [14] suggests dealing with the increasing

size of interpolants by using circuit compaction. While this process can be

efficient in some cases, it may consume considerable resources for very large

interpolants. Moreover, compacting an interpolant does not result in a CNF

formula, whereas our approach results in interpolants in CNF.

As we have already noted, an interpolant computed from a resolution

refutation mirrors its structure. Several works [2, 52] deal with reductions to

the resolution refutation. Since our method uses resolution refutation it too

can benefit from such an approach.

During interpolant computation, our approach only uses the relevant

parts of the resolution refutation. The idea of holding and maintaining only

the relevant parts of the resolution derivation was proposed and proved useful

in [53] in the context of group-oriented minimal unsatisfiable core extraction.

Deriving interpolants in CNF was suggested in [38]. The authors suggest

applying a set of reordering rules for resolution refutations so that the re-

sulting interpolant will be in CNF. As the authors state in the paper, the

described procedure does not always return an interpolant in CNF. Also, the

reordering of a resolution refutation may result in an exponential blow up of

the proof and, as stated in [25], reordering is not always possible. In contrast

to [38], our method does not rewrite the resolution refutation generated by

the SAT solver.

The work in [17] suggests an interpolant computation method that does

not use the generated resolution refutation. In addition, an interpolant that

results from the use of that method is in a Disjunctive Normal Form (DNF).

Our work, on the other hand, uses the resolution refutation and generates

interpolants in CNF efficiently.
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5.1 Preliminaries

For a model M , with a slight abuse of notation, we sometimes refer to a

propositional formula over V as a set of states inM . We treat CNF formulas

as sets of clauses and use a union of sets to denote a conjunction of two CNF

formulas. In addition, given a sequence of clauses π, we will use α ∈ π to

denote a clause α that is part of the sequence π.

Recall that for a formula X, Vars(X) is the set of variables appearing in

X.

Definition 5.1.1 (Local and Global Variable). Let (A,B) be a pair of for-

mulas in CNF. A variable v is A-local (B-local) iff v ∈ Vars(A)\Vars(B)

(v ∈ Vars(B)\Vars(A)); v is (A,B)-global or, simply, global, iff v ∈ Vars(A)∩
Vars(B).

We will use the notions of weaker versions of interpolants that fulfill two

out of three interpolant properties (recall Definition 2.3.1).

Definition 5.1.2 (Bweak-Interpolant). Let (A,B) be a pair of formulas in

CNF such that A ∧ B ≡ ⊥. The Bweak-interpolant for (A,B) is a formula I

such that:

• A⇒ I.

• Vars(I) ⊆ Vars(A) ∩ Vars(B).

Definition 5.1.3 (Non-Global-Interpolant). Let (A,B) be a pair of formulas

in CNF such that A ∧ B ≡ ⊥. The non-global-interpolant for (A,B) is a

formula I such that:

• A⇒ I.

• I ∧B ≡ ⊥.
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Recall that a resolution derivation π can naturally be conceived of as a

directed acyclic graph (DAG) whose vertices correspond to all the clauses of

π and in which there is an edge from a clause αj to a clause αi iff αi = αj⊗αk.

A clause β ∈ π is a parent of α ∈ π iff there is an edge from β to α. A clause

β ∈ π is backward reachable from γ ∈ π if there is a path (of 0 or more edges)

from β to γ. The set of all vertices backward reachable from β ∈ π is denoted

Γ(π, β).

For this work, we will need a definition of an A-resolution refutation, that

is, a projection of a given resolution refutation π to the clause set A:

Definition 5.1.4 (A-Resolution Refutation). Let π = (α1, α2, . . . ,□) be a

resolution refutation of length n of the CNF formula G = A ∧ B. The A-

resolution refutation πA derived from π is defined as follows: πA = πn
A where

πi
A is defined incrementally:

πi
A =


∅ i = 0

πi−1
A · αi

αi ∈ A or

αi = αj ⊗v αk such that αj ∈ πi−1
A or αk ∈ πi−1

A

In DAG terminology πA is a sub-graph of π that contains only those

vertices whose clauses belong to A, and the edges between such clauses.

Note that a clause α ∈ π may have 0 or 2 parents, while a clause α ∈ πA

may also have 1 parent (if the second parent is implied only by the clauses

of B).

Given a clauses set F , we denote the set of clauses containing the lit-

eral v and ¬v as F+
v and F−

v respectively. Given a CNF formula F and a

variable v ∈ Vars(F ), variable elimination [24] is an operation that removes

v from F by replacing clauses containing the variable v with the result of

all pairwise resolution between F+
v and F−

v . The resulting formula VE (F, v)

is equisatisfiable with F [24]. The DP algorithm for deciding propositional

satisfiability [24] uses variable elimination until either the empty clause □ is
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derived, in which case the formula is unsatisfiable, or all the variables appear

in one polarity only, in which case the formula is satisfiable. It is well known

that the original DP algorithm suffers from exponential blow-up.

A bounded version of variable elimination has been an essential contrib-

utor to the efficiency of modern SAT preprocessing algorithms (that is, algo-

rithms that truncate the size of the CNF formula before embarking on the

search) since the introduction of the SatELite preprocesor [27]. In bounded

variable elimination, used in SatELite, a variable v is eliminated iff the op-

eration does not increase the number of clauses.

5.2 Generating Interpolant Approximation in

CNF

In this section we propose a method for generating a Bweak-interpolant (re-

call Definition 5.1.2) in CNF. First, we describe two algorithms for generating

interpolants in CNF. In practice, both algorithms are not applicable to all

cases, because of exponential blow-up. Thereafter we introduce an efficient

algorithm which is guaranteed to return a Bweak-interpolant in CNF, and

which may for some cases return an interpolant in CNF.

We start with the following lemma which follows directly from resolution

derivation properties. This lemma serves as the basis for our first algorithm.

Lemma 5.2.1. Let πA be an A-resolution refutation. Let P (αi) for αi ∈
πA \ A) be the set of (1 or 2) parents of αi. Then, P (αi) ∧B ⇒ αi

Our first algorithm for generating an interpolant in CNF is based on näıve

variable elimination. First it generates a resolution refutation of the given for-

mula using a SAT solver. Then it initializes the interpolant by those clauses

of A that are backward reachable from □ (the empty clause). Note that at

this stage I is a non-global-interpolant since it contains A-local variables (re-

call Definition 5.1.3). Finally, the algorithm gradually turns the non-global-
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α10 = □

α7 = g2 α8 = g4 α9 = ¬g2

α5 = g1 ∨ g2 α6 = g3 ∨ g4 β1 = ¬g1 β2 = ¬g3 β3 = ¬g2 ∨ ¬g4

α1 = a1 ∨ g1 α2 = ¬a1 ∨ g2 α3 = a1 ∨ g3 α4 = ¬a1 ∨ g4

Figure 5.1: An example of a resolution refutation. Assume A = {α1, . . . , α4}
and B = {β1, . . . , β3}.

1: function ILVE(A,B)
2: Generate a resolution refutation π using a SAT solver
3: I0 := A ∩ Γ(π,□)
4: i := 0
5: for all v ∈ Vars(I) ∩ Vars(A) do
6: Ii+1 := VE (Ii, v)
7: i := i+ 1
8: end for
9: return Ii
10: end function

Figure 5.2: Interpolant by A-Local Variables Elimination

interpolant into an interpolant by applying variable elimination over all A-

local variables. Consider the example in Figure 5.1. Our algorithm would

generate the following interpolant: I = {(g1 ∨ g2), (g1 ∨ g4), (g3 ∨ g2), (g3 ∨ g4)}.
Unfortunately, the algorithm suffers from the same drawback as the DP algo-

rithm [24]: exponential blow-up when variables keep being eliminated. The

complete algorithm is presented in Figure 5.2

We show that Algorithm ILVE is correct.

Lemma 5.2.2. Algorithm ILVE returns an interpolant.

Proof. We will show that all the three interpolant properties hold for I:

1. A⇒ I holds, since all the clauses of I are generated by resolution over

A clauses.
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2. I ∧ B ≡ ⊥. We prove the statement by induction on the number of

iterations in the loop. For the first iteration it holds that I0 = (A ∩
Γ(π,□)) ∧ B ≡ ⊥, since the structure of π implies that □ is reachable

from (A∩ Γ(π,□))∧B (A∩ Γ(π,□) are the leaves in π that belong to

A, and A∧B ≡ ⊥). Consider iteration i+ 1. By induction hypothesis

it holds that Ii∧B ≡ ⊥. By correctness of variable elimination [24], we

have VE (Ii ∧ B, v) ≡ ⊥. Note that v /∈ Vars(B), since v is A-local by

construction, hence VE (Ii ∧ B, v) ≡ VE (Ii, v) ∧ B ≡ ⊥, which proves

our property, since Ii+1 is exactly VE (Ii, v).

3. Vars(I) ⊆ Vars(A) ∩ Vars(B) holds, since all the A-local variables are

eliminated from I0.

Recall that Algorithm 5.2 suffers from the same drawback as the DP algo-

rithm [24]: exponential blow-up when variables are eliminated. We therefore

move on to introduce our second attempt.

Our next algorithm is based on the observation that to eliminate a vari-

able v from F , it is not necessary to apply resolution over all the pairs in

F+
v and F−

v , but rather only over those subsets that contribute to deriving

a common ancestor in the resolution derivation. We need to introduce the

notion of clause-interpolant.

Definition 5.2.3 (Clause-Interpolant). Let (A,B) be an unsatisfiable pair

of CNF formulas. Let α be a clause. Then, I(α) is a Clause-Interpolant of

α iff:

• A⇒ I(α)

• I(α) ∧B ⇒ α

• Vars(I(α)) ⊆ (Vars(A) ∩ Vars(B)) ∪ (Vars(A) ∩ Vars(α))

77



A clause-interpolant is a generalization of an interpolant that allows one

to associate an interpolant with every clause α in A-resolution refutation (re-

call Definition 5.1.4). As in the case of the standard interpolant, the clause-

interpolant is implied by A. The conjunction of the clause-interpolant with

B implies the clause α (instead of □ for the standard interpolant). Finally,

the clause-interpolant is allowed to contain in addition to global variables

also A-local variables that appear in α. Note that a clause-interpolant of □
is an interpolant.

Lemma 5.2.4. A clause-interpolant of the empty clause □ is an interpolant.

Proof. Each of the three conditions in the definition of a clause-interpolant

yields the corresponding condition in the definition of the interpolant.

The second algorithm for deriving an interpolant in CNF works as fol-

lows: it traverses the A-resolution refutation from the input clauses towards

□. It constructs a clause-interpolant for each traversed clause as follows.

The clause-interpolant of each initial clause α is set to {α}. For creat-

ing the clause-interpolant of a derived clause α, the algorithm first conjoins

the clause-interpolants of α’s parents. Then, if α was created by resolution

over a local variable v, v is eliminated from the result by applying variable

elimination (Figure 5.3, line 12). The clause-interpolant of □ is returned

as the interpolant. Consider again the example in Figure 5.1. We have

I(α5) = α1 ⊗a1 α2 = g1 ∨ g2; I(α6) = α3 ⊗a1 α2 = g3 ∨ g4; I(α7) = I(α5);

I(α9) = I(α8) = I(α6). Finally, the interpolant is I(□) = I(α7) ∪ I(α9) =

{g1 ∨ g2, g3 ∨ g4}. Note that for our example, the interpolant generated by

the current algorithm is smaller than the one generated by our previous algo-

rithm, which applies exhaustive variable elimination. In practice, however,

the current algorithm is not always scalable either, due to the same problem

– exponential blow-up caused by variable elimination. Also note that for our

simple example the intepolant comprises a cut {α5, α6} in the A-resolution

refutation, where all the clauses are implied by A only. One can show that
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1: function IGCI(πA = (α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ □))
2: for all i ∈ {1, 2, . . . , q} do
3: I(αi) := {αi}
4: end for
5: for all i ∈ {q + 1, q + 2, . . . , p ≡ □} do
6: if αi has exactly one parent β then
7: I(αi) := I(β)
8: else
9: if αi = αj ⊗v αk, where v is global then
10: I(αi) := I(αj) ∪ I(αk)
11: else // αi = αj ⊗v αk, where v is A-local
12: I(αi) := VE (I(αj) ∪ I(αk), v)
13: end if
14: end if
15: end for
16: return I(□)
17: end function

Figure 5.3: Interpolant Generation with Clause-Interpolants

whenever such a cut exists it comprises an interpolant. Unfortunately, in the

general case such cuts do not usually exist. The complete algorithm appears

in Figure 5.3.

We prove the algorithm’s correctness starting with a straightforward

lemma.

Lemma 5.2.5. Let P1 and P2 be formulas in propositional logic. Then,

P1 ⇒ P2 if and only if P1 ∧ ¬P2 ≡ ⊥.

We need to prove additional two lemmas.

Lemma 5.2.6. Let I and B be formulas in CNF, α be a clause, and v be a

variable, such that:

1. I ∧B ⇒ α

2. v /∈ Vars(B ∪ α)
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Then, VE (I, v) ∧B ⇒ α.

Proof. By applying Lemma 5.2.5 over the lemma’s first condition I ∧B ⇒ α

we have I ∧ B ∧ ¬α ≡ ⊥. By variable elimination properties [24] we have

VE (I ∧ B ∧ ¬α, v) ≡ ⊥. The latter statement and the lemma’s second

condition v /∈ Vars(B∪α) imply VE (I∧B∧¬α, v) ≡ VE (I, v)∧B∧¬α ≡ ⊥.
Finally, by again applying Lemma 5.2.5 we have VE (I, v) ∧B ⇒ α.

Lemma 5.2.7. Let π be a resolution refutation and let πA be the A-resolution

input sequence for IGCI. Then, for every I(αi) computed by IGCI, I(αi) is

a clause interpolant.

Proof. The proof is by induction on the number of iterations of both loops.

For every clause α ∈ A, I(α) = {α}. Clearly, I(α) meets the three

requirements of clause-interpolant (Definition 5.2.3)

We omit the proofs for cases where a derived clause αi has only one parent

β, and where αi = αj⊗vαk, where v is global, since they are straightforward.

Consider the case where αi = αj ⊗v αk, where v is A-local. By induction

hypothesis we have A⇒ I(αj) and A⇒ I(αk), hence A⇒ I(αj)∪I(αk). All

the clauses created by variable elimination VE (I(αj) ∪ I(αk), v) are derived

from I(αj)∪I(αk) using resolution, hence we have A⇒ VE (I(αj)∪I(αk), v)

and the first requirement is met.

By induction hyphotheses we have I(αj) ∧B ⇒ αj and I(αk) ∧B ⇒ αk.

By Lemma 5.2.1 we have αj ∧ αk ∧ B ⇒ αi. Hence, I(αj) ∧ I(αk) ∧ B ⇒
αj∧αk∧B ⇒ αi. Note that v /∈ B, since v is A-local and v /∈ αi, since αi was

created by resolution over v. Hence, by Lemma 5.2.6 VE (I(αj)∧ I(αk), v)∧
B ⇒ αi and the second requirement is met.

Finally, by construction I(αi) contains the union of all the variables in

I(αj) and I(αk) with the exception of v. Also by construction, the A-local

variables of αi comprise the union of all the A-local variables of αj and αk

with the exception of v. These facts and the induction hypothesis for the

third requirement for αj and αk yield that the third requirement for αi is

met.
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Theorem 5.2.8. Given an A-resolution refutation, IGCI returns an inter-

polant.

Proof. The set I(□) is the clause-interpolant for □ by Lemma 5.2.7, hence

it is an interpolant by Lemma 5.2.4.

Unfortunately, in practice IGCI is still not always scalable because of the

exponential blow-up resulting from variable elimination.

Now we are ready to present a scalable algorithm for the construction

of an approximated interpolant by generating a Bweak-interpolant. The first

stage of our algorithm traverses the resolution refutation to generate a non-

global-interpolant. The second stage uses bounded variable elimination and

then incomplete variable elimination (defined below), if required, to convert

the non-global-interpolant to a Bweak-interpolant.

