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Abstract

SAT-based model checking is currently one of the most successful approaches
to checking very large systems. In its early days, SAT-based (bounded) model
checking was mainly used for bug hunting. The introduction of interpolation
and IC3\ PDR enable efficient complete algorithms that can provide full ver-
ification as well.

In this thesis, we preset several approaches to enhancing SAT-based model
checking. They are all based on iteratively computing an over-approzimation
of the set of reachable system states. They use different mechanisms to
achieve scalability and faster convergence (empirically).

The first approach uses interpolation-sequence, rather than interpolation,
in order to obtain a more precise over-approximation of the set of reachable
states and avoids the addition of interpolants into the BMC formula.

The second approach extracts interpolants in both forward and back-
ward manner and exploits them for an intertwined approximated forward
and backward reachability analysis. The approach is also mostly local and
avoids unrolling of the checked model as much as possible. By that, the size
of interpolants is mostly kept small. This results in an efficient and complete
SAT-based verification algorithm.

The third approach takes a different direction. It suggests a new method
for interpolant computation which is specific for model checking. As a first
step, it approximates the interpolant using a proof generated by the SAT

solver. The second step transforms the approximated interpolant into a real



interpolant by using the structure of the model checking problem and apply-
ing inductive reasoning. This results in an efficient procedure that generates
compact interpolants in Conjunctive Normal Form.

The last approach we present integrates lazy abstraction with IC3 in order
to achieve scalability. Lazy abstraction, originally developed for software
model checking, is a specific type of abstraction that allows hiding different
model details at different steps of the verification. We find the IC3 algorithm
most suitable for lazy abstraction since its state traversal is performed by
means of local reachability checks, each involving only two consecutive sets.
A different abstraction can therefore be applied in each of the local checks.

The techniques presented in this thesis make SAT-based model check-
ing more scalable. The thesis focuses on hardware model checking, but the

presented ideas can be extended to other systems as well.



Chapter 1
Introduction

Computerized systems dominate almost every aspect of our lives and their
correct behavior is essential. Model checking [21, 51, 20| is an automated
verification technique for checking whether a given system satisfies a desired
property. The system is usually described as a finite-state model in a form
of a state transition graph. The specification is given as a temporal logic
formula. Unlike testing or simulation based verification, model checking tools
are exhaustive in the sense that they traverse all behaviors of the system, and
either confirm that the system behaves correctly or present a counterezample.

Model checking has been successfully applied to verifying hardware and
software systems. Its main limitation, however, is the state explosion problem
which arises due to the huge state space of real-life systems. The size of the
model induces high memory and time requirements that may make model
checking not applicable to large systems. Much of the research in this area
is dedicated to increasing model checking applicability and scalability.

The first significant step in this direction was the introduction of BDDs [12]
into model checking. BDD-based Symbolic Model Checking (SMC) [13] en-
abled model checking of real-life hardware designs with a few hundreds of
state elements. However, current design blocks with well-defined functional-

ity typically have thousands of state elements and more. To handle designs



of that scale, model checking has been reduced to satisfiability (SAT) and
SAT-based Bounded Model Checking (BMC) [5] has been developed. Its main
drawback, however, is its orientation towards “bug-hunting” rather than full
verification.

Several approaches have been suggested to remedy the problem and make
it applicable for verification. Induction [54], interpolation [43, 59, 60], inter-
polation sequence [57, 16], IC3/PDR [8, 28|, and L-IC3 [58] developed dif-
ferent techniques for SAT-based Unbounded Model Checking (UMC), which
provide full verification. All techniques are based on finding an inductive
invariant that proves the correctness of the verified property. More precisely,
most of these techniques explicitly find the inductive invariant by approxi-
mating the reachable states in the verified system.

Of these SAT-based unbounded model checking techniques, L-IC3 and [16]
also use Abstraction-refinement [22], which is another well known methodol-
ogy for tackling the state-explosion problem. Abstraction hides model details
that are not relevant for the checked property. The resulting abstract model
is then smaller, and therefore easier to handle by model checking algorithms.
Lazy abstraction [41, 44], developed for software model checking, is a spe-
cific type of abstraction that allows hiding different model details at different
steps of the verification.

We now go through challenges in SAT-based model checking and our

techniques for improvements.