Definition 5.2.9 (Incomplete Variable Elimination). Given a CNF formula

F and a variable v ∈ Vars(F ), incomplete variable elimination is an operation

that removes v from F by replacing clauses containing the variable v with

the set IVE (F, v) which contains some of the results of a pairwise resolution

between F+
v and F−

v , where two requirements are met:

1. |IVE (F, v)| ≤ |F+
v |+ |F−

v |

2. Let α ∈ F+
v (F−

v ) be a clause, if there exists a clause β ∈ F−
v (F+

v ),

such that α ⊗v β is not a tautology, then there exists a clause γ ∈ F−
v

(F+
v ) where α⊗v γ ∈ IVE (F, v) and α⊗v γ is not a tautology.

The idea behind incomplete variable elimination is to omit some of the re-

solvents when eliminating the variable v in order not to increase the number

of clauses, yet to guarantee that each clause containing v has some contri-

bution to the generated set of clauses. Note that while incomplete variable

elimination is not sufficient to maintain unsatisfiability for all cases, it may
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be sufficient for some cases. Incomplete variable elimination is not uniquely

defined.

Our implementation of the procedure is provided in Figure 5.4.

Before presenting our final algorithm, we need to introduce the notion of

a non-global-clause-interpolant:

Definition 5.2.10 (Non-Global-Clause-Interpolant). Let (A,B) be an un-

satisfiable pair of CNF formulas. Let α be a clause. Then, I(α) is a Non-

Global-Clause-Interpolant of α iff:

• A⇒ I(α)

• I(α) ∧B ⇒ α

Note that a non-global-clause-interpolant of□ is a non-global-interpolant.

Consider now the algorithm described in Figure 5.5. Its first part (lines 2-

21) traverses the resolution refutation and asssociates a non-global-clause-

interpolant with each clause. Consider a visited clause αi = αj ⊗v αk when

v is local. First, the algorithm sets I(αi) to be the union of I(αj) and I(αk).

It eliminates the variable v if the following two conditions hold: First, that

eliminating v does not increase the clause size of I(αi) (as in the bounded

variable elimination of SatELite [27]), and second, that variable elimination

has been performed for all clauses backward reachable from αi. (The second

condition is ensured by using an auxiliary set Skipped for marking clauses for

which variable elimination was skipped). The second stage of the algorithm

(starting from line 22) uses bounded variable elimination and then incomplete

variable elimination to convert the non-global-interpolant to the eventually

returned Bweak-interpolant by eliminating A-local variables. Note that the

bounded variable elimination stage is non-redundant even though bounded

variable elimination was performed locally for resolution refutation clauses,

since sometimes bounded variable elimination is possible given a large set of

clauses while it is impossible given a subset of that set. Note also that the

algorithm returns an interpolant rather than merely a Bweak-interpolant if
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1: function IVE(F ,v)
2: IVE (F, v) := {}
3: for all α ∈ F+

v do
4: if There exists a non-marked clause β ∈ F−

v , such that α ⊗v β is
not a tautology then

5: IVE (F, v) := IVE (F, v) ∪ α ⊗v β // β: the first clause
that meets if-condition

6: Mark β
7: else
8: if There exists a clause β ∈ F−

v , such that α ⊗v β is not a
tautology then

9: IVE (F, v) := IVE (F, v)∪α⊗v β // β: the first clause
that meets if-condition

10: end if
11: end if
12: end for
13: for all Unmarked β ∈ F−

v do
14: if There exists a clause α ∈ F−

v , such that α⊗vβ is not a tautology
then

15: IVE (F, v) := IVE (F, v) ∪ α ⊗v β // β: the first clause
that meets if-condition

16: end if
17: end for
18: return IVE (F, v)
19: end function

Figure 5.4: Incomplete Variable Elimination
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all the A-local variables are succesfully removed before incomplete variable

elimination is applied.

Next, we present the proof of Algorithm 5.5 starting with a number of

lemmas.

Lemma 5.2.11. A non-global-clause-interpolant of the empty clause □ is a

non-global-interpolant.

Proof. Each of the two conditions in the definition of a non-global-clause-

interpolant yields the corresponding condition in the definition of the non-

global-interpolant.

Lemma 5.2.12. Each iteration of both for-loops of Algorithm 5.5 constructs

a non-global-clause-interpolant I(αi) for the currently traversed clause αi.

Proof. The proof is only briefly sketched here, since it is a simpler version of

the proof of Lemma 5.2.7. The proof is again by induction on the number

of loop iterations. One needs to prove only the first two clause-interpolant

properties in this lemma as compared to the three properties which need to be

proved for Lemma 5.2.7 (which makes the proof simpler). Another difference

is that variable elimination is not always applied when αi = αj ⊗v αk, where

v is A-local. However, the proof for both properties is straightforward when

variable elimination is not applied.

Theorem 5.2.13. Given an A-resolution refutation, Algorithm 5.5 returns

a Bweak-interpolant.

Proof. At line 22 of the algorithm, the set I(□) is the non-global-clause-

interpolant for □ by Lemma 5.2.12, hence it is a non-global-interpolant by

Lemma 5.2.11. It is not hard to see that after bounded variable elimination

is applied, I(□) is still a non-global-interpolant (or an interpolant if all the

A-local variables are eliminated). If incomplete variable elimination is ap-

plied, it clearly maintains the property A ⇒ I(□), while at the end of the

procedure the property Vars(I) ⊆ Vars(A) ∩ Vars(B) is met, since all the

A-local variables are eliminated. Hence I(□) is a Bweak-interpolant.
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1: function SIG(πA = (α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ □))
2: Skipped := {}
3: for all i ∈ {1, 2, . . . , q} do
4: I(αi) := {αi}
5: end for
6: for all i ∈ {q + 1, q + 2, . . . , p ≡ □} do
7: if αi has exactly one parent β then
8: I(αi) := I(β)
9: else
10: if αi = αj ⊗v αk, where v is global then
11: I(αi) := I(αj) ∪ I(αk)
12: else // αi = αj ⊗v αk, where v is A-local
13: I(αi) := I(αj) ∪ I(αk)
14: if |VE (I(αj) ∪ I(αk), v)| ≤ |I(αj) ∪ I(αk)| and {αj, αk} ∩

Skipped = ∅ then
15: I(αi) := VE (I(αi), v)
16: else
17: Skipped := Skipped ∪ {αi}
18: end if
19: end if
20: end if
21: end for
22: Apply bounded variable elimination for A-local variables over I(□)
23: if I(□) then do not contain A-local variables
24: return I(□) // In this case I(□) is an interpolant
25: else
26: Apply incomplete variable elimination for A-local variables over

I(□)
27: return I(□) // In this case I(□) is a Bweak-interpolant
28: end if
29: end function

Figure 5.5: Bweak-Interpolant Generation
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5.3 Using Bweak-Interpolants In Model Check-

ing

In this section we describe a model checking algorithm that uses Bweak-

interpolants. Our algorithm is composed of two main stages. Recall that

by Definition 5.1.2, a Bweak-interpolant fulfills two out of the three conditions

of an interpolant. Therefore, the first stage transforms the Bweak-interpolant

into an interpolant.

The second stage uses interpolants computed by the first stage. In essence,

the second stage is a modification of the original ITP and is called CNF-ITP.

Besides the fact that CNF-ITP uses interpolants in CNF, it further takes

advantage of this fact by applying optimizations which are possible only as

a result of using interpolants in CNF.

Before going into the details of CNF-ITP, we describe ITP.

5.3.1 Interpolation-Based Model Checking Revisited

We have described ITP in detail in Chapter 2, we give a quick overview

here. ITP [43] is a complete SAT-based model checking algorithm. It uses

interpolation to over-approximate the reachable states in a transition system

M with respect to a property p. ITP uses nested loops where the outer loop

increases the depth of unrolling and the inner loop computes the reachable

states. ITP is described in Figure 5.6

Definition 5.3.1. Let k and n be the depth of unrolling used in the outer

loop and the iteration of the inner loop of ITP, respectively. Let us denote

F̄ = ⟨INIT, Ik1 . . . , Ikn⟩ the resulting FRS. We define Rk
n = INIT∨Ik1∨Ik2∨. . .∨

Ikn to be the set of reachable states computed by the inner loop of ITP after

n iterations and with respect to unrolling depth k. For a given 1 ≤ j ≤ n,

Ikj is the interpolant computed in the j-th iteration of the inner loop.

From this point and on, k and n refer to the depth of unrolling used in
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1: function ITP(M ,p)
2: if INIT ∧ ¬p == SAT then
3: return cex
4: end if
5: k = 1
6: while true do
7: result = ComputeReachable(M, p, k)
8: if result == fixpoint then
9: return V alid
10: else if result == cex then
11: return cex
12: end if
13: k = k + 1
14: end while
15: end function

Figure 5.6: Interpolation-Based Model Checking (ITP)

the outer loop and the iteration of the inner loop of ITP, respectively.

In general, the inner loop checks a fixed-bound BMC [4] formula where

at each iteration only the initial states are replaced with an interpolant com-

puted at a previous iteration (lines 22 and 30). This is done until the BMC

formula becomes SAT (line: 30) or until a fixpoint is reached (lines: 25-27). In

the former case, the outer loop increases the unrolling depth by 12 (line: 13)

in order to either increase the precision of the over-approximations or to find

a counterexample.

Lemma 5.3.2. Rk
n(V

0) ∧ path0,k−1 ∧ (
∨k−1

j=0 ¬p(V j)) is unsatisfiable.

Proof. The proof is immediate from the interpolant definition (Definition 2.3.1)

and from the definition of Rk
n. Let k and n be the depth of unrolling used

in the outer loop and the iteration of the inner loop of ITP respectively

and let F̄ = ⟨Ik0 = INIT, Ik1 . . . , I
k
n⟩ be the FRS computed by ITP. For

2Some works choose different ways of increasing k. For example, k can be increased
by the number of iterations executed in the inner loop: k = k + n. In our experiments
k = k + 1 yielded better results.
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16: function ComputeReachable(M ,p, k)
17: Rk

0 = INIT, Ik0 = INIT, n = 1
18: if Ik0 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT then
19: return cex
20: end if
21: repeat
22: A = Ikn−1(V

0) ∧ TR(V 0, V 1)

23: B = path1,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k))
24: Ikn = GetInterpolant(A,B)
25: if Ikn ⇒ Rk

n−1 then
26: return fixpoint
27: end if
28: Rk

n = Rk
n−1 ∨ Ikn

29: n = n+ 1
30: until Ikn−1 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT
31: end function

Figure 5.7: Inner loop of ITP

0 ≤ j ≤ n − 1, Ikj (V
0) ∧ path0,k ∧ (

∨k
j=0 ¬p(V j)) is unsatisfiable and Ikj+1

is the interpolant derived from the proof of unsatisfiability for this formula.

Thus, for 0 ≤ j ≤ n Ikj (V
0)∧ path0,k−1 ∧ (

∨k−1
j=0 ¬p(V j)) is unsatisfiable, and

by that Rk
n(V

0) ∧ path0,k−1 ∧ (
∨k−1

j=0 ¬p(V j)) is unsatisfiable.

Rk
n is also referred to as (k − 1)-adequate.

5.3.2 Transforming a Bweak-Interpolant Into an Inter-

polant Using Inductive Reasoning

As we have shown in Section 5.2, given a pair of formulas (A,B) such that

A ∧ B is unsatisfiable, a Bweak-interpolant Iw can be computed. By Def-

inition 5.1.2, A ⇒ Iw and Vars(Iw) ⊆ Vars(A) ∩ Vars(B), but it is not

guaranteed that Iw∧B is unsatisfiable. Intuitively, we can think of Iw as be-

ing too over-approximated and therefore needing strengthening with respect

to B.
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Definition 5.3.3 (B-adequate). Let (A,B) be a pair of formulas s.t. A∧B ≡
⊥ and let Iw be a Bweak-interpolant for (A,B). We say that Iw is B-adequate

iff Iw ∧B ≡ ⊥.

Following the above definition, our purpose is to make a Bweak-interpolant

Iw B-adequate. We refer to this procedure as B-Strengthening.

The purpose of this section is to demonstrate the use of Bweak-interpolants

for model checking, in particular in the context of ITP.

Definition 5.3.4 (k-n-pair). Given the formulas A = Ikn−1(V
0)∧TR(V 0, V 1)

and B = path1,k∧ (
∨k

i=1 ¬p(V i)). The pair (A,B) is called a k-n-pair. When

A ∧B ≡ ⊥ we call (A,B) an inconsistent k-n-pair.

Consider a run of ITP for a given k and n. We aim at computing Ikn.

Let (A,B) be an inconsistent k-n-pair and let Iw be the Bweak-interpolant

for (A,B). If Iw is B-adequate then it is an interpolant and therefore Ikn

can be defined to be Iw. If Iw is not B-adequate we are required to apply

B-Strengthening and transform Iw into an interpolant.

Let us assume that Iw is not B-adequate and that Iw(V
1)∧B is satisfiable.

There exists a state s ∈ Iw such that s(V 1) ∧ B is satisfiable. Intuitively, in

order to make Iw B-adequate, and by that an interpolant, we would like to

remove s from it.

Clearly, A ∧ s(V 1) is unsatisfiable; otherwise A ∧ B would have been

satisfiable. Thus, B-Strengthening can be done by iterating all assignments

for Iw(V
1)∧B, extracting a state s ∈ Iw from an assignment and blocking it

in Iw. This is an inefficient way to perform B-Strengthening since the number

of such assignments may be too large.

To overcome this, we use knowledge about the problem at hand. Namely,

we take into account the fact that A is of the following form: A = Ikn−1(V )∧
TR(V, V ′).

Definition 5.3.5 (Relatively Inductive). Let R and Q be propositional for-

mulas and M a transition system. We say that Q is relatively inductive with
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respect to R and M if (R(V ) ∧ Q(V )) ∧ TR(V, V ′) ⇒ Q(V ′). When M is

clear from the context we omit it.

Recall that by Definition 5.3.1 Rk
n represents an over-approximation of

all reachable states after up to n transitions and it is (k − 1)-adequate

(Lemma 5.3.2).

Lemma 5.3.6. Let (A,B) be an inconsistent k-n-pair. Let Iw be the Bweak-

interpolant for (A,B) . If s is an assignment to V s.t. s(V 1)∧B is satisfiable,

then the following holds:

• Rk
n−1 ⇒ ¬s

• Rk
n−1 ∧ TR⇒ ¬s′

Proof. From Lemma 5.3.2 we know that Rk
n−1(V

0)∧path0,k−1∧(
∨k−1

i=0 ¬p(V i))

is unsatisfiable. Since s represents a state that can reach the bad states in k−
1 steps or less, s cannot be part of Rk

n−1. Thus, s ̸∈ Rk
n−1 and R

k
n−1 ⇒ ¬s. We

now need to show that s cannot be reached from Rk
n−1. By Definition 5.3.1,

Rk
n−1 = INIT ∨ Ik1 ∨ . . . ∨ Ikn−1. Since (A,B) is an inconsistent k-n-pair,

Ikn−1(V
0) ∧ TR(V 0, V 1) ∧ path1,k ∧ (

∨k
i=1 ¬p(V i)) is unsatisfiable. By that,

and by the fact that Rk
n−1(V

0) ∧ path0,k−1 ∧ (
∨k−1

i=0 ¬p(V i)) is unsatisfaible

(Rk
n−1 is (k−1)-adequte) we know that Rk

n−1(V
0)∧path0,k∧ (

∨k
i=0 ¬p(V i)) is

unsatisfiable. Using the same reasoning as before, since s represents a state

that can reach the bad states in k−1 steps or less, it cannot be reached from

Rk
n−1 and thus it is immediate that Rk

n−1 ∧ TR⇒ ¬s′.

The above lemma states that if a state s can reach a bad state in up to

k − 1 transitions, it cannot be a state in the set Rk
n−1. Consider a Bweak-

interpolant Iw derived from the pair (A,B), and assume s ∈ Iw (derived

from the satisfying assignment to Iw(V
1) ∧ B), then s follows the condition

in Lemma 5.3.6. Therefore, Rk
n−1 ⇒ ¬s and Rk

n−1 ∧ TR ⇒ ¬s′ hold and by

that (Rk
n−1∧¬s)∧TR⇒ ¬s holds. By Definition 5.3.5 ¬s is relatively induc-

tive with respect to Rk
n−1. Therefore, ¬s can be inductively generalized [8].
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32: function FindMissingClauses(R,Iw, B, n)
33: C = ∅
34: while (Iw∧C)(V 1)∧B == SAT do // When C = ∅ it is evaluated
as ⊤

35: Get s ∈ Iw from the SAT assignment
36: c = InductiveGeneralization(R, s, C)
37: C = C ∪ c
38: end while
39: StoreClauses(n)
40: return C
41: end function

Figure 5.8: Find the clauses needed for the Bweak-interpolant Iw to be B-
adequate

Inductive generalization results in a sub-clause c of ¬s such that (Rk
n−1 ∧

c) ∧TR⇒ c′ and INIT⇒ c. c can then be used to strengthen Iw and Rk
n−1.