1.1 Challenges in SAT-based Model Check-
ing

This work focuses on improving Interpolation based model checking as was
first introduced in [43], and improving IC3/PDR [8, 28]. These methods
compute an over-approximated sets of the system’s reachable states while

checking that the specification is not violated. The approximation of reach-



able states is done via a form of generalization. Basically, generalization is
the process of deducing a general fact from knowledge about a single case.

The algorithm that appears in [43], which we refer to as ITP, com-
putes over-approximations of reachable states using Craig interpolants [23].
The interpolants are extracted from a proof of unsatisfiability, generated
by a SAT-solver when solving a BMC formula, and they represent an over-
approximation of states reachable from the initial states after one transition.
The computed over-approximations are used to perform a SAT-based reach-
ability analysis and to fully verify a specification.

In the context of ITP, interpolants are used as a generalization mecha-
nism. By solving a BMC formula of a specific length, and knowing that there
is no counterexample of this specific length, interpolants help to generalize
this fact into general information about the system’s reachable states.

ITP works iteratively and is based on a nested loop. The outer loop con-
trols the bound of the BMC formulas that are checked inside the inner loop.
The inner loop iteratively solves a fixed bound BMC formulas. If a BMC for-
mula is unsatisfiable, an interpolant representing an over-approximation of
reachable states is extracted!. These over-approximations are used to check
whether all reachable states in the system have been checked. In case all
reachable states are checked we say that a fixpoint is found. In this case,
the algorithm terminates concluding that the property holds. Otherwise,
the computed interpolant replaces the set of initial states from which the
bounded search starts and a new BMC formula is checked (with new initial
states). Due to the usage of “new” initial states in the BMC formula, there
are cases where such a modified BMC formula is satisfiable. Since the in-
terpolants represent an over-approximation of reachable states, I'TP cannot
conclude that a counterexample exists when a modified BMC formula is sat-
isfiable. In these cases the inner loop is stopped and the bound is increased

by the outer loop.

'In these settings interpolants can only be computed for an unsatisfiable formula.



There are, therefore, two inherent weaknesses we try to solve. The first
weakness is the sensitivity of ITP to the size of the interpolants. Since inter-
polants are fed back into the BMC formula (when replacing the initial states
with an interpolant), their size may render the BMC problem intractable.
The second weakness is the need to constantly increase the bound of the
checked BMC formula in order to increase the precision of the computed
over-approximations.

In [8] an alternative SAT-based algorithm, called IC3, is introduced. Sim-
ilarly to I'TP, IC3 also computes over-approximations of sets of reachable
states. However, while I'TP unrolls the model in order to obtain more pre-
cise approximations, IC3, improves the precision of the approximations by
performing many local reachability checks between consecutive time frames
that do not require unrolling.

While I'TP blindly relies on the SAT-solver to search for a counterexample
and generate information about reachable states (in the form of interpolants),
IC3 approaches the problem in a different manner. Instead of blindly relying
on the SAT-solver, it guides both the search for the counterexample and the
computation of reachable states.

Conceptually, IC3 is based on a backward search. Starting with a bad
state, it uses a SAT-solver to repeatedly find a one-step predecessor state.
Thus, all SAT-queries are local, involving only one instance of the transition
relation, and no BMC-unrolling is used. If, when performing the backward
search, the bad suffix can be extended all the way to the initial states -
a counterexample is found. Otherwise, when a suffix cannot be extended
further, a process called inductive generalization [9, 7, 8], is used to learn a
consequence that blocks the current suffix. More precisely, due to inductive
generalization, IC3 generalizes the fact that a single state is unreachable to
a consequence representing a set of unreachable states. The conjunction of
all such learned consequences is used to represent an over-approximation of

reachable states.



While inductive generalization is what enables IC3 to learn strong conse-
quences, it is also its weakness. When inductive generalization fails to gener-
alize a single unreachable state into a set of unreachable states efficiently, IC3

falls into a form of state-enumeration, thus making the algorithm inefficient.

1.2 Our Approaches for SAT-based Model Check-

ing Enhancements

We aim at solving the weaknesses of SAT-based methods as described in the
previous section. In the context of interpolation, we deal with interpolants’
size by using them or computing them differently, such that their size is either
reduced or has less affect on the underlying model checking problem. In the
context of IC3, we integrate abstraction into the algorithm in order to make
it more efficient. We now go into more detail about the content of this thesis.