Adding the clause c to Iw removes s from Iw. This process is then iterated

until Iw becomes B-adequate and hence an interpolant. The algorithm for

finding the clauses that make Iw B-adequate is described in Figure 5.8.

Theorem 5.3.7. Let (A,B) be an inconsistent k-n-pair. Let Iw be a Bweak-

interpolant and let c1, . . . , cm be clauses s.t. INIT ⇒ ci and ci is relatively

inductive with respect to Rk
n−1 for 1 ≤ i ≤ m. If (Iw ∧

∧m
j=1 cj)∧B ≡ ⊥ then

Iw∧
∧m

i=1 ci is an interpolant w.r.t A = (Ikn−1(V
0)∧

∧m
j=1 cj(V

0))∧TR(V 0, V 1)

and B = path1,k ∧ (
∨k

i=1 ¬p(V i)).

Proof. Let us denote I = Iw ∧
∧m

i=1 ci. Clearly, I ∧ B is unsatisfiable and I

is over the shared variables of A and B. We only need to show that A⇒ I.

Since Iw is a Bweak-interpolant, A ⇒ Iw. Now we only need to show that

A ⇒
∧m

i=1 ci. Each ci is relatively inductive w.r.t. Rk
n−1. In particular,

Ikn−1(V
0)∧TR(V 0, V 1)⇒ ci for 1 ≤ i ≤ m. Thus, A⇒ ci for 1 ≤ i ≤ m and

therefore A⇒
∧m

i=1 ci. Thus, A⇒ I.
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5.3.3 CNF-ITP: Using Bweak-Interpolants in ITP

Above we described how a Bweak-interpolant is transformed into an inter-

polant efficiently for model checking. In this section we present CNF-ITP, a

model checking algorithm that is based on ITP. CNF-ITP uses the method

described above to compute interpolants. In addition, it uses optimizations

that are possible as a result of using interpolants in CNF.

Like the original ITP, our version consists of two nested loops. Since

the computation of interpolants is performed in the inner loop, this is where

we have made most of our modifications and optimizations. Recall that

in the inner loop a BMC formula of a fixed-bound is checked iteratively,

where at each iteration only the initial states are replaced by the interpolants

computed in the previous iteration. Our modified version of the inner loop

appears in Figure 5.9

As before, we consider k to be the unrolling depth set by the outer loop

and used in the inner loop and n to be the iteration during the execution of

the inner loop.

The beginning of the loop is similar to the original inner loop of ITP.

First, a counterexample of length k is checked (lines: 44-46). If no counterex-

ample exists the pair (A,B) is defined and a Bweak-interpolant Iw is computed

(line: 50). Then, two optimizations are applied. First, clauses are pushed for-

ward (line: 51). Second, previously computed interpolant is conjoined to the

currently computed Bweak-interpolant (line: 52). We will go into more details

in the next section. Since Iw may not be B-adequate, the B-Strengthening

process may need to add clauses to it (to strengthen it). Adding clauses

to Iw before B-Strengthening results in a more efficient B-Strengthening.

Moreover, after pushing clauses forward and adding clauses from the previ-

ously computed interpolant, Iw may become B-adequate, thereby rendering

B-Strengthening redundant.

After applying the two optimizations, B-Strengthening is invoked (line 53).

Then the clauses learned during this process are conjoined with Rk
n−1 and
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Ikn−1 (line 56), and Iw (line 57). After conjoining the clauses, Ikn is an inter-

polant. The rest of the loop is identical to the original inner loop of ITP.

We now describe the optimizations in more detail.

5.3.3.1 Pushing Clauses Forward

Let us consider the interpolant Ikn computed during the n-th iteration of the

inner loop. Since Ikn is given in CNF, assume that Ikn−1 = {c1, . . . , cm} where
ci is a clause for every 1 ≤ i ≤ m.

Definition 5.3.8. LetM be a transition system and let F = {c1, . . . , cm} be
a formula in CNF where ci is a clause over V for every 1 ≤ i ≤ m. A clause

ci for some 1 ≤ i ≤ n is said to be pushable if F (V ) ∧ TR(V, V ′) ⇒ ci(V
′)

holds.

After the computation of a Bweak-interpolant Iw, we try to find pushable

clauses in the previous interpolant. Those clauses can be made part of the

new interpolant. More precisely, if a clause ci ∈ Ikn−1 is pushable then we

add it to Iw such that Iw = Iw ∧ ci. Adding the pushable clauses to the

Bweak-interpolant strengthens it and may make it B-adequate.

5.3.3.2 Incremental Interpolants

The outer loop of CNF-ITP (and ITP) increases the unrolling depth when a

more precise over-approximation is needed. Let I11 be the interpolant com-

puted in the first iteration of the inner loop for k = 1 and let I21 be the in-

terpolant computed in the first iteration of the inner loop for k = 2. Clearly,

since both I11 and I21 over-approximate the states reachable in one transition

from the initial states, I11 ∧I21 is also an over-approximation of the same set of

states. Usually, the size of the interpolants is an issue. Therefore, whenever

the inner loop terminates and the bound is increased, all computed inter-

polants are discarded and are not re-used [42]. Since our method produces

interpolants in CNF that are usually small, this conjunction does not create
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42: function ComputeReachableCNF(M ,p, k)
43: Rk

0 = INIT, Ik0 = INIT, n = 1
44: if Ik0 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT then
45: return cex
46: end if
47: repeat
48: A = Ikn−1(V

0) ∧ TR(V 0, V 1)

49: B = path1,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k))
50: Iw = GetBWeakInterpolant(A,B)
51: PushInductiveClauses(Iw, n− 1)
52: Iw = Iw ∧ Ik−1

n // For k = 1, I0n = ⊤
53: C = FindMissingClauses(Rk

n−1, Iw, B)
54: Ikn = Iw
55: for all c ∈ C do
56: Rk

n−1 = Rk
n−1 ∧ c // Implicitly conjoining c with Ikn−1

57: Ikn = Ikn ∧ c
58: end for
59: if Ikn ⇒ Rk

n−1 then
60: return fixpoint
61: end if
62: Rk

n = Rk
n−1 ∨ Ikn

63: n = n+ 1
64: until Ikn−1 ∧ path0,k ∧ (¬p(V 1) ∨ . . . ∨ ¬p(V k)) == SAT
65: end function

Figure 5.9: Inner loop of CNF-ITP

huge CNF formula. This re-use of previously computed interpolants increases

the efficiency of CNF-ITP as compared to ITP.

5.4 Experimental Results

Our approach includes two major parts. The first part computes a Bweak-

interpolant from a resolution refutation, and the second part applies B-

Strengthening and a model checking algorithm CNF-ITP. The computation
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of Bweak-interpolants was implemented on top of MiniSAT 2.2. CNF-ITP

and ITP were implemented in a closed-source model checker. For IC3 we

used the publicly available ABC framework3. In the results we also include

the runtime for ABC’s ITP implementation in order to show the efficiency

of our implementation.

To evaluate our method we used a representative subset of the HWMCC’12

benchmark set. All experiments were conducted on a system with an Intel

E5-2687W running at 3.1GHz with 32GB of memory. Timeout was set to

900 seconds. As mentioned, we sought to test two aspects: the size of the

resulting interpolants and the impact on model checking.

In Figure 5.10 a comparison between interpolants sizes is presented. Note

that in the majority of cases, interpolants generated by CNF-ITP are orders

of magnitude smaller than those generated by the traditional method (For

ITP, the number of clauses is after translation of the interpolants to CNF).

Considering the entire set of benchmarks we see that CNF-ITP generates in-

terpolants that are 117 times smaller than those generated by the traditional

method.

Comparing the run-time of the model checking algorithms shows that

our CNF-ITP algorithm outperforms ITP and IC3 in terms of the overall

run-time on this subset. CNF-ITP outperforms ITP on 32 instances, where

in 16 of these instances ITP times out. ITP outperforms CNF-ITP in 21

cases only. CNF-ITP outperforms IC3 in 18 cases, but IC3 is preferable in

23 cases. CNF-ITP is the absolutely best algorithm in 14 cases. Figure 5.11

shows a comparison of CNF-ITP to the other two algorithms.

Table 5.1 presents a detailed analysis of the experiments. We chose all

valid benchmarks that either ITP or CNF-ITP could prove in the given

time frame (55 cases). Consider Table 5.1. As was shown in Figure 5.10

our method generates significantly smaller interpolants in almost every case.

Summarizing the average size of all computed interpolants shows that CNF-

3https://bitbucket.org/alanmi/abc
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Figure 5.10: Comparing sizes of generated interpolants. Y-axis represents
interpolants generated by CNF-ITP and X-axis represents interpolants gen-
erated by ITP.
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ITP generates interpolants that are 49 times smaller than those generated by

ITP. Note that average interpolant computation time is in the same ballpark

for both methods.

Another interesting aspect of the comparison between CNF-ITP and ITP

is the convergence bound. We can see that in many cases the bound is

different. This indicates that the strength of the interpolants computed by

the two methods is different and affects the results of the model checking

algorithm.

Analysis of the results in the table shows that whenever the number of

clauses in the interpolants computed by CNF-ITP is significantly smaller

than the number of clauses in the interpolants computed by ITP, the former

performs better.

In the cases where the size of interpolants is fairly the same, ITP performs

better. This can be explained by the fact that ITP computes small inter-

polants when the resolution refutation is small. Therefore, computing the

interpolants in ITP is more efficient in these cases since it only requires lin-

ear traversal over the resolution refutation. In contrast, our method requires

B-Strengthening, a process that is in some cases expensive. We conclude that

when the resulting interpolants in ITP are large, CNF-ITP has a significant

advantage in the vast majority of cases.

When analyzing results from the entire HWMCC’12 benchmark, we have

found that in CNF-ITP 95% of the clauses are generated using SIG. This

result shows the importance of SIG when computing the interpolants. Yet,

B-strengthening is also critical, since only around 25% of the instances were

solved solely by SIG.

5.5 Conclusions

CNF-ITP uses key elements of ITP and IC3. On the one hand, like ITP,

CNF-ITP uses the resolution refutation to get information about the reach-
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able states. This information is only partial, and therefore CNF-ITP also

uses inductive generalization, a key element of IC3, to complete the com-

putation of reachable states. Since the reachable states are computed by

means of over-approximations, there are cases in which the precision of these

approximations must be increased. To do so, CNF-ITP uses unrolling, like

in ITP. In addition, it uses the fact that interpolants are given in CNF and

tries to reuse clauses that have already been learnt (both by pushing the

clauses forward and by using previously computed interpolants). CNF-ITP

can be viewed as a hybridization of the monolithic approach (ITP) and the

incremental approach (IC3). We believe that there are well-founded grounds

for comparing the three algorithms, and that further development can bring

about an even tighter integration of ITP and IC3. This discussion, however,

is outside the scope of this paper and is an avenue for future research.
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(a) Runtime ITP vs. CNF-ITP.

(b) Runtime IC3 vs. CNF-ITP

Figure 5.11: Y-axis represents CNF-ITP’s runtime in seconds. X-axis rep-
resents runtime in seconds for the compared algorithm (IC3 or ITP). Points
below the diagonal are in favor of CNF-ITP.
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Table 5.1: Experiment parameters on part of the benchmarks. Name: property
name; ♯Vars: number of state variables in the cone of influence; k is the bound
of the outer loop at which fixpoint was found; totaln is the total number of it-
erations executed by the inner loop; clausesAvg is the average number of clauses
representing each computed interpolant; Extract[s] is the average time to compute
an interpolant in seconds; MC[s] is the total runtime of the algorithm in seconds.
Values in boldface are the best of all three. Underlined runtime is for cases where
CNF-ITP outperforms ITP and Italic is for cases where CNF-ITP outperforms
IC3.

IC3ABC ITPABC ITP CNF-ITP
Name ♯Vars MC[s] MC[s] k totaln clausesAvg Extract[s] MC[s] k totaln clausesAvg Extract[s] MC[s]

beembkry1b1 76 4.68 758 15 72 94495 3.14 792 20 83 1830 0.65 248
beembrptwo1f2 227 7.02 TO 59 650 2905 0.83 TO 40 1135 227 0.03 114
beembrptwo5f2 227 292 TO 81 1105 5 0.29 TO 29 1326 155 0.01 13
beemcoll1b1 132 11.77 TO 9 51 45563 2.09 577 11 52 487 0.28 201
beemexit5f1 246 7.11 106 25 218 15792 1.21 611 25 255 792 0.3 466
beemfish4f1 94 4.41 TO 15 50 63423 3.26 TO 14 59 1348 0.72 85
beemfwt1b1 1214 321.86 396 4 18 5721 0.23 10.58 4 15 62 38.14 TO
beemfwt5f2 3045 543.32 14.68 5 9 854 0.009 2.2 5 10 22 0.00 2.01

beemlmprt5f1 121 4.29 TO 14 65 59503 3.9 TO 12 72 1423 1.3 194
beemmsmie1b1 89 28.2 TO 4 12 230498 11 TO 5 18 1126 22 505
beemndhm2f2 251 13.53 138 7 49 29051 1.07 213 5 10 143 0.14 2.92

beempgmprot1b1 1025 8.03 97 33 218 1121 0.82 TO 19 113 61 0.00 27.65
beempgmprot7b1 1033 591.49 204 27 168 2717 1.23 TO 18 153 237 0.00 36.21

beemtlphn5f1 249 29.81 TO 12 60 73460 5.27 TO 20 66 1197 0.06 TO
beemrshr3b1 720 TO TO 8 56 8043 2.17 437 8 41 58 16 TO
beemtrngt2b1 170 1.55 TO 29 193 31942 1.95 TO 15 154 618 0.08 23.42
beemtrngt4b1 228 44.71 TO 29 196 22144 1.56 TO 30 281 371 0.71 TO

bob05 2404 7.5 275 24 121 962 0.37 221 24 136 198 0.38 113
bob1u05cu 4377 7.66 235 24 124 3116 0.45 251 24 147 272 0.19 152

bobaesdinvdmit 1335 56.12 TO 4 12 122692 34.4 TO 3 21 2408 6.2 278
eijkbs3330 246 7.2 TO 3 6 764550 22.74 TO 3 9 5873 10.44 154

pdtpmsviper 580 108 TO 4 6 903732 13 TO 3 9 2304 21 233
6s38 1931 TO TO 10 33 84988 1.19 TO 7 22 4299 15.7 423
6s102 1121 TO TO 37 275 21947 0.5 TO 25 137 654 1.3 233
6s108 782 4.83 TO 8 43 89493 3.67 TO 7 25 1787 0.56 42.65
6s120 58 0.71 4.1 3 6 365 0.34 6.5 3 8 373 0.12 2.92
6s121 419 821.54 TO 24 214 4542 0.08 46.25 18 98 389 0.04 14.42
6s130 811 TO 18.7 7 17 43237 2.6 123 6 11 5264 55 TO
6s131 811 TO 19.2 9 21 75167 6 407 7 9 2757 42 TO
6s132 139 2.87 7.5 7 13 35973 2.88 85 5 13 4221 3.5 76
6s136 3342 TO 3.1 20 58 2471 0.005 4.4 20 53 16 0.00 1.94
6s151 150 TO TO 14 515 1998 0.22 461 10 122 6226 3.15 TO
6s159 252 0.03 7.8 15 143 656 0.01 4.9 10 60 27 0.00 0.34
6s164 198 8.96 TO 18 77 753 0.02 3.7 18 85 135 0.006 2.43
6s181 607 TO 26.2 8 19 63509 4.58 232 6 10 2556 6.45 TO
6s183 607 TO 18 10 24 87782 1 612 7 9 5641 53.64 TO
6s189 2434 TO TO 18 86 10103.779 1 864 15 29 202 0.12 TO
6s194 2389 TO TO 47 300 8312.99 1 721 48 378 606 0.68 403
6s19 607 TO 8.95 8 19 78338.632 1 333 5 9 2346 7.72 TO
6s4 202 TO TO 79 6758 56.597 1 TO 79 8633 300 0.01 580
6s51 3107 96.65 TO 52 416 3960.346 1 774 54 540 1198 1.045 TO
6s6 429 6.29 53.7 12 29 46353.31 1 540 12 29 182 2.677 TO
6s9 607 TO 29.2 8 19 63509 1 238 5 9 2236 6.901 TO

intel010 539 TO TO 16 168 18092 0.4 184 17 354 850 2 TO
intel011 533 TO TO 18 268 14526 0.4 322 20 544 606 1 TO
intel018 491 TO TO 14 399 1186 0.02 29 16 491 187 1 TO
intel019 510 TO TO 16 395 1345 0.02 35 16 388 45 1.5 TO
intel020 354 TO TO 14 251 2388 0.04 32 15 379 264 0.06 49
intel021 365 TO TO 18 316 2503 0.05 51.3 18 489 331 0.14 117
intel022 530 TO TO 21 435 18818 0.5 629 20 555 585 1.05 TO
intel023 358 TO TO 30 593 3339 0.1 233 32 1058 290 0.09 197
intel024 357 TO TO 15 233 3087 0.04 34.5 15 341 206 0.12 83
intel028 7436 TO TO 28 559 3564 0.2 TO 26 770 194 0.44 642
intel031 531 TO TO 21 268 3465 0.15 114 18 235 183 0.03 61
intel034 3297 TO TO 16 425 1477 0.02 85 16 432 83 0.19 119
Total 26442 33920 3279594 143 26519 66454 326 22996
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Chapter 6

Lazy Abstraction and

SAT-based Reachability

This work is based a paper that appeared in [58]. In this work we introduce

a novel lazy abstraction-refinement technique for hardware model checking,

integrated with the SAT-based algorithm IC3 [8].

Most SAT-based model checking algorithms are based on an unrolling of

the model’s transition relation in order to traverse its state space. In contrast,

the recently introduced IC3 algorithm [8] avoids such unrolling. To verify a

safety property, IC3 gradually builds a series of sets of states F0, . . . , Fi, . . .,

where Fi over-approximates the set of states reachable within i steps from

the initial states. The computation moves back and forth along the Fi’s and

strengthens them by eliminating unreachable states. This is done via local

reachability checks between consecutive sets Fi and Fi+1. IC3 either reaches

a fixpoint, in which case all reachable states satisfy the desired property, or

returns a counterexample.

Abstraction-refinement is a well known methodology for tackling the

state-explosion problem. Abstraction hides model details that are not rele-

vant for the checked property. The resulting abstract model is then smaller.

Lazy abstraction [36, 44], developed for software model checking, is a spe-
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cific type of abstraction that allows hiding different model details at different

steps of the verification.

In this work we develop, for the first time, a lazy abstraction-refinement

framework for hardware. We use the visible variables abstraction [40], which

is particularly suitable for hardware. However, we use it in a lazy manner in

the sense that different sets of visible variables are used in different iterations

of the state-space traversal.

We find the IC3 algorithm most suitable for lazy abstraction since its state

traversal is performed by means of local reachability checks, each involving

only two consecutive sets. Thus, at each check a different set of variables is

relevant.

Our model checking algorithm, called L-IC3, thus integrates a lazy abstraction-

refinement mechanism into IC3. Similarly to IC3, L-IC3 computes a series

of over-approximating sets Fi. However, L-IC3 considers abstractions of the

model during this computation. When constructing Fi+1, we determine a

set of variables Ui, needed for its construction, and abstract both states and

transitions accordingly. The variables in Ui are referred to as “visible”, while

the others are invisible and treated as inputs.

The key ingredients of L-IC3 are therefore a series F̄ of over-approximating

sets of states Fi and an abstraction sequence Ū of sets of variables Ui.

L-IC3 works in stages. Each stage consists of an abstract model checking

step, followed by a refinement step. At a given stage, the abstract model

checking extends both F̄ and Ū and checks if they include a potential abstract

counterexample. If not, the sequences are further extended. If a potential

abstract counterexample is found, the algorithm strengthens the sets Fi by

eliminating abstract states that might be a part of an abstract counterexam-

ple.

We use a nonstandard notion of abstract counterexample, based on both

F̄ and Ū . It consists of a sequence of abstract states connected by abstract

transitions, satisfying:
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1. each transition is based on a different abstraction Ui, and

2. each abstract state intersects the set Fi at the corresponding time frame

Our notion of counterexample reflects the incorporation of lazy abstraction

into the mechanism of computing F̄ .

If an abstract counterexample is found, meaning that no strengthening is

possible anymore based on the abstractions, the refinement step is invoked.

Refinement applies just one iteration of a concrete variation of IC3, on the

F̄ computed by the abstract model checking. By doing so, it either finds a

concrete counterexample or strengthens the Fi’s so that all concrete coun-

terexamples of length k are eliminated. In the latter case, the Ui’s are also

refined by adding more visible variables to each of them, as needed and where

needed. Once refinement is finished we move to the next L-IC3 stage and

the abstract model checking is re-invoked, continuing the computation from

iteration k+1, with the refined sequences. This makes L-IC3 incremental.

L-IC3 terminates with either a fixpoint, in which case we conclude that

the system satisfies the property, or with a concrete counterexample.

In summary, the main contribution of our work is a novel lazy abstraction-

refinement technique for hardware. To the best of our knowledge this is the

first time lazy abstraction is considered in the context of hardware. Our

abstract model checking and refinement are SAT-based. Both avoid unrolling

of the transition relation.

In order to evaluate our algorithm we compared it with IC3 on a set of

large industrial designs and properties. We obtained speedups of up to two

orders of magnitude. Our experiments demonstrate that our lazy abstraction

indeed uses different sets of variables in different time frames. Moreover, only

a small portion of the design’s variables are used.
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6.0.1 Related Work

[28] and [10] suggest optimizations and extensions to IC3, but they do not

combine it with a lazy abstraction-refinement mechanism ([28] suggests the

use of abstraction for IC3 but without implementation details nor results).

In [45, 35, 32, 18, 33], SAT-based refinement is introduced. However, they

use an unrolling of the model while we use local checks a-la IC3. Similarly

to [45, 18], we also exploit an unSAT-core for refinement. However, we never

unroll the model, while [45] does. Further, [45] is not incremental since after

refinement it resumes its (abstract) model checking from time frame 0.

IC3 [8] is sometimes also viewed as an abstraction-refinement algorithm,

since it refers to over-approximated sets Fi and the strengthening of these

sets resembles refinement. However, the underlying model used by IC3 is

concrete, and only the concrete transition relation is considered. We, on the

other hand, alternate between abstract transition relations (in the abstract

model checking step) and the concrete transition relation (in the refinement

step). Our algorithm thus adds a layer of abstraction-refinement on top of

this over-approximation-strengthening mechanism.

6.1 Preliminaries

In this chapter, we will use a slightly different version of a transition system

than the one given in Defintion 2.0.1. In the following definition, we explicity

distinguish state variables from input variables.

Definition 6.1.1. A finite state transition system (a model) is a tuple M =

(V, U, INIT,TR) where V is a set of Boolean variables, U ⊆ V is a set of

state variables, V \ U is a set of input variables, INIT(V ) is a propositional

formula over V describing the initial states, and TR(V, V ′) describes a total

transition relation which is defined as a propositional formula over V and the

next-state variables V ′ = {v′ | v ∈ V }.
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The transition relation is described using next-state functions for each

state variable. Namely, TR(V, V ′) =
∧
v∈U

(v′ = fv(V, V
′)) where fv(V, V

′) is a

propositional formula that assigns the next value to v ∈ U based on current

and next-state variables. Note that for an input variable v ∈ V \U , fv is not
defined.

Definition 6.1.2. Let F̄ be an MFRS (recall Definition 2.4.1). A formula η

is inductive up to j, if Fj ∧ η ∧ TR ⇒ η′. η is an invariant up to level j if

Fi ⇒ η holds for each i ≤ j.

Note that if η is inductive up to j then Fi ∧ η ∧ TR ⇒ η′ holds for each

i ≤ j. This follows from the monotonicity of F̄ . Further, if η is an invariant

up to j then it is inductive up to level j − 1, and in addition F0 ⇒ η

(initialization). However, the opposite implication does not necessarily hold

(since the Fi sets are over-approximate).

Definition 6.1.3. Let F̄ be an MFRS. A formula η is a potential invariant

up to j, if the sequence F̄ u obtained by setting F u
i = Fi∧η for every i ≤ j and

F u
i = Fi otherwise remains an MFRS. Note that η is (trivially) an invariant

up to j w.r.t. F̄ u.

Thus, a potential invariant η can safely be used to strengthen the Fi

components, turning η into an invariant. Using the notion of a potential

invariant we can now say that η is a potential invariant up to j iff it is

inductive up to level j − 1, and in addition F0 ⇒ η (initialization).

The algorithms discussed in this chapter use the following simple obser-

vation:

Lemma 6.1.4. Let F̄ be an MFRS and η a formula such that η is an in-

variant up to j − 1 and Fj−1 ∧ TR⇒ η′. Then η is a potential invariant up

to j.

Note that given that η is an invariant up to j−1, the requirement Fj−1∧
TR ⇒ η′ is equivalent to requiring that η is inductive up to j − 1 since in

this case Fj−1 ∧ η ≡ Fj−1.
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6.1.1 SAT-based Reachability via IC3

IC3 [8] is a SAT-based model checking algorithm that, given a model M

and a property AGp, computes increasingly long sequences F̄ (M, p). The

algorithm works iteratively, where at iteration k, the MFRS of length k + 1

is extended to an MFRS of length k + 2 by initializing the set Fk+1 and

possibly updating previous sets (with index i ≤ k + 1). The computation

continues until either a counterexample is found or a fixpoint is reached (i.e.

Fi+1 ⇒ Fi for some i).

One of the main features of IC3 is the fact that no unrolling of the tran-

sition relation is needed. We give a brief overview of how it operates. More

details are given along the chapter as needed. For the exact details we refer

the reader to [8].

IC3 starts by checking if INIT ∧ ¬p or INIT ∧ TR ∧ ¬p′ is satisfiable,

in which case a counterexample of length zero or one is found and the al-

gorithm terminates. If both are unsatisfiable, F0 is initialized to INIT and

F1 is initialized to p. ⟨F0, F1⟩ is an MFRS (it satisfies the conditions in

Definition 2.4.1).

IC3 extends and updates F̄ , while strengthening the Fi’s. The kth itera-

tion starts from an MFRS ⟨F0, . . . , Fk⟩. Then Fk+1 is initialized to p. Clearly,

Fk ⇒ Fk+1 and Fk+1 ⇒ p hold. Therefore, the purpose of strengthening is

to ensure that Fk ∧TR⇒ F ′
k+1. This is done by checking that Fk ∧TR∧¬p′

is unsatisfiable. If this formula is satisfiable then a state s ∈ Fk is retrieved

from the satisfying assignment. s is a bad state since it reaches ¬p (and by

that violates Fk ∧ TR ⇒ F ′
k+1). At this point, either s is reachable from

INIT, in which case a counterexample exists, or s is unreachable and needs

to be removed from Fk. In order to determine if s is reachable, IC3 checks

the formula: Fk−1 ∧ TR ∧ s′. If this formula is unsatisfiable, then s can be

removed from Fk (since the property Fk−1 ∧ TR ⇒ F ′
k of an MFRS holds

without it as well), and the same process is repeated for other states in Fk

that can reach ¬p (if any). However, if Fk−1 ∧ TR ∧ s′ is satisfiable, a pre-
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decessor t ∈ Fk−1 of s is extracted and handled similarly to s in order to

determine if t (which is also a bad state) is reachable from INIT or not. IC3

therefore moves back and forth along the Fi’s, while retrieving bad states b

and checking their reachability from INIT via local reachability checks of the

form Fi∧TR∧b′. During this process, the Fi’s are strengthened by removing

bad states that are not reachable1. If a state in F0 = INIT is reached during

the backwards traversal, then a counterexample is obtained.

Definition 6.1.5. Satisfiability checks of the form Fi ∧ TR ∧ η (where

Vars(η) ⊆ V ∪ V ′) are called i-reachability checks.

6.1.2 Abstraction

As mentioned before, in this chapter we consider the “visible variables”

abstraction [40], which is particularly suitable for hardware. Let Mc =

(V, U, INIT,TR) be a model and let Ui ⊆ U be a set of state-variables.

We refer to Ui as the set of “visible variables”.

Given Ui, we consider an abstract model Mi = (Vi, Ui,TRi) of Mc where

TRi =
∧

v∈Ui

(v′ = fv(V, V
′)) is an abstract transition relation, and Vi = {v ∈

V | v ∈ Vars(TRi)∨v′ ∈ Vars(TRi)} ⊆ V . Note that the behavior of invisible

state variables (in U \ Ui) is nondeterministic.

We do not introduce an abstraction of INIT as part ofMi since we always

consider the concrete set of initial states. Mi is an abstraction ofMc, denoted

Mc ⪯ Mi, in the sense that both its set of states and its transition relation

are abstractions of the concrete ones, as explained next. Mi induces a set

of abstract states Si which includes all valuations to Vi. Specifically, each

concrete state s ∈ S is abstracted by the abstract state si ∈ Si that agrees

with s on the assignment to the joint variables in Vi. In this case we write

s ⪯ si. We sometimes refer to si as the set of concrete states it abstracts:

1In fact, in order to remove a bad state b from Fi, IC3 finds a clause c that is an
invariant up to i and implies ¬b, and adds c to Fi as a conjunct.
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{s ∈ S|s ⪯ si}.
In addition, TR is abstracted by TRi in the sense that TR ⇒ TRi.

Formally, the relation {(s, si) | s ⪯ si} is a simulation relation from Mc to

Mi.

Given an MFRS F̄ (Mc, p) = ⟨F0, . . . , Fk⟩ and an abstract model Mi, we

say that a formula η is inductive up to level j w.r.t. Mi, if Fj ∧η∧TRi ⇒ η′.

Lemma 6.1.6. Any formula inductive up to j w.r.t. Mi is also inductive up

to j w.r.t. Mc.

The lemma holds since TR ⇒ TRi. When we do not explicitly mention

a model, we refer to inductiveness w.r.t. Mc. The notion of an invariant

always refers to Mc.

6.1.3 Lazy Abstraction

As mentioned above, lazy abstraction [36] allows to use different details of

the model at different iterations of the state-space traversal. We adapt the

notion of lazy abstraction to abstraction based on visible variables [40], and

allow different variables to be visible at different time frames.

Definition 6.1.7. An abstraction sequence w.r.t. a model Mc is a sequence

Ū = ⟨U0, . . . , Uk⟩ where Ui ⊆ U for 0 ≤ i ≤ k, is a set of visible state-

variables. Ū is monotonic if Ui ⊆ Ui+1 for each 0 ≤ i < k.

An abstraction sequence Ū represents different levels of abstraction ofMc.

It induces a sequence of abstract models ⟨M0, . . . ,Mk⟩ whereMi is defined as

in Section 6.1.2. If Ū is monotonic, the induced sequence of abstract models

is also monotonic in the sense that M0 ⪰ . . . ⪰Mk ⪰Mc.

Definition 6.1.8. Let Ū = ⟨U0, . . . , Uk⟩ be a monotonic abstraction se-

quence and F̄ (Mc, p) = ⟨F0, . . . , Fk⟩ an MFRS. A sequence si, . . . , sj of ab-

stract states where 0 ≤ i < j ≤ k + 1 is an abstract path from i to j if
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1. for each i ≤ l < j − 1, (sl, sl+1) |= TRl, and

2. for each i ≤ l ≤ min{j, k}, sl ∩ Fl ̸= ∅2.

An abstract path s0, . . . , sj from 0 to j is an abstract counterexample of

length j if sj ∩ ¬p ̸= ∅.

Note that the definition above is not standard. It refers to different

transition relations at different steps. Also, it requires the abstract states to

be part of the corresponding Fi in the sense that si ∩ Fi ̸= ∅. Unlike with

concrete states, it is possible that si ∩ Fi ̸= ∅ but si ̸⊆ Fi. As a result we do

not write si ∈ Fi.

Definition 6.1.9. An abstraction sequence ⟨U0
r, . . . , Uk

r⟩ is a refinement of

an abstraction sequence ⟨U0, . . . , Uk⟩ if Ui ⊆ Ui
r for each i.