In Chapter 3, we present an interpolation-sequence [38, 44] based algo-
rithm. The algorithm, referred to as ISB, combines BMC with interpolation-
sequence. ISB works by searching for a counterexample via repeatedly posing
BMC queries to a SAT-solver. If a BMC query is satisfied, a counterexample
is found. Otherwise, the SAT-solver generates a proof of unsatisability. An
interpolation procedure is then used to extract an interpolation sequence.
The sequence is used to over-approximate sets of reachable states at differ-
ent depths. If at any point a fixpoint is reached, ISB terminates indicating
the validity of the checked property. Otherwise, the process repeats with
another, longer, BMC query. ISB can be viewed as a simple addition to the
BMC loop that enables termination.

Unlike ITP, ISB does not require to inject the interpolants into the BMC
formula, and thus the size of interpolants does not influence the ability to
solve a BMC query. Even though ISB is insensitive to the size of interpolants,
it does not outperform ITP on average [16].

In Chapter 4, we present the algorithm Dual Approzimated Reachability



(DAR), that can be viewed as an evolution of ISB. The algorithms ITP, 1C3
and ISB are all based on a froward reachability analysis. DAR adds back-
ward reachability analysis and tightly combines it with forward analysis. By
doing so, DAR can execute mostly local reachability checks that are similar
in a sense to the reachability queries executed by IC3. DAR can therefore
avoid unrolling of the model in most cases. Like ITP and ISB, DAR uses in-
terpolation to compute over-approximations of sets of reachable states. But,
due to the fact that it can avoid unrolling, it manages to keep interpolants
smaller. In addition, since unrolling is avoided, the queries solved by the
SAT-solver are simpler.

In Chapter 5, we introduce a novel technique for computing interpolants
specifically suitable to model checking. Our approach uses both the proof of
unsatisfiability generated by the SAT-solver and information about the un-
derlying problem. Our method computes interpolants in Conjunctive Normal
Form (CNF) that are small in size compared to interpolants computed by
the traditional method [43]. We evaluate this approach in the context of ITP.
We have developed an algorithm, called CNF-ITP, which is similar to ITP
but uses our method for interpolant computation. In addition, it exploits
the fact that interpolants are given in CNF.

In the last chapter (Chapter 6), we present the algorithm L-IC3, which
provides a SAT-based lazy abstraction-refinement algorithm based on IC3/PDR.
Originally introduced for software verification, lazy abstraction enables to
use different abstractions at different steps of verification. To the best of our
knowledge, L-IC3 is the first to use lazy abstraction for hardware verification.
The local reachability checks that lie in the core of IC3 makes it a natural
candidate to be used with lazy abstraction. Thus, L-IC3 is developed on top
of 1C3.

As was mentioned before, IC3 uses many local reachability checks that
only contain one instantiation of the transition relation. L-IC3 uses the

visible variable abstraction [40], and by that enables the usage of different



sets of visible variables for the different local reachability checks that are
used by IC3. In contrast to the generic CEGAR framework [22], L-IC3 is
tightly integrated in IC3 and uses IC3-specific features (like the locality of
the reachability checks).

Integrating abstraction into IC3 enables us to not only execute more
efficient SAT queries (since we use an abstract model), but also makes the
process of inductive generalization more effective. This enables L-IC3 to learn
stronger consequences when it proves that a given state is unreachable, and
by that reduce the effort needed when searching for an inductive invariant.

This helps L-IC3 to converge faster.



Chapter 2
Preliminaries

Temporal logic model checking [20] is an automatic approach to formally
verifying that a given system satisfies a given specification. The system is
often modelled by a finite state transition system and the specification is
written in a temporal logic. Determining whether a model satisfies a given
specification is often based on an exploration of the model’s state space in a
search for violations of the specification.

In this thesis we focus on hardware. As such we consider finite state

transition systems defined over Boolean variables, as follows.

Definition 2.0.1. A finite transition system or a model is a triple M =
(V,INIT, TR) where V is a set of boolean variables, INIT(V) is a formula
over V', describing the initial states, and TR(V, V") is a formula over V and

the next-state variables V’ = {v'|v € V'}, describing the transition relation.

Throughout the thesis we assume that for a given model M, the transition
relation TR is total.

The set of Boolean variables of M induces a set of states S = {0, 1}"],
where each state s € S is given by a valuation of the variables in V. A
formula over V' (resp. V,V’) represents the set of states (resp. pairs of

states) obtained by its satisfying assignments. With abuse of notation we
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will refer to a formula 7 over V' as a set of states and therefore use the notion
s € n for states represented by 7. Similarly for a formula n over V, V' we
will sometimes write (s, s’) € 7.

The formula n[V < V'], or i’ in short, is identical to 1 except that
each variable v € V is replaced with v’. In the general case V' is used to
denote the variables in V after i time units (thus, V° = V). Let n be a
formula over V? the formula n[V? < V7] is identical to n except that for
each variable v € V, v* is replaced with v/. Throughout the paper we denote
the value false as 1 and the value true as T. For a propositional formula n
we use Vars(n) to denote the set of all variables appearing in 7. For a set
of formulas {ny,...,n,} Vars(n,...,n,) denotes the variables appearing in
M, -..,Nn. That is, Vars(ny,...,n,) = Vars(n;) U... U Vars(n,).

A path in M is a sequence of states m = sg,$1,... such that for all
0<i<|n|, s; €S and (s4,s;+1) € TR. The length of a path is denoted by
|7|. If 7 is infinite then |7| = co. If m = sg, 81, ..., S, then |7| = n. A path
is an initial path when sq € INIT. We sometimes refer to a prefix of a path
as a path as well.

We use the following notation to describe a path in M of length 7 — ¢ by

means of propositional formula:
Formula 1. path™ = TR(V', VT A ... A TR(VITL VY)

where 0 <7 < 7.

To describe a path of length £ starting at the initial states, we will use:
INIT(V?) A path®”.

A formula in Linear Temporal Logic (LTL) [49, 20] is of the form A f
where f is a path formula. A model M satisfies an LTL property Af if all
infinite initial paths in M satisfy f. If there exists an infinite initial path not
satisfying f, this path is defined to be a counterexample.

In this thesis we consider a subset of LTL formulas of the form AG p,
where p is a propositional formula. AG p is true in a model M if along every

initial infinite path all states satisfy the proposition p. In other words, all

11



states in M that are reachable from an initial state satisfy p. This does
not restrict the generality of the suggested methods since model checking of
liveness properties can be reduced to handling safety properties [3]. Further,
model checking of safety properties can be reduced to handling properties of
the form AG p [39].

As was mentioned before, the model checking problem is the problem of
determining whether a given model satisfies a given property. For properties
of the form AG p this can be done by traversing the set of all states reachable
from the initial states, called reachable states in short. Let M be a model,
Reach be the set of reachable states in M, and f = AG p be a property. If
for every s € Reach, s |= p then the property holds in M. On the other hand,
if there exists a state s € Reach such that s = —p then there exists an initial
path ™ = sq, s1,..., S, such that s,, = s. The path 7 is a counterexample for
the property f.

Model checking has been successfully applied to hardware verification,
and is emerging as an industrial standard tool for the verification of hardware
designs. The main technical challenge in model checking, however, is the
state explosion problem which occurs if the system is a composition of several

components or if the system variables range over large domains.

2.1 Satisfiability

Many problems, including some versions of model checking, can naturally be
translated into the satisfiability problem of the propositional calculus. The
satisfiability problem is known to be NP-complete. Nevertheless, modern
SAT-solvers, developed in recent years, can check satisfiability of formulas
with several thousands of variables within a few seconds. SAT-solvers such as
Grasp [55], Chaff [48], MiniSAT [29], Glucose [1], and many others, are based
on sophisticated learning techniques and data structures that accelerate and

increase the efficiency of the search for a satisfying assignment, if it exists.

12



Definition 2.1.1 (Conjunctive Normal Form). Given a set U of Boolean
variables, a literal [ is a variable u € U or its negation and a clause is a
disjunction of literals. A formula F' in Conjunctive Normal Form (CNF) is

a conjunction of clauses.

With abuse of notation, we sometimes refer to a clause as a set of literals
and to a CNF formula as a set of clauses.

A SAT-solver is a complete decision procedure that given a propositional
formula, determines whether the formula is satisfiable or unsatisfiable. Most
SAT-solvers assume a formula in CNF. A CNF formula is satisfiable if there
exists a satisfying assignment for which every clause in the set is evaluated
to T. If the clause set is satisfiable then the SAT solver returns a satis-
fying assignment for it. If it is not satisfiable (unsatisfiable), meaning, it
has no satisfying assignment, then modern SAT-solvers produce a resolution
refutation comprising the proof of unsatisfiability [62, 30, 45]. The proof of
unsatisfiability has many useful applications. We will introduce one of them

in a following section.