6.2 Lazy Abstraction and IC3

In this section we describe our proposed algorithm for lazy abstraction, called

L-IC3. The key ingredients of L-IC3 are an abstraction sequence Ū that

induces different abstractions at different time frames as well as an MFRS

F̄ .

L-IC3 starts with an initialization step and then works in stages (Fig-

ure 6.1). Its initialization (lines 2-5) is similar to the initialization of IC3 with

one exception. If no counterexample of length 0 or 1 exists, then in addition

to initializing F̄ to ⟨F0 = INIT, F1 = p⟩, it initializes Ū to ⟨U0 = Vars(p)⟩.
Clearly, after initialization, F̄ is an MFRS.

Each L-IC3 stage (lines 6-10) consists of an abstract model checking step

and a refinement step, both performed by variations of IC3. Ū and F̄ are

updated in both steps.

2Note that sl is an abstract state thus representing a set of concrete states. Therefore,
an intersection (∩) is used. Also, requirement (2) dismisses paths that are known to be
spurious based on F̄ . min{j, k} is used for the case where j = k + 1, in which nonempty
intersection is required only up to k.
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1: function L-IC3(p)
2: F̄ = ⟨INIT, p⟩; Ū = ⟨Vars(p)⟩
3: if Init-IC3(F̄ , Ū , p) == cex then
4: return cex
5: end if
6: while A-IC3(F̄ , Ū) == abs-cex do
7: if Refine(F̄ , Ū) == cex then
8: return cex
9: end if
10: end while
11: return fixpoint
12: end function

Figure 6.1: L-IC3

The abstract model checking A-IC3 gradually extends and updates the

MFRS F̄ by adding Fi sets and strengthening the components of F̄ until

either a fixpoint is reached, or an abstract counterexample is found (line 6).

In the former case, the property is proved and L-IC3 terminates (line 11). In

the latter case, the counterexample is abstract since it is computed w.r.t. the

abstract transitions. However, it is also restricted by F̄ (see Definition 6.1.8).

A refinement is then performed (line 7). If the refinement finds a concrete

counterexample then it terminates. Otherwise it refines Ū and updates F̄ into

an MFRS (of the same length). A new L-IC3 stage (line 6) of abstraction-

refinement then begins, invoking A-IC3 with the updated F̄ and the refined

Ū .

Both the abstract model checking and the refinement update the compo-

nents of the MFRS, however only the abstract model checking extends it by

adding sets. The abstract model checking step also adds new components

to the abstraction sequence when needed, but they are simply initialized to

the last component in the sequence. Existing components of the abstraction

sequence are updated (refined) only by the refinement.

Altogether, an invocation of L-IC3 results in either a fixpoint (in which
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case the property is proved) or a concrete counterexample.

Iterations of L-IC3 The stages of L-IC3 should not be confused with the

iterations of IC3 as a stage may extend F̄ by more than one set. Similarly

to IC3, we define an iteration of L-IC3 to include the effort involved in the

extension of F̄ by one set. In iteration k, F̄ is extended from ⟨F0, . . . , Fk⟩
to ⟨F0, . . . , Fk, Fk+1⟩. If no abstract counterexample is found, the iteration

is performed in full by A-IC3. In fact, several iterations can be performed

by a single invocation of A-IC3 (within a single stage of L-IC3), extending F̄

by several sets (as long as no abstract counterexample is found). When an

abstract counterexample is found, the corresponding iteration that starts at

A-IC3 continues at the refinement step.

6.2.1 Abstract Model Checking via A-IC3

The abstract model checking algorithm, A-IC3 (Figure 6.2), either finds an

abstract counterexample (line 22), or reaches a fixpoint (line 26) by comput-

ing an MFRS F̄ .

Using different abstractions The computation of F̄ is done using a vari-

ation of IC3 which considers a sequence of abstract models, induced by a

monotonic abstraction sequence Ū = ⟨U0 . . . , Uk⟩. A-IC3 uses the abstrac-

tion sequence Ū and extends it as necessary, but does not change its existing

components. Both abstract transition relations and abstract states are used.

Recall that IC3 performs i-reachability checks of the form Fi ∧ TR ∧ η.
A-IC3 also performs these checks (within Strengthen, line 20), but instead

of using the concrete TR it uses the abstract TRi. This means that when

traversing the model’s state space, A-IC3 uses different abstract transition

relations at different time frames. Further, when Fi ∧ TRi ∧ η is satisfiable,

A-IC3 retrieves an abstract state sa ∈ Mi from the satisfying assignment.

This abstract state is either used to strengthen F̄ , or it is part of an abstract

counterexample.

111



13: function A-IC3(F̄ , Ū)
14: k = |F̄ | − 1
15: while F̄ .fixpoint() == false do
16: Uk = Uk−1

17: Ū .add(Uk)
18: Fk+1 = p
19: F̄ .add(Fk+1)
20: result = Strengthen(F̄ , Ū , k)
21: if result == abs-cex then
22: return abs-cex
23: end if
24: k = k + 1
25: end while
26: return fixpoint
27: end function

Figure 6.2: A-IC3

On the other hand, when A-IC3 strengthens some set Fi+1 by adding to

it a clause c which is initial (i.e. F0 ⇒ c) and inductive at Mi up to i, i.e.

Fi ∧ c ∧ TRi ⇒ c′, then the clause c is added to all Fj such that j ≤ i, even

though it might not be inductive w.r.t. to TRj. The justification is that c is

inductive w.r.t. the concrete model (as TR⇒ TRi). As a result, even though

abstract models are used, the obtained MFRS satisfies the requirements of

Definition 2.4.1, which refer to the concrete transition relation TR. It does

not necessarily satisfy the requirements of Definition 2.4.1 w.r.t. the abstract

transition relations. To emphasize this, we sometimes refer to the sequence

as a concrete MFRS.

Incrementality A-IC3 is an iterative algorithm. The iterations of L-IC3

and A-IC3 coincide, except that when an abstract counterexample is found,

an iteration of L-IC3 consists of an iteration of A-IC3 followed by refinement.

If A-IC3 finds a counterexample at iteration k it returns. After refinement

(line 7) A-IC3 is re-invoked with an updated F̄ that is an MFRS of the same
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length. The computation of F̄ resumes from iteration k + 1 (line 14)3.

Iterations In iteration k ≥ 1, the MFRS ⟨F0, . . . , Fk⟩ and the abstraction

sequence ⟨U0, . . . , Uk−1⟩ are extended by 1 and updated as follows (see Fig-

ure 6.2).

1. Check if a fixpoint is reached. If not:

2. Uk is initialized to Uk−1 and added to Ū .

3. Fk+1 is initialized to p and added to F̄ .

4. The sets F0, . . . , Fk+1 are strengthened iteratively until ⟨F0, . . . , Fk+1⟩
becomes an MFRS, or an abstract counterexample is found.

Note that if no counterexample is found, then an iteration of A-IC3 and

an iteration of L-IC3 coincide. However, if an abstract counterexample is

found, then the corresponding iteration of L-IC3 includes the iteration of

A-IC3 as well as the following refinement step.

Below we describe items 2 and 4 in more detail.

(2) Extending Ū: Uk is initialized to Uk−1 (line 16). This is aimed at

immediately eliminating from TRk spurious transitions that lead from states

in Fk−1 ⊆ Fk to ¬p and were already removed from TRk−1. Note that this

initialization does not imply that the Ui sets will always be equal, since

refinement might change them in different ways.

(4) Iterative Strengthening of F̄: At the beginning of the iteration,

⟨F0, . . . , Fk⟩ is a concrete MFRS. However, the addition of Fk+1 = p might

cause the implication Fk ∧ TR ⇒ Fk+1 not to hold. When considering the

abstract models and transition relations (as does A-IC3) this means that

Fk ∧ TRk ⇒ Fk+1 does not hold, i.e., there exists a bad abstract state at Fk

that reaches ¬Fk+1 = ¬p. To ensure that Fk ∧ TR⇒ Fk+1, A-IC3 attempts

to eliminate this state from Fk (even if in fact it only violates the abstract

3An abstract counterexample is found w.r.t. F̄ = ⟨F0, . . . , Fk+1⟩ produced in iteration
k, where |F̄ | = k + 2. When A-IC3 is re-invoked, k is set to |F̄ | − 1 = k + 1.
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implication and not the concrete one). To do so, A-IC3 first makes sure

that there is no abstract predecessor of the bad state in Fk−1. If there is

one, then A-IC3 also tries to eliminate it since it contradicts the implication

Fk−1∧TRk−1 ⇒ Fk (and hence potentially violates Fk−1∧TR⇒ Fk), and so

on. Each of these states is also a bad abstract state that reaches ¬p along an

abstract path in F0, . . . , Fk. In this sense, A-IC3 obtains an MFRS of length

k+ 1 by strengthening the Fi’s to exclude bad abstract states that reach ¬p
along an abstract path in F0, . . . , Fk. A sequence of such bad states of length

k + 1 is an abstract counterexample of length k + 1.

A-IC3 can also be viewed as trying to eliminate all (suffixes) of abstract

counterexamples of length k + 1 w.r.t. ⟨F0, . . . , Fk⟩. From this point of

view, A-IC3 identifies abstract states that might be a part of an abstract

counterexample at a certain time frame, and attempts to block them by

learning corresponding invariants. Recall that the abstract counterexamples

we consider are restricted not only by the abstract transition relations, but

also by the Fi sets (Definition 6.1.7).

Technically, bad abstract states are described by abstract proof obliga-

tions (similarly to the notion of proof obligations used in IC3).

Definition 6.2.1. An abstract proof obligation, or an obligation in short, is

a pair (sa, n) consisting of a level n ≤ k and an abstract state sa such that

1. sa is a “bad state” that reaches ¬p along some abstract path ,

2. ¬sa is an invariant up until n,

3. sa ∩ Fn+1 ̸= ∅, and

4. Fn reaches sa in one step of TRn.

Thus n + 1 is the minimal level intersecting sa, and Fn reaches sa in one

abstract step. Note that it is possible that Fn cannot reach sa along the

concrete transitions. A-IC3 maintains two sets of obligations - may and

must.
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Definition 6.2.2. An obligation (sa, n) is a must obligation w.r.t. iteration

k if sa must be shown unreachable from Fn in one step w.r.t. TRn, in order

to ensure that no abstract counterexample of length k + 1 exists. All other

obligations are may obligations w.r.t. k.

If sa can reach ¬p via an abstract path from level n + 1 to level k + 1,

then (sa, n) is a must obligation: unless sa is blocked from Fn+1 (by removing

from Fn all states that reach sa in one step), an abstract counterexample of

length k + 1 would exist. The same violation may also be reached from sa

in later levels Fj, n + 1 < j ≤ k + 1, in which case it will be a suffix of a

longer abstract counterexample with a longer prefix up to sa. Therefore, we

may also want to block sa in Fj, n+ 1 < j ≤ k + 1. However, since different

abstract transition relations are considered at each level, it is also possible

that the same path leading from sa to ¬p is not valid from level j > n + 1

since, for example, Uj ⊃ Un+1 and hence the first transition along the path

does not satisfy TRj. In this case, a longer counterexample is not a valid

abstract path since its suffix is not valid. The attempt to block a state sa

that is known to reach a violation from level n+1 in levels greater than n+1

creates may obligations4.

The may obligations are not required to be blocked, but blocking them

can prevent A-IC3 from encountering the same obligations/states in future

iterations. On the other hand, if we report an abstract counterexample based

on a may obligation, it is possible that no real abstract counterexample exists,

resulting in an unnecessary refinement step which can damage the efficiency

of the algorithm. We therefore greedily try to handle may obligations and

strengthen F̄ accordingly, but refrain from reporting abstract counterexam-

ples based on them. Note that in the latter case, if the may obligation is in

fact a must w.r.t. some greater k, then it will reappear as a must obligation

in the following iterations.

4IC3 does not make a distinction between may and must obligations and handles them
all the same since in the concrete case, a longer counterexample is always a valid path (its
suffix reaching a violation is always valid).
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In order to handle an obligation (sa, n) and show sa to be unreachable

from Fn in one step, A-IC3 attempts to strengthen Fn by extracting prede-

cessors ta of sa that satisfy Fn ∧ TRn ∧ s′a, defining new proof obligations

based on them, and handling these obligations (by the same procedure). If

Fn is successfully strengthened s.t. Fn ∧ TRn ∧ s′a becomes unsatisfiable,

then ¬sa becomes an invariant up to n + 1. sa is blocked by strengthening

F0, . . . , Fn+1 accordingly.

Key procedures used by A-IC3 are described in Section 6.2.2.

6.2.2 Detailed Description of Strengthening

We now describe the procedures used by A-IC3 in detail.

Strengthen (Figure 6.3)

Strengthen starts by checking Fk∧TRk∧¬p′ (line 29). If it is unsatisfiable,
then Fk ∧ TR ∧ ¬p′ is unsatisfiable as well (since TR ⇒ TRk). Thus F̄ is

already an MFRS and no further strengthening is needed.

Assume Fk ∧ TRk ∧ ¬p′ is satisfiable. An abstract state sa ∈ Mk that

reaches ¬p in one abstract step is extracted from the satisfying assignment,

meaning sa ∩ Fk ̸= ∅. All concrete states in sa ∩ Fk can reach ¬p via TRk

and therefore, if the property is to be proven, sa must be blocked in Fk.

Otherwise, an abstract counterexample exists.

In order to block sa in Fk, Strengthen calls BlockState on the bad

state sa at level k (line 32).

Lemma 6.2.3. sa satisfies the requirements of BlockState at level k.

Proof. Clearly, sa is a “bad state” at level k as it reaches ¬p in one abstract

step and sa ∩ Fk ̸= ∅, since sa was retrieved from a satisfying assignment to

Fk ∧ TRk ∧ ¬p′, i.e. a satisfying assignment to Fk. Furthermore, ¬sa is an

invariant up to k − 1, otherwise the same violation would have been found

and eliminated in the previous iteration.
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28: function Strengthen(F̄ ,Ū ,k)
29: while Fk ∧ TRk ∧ ¬p′ == SAT do
30: obligations = ∅
31: retrieve abstract predecessor sk
32: if BlockState(F̄ ,sk,k,k,must) == abs-cex then
33: return abs-cex
34: end if
35: while obligations ̸= ∅ do
36: ((sa, n), handleMay) = ChooseNext(obligations)
37: if Fn ∧ TRn ∧ s′a == SAT then
38: retrieve abstract predecessor tn
39: if BlockState(F̄ ,tn,n,k,must) == abs-cex then
40: if handleMay then
41: obligations.clearAllMust()
42: else
43: return abs-cex
44: end if
45: end if
46: else
47: obligations.removeMust(sa,n)
48: BlockState(F̄ ,sa,n+ 2,k,may)
49: end if
50: end while
51: end while
52: PropagateClauses(F̄ )
53: return done
54: end function

Figure 6.3: Iterative strengthening of A-IC3
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BlockState either finds a counterexample or initializes the set(s) of

obligations to reflect the need to block sa (and possibly adds invariants to

the Fi’s).

Strengthen then handles the proof obligations one at a time. ChooseNext

(line 36) first considers obligations from the must set only. Obligations are

chosen in increasing order of their time frames. If the must set becomes

empty, then as long as the may set is not empty, one may obligation with a

minimal time frame is moved from the may set to the must set. Strengthen

then continues, with the exception that counterexamples are no longer re-

ported.

Given a proof obligation (sa, n):

• If Fn can indeed reach sa in one (abstract) step, i.e., Fn ∧ TRn ∧ s′a
is satisfiable, then a predecessor ta of sa s.t. ta ∩ Fn ̸= ∅ is extracted

from the satisfying assignment (line 38). By Lemma 6.2.4 (see below),

ta ∩ Fi = ∅ for all i < n. Thus ¬ta is an invariant up to n − 1. Next,

the state ta needs to be blocked (eliminated) from level l = n (line 39).

• When Fn∧TRn∧ s′a becomes unsatisfiable, the proof obligation (sa, n)

is removed (line 47) since sa can no longer be reached from level n. In

fact, ¬sa is now a potential invariant up to level n+1 (see Lemma 6.2.6

below).In order not to encounter sa in later iterations, we speculatively

attempt to block (eliminate) sa from level l = n + 2, while using the

may parameter (line 48). The call to BlockState also adds ¬sa (or

a stronger clause) as an invariant (line 71).