2.2 Bounded Model Checking

We now describe how to exploit satisfiability for bounded model checking of
properties of the form AG p, where p is a propositional formula.

Bounded model checking (BMC) [5] is an iterative process for checking
properties of a given model up to a given bound. Let M be a model and
f = AG p be the property to be verified. Given a bound k, BMC either finds
a counterexample of length £ or less for f in M, or concludes that there is
no such counterexample. In order to search for a counterexample of length

k the following propositional formula is built:
Formula 2. %, (f) = INIT(V?) A path® A (=p(VF*))

ok (f) is then passed to a SAT-solver which searches for a satisfying

13



1: function BMC(M, f k)

2 1:=0

3 while 1 < k do

4 build ¢4, (f)

5: result = SAT (0% (f))

6 if result == true then
7 return cex // returning the counterexample
8 end if

9: 1=1+1

10: end while

11: return No cex for bound &

12: end function

Figure 2.1: Bounded model checking

assignment. If there exists a satisfying assignment for ¢%,(f) then the prop-
erty AG p is violated, since there exists a path of M of length £ violating
the property. In order to conclude that there is no counterexample of length
k or less, BMC iterates all lengths from 0 up to the given bound k. At each
iteration a SAT procedure is invoked.

When M and f are obvious from the context we omit them from the
formula %, (f) denoting it as p*. The BMC algorithm is described in Fig-
ure 2.1.

The main drawback of this approach is its incompleteness. It can only
guarantee that there is no counterexample of size smaller or equal to k. It
cannot guarantee that there is no counterexample of size greater than k.

Thus, this method is mainly suitable for refutation. Verification is ob-
tained only if the bound k exceeds the length of the longest path among all
shortest paths from an initial state to some state in M. In practice, it is
hard to compute this bound and even when known, it is often too large to
handle. As mentioned before, several methods for full verification with SAT
have been suggested, such as induction [54], ALL-SAT [46, 31], interpola-
tion [43, 47, 57], and Property Directed Reachability (PDR/IC3) [8, 28, 58].

14



In the rest of the thesis we will focus on SAT-based verification with inter-
polation and PDR.

2.3 Interpolation

In this section we introduce two notions, interpolation [23] and interpolation-
sequence [38] that, when combined with BMC, can provide full program
verification.

Given a pair of unsatisfiable propositional formulas A(X,Y") and B(Y, Z),
where X, Y and Z are sets of Boolean variables, an interpolant I(Y) is a for-
mula that fulfills the following properties: A(X,Y) = I(Y); I(Y) A B(Y, Z)
is unsatisfiable; and I(Y") is a formula over the common variables of A(X,Y)
and B(Y, Z) [23]. Modern SAT-solvers are capable of generating an unsat-
isfiability proof of an unsatisfiable formula. The proof is in the form of a
resolution refutation [61, 30, 45]. It is possible to compute an interpolant
from a resolution refutation of A(X,Y) A B(Y,Z) [50, 43].

Definition 2.3.1. Let (A, B) be a pair of formulas such that AN B = 1.
The interpolant for (A, B) is a formula I such that:

o A=1.
e INB=1.
e Vars(/) C Vars(A) N Vars(B).

The interpolant can be viewed as the part of A that is sufficient to con-
tradict B. Note that different proofs yield different interpolants.
A similar notion can be defined when we have a sequence of formulas

whose conjunction is unsatisfiable.

Definition 2.3.2. Let I' = (A;, As, ..., A,) be a sequence of formulas such
that AI'= L. Thatis AT' = A A...AA, is unsatisfiable. An interpolation-

sequence for T" is a sequence (Zy,Zy, . ..,Z,) such that:
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1. Zy=Tand Z, = L
2. For every 0 < j < n it holds that Z; A A;11 = Z; 11

3. For every 0 < j < n it holds that Vars(Z;) € Vars(4;,...,4;) N
Vars(Aji1,...,4;,)

Computing an interpolation-sequence for a sequence of formulas is done
in the following way: given a proof of unsatisfiability 7, for each Z;, 0 <7 < n,

the sequence of formulas is partitioned in a different way such that Z; is the
] n

interpolant for the formulas A(i) = A A; and B(i) = A A;, obtained
j=1 j=i+1
based on w. In fact, all interpolants Z; in the sequence can be computed

efficiently at once, by a single traversal of a given proof of unsatisfiability [57].