Lemma 6.2.4. Let (sa, n) be a proof obligation, and let ta be an abstract

state such that (ta, sa) |= TRn. Then ta ∩ Fi = ∅ for every i ≤ n− 1.

Proof. Let (sa, n) be a proof obligation. In particular, sa∩Fn+1 ̸= ∅. Suppose
further that (ta, sa) |= TRn. We show that ta ∩ Fi = ∅ for every i ≤ n − 1.

Since Fi ⊆ Fn−1 for every i ≤ n− 1, it suffices to show that ta ∩ Fn−1 = ∅.

118



At the beginning of the n−1’th L-IC3-iteration (which added Fn), it was

the case that sa∩Fn ̸= ∅. This is because Fn was initialized to p, and clearly

sa ∩ p ̸= ∅ (since Fn+1 ⊆ p and sa ∩ Fn+1 ̸= ∅). On the other hand, at the

current L-IC3-iteration sa ∩ Fn = ∅, since for a proof obligation (sa, n), ¬sa
is an invariant up to n.

This means that there is a set of clauses C that were added to Fn such

that p∩
∩
C ∩ sa = ∅ and for every c ∈ C, sa ̸⊆ c or equivalently sa ∩¬c ̸= ∅

(other clauses are not considered as they do not contribute to blocking sa

anyway). Every clause c added to Fn is inductive at some time frame ≥ n−1

(see Lemma ??). Therefore, for every c ∈ C there is a frame ic ≥ n− 1 such

that Fic ∧ c ∧ TRic ⇒ c′. Furthermore, since sa ∩ Fn+1 ̸= ∅, at least one of

these clauses was not added to Fn+1 which ensures that there is some c ∈ C
such that ic ≤ n − 1 (recall that when c is inductive at ic it is added up

to ic + 1), i.e. ic = n − 1. We denote such a clause by c0. We have that

Fn−1∧c0∧TRn−1 ⇒ c′0, or equivalently Fn−1∧c0∧TRn−1∧¬c′0 == UNSAT .

Now assume to the contrary that ta ∩Fn−1 ̸= ∅. To reach a contradiction

we first note that since (ta, sa) |= TRn, it is also the case that (ta, sa) |=
TRn−1. Therefore by our assumption we have that (ta, sa) |= Fn−1∧TRn−1 ≡
Fn−1 ∧ c0 ∧ TRn−1. The equivalence is since c0 is a clause in Fn−1. Together

with the property that sa ∩ ¬c0 ̸= ∅ (since c0 ∈ C and by the choice of C),

we have that (ta, sa) is a satisfying assignment for Fn−1 ∧ c0 ∧ TRn−1 ∧ ¬c′0,
in contradiction to the property that it is UNSAT .

Lemma 6.2.5. Let (sa, n) be a proof obligation, and let ta be an abstract state

such that (ta, sa) |= TRn. Then ta satisfies the requirements of BlockState

from level l = n.

Proof. First, ta is a “bad state” at level n as it reaches sa in one abstract step

and sa itself, being a part of a proof obligation, is a “bad state” that reaches

¬p along an abstract path. In addition, ta ∩ Fn ̸= ∅, since ta was retrieved

from a satisfying assignment to Fn ∧ TRn ∧ s′a, i.e. a satisfying assignment

to Fn. Last, by Lemma 6.2.4 ¬ta is an invariant up to n− 1.
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55: function BlockState(F̄ ,ta,l,k,type)
56: if l > k + 1 then
57: min = k + 1
58: else
59: min = FindNonInductive(F̄ ,¬ta,l − 1,k)
60: if min == 0 then
61: return abs-cex
62: end if
63: if min ≤ k then
64: if type == must && min == l-1 then
65: obligations.addMust(ta,min)
66: else
67: obligations.addMay(ta,min)
68: end if
69: end if
70: end if
71: AddInvariant(F̄ ,¬ta,min)
72: return done
73: end function

Figure 6.4: BlockState procedure of A-IC3

Lemma 6.2.6. Let (sa, n) be a proof obligation. If Fn ∧ TRn ∧ s′a becomes

unsatisfiable then sa satisfies the requirements of BlockState from level

l = n+ 2.

Proof. First, sa is a “bad state” at level n+2 as it reaches ¬p in one abstract

step of TRn (but not necessarily of TRn+2, which is why themay flag is used)

and sa∩Fn+2 ̸= ∅, since sa∩Fn+1 ̸= ∅ (recall that (sa, n) is a proof obligation)
and Fn+1 ⇒ Fn+2. Furthermore, by Lemma 6.1.4 since ¬sa is an invariant

up to n (as a proof obligation) and Fn∧TRn∧s′a becomes unsatisfiable, then

¬sa is a potential invariant up to n+ 1.

As explained above, a counterexample found by BlockState is reported

by Strengthen iff may obligations are not yet handled (lines 33 and 43).

Remark 1. Note that ignoring a counterexample reported by BlockState

when it failed to block a may obligation (sa, n) does not compromise the cor-

rectness of the algorithm, since an MFRS up to level k + 1 is still obtained.
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Moreover, if sa does reach a violation from level n + 1, which means that

the same obligation is in fact required for the property to hold, then it will

reappear as a must obligation in the following iterations. In fact, even if the

abstract counterexample is a real abstract counterexample, it might be worth

while to defer handling it. This is because it is possible that in later iterations,

where the abstraction becomes more precise, it will cease to exist, whereas a

pre-mature invocation of refinement, which traverses the concrete state apace

restricted by the Fi’s, might be costly.

BlockState (Figure 6.4)

BlockState(F̄ ,ta,l,k,type) is used for blocking a “bad state” ta from level

l (i.e. ta ∩ Fl ̸= ∅) up to k + 1, where ¬ta is already known to be a potential

invariant up to l−1. ta is a “bad state” as at reaches ¬p along some abstract

path, however this path might not be from level l, in which case the may

flag is used.

Note that if l > k+1 (line 57) then ta is already blocked up to k+1. Thus

¬ta is added as an invariant up to k + 1 (line 71). Otherwise, BlockState

looks for a level such that ¬ta is a potential invariant up to it.

Specifically, BlockState looks for the minimal level min between l− 1

and k s.t. Fmin ∧ TRmin ∧ t′a is satisfiable (line 59) (meaning that ta can

be reached in one step from min). The important property is that ¬ta is a

potential invariant up to min: If min = l− 1, this holds since ¬ta is already

known to be a potential invariant up to level l−1 (this is also why the search

formin starts at l−1). Ifmin > l−1, then the fact that Fmin−1∧TRmin−1∧t′a
is unsatisfiable implies that ¬ta is inductive at min − 1 w.r.t. Mmin−1, and

hence, by Lemma 6.1.6 also w.r.t. Mc. Thus, it is a potential invariant up

to min.

If min = 0, then the “bad state” ta is reachable from INIT in one step of

TR0. Thus, an abstract counterexample is reported (line 61). If min = k+1

then no corresponding level was found up to k, i.e., ¬ta is a potential invariant
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up to k + 1 and no new proof obligation is added. However, if min ≤ k is

found then the pair (ta,min) is added as a new proof obligation (lines 64-68).

Either way, ¬ta is added as an invariant up tomin by calling AddInvariant

(line 71). AddInvariant learns an invariant that strengthens ¬ta and adds

it to F0, . . . , Fmin.

Lemma 6.2.7. If min ≤ k is found then the pair (ta,min) is a proof obli-

gation.

Proof. By Definition 6.2.1, we need to show that:

1. ta is a “bad state” that reaches ¬p along some abstract path,

2. ¬ta is an invariant up until min,

3. ta ∩ Fmin+1 ̸= ∅, and

4. Fmin reaches ta in one step of TRmin

Item 1 is a property of the input ta ofBlockState. Items 2 and 4 hold by

the choice ofmin, as explained above, with the addition thatAddInvariant

is called turning ¬ta from a potential invariant to an actual invariant up to

min. Finally, ta ∩ Fl ̸= ∅ (as a property of the inputs of BlockState). In

addition, min ≥ l − 1 (by the choice of min), therefore Fmin+1 ⊇ Fl and

hence item 3 holds.

Classifying obligations as may/must is performed in lines 64- 68 of Block-

State. Note that only obligations of the form (ta, l−1) are must obligations.

The initial obligations generated by the call BlockState(F̄ ,sa,k,k,must) in

line 32 of Strengthen whose level is exactly k − 1 become must obliga-

tions. Later on, only obligations of the form (ta, n− 1) generated by the call

to BlockState(F̄ ,ta,n,k,must) in line 39 of Strengthen when handling

a must obligation (sa, n), where ta is a predecessor of sa, are considered must

obligations. The rest are may obligations.
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AddInvariant

If for some state ta and some level min ≤ k+1, the formula ¬ta is a potential

invariant up to level min, then AddInvariant (called from BlockState

line 71) is used to add a strengthening of ¬ta to all Fj’s s.t. j ≤ min.

More precisely, ¬ta is strengthened to some subclause5 c s.t. F0 ⇒ c and

Fmin−1 ∧ c ∧ TRmin−1 ⇒ c′, i.e. c is inductive w.r.t. Mmin−1 and hence, by

Lemma 6.1.6, also w.r.t. Mc. Consequently, c is also a potential invariant up

to min, but it is a stronger invariant than ¬ta (since c⇒ ¬ta). The clause c
is added as a conjunct to F0, . . . , Fmin while maintaining the properties of a

(concrete) MFRS6. AddInvariant always finds a clause to add, since ¬ta
itself satisfies the requirements.

Lemma 6.2.8. Let ⟨F0, . . . , Fk⟩ be an MFRS. Let n ≤ k and let c be a clause

that is inductive up to n + 1 w.r.t. Mc. If F0 ⇒ c and if F ∗
i = Fi ∧ c for

i ≤ n + 1 and F ∗
i = Fi otherwise, then c is an invariant up to n + 1 and

⟨F ∗
0 , . . . , F

∗
k ⟩ is also an MFRS.

Proof. c is inductive up to n + 1 w.r.t. Mc. Therefore, it follows that Fi ∧
c ∧ TR ⇒ c′ for 0 ≤ i ≤ n. Let us define ⟨F ∗

0 , . . . , F
∗
k ⟩ s.t. F ′

i = Fi ∧ c for

i ≤ n + 1 and F ∗
i = Fi otherwise. Since F0 ⇒ c, F ∗

0 ≡ F0. Using the fact

that Fi ∧ c∧TR⇒ c′ for 0 ≤ i ≤ n, we get that F ∗
i ∧TR⇒ c′ for 0 ≤ i ≤ n.

From this it follows that ⟨F ∗
0 , . . . , F

∗
k ⟩ is a MFRS. By the definition of F ∗

i , it

follows directly that F ∗
i ⇒ c for 0 ≤ i ≤ n+ 1 and thus c is an invariant up

to n+ 1.

5A state ta is represented by a conjunction of literals, which makes its negation ¬ta a
clause (i.e., a disjunction of literals). A subclause of ¬ta consists of a subset of its literals.

6Note that while c is inductive w.r.t. Mmin−1 up to min − 1, it is not necessarily
inductive w.r.t. Mi where i < min − 1 (in case Ui ⊂ Umin−1). Still, it is safely added to
Fi+1 for i < min− 1 since it is an invariant w.r.t. Mc.
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74: function Refine(F̄ ,Ū)
75: result = C-Strengthen(F̄ )
76: if result == cex then
77: return cex
78: end if
79: RefineAbstraction(F̄ ,Ū)
80: return done
81: end function

Figure 6.5: Refine procedure of A-IC3

PropagateClauses

Similarly to IC3, if the main loop in Strengthen terminates, added clauses

are propagated forward by PropagateClauses (line 52). Specifically, if

Fi ∧ c ∧ TRi ∧ ¬c′ is unsatisfiable then the clause c from Fi can safely be

added to Fi+1 while maintaining the properties of an MFRS. This is done

in order to get to a fixpoint.

6.2.3 Refinement

If A-IC3 finds an abstract counterexample of length k + 1, refinement is in-

voked by L-IC3 (line 7). Refinement either finds a concrete counterexample

or eliminates all concrete spurious counterexamples of length k + 1. In the

latter case, refinement also refines Ū to ensure that no abstract counterex-

ample of length k+1 existsBoth an updated MFRS F̄ r = ⟨F r
0 , . . . , F

r
k+1⟩ and

a refined monotonic abstraction sequence Ū r = ⟨U r
0 , . . . , U

r
k ⟩ are returned.

The Refine procedure is described in Figure 6.5. Refine first invokes

C-Strengthen, the strengthening procedure of the concrete IC3, on the

sequence ⟨F0, . . . , Fk+1⟩ (whose prefix up to Fk is an MFRS) obtained from

the abstract model checking. If a concrete counterexample is found the al-

gorithm terminates (lines 75-78). Otherwise, no concrete counterexample of

length k + 1 exists. Moreover, the updated (strengthened) sets F r
0 , . . . , F

r
k+1

comprise an MFRS. It remains to refine the abstraction sequence Ū in or-
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der to eliminate all abstract counterexamples of length k + 1 as well. Thus,

RefineAbstraction is invoked (line 79).

RefineAbstraction

A-IC3 found an abstract counterexample since it failed to strengthen the Fi’s.

Meaning, the relevant i-reachability checks Fi ∧TRi ∧ t′a (or Fk ∧TRk ∧¬p′)
could not be made unsatisfiable when using TRi. C-Strengthen, on the

other hand, succeeds to do so. Namely, for each i-satisfiability check Fi ∧
TRi∧t′a (resp. Fk∧TRk∧¬p′) of A-IC3 that was satisfiable, C-Strengthen

manages to make the corresponding check F r
i ∧TR∧ t′ for each t ⪯ ta (resp.

F r
k ∧ TR ∧ ¬p′) unsatisfiable, either by strengthening F r

i or simply since

it considers TR. Moreover, once F r
i ∧ TR ∧ t′ becomes unsatisfiable, C-

Strengthen derives from it a clause c ⇒ ¬t s.t. c is inductive up to i,

i.e. F r
i ∧ c ∧ TR ⇒ c′ holds. C-Strengthen strengthens F̄ r by adding c

(invariant) as a new clause in all sets up to F r
i+1. We consider it a learned

clause at level i + 1. To handle clauses that were propagated forward, we

consider them learned clauses at the highest level in which they were added

(instead of at the level in which they were actually learned). Recall that

propagation to level i+1 also takes place only after checking that the clause

is inductive up to i. The purpose of RefineAbstraction is to ensure

that for a learned clause c at level i+1, F r
i ∧ c∧TRr

i ⇒ c′ (with TRr
i instead

of TR) also holds. Meaning, c is inductive up to i w.r.t. (the refined) M r
i .

Lemma 6.2.9. Let c be a clause learned by C-Strengthen at level i+ 1.

If F r
i ∧ TRr

i ⇒ F r
i+1

′ then F r
i ∧ c ∧ TRr

i ⇒ c′.

Proof. Consider a learned clause c at level i + 1. Assume that F r
i ∧ TRr

i ⇒
F r
i+1

′. Since c is a learned clause at level i+ 1, then by the property of IC3,

c was added to both F r
i and F r

i+1. As a result, it holds that F r
i ∧ c ≡ F r

i and

F r
i+1 ⇒ c. Therefore, we have that F r

i ∧ c ∧ TRr
i ⇒ c′.

Based on the previous lemma, in order to ensure F r
i ∧ c ∧ TRr

i ⇒ c′, it
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suffices to ensure unsatisfiability of F r
i ∧TRr

i ∧¬F r
i+1

′ for every level i+1 in

which learned clauses exist.

In addition, to handle the possibility that Fk ∧ TRk ∧ ¬p′ is satisfiable

while Fk ∧TR∧¬p′ is unsatisfiable (without any strengthening), refinement

also makes sure that F r
k ∧TRr

i ∧¬F r
k+1

′ becomes unsatisfiable. This addresses

the case where an abstract counterexample was reported, however the last

abstract transition along the counterexample admits no corresponding con-

crete transition, hence refinement does not update the MFRS (i.e., F r
i = Fi

for every 0 ≤ i ≤ k + 1) and no learned clauses exist.

To ensure unsatisfiability of a formula F r
i ∧ TRr

i ∧ ¬F r
i+1

′, we consider

the same formula over TR, which is clearly unsatisfiable. We derive from

it an unSAT-core. The next-state variables that appear in the unSAT-core,

denoted NS(unSatCore) = {v ∈ V | v′ ∈ Vars(UnSatCore)}, are added to

Ui.