Before proving the above, we provide some resolution-related definitions.
The resolution rule states that given clauses ay = 8 Vv and as = 5 V —w,
where (7 and fy are also clauses, one can derive the clause az = 51 V (s.
Application of the resolution rule is denoted by a3 = a3 ®" as. v is called

the pivot variable.

Definition 2.3.3 (Resolution Derivation). A resolution derivation of a tar-
get clause a from a CNF formula G = {ay, as, ..., a4} is a sequence

T = (0,00, ..., Qq 0gi1, Oy, - - ., 4 = ), where each clause o; for i < ¢ is
initial and «; for ¢ > ¢ is derived by applying the resolution rule to «; and

ay, for some j, k < i.

A resolution derivation 7 can naturally be conceived of as a directed
acyclic graph (DAG) whose vertices correspond to all the clauses of 7 and in
which there is an edge from a clause o to a clause «; iff a; = a; ®" oy, for

some k. A clause 8 € 7 is a parent of o € 7 iff there is an edge from 3 to a.

Definition 2.3.4 (Resolution Refutation). A resolution derivation 7 of the

empty clause [J from a CNF formula G is called the resolution refutation of

G.
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An interpolant can be produced out of a resolution refutation [43]. We
define (c¢|B) = \/{l € c|var(l) € Vars(B)} as the projection clause achieved
by removing all literals such that their variable does not appear in B. We

can also generalize the projection to sets of variables.

Definition 2.3.5 (Partial Interpolant). Let (A, B) be a pair of clause sets.
Given a proof of unsatisfiability @ for A U B and a clause ¢ in the proof

(c € ), the partial interpolant p(c) is defined as:
e ifcisaleafinm, ie. c€e AUB:

— if ¢ € A then p(c) = (¢|B)
—else p(c) =T

e else, let ¢q, ¢y be parent nodes of ¢ and let v be their pivot variable, i.e.

c=c ®Ycy:
— if v is local to A then p(c) = p(c1) V p(c2)
— else p(c) = p(c1) A ple2)

If ¢ is a clause, and [ is a literal that does not appear in ¢, we write ([, c)

to indicate the clause that results from adding [ as a literal to the clause c.

Definition 2.3.6. Clause interpolation sequence has the form (A, ..., A,) F
(O)]p1 ..., on1] where (Ay,..., A,) are clause sets, cis a clause, and @1, ..., ¥n_1

are formulas. It is said to be valid when @; AA; 11 = (@it V{c|Aip1, ..., An)).

Let us define the pair (A(i), B(i)) for 1 < i < nsuch that A(i) = A1A...A
A; and B(i) = Ajx1 A ... A A, If the sequence (A4, ..., A,) is unsatisfiable
(i.e. the conjunction of all formulas is unsatisfiable), then every such pair
is unsatisfiable. More precisely, A(i) A B(i) is unsatisfiable for 1 < i < n.
Given a resolution refutation 7 for the sequence (Aj, ..., A,), let us define
pi(c) for ¢ € 7 as the partial interpolant with respect to the pair (A(7), B(7))
(Definition 2.3.5).
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Lemma 2.3.7. Let (Ay,...,A,) be an inconsistent sequence of formulas

and let ™ be a proof of unsatisfiability. For a clause ¢ € m (Aq,...,A,) F
(c)p1(c), ..., pn1(c)] is valid.

Proof. Let m be a resolution refutation for the sequence (Ay,..., A4,). We
prove by induction on the structure of . The base case is where ¢ is a root
clause of 7w, meaning, ¢ € A; U...U A,. We therefore want to show that
pi(c) N Aiy1 = pisa(c) V (c|Ais1, ..., An). Let us assume that ¢ € A;:

e j <i: Weneed to show that (c|A;11,..., Ap)AAit1 = (c|Aita, ..., Ap)V

<C|AZ‘+17 c ,An>, which is equivalent to <C‘AZ’+1, . 7An>/\Ai+1 = <C|AZ’+1, .