Lemma 6.2.10. Let F r
i ∧TR∧η′ be an unsatisfiable formula and let UnSatCore

be its unsat core. Let U r
i ⊇ NS(UnSatCore). Then F r

i ∧ TRr
i ∧ η′ is unsat-

isfiable.

Finally, we propagate variables that were added to U r
i forward in order to

obtain a monotonic abstraction sequence. Since we only add variables to U r
i ,

i.e. make the transition relation TRr
i more precise, then the corresponding

formulas remain unsatisfiable.

As an immediate conclusion of Lemma 6.2.9 and Lemma 6.2.10, the re-

finement of Ū ensures the following property which is important for the

correctness of the algorithm:

Lemma 6.2.11. Let F̄ r = ⟨F r
0 , . . . , F

r
k+1⟩ be the updated MFRS, and let

Ū r = ⟨U r
0 , . . . , U

r
k⟩ be the refined abstraction sequence. Then, for any clause

c that was added to the MFRS, if c was learned at level i+1 then c is inductive

up to i w.r.t. (the refined) M r
i .
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6.2.4 Correctness Arguments

The MFRS obtained by L-IC3 is concrete. Specifically, it does not neces-

sarily satisfy Fi ∧ TRi ⇒ Fi+1. This results both from refinement that adds

invariants learned based on the concrete TR, and from A-IC3 that learns an

invariant based on some TRi, but also adds it to Fj+1 for j < i even if it is

not inductive w.r.t. TRj. This complicates the correctness proof.

In particular, in IC3, when a proof obligation (s, n) is handled, then for

any predecessor t of s, ¬t is an invariant up to n − 1, otherwise s would

belong to a lower frame (since Fi ∧ TR ⇒ Fi+1). Now consider an abstract

proof obligation (sa, n). If we assume to the contrary that the predecessor

ta intersects some Fi (for i < n) then we can still deduce that the transition

(ta, sa) |= TRn also exists at a lower frame, i.e. (ta, sa) |= TRi for i < n.

This is since TRn ⇒ TRi (recall that the same does not necessarily hold for

i > n). However, we cannot immediately deduce that sa ∩ Fi+1 ̸= ∅ since

Fi ∧ TRi ⇒ Fi+1 might not hold. It turns out that this property does hold

(see Lemma 6.2.4), but more complicated arguments are needed, based on

the following:

Lemma 6.2.12. Let F̄ = ⟨F0, . . . , Fk+1⟩ and Ū = ⟨U0, . . . , Uk⟩ be the se-

quences obtained at the end of the k’th iteration of L-IC3, i.e. either at the

end of a refinement step or at the end of an iteration of A-IC3 in the case

that no counterexample was found. Then

1. F̄ is an MFRS.

2. For every clause c that was added to some Fi in F̄ there exists some

j ≥ i− 1 s.t. c is inductive up to j w.r.t. Mj.

3. No abstract counterexample of length k + 1 exists w.r.t. the prefix

⟨F0, . . . , Fk⟩ of F̄ .

Proof. The proof is inductive. Consider an iteration of L-IC3. It consists of

an iteration of A-IC3 adding Fk+1, possibly followed by a refinement step.
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We first show that for every clause c that was added to some Fi in F̄

during the above, there exists some j ≥ i− 1 s.t. c is inductive up to j w.r.t.

Mj. An important property to note is that during the run of the algorithm,

the Fi sets, as well as the TRi transition relations are only strengthened

(resp., refined). Therefore, if at some point during the algorithm a clause c

is inductive up to j w.r.t. Mj for some j, meaning that Fj ∧ c ∧ TRj ⇒ c′

holds, then c will remain inductive up to j w.r.t. Mj later on as well, since

Fj ∧ c ∧ TRj ⇒ c′ will keep holding with the strengthened sets (and refined

transition relations). This is because the strengthening only strengthens the

left hand side and hence does not damage the implication. As a result,

it suffices to show that every clause c that was added to some Fi in F̄ is

inductive up to some j ≤ i− 1 w.r.t. Mj, at some point during the iteration.

If a clause c is added by A-IC3 to Fi, then it is either added by calling

AddInvariant at some level min ≥ i or by calling PropagateClauses

at level min = i. In both cases c is inductive at level min− 1 ≥ i− 1 w.r.t.

TRmin−1 when it is added. If a clause in Fi is added during refinement,

then there is some level j + 1 ≥ i where it is a learned clause. Thus by

Lemma 6.2.11 at the end of the refinement step it is inductive up to j ≥ i−1

w.r.t. (the refined) Mj.

We now show that the obtained F̄ is an MFRS. F0 = INIT holds due to

the initialization. Similarly, Fi ⇒ p holds due to the initialization of the Fi

sets to p, and due to the property that the sets are only strengthened later

on. Fi ⇒ Fi+1 holds when Fi+1 is initialized (since it is initialized to p and

Fi ⇒ p), and continues to hold since any clause that is added to Fi+1 is also

added to Fi. Finally, it remains to show that Fi ∧TR⇒ F ′
i+1. We show this

in two parts. First, we show that it holds at the end of the L-IC3 iteration

(possibly including a refinement step) that added Fi+1 to the MFRS. Next,

we show that later updates of Fi and Fi+1 maintain this property.

To show that Fi ∧ TR ⇒ F ′
i+1 holds at the end of the iteration that

added Fi+1 to the MFRS, we recall that Fi+1 is initialized to p and we note
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that the termination condition of an iteration of A-IC3 is that Fi ∧ TRi ∧
¬p′ == UNSAT (see Strengthen), meaning that Fi ∧ TRi ⇒ p′ = F ′

i+1.

Moreover, since TR ⇒ TRi, the latter implies that Fi ∧ TR ⇒ p′ = F ′
i+1.

Similarly, the termination condition of the refinement step (if applicable)

is that Fi ∧ TR ⇒ p′ = F ′
i+1. To show that later updates of Fi and Fi+1

maintain this property, we rely on the property that any clause added to

Fi+1 is inductive up to some j ≥ i w.r.t. Mj. This means, that it is also

inductive w.r.t. to Mc. Therefore, Fi ∧ c ∧ TR ⇒ c′. Since c is added both

to Fi and to Fi+1, the property Fi ∧ TR⇒ F ′
i+1 is maintained.

It remains to show that no abstract counterexample of length k+1 exists

w.r.t. the prefix ⟨F0, . . . , Fk⟩ of F̄ . If refinement was not needed then this

holds trivially since the termination condition of Strengthen is that Fk ∧
TRk ∧ ¬p == UNSAT .

In particular, this means that the clauses added to the last set of the

sequence, Fk+1, are inductive up to k w.r.t. Mk, hence at the end of the k’th

iteration of L-IC3 adding Fk+1 it holds that Fk ∧ TRk ⇒ Fk+1 (recall that

the same does not necessarily hold for i < k).

Theorem 6.2.13. L-IC3 either terminates with a fixpoint, in which case the

property holds, or with a concrete counterexample.

6.2.5 Monotonicity of the Abstraction Sequence

Monotonicity of the abstraction sequence ensures that when A-IC3 attempts

to block a state ta that reaches a violation at level n, then ¬ta is necessarily

an invariant up until n − 1 (see Lemma 6.2.4). Recall that if some state

ta reaches a violation from step n along the abstract transitions, it is not

guaranteed that the same violation can be reached from ta at level i > n.

However, the fact that for each i < n, Ui ⊆ Un, and as a result TRn ⇐ TRi,

ensures that the same violation can be reached from ta at any level i < n.
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This ensures that ¬ta is an invariant up until n− 1, otherwise, the violation

would have been found in previous iterations.

The same property does not hold if a non-monotonic abstraction sequence

is used, which means that in this case deducing that ¬ta is an invariant up

to n− 1 when attempting to block a state ta at level n is simply incorrect.

Another motivation for the monotonicity of the abstraction sequence is

the following. Recall that Fi ⊆ Fi+1 for each i. This means that any state

ta ∈ Fi, and in particular states that reach a violation along some abstract

path, will be encountered again in Fi+1. As a result, the same information

needed to show that ta ∈ Fi cannot reach a violation from level i is likely

to be needed to show that ta cannot reach a violation from Fi+1 as well.

Restricting the discussion to monotonic abstraction sequences automatically

ensures that if the abstract transition relations carry enough information to

refute all violations starting at states from Fi, then the same holds when

considering the same states in Fi+1. While it is possible that a different

abstraction can be used to refute the existence of a violation from i + 1, in

most cases the effort of computing this abstraction (by invoking refinement

multiple times) exceeds its potential benefit.

6.3 Experimental Results

For the implementation of the two algorithms we collaborated with Jasper

Design Automation7. We used Jasper’s formal verification platform in order

to implement both the original IC3 and our L-IC3 algorithm. In both im-

plementations we used optimizations from [28] (such as ternary simulation).

Implementing these algorithms using Jasper’s platform allowed us to develop

and experiment with various real-life industrial designs and properties from

various major semiconductor companies. All designs contain thousands of

state variables in the cone of influence of the properties.

7An EDA company: http://www.jasper-da.com
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(a) Runtime trend. Dots represent IC3, triangles represent L-IC3. Test-cases are sorted
in an increasing runtime order.

(b) Comparing runtime. IC3 on X-axis and L-IC3 on Y-axis

Figure 6.6: Runtime information for L-IC3 and IC3

The timeout was set to 3600 seconds and experiments were conducted

on systems with Intel Xeon X5660 running at 2.8GHz and 24GB of main

memory.

We experimented with 122 real safety properties from different designs.

Figure 6.6 shows two different analyses comparing the runtime of L-IC3 and

IC3. Runtime trends are shown in Figure 6.6a. As can be seen, the over-

all trend is in favor of L-IC3. In Figure 6.6b runtime for IC3 and L-IC3 is

represented by the X-axis and Y -axis respectively. We can clearly see the

advantage of using L-IC3 on the more complicated test cases. These test

cases are represented by the dots that are below the diagonal by a big mar-

gin. On these examples, the improvement in runtime is up to two orders
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of magnitude. The cases where IC3 performs better are usually cases where

L-IC3 spends most of the time in refinement. Also, for false properties (coun-

terexample exists), the performance of L-IC3 is affected by the way we treat

may and must obligations. Due to our special handling, L-IC3 may lose the

ability to find a counterexample which is longer than the length of the com-

puted Ω. In those cases, IC3 may perform better. Note that the scatter at

the middle is a bunch of comparable properties where both algorithms are

on par.

In the given timeout, 7 properties cannot be solved by IC3 but are solved

by L-IC3; 5 properties cannot be solved by L-IC3 but are solved by IC3.

There are also 5 properties that cannot be solved by either algorithm. The

overall runtime for IC3 is 75558 seconds while for L-IC3 it is 55424 seconds.

The laziness of our abstraction-refinement algorithm is demonstrated in

Table 6.1. The table shows how the abstraction is refined along increasing

time frames. Different frames contain different variables that are needed in

order to prove or disprove the given property. This demonstrates the fact

that L-IC3 indeed takes advantage of the lazy abstraction framework.

Table 6.2 presents runtime characteristics for L-IC3 and IC3. In partic-

ular, it shows the number of clauses and the number of variables in Ω when

either a fixpoint or a counterexample is found. In many of the examples the

number of clauses produced by L-IC3 for its Ω is significantly smaller than

the number of clauses produced by IC3. Recall that each of the clauses is

learned via several local reachability checks. The reduced number of clauses

thus indicates that L-IC3 applies a smaller number of checks and therefore

issues a smaller number of calls to the SAT solver. This can explain the

speedups it obtains.

An additional reason for the speedups is the fact that the local reachability

checks of L-IC3 are easier than those of IC3. This is because the abstract

transition relations TRi are much smaller (in number of variables) than TR

(see table 6.1). Further, the sets Fi, computed by L-IC3 are smaller than
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those computed by IC3 (see Table 6.2).

Recall that in Section 6.2.1 we distinguish between must and may obli-

gations. The results reported above are obtained while using this distinction

and handling all the may obligations after the must obligations, as described

there. We also tried other configurations. For example, we ran experiments

that do not distinguish between must and may obligations. Our experiments

show that distinguishing between the two yields a better overall performance.

In addition to the industrial experiments, we also ran experiments on the

HWMCC’11 benchmark. We used the test-cases with single properties. Most

of the properties in this benchmark are fairly easy and can be solved in a

matter of a few seconds both by IC3 and L-IC3. There are also a few cases

where IC3 performs better or even reaches a result while L-IC3 does not.

In these cases L-IC3 spends most of the time in refinement. On the other

hand, there are several test cases that can only be solved by L-IC3 while IC3

reaches timeout.
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N ♯Vars Stat ♯V[Ω] ♯V[ΩL] ♯C[Ω] ♯C[ΩL] k kL T TL

f1 11866 false 1001 818 8457 3939 15 18 1646 599
f2 5693 true 236 11 617 62 14 8 133 9.2
f3 5693 true 229 121 1314 570 13 8 351 40.5
f4 5693 true 104 24 2101 32 32 14 513 13.6
f5 5773 true > 616* 414 > 16689* 12425 7* 35 TO 1223
f6 1183 true 432 370 50511 29316 36 31 2216 2763
f7 1247 true 250 152 10732 238 11 8 432 2.6
f8 1247 true 177 96 14702 293 8 7 520 3.5
f9 1277 false 357 331 8762 3788 13 27 164 101
f10 1389 false 397 417 12455 19742 13 19 262 1268
f11 1183 true 114 106 29183 2589 9 10 1153 109
f12 1204 true 114 105 18698 229 8 8 818 3.0
f13 3844 true 320 578 547 1529 10 12 16.7 59.1
f14 3832 true 650 488 2414 1553 12 11 117 61
f15 3854 true > 470* 666 > 8320* 5363 6* 11 TO 730
f16 3848 true > 687* 826 > 7733* 5506 8* 14 TO 381
f17 3854 true 811 673 10934 1837 13 12 919 83
f18 3848 true 898 716 9889 2080 13 11 1891 84
f19 3848 true 966 > 216* 13370 > 266* 11 7* 2225 TO

Table 6.2: Running parameters for various properties. N stands for the name
of the verified property. ♯Vars stands for the number of state variables in the
cone of influence. ♯V[Ω] - number of variables in Ω, ♯C[Ω] - number of clauses
in Ω, k - size of Ω(M, p) and T - the runtime in seconds. The subscript L
represents the value for the Lazy version (L-IC3).
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Chapter 7

Conclusion

We presented four methods that aim at improving existing SAT-based un-

bounded model checking. The first three, ISB, DAR and CNF-ITP, are based

on interpolation. With ISB and DAR we show different ways to use inter-

polants for reachability analysis. With CNF-ITP, we present a novel method

for interpolants computation that yields interpolants in CNF. Further we

show how this fact can be used in an interpolation-based algorithm. The

last method we present, L-IC3, is based on IC3. Unlike interpolation-based

methods, IC3 and L-IC3 are based on local reachability checks. With L-IC3

we show how to tightly integrate a lazy abstraction mechanism into IC3.

We believe there is more to be done in order to make SAT-based model

checking more efficient. One possibility is to integrate interpolation and IC3-

style approaches in a tighter manner. Each of the approach uses a different

generalization mechanism when computing the over-approximation of reach-

able states. It may be the case, that integrating the two may yield better

performance.

In the context of interpolation, another possibility is to better understand

interpolants in the context of resolution proofs. By analyzing the mechanics

of CDCL SAT-solvers, one can try and make the proof produced by such

solvers better suited for interpolants in the context of model checking.
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iv	  
	  	  

-אנו מציגים אלגוריתם מבוסס סדרת 3בפרק  . אלגוריתם זה מבוסס על ISBאינטרפולנטים אשר נקרא 

BMCל איטרצית . בכBMC  כאשר מחפשים אחר דוגמא נגדית, במידה וכזו אינה קיימת, סדרת

אינטרפולנטים מחושבת כך שהיא מייצגת קירוב יתר של מצבים ישיגים במערכת. בשונה מהאלגוריתם 

לא מוסיף את האינטרפולנטים אל הנוסחה אותה בודק ה ... ובכך מבטל  ISBהראשון המבוסס אינטרפולנטים, 

פעת גודל האינטרפולנט.את הש  

 קידמי)שמחשב מצבים ישיגים גם מהמצבים ההתחלתיים (על ידי חישוב  אנו מציגים אלגוריתם 4בפרק 

, יכול DARאלגוריתם זה, שנקרא  ).אחוריומצבים שיכולים להגיע אל המצבים הרעים (על ידי חישוב 

-החישוב הקידמי והאחורי ב. ISBלהראות כמו גרסה משופרת של  DAR  ,מופעלים בצורה אחודה. כלומר

-בשונה מ החישוב הקידמי משתמש במידע מן החישוב האחורי ולהיפך. ITP ומ- ISB ,DAR  הוא ברובו

מקומי. כלומר, הוא אינו דורש פריסה של רלציית המעברים ברוב המקרים.  

אלגוריתמים אנו מציגים אלגוריתם חדשני לחישוב אינטרפולנטים עבור בדיקת מודל. בשונה מ 5בפרק 

קודמים שהשתמשו בחישוב אינטרפולנטים כללי,  אנו מציגים חישוב המונחה על ידי הבעיה אותה מנסים 

זה מקיים רק ירוב הראשון, מחושב קירוב של אינטרפולנט. קפועל בשני שלבים. בשלב האלגוריתם  לפתור.

על ידי תהליך שנקרא  כים את הקירוב לאינטרפולנטכן, בשלב השני, הופ חלק מתכונות האינטרפולנט ועל

חשובה של אלגוריתם מתייחס למבנה הבעיה הספציפי בכך מתקבל אלגוריתם יעיל. תכונה חיזוק . החיזוק״״

 Conjuctive Normal Formזה הינה העובדה שהאינטרפולנט המחושב הינו בצורה נורמלית הנקראת 

)CNF בתכונה זו אנו עושים שימוש ומציגים גריסה משופרת של האלגוריתם ). גםITP  המשתמשת בעובדה

-שהאינטרפולנט נתון כ CNF.  

זו נעשה שימוש במנגנון של אבסטרקציה . בגרסה LIC3הנקראת  IC3אנו מציגים גרסה חדשה של  6בפרק 

, משלב את LIC3לא כמו אלגוריתמים אחרים בהם האבסטרקציה מנותקת מאלגוריתם האימות, אך  עצלה.

לכדי אלגוריתם אחוד. IC3האבסטרקציה ואת   

בכל שלב של החישוב אנו  בסטרקציה של משתנים נראים. כלומר,בה אנו משתמשים היא אהאבסטרקציה 

משתמשים בקבוצה שונה של משתנים מהמערכת הנתונה.  

יעילות יותר וגם הופך את תהליך  SATגורם לאלגוריתם לבצע בדיקות  LIC3באבסטרקציה ב שימוש ה

נשען ליעיל יותר. IC3ההכללה, עליו   



	  

iii	  
	  

כפי  להעלות את רמת הדיוק. רמת הדיוק עולה כאשר מגדילים את אורך הדוגמאות הנגדיות אחריהן מחפשים.

, לכן הלולאה הפנימית עוצרת במקרה הנ"ל והלולאה החיצונית האורך נקבע על ידי הלולאה החיצוניתשציינו, 

עוברת לאיטרציה הבאה.  

קיימות שתי בעיות אותן אנחנו מנסים לפתור בשיטה זו. מאחר והאינטרפולנט הוא נוסחה פסוקית שמחליפה 

בת וגדולה, ייתכן ולא נוכל לפתור את בעייתה הספיקות. את המצבים ההתחלתיים, אם נוסחה זו היא מורכ

לכן, הבעיה הראשונה היא גודלם של האינטרפולנטים המחושבים. הבעיה השניה היא היא הצורך להגדיל את 

האורך של הדוגמאות הנגדיות אותן מחפשים על מנת להעלות את רמת הדיוק של קירוב היתר בו אנו 

משתמשים.  

קירוב יתר של מצבים ישיגים הוצגה על ידי אהרון ומחשבת מבוססת ספיקות  ,ITPכמו , ששיטה אלטרנטיבית

-בשונה מ .IC3בראדלי ונקראת  ITP ,IC3  אינו משתמש בפריסה של רלציית המעברים על מנת להעלות את

משתמש בבדיקות ישיגות מקומיות אשר עושות שימוש במופע אחד של רלציית  IC3רמת הדיוק של הקירוב. 

עברים.המ  

-משתמש ב ITPבעוד  SAT-solver ובזמן ההכללה,  כקופסא שחורה בזמן החיפוש אחר דוגמא נגדיתIC3 

. כלומר, האלגוריתם לאחורמבוסס על חיפוש  IC3מנהל את החיפוש אחר הדוגמא הנגדית ואת ההכללה. 

הרע. לאחר מכן, מן  על ידי מציאת מצב קדמון שמגיע אל המצב מתחיל ממצב רע ומנסה לבנות דוגמא נגדית

המצב הקדמון, ינסה האלגוריתם למצוא מצב קדמון נוסף עד אשר לא יוכל להתקדם אחורה יותר או עד שיגיע 

מכליל את הסיפא  IC3למצבים ההתחלתיים ובכך ימצא דוגמא נגדית. במקרה ולא נמצאת דוגמא נגדית, 

צעת על ידי הליך שנקרא הכללה שמצא לכדי מידע בנוגע למצבים היישיגים במערכת. ההכללה מתב

יעיל. IC3). תהליך זה הוא חלק ממה שעושה את inductive generalizationאינדוקטיבית (  

יעיל, אך הוא גם נקודת החולשה של האלגוריתם. כאשר  IC3תהליך ההכללה האינדוקטיבי אמנם עושה את 

כאשר מספר המצבים במערכת גדול,  פועל בצורה שדומה לאינומרציית מצבים. IC3תהליך ההכללה נכשל, 

איננו יעיל. IC3אינומרציית מצבים הינה בלתי יעילה ובמקרים אלה   

לבידקת מודל מבוססת ספיקותהגישה שלנו   

מטרת המחקר הינה למצוא מענה לנקודות החולשה שהזכרנו קודם לכן. בהקשר של אינטרפולציה, אנו 

מאלגוריתם האימות או על ידי חישוב  שימוש שונה מהם כחלקמתמודדים עם גודל האינטרפולנטים או על ידי 

אנו מוסיפים אלמנט של אבסטרקציה עצלה לאלגוריתם על מנת  IC3שונה של האינטרפולנט. בהקשר של 

להפוך אותו ליעיל יותר.  
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לק מהאתגרים בבדיקת מודל מבוססת ספיקות. כמו כן, נסקור את הדרך שלנו להתמודדות עם כעת נסקור ח

אתגרים אלה.  

בבדיקת מודל מבוססת ספיקותהאתגרים   

. שיטות אלה IC3/PDRעבודה זו מוקדשת לשיפורה של בדיקת מודל מבוססת אינטרפולציה ומבוססת 

ימוש בקירוב יתר. החישוב מתבצע תוך כדי ניסיון מחשבות את קבוצות המצבים הישיגים במערכת על ידי ש

להראות כי לא קיימת דוגמא נגדית עבור התכונה הנבדקת. קירוב היתר של המצבים הישיגים מתבצע על ידי 

. הכללה הינה התהליך של הסקת מסקנה כללית מתוך מידע על מקרה פרטי.הכללה  

על ידי קן מקמילן. בשיטה זו, קירוב היתר של  ) הוצגה לראשונהITPבדיקת מודל מבוססת אינטרפולציה (

-המצבים הישיגים מחושב על ידי שימוש באינטרפולנטי ). המשפט של קרייג Craig interpolantsקרייג (

-ו Aמציין כי בהינתן זוג נוסחאות  B  כך שהגימום של שתי הנוסחאות אינו ספיק, ניתן לחשב נוסחה שלישית

I כך ש- I היא נוסחה מעל ה- -המשותף ל א"ב A ו- B ,I נגררת מ- A  והגמום שלI ו- B  .אינו ספיק

כאשר נוסחה היא איננה  SAT-solverהאינטרפולנטים מחושבים מתוך הוכחת רזולוציה שמיוצרת על ידי 

היא בלתי ספיקה, ניתן  BMC. כאשר נוסחת BMCעושה שימוש הן נוסחאות  ITPספיקה. הנוסחאות בהן 

נגדית באורך מסויים. על ידי שימוש במשפט של קרייג ניתן לחשב אינטרפולנט להסיק כי לא קיימת דוגמא 

שמייצג קירוב יתר של מצבים ישיגים. מאחר וניתן לכרות מידע על המצבים הישיגים, ניתן להשתמש בשיטה 

זו על מנת להוכיח נכונות של תכונה.  

-אינטרפולנטים הנם דוגמא להכללה. מאחר ופתרון בעיית ה BMC  ככלי להוכחת אי קיום של דוגמא משמש

נגדית באורך מסויים, היכולת להסיק מסקנה בנוגע לדוגמאות נגדיות ארוכות יותר הוא צורה של הכללה.  

ITP ומבוסס על לולאה מכוננת. הלולאה החיצונית שולטת על אורך הדוגמא הנגדית  עובד בצורה איטרטיבית

-שמחפשים ב BMC ת והללואה הפנימית בודקת נוסחאוBMC  באורך קבוע ומחשבת אינטרפולנטים כל עוד

היא בלתי ספיקה, מחושב אינטרפולנט. האינטרפולנט  BMCנוסחות אלה הן אינן ספיקות. כאשר נוסחת 

מחליף את המצבים ההתחלתיים מהם מתחיל החיפוש אחר דוגמא נגדית באיטרציה הבאה. מאחר 

ים ישיגים, ניתן להשתמש בהם על מנת לקבוע מתי הושגה והאינטרפולנטים מייצגים קירוב יתר של מצב

-נקודת -שבת. נקוקדת השבת מוכיחה כי כל המצבים הישיגים במערכת נבדקו וכולם מקיימים את התכונה ולכן 

הנבדקת בלולאה הפנימית היא  BMCניתן להסיק כי המערכת מקיימת את התכונה הנבדקת. במצב שנוסחת 

ם לא שונו (איטרציה ראשונה) ניתן להסיק כי קיימת דוגמא נגדית. אם לא, לא ספיקה, אם המצבים ההתחלתיי

ניתן להסיק כי קיימת דוגמא נגדית ויודעים כי קירוב היתר המתבצע על ידי האינטרפולנטים הוא גס מידי ויש 



	  

i	  
	  	  

תקציר  
הינה  בדיקת מודלמערכות ממוחשבות חולשות כמעט על כל תחום של חיינו ופעולתם הנכונה היא הכרחית. 

תהליך אימות אוטומטי שבהינתן מערכת בודק קיום של תכונה מסויימת ביחס למערכת זו. המערכת מתוארת 

 Temporalטמפורלית (התכונה נתונה כנוסחה בלוגיקה  בדרך כלל כמכונת מצבים בצורת גרף מעברים.

Logic בשונה מאימות מבוסס סימולציה, בדיקת מודל ממצאה מאחר והיא מכסה את כל ההתנהגויות .(

-האפשריות במערכת ומוכיחה את קיום התכונה או מוצאת דוגמא נגדית לאי קיום התכונה.  

בעיית השיטה היא בדיקת מודל יושמה ומיושמת בבדיקת מערכות חומרה ותוכנה. אך המגבלה המרכזית של 

. בעיה זו מקורה במספר המצבים במערכות אמיתיות. בדיקת המודל דורשת זיכרון רב התפוצצות המצבים

וחישוב מורכב ביחס לגודל המודל, ולכן, עבור מודלים גדולים, בדיקת מודל עלולה להיות בלתי יישימה. חלק 

נכבד מהמחקר בתחום מוקדש להתמודדות עם הבעיה.  

) היה הצעד המשמעותי הראשון בהתמודדות עם בעיית BDDsשימי החלטה בינריים (השימוש בתר

אפשרה בדיקת מודל של מערכות חומרה  BDDsהתפוצצות המצבים. בדיקת מודל סימבולית, מבוססת 

אמיתיות עם כמה מאות של משתני מצב. אך עדיין, חלקים ממערכות חומרה בעלי פונקציונליות מוגדרת 

 בדיקת מודל חסומה מבוססת ספיקותתני מצב ויותר. כדי להתמודד עם מערכות כאלה, פותחה מכילים אלפי מש

)BMC( .BMC  .אך מבוסס על פריסה של רצליית המעברים על מנת לחפש דוגמא נגדית באורך מסויים

 למרות היכולת של שיטה זו להתמודד עם מערכות גדולות יותר, החסרון העיקרי שלה הוא היותה נאותה אך

לא שלמה. כלומר, מטרתה העקרית היא מציאת דוגמאות נגדיות ולא הוכחת נכונות.  

, אינדוקציהשל השיטה מבוססת הספיקות.  שיטות פותחו על מנת להתמודד עם בעית השלמות מספר

-אינטרפולציה, סדרת ) IC3/PDRאינטרפולציה, בנייה אינקרמנטלית של פסוקיות אינדוקטיביות לנכונות ודאית (

-ו IC3 ) עצלL-IC3 ( הן שיתות מבוססות ספיקות שהן נאותות ושלמות ויכולות להוכיח נכונות של תכונה

עבור מערכת נתונה.  

משתמשת באבסטרקציה. אבסטרקציה היא שיטה נוספת להתמודדות עם בעיית  L-IC3מתוך השיטות האלה 

לוונטיים להוכחת התכונה, התפוצצות המצבים. על ידי שימוש באבסטרקציה, חלקים מהמערכת, שאינם ר

מוסרים. על ידי הסרת החלקים הלא רלוונטיים, מתקבלת מערכת קטנה יותר המכילה פחות מצבים מה שמקל 

על בדיקת המודל. אבסטרקציה עצלה פותחה לראשונה עבור מערכות תוכנה. שיטה זו מאפשרת הסרת חלקים 

שונים של המערכת בשלבים שונים של האימות.  



	  
	  

.על התמיכה הכספית הנדיבה בהשתלמותיאני מודה לטכניון   

 

 

 

 

 

 

היא הובילה אותי . פרופ' אורנה גימברגשלי,  למנחהבראש ובראשונה ברצוני להודות 
ולפתח את לי לגדול  גם איפשרהלי ככל האפשר אך  עזרה, בסבלנות במסעי כחוקר מתחיל

בעלמת שם עולמי בתחום האימות הייתה לי הזכות לעבוד עם חוקרת  עצמאותי האקדמית.
הפורמלי ואני בטוח שהיא נתנה לי את כל הכלים הדרושים על מנת להמשיך ולהצליח.  

לד״ר שרון שוהם, ד״ר אלכס נאדל וד״ר ודים ריבקין על שיתוף פעולה פורה ברצוני להודות 
כי. כמו ומוצלח. אני בטוח שהניסיון שצברתי תוך כדי שיתוף הפעולה ילווה אותי בהמשך דר

כן, ברצוני להודות לד״ר זיאד חנא על התמיכה וההזדמנות שנתן לי לממש את מחקרי 
בסביבה תעשייתית ובכך נתן לי את הכלים לראות כיצד מחקרי משפיע על בעיות מן העולם 

האמיתי.  

יד ולהאמין שלימדו אותי לשאול, לחקור, להתמשראל וסימה ויזל, ברצוני להודות להורי, י
ם תמכו בי בכל ההיבטים של לימודי, מבית הספר היסודי ועד בית הספר ללימודי . הבעצמי

גם לאחי ואחותי, שי ושיר, על שהביעו תמיכה והערכה לפועלי. כל אלה מוסמכים. אני מודה 
שימשו השראה למחקרי.  

 

 

 

 

 

 

 



	  
	  

  



	  
	  

בדיקת מודל מבוססת ספיקות על ידי שימוש באינטרפולציה 
ובנייה אינקרמנטלית של פסוקיות אינדוקטיביות לנכונות 

ודאית  

 

 
חיבור על מחקר  

 

 

לשם מילוי חלקי של הדרישות לקבלת התואר  

דוקטור לפילוסופיה   

 

 

יקיר ויזל  

 

 

 
–הוגש לסנט הטכניון  מכון טכנולוגי לישראל   

 

2014מאי                  חיפה                 דאייר תשע"  

  



	  
	  

 

  



	  
	  

 

בדיקת מודל מבוססת ספיקות על ידי שימוש באינטרפולציה 
ובנייה אינקרמנטלית של פסוקיות אינדוקטיביות לנכונות 

ודאית  

 

 
 

 

 

ויזליקיר   

  