Clearly, this holds (¢ Anp = ).

e j = i+ 1: We need to show that T A Ay = (c|Ai2, ..., An) V
(c|Aiz1, ..., Ap). Since ¢ € Ajpq, (c|Aig1,..., A,) is equivalent to c.
Thus, we need to show that A;;; = ¢. This trivially holds since ¢ €
Ait1.

e j > i+ 1: We need to show that T A Ay = T V (c|Ait1,..., Ay,
which is equivalent to A;,1 = T - trivially holds.

For the induction step, let (v, ;) and (—w, ¢3) be children of ¢ and let v

be the pivot variable. We therefore have the following assumptions:
b pi(<vv cl)) A Ai+1 = pz’—i-l((U, Cl)) \% <U V 01|Ai+1, A >An>
o pi({(—v,¢2)) N At = pia((-w, ) V (mo Vo Aiga, - An)

Considering Definition 2.3.5, if v € Vars(A;4o,...,A4,) then p;(c) =
p;((v,c1)) Ap;({(—w, ¢9)) for j € {i,i+ 1}, otherwise if v € Vars(A;11,..., Ay)
then pi(c) = pi((v, 1)) Api({-w, c2)) and pis (c) = pipa ((v, 1)) Vi1 ({70, €2)).
In all other cases p;(c) = p;((v,c1)) Vp;((—w, c2)). We consider different cases

according to v.
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o v € Vars(Aiio,...,A,): Weneed to show that (p;((v, c1))Ap;({(—v, c2)))A
Aiv1 = (pir1((vye1)) A pipr((—w,¢2))) V (e1 V eo|Aipa, ooy An). Let
us assume that the above does not hold. There is therefore an as-
signment such that (p;({v,c1)) A pi((—wv,¢2))) A Aiqq is evaluated to
T and (piy1((v, 1)) A pir1({(—v,¢2))) V {e1 V el Aigr, ..., Ap) is eval-
uated to L. Thus, p;({v,c;)) and p;((—wv,ce)) are evaluated to T.
By our induction hypothesis p;11((v,c1)) V (v V ¢1|Aiq1, ..., A,) and
Pir1((—v,2)) V (—v V o Aiy1, . .., Ap) are evaluated to T. Due to our
assumption, we know that p;11((v, 1)) and p;1({(—v, ce)) are both L.
By that, (vVei|Aigr, ..., An) and (—v Ve Aiy, ..., Ay) are T. With-
out loss of generality, let us assume that v is evaluated to 1. By that
we get that (¢1|A;1,...A,) is evaluated to T. This contradicts our

assumption that (¢; V ca|Air1, ..., Ay,) is evaluated to L.

o v € Vars(Ait1, ..., An): Weneed to show that (p;((v, c1))Api({(—v, c2)))A
Ai+1 = (pi+1(<?), Cl>) \/pi+1(<_\?}, CQ>)) V <Cl vc2‘Ai+17 Ce ,An> This case

is proved in a similar manner to the previous case.

e Otherwise: We need to show that (p;((v,c1)) V pi({(-v,¢2))) A Aip1 =
(pir1((v, 1)) V pig1((—v,2))) V {1 V ea| Aiga, ...y Ay). Let us assume
to the contrary, that it does not hold. This means that there exists an
assignment such that (p;((v, 1))V p;({(—v,c2))) A Aiyq is evaluated to T
and (pi+1((v,c1)) V pir1((—v,¢9))) V {c1 V e Aiga, - . ., Ay) is evaluated
to L. Without loss of generality, let us assume that p;((v, c¢1)) is evalu-
ated to T, then by the induction hypothesis (vV 1| Ay, ..., Ay) is also
evaluated to T. Since we assume that (¢; V co|Ais1,..., A,) is evalu-
ated to L (our contradictory assumption), we get that (c1| A1, ..., An)
is evaluated to L. But, since v ¢ Vars(A;;1,...,4,) we get that
(c1]Aiv1, .oy Ap) = (v V ey|Aigr, ..., Ay). This leads to a contradic-

tion.
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Theorem 2.3.8. Let I' = (Ay, A, ..., A,) be a sequence of formulas such
that N\T = L and let w be a proof of unsatisfiability for NT. For every
1 <i < nletusdefine A(i) = Ay A ... NA; and B(i) = Aipi A ... N A,
Let Z; be the interpolant for the pair (A(7), B(i)) extracted using 7 then the

sequence (1,71, Ty, ..., L, 1, L) is an interpolation sequence for T'.

Proof. The proof is immediate from Lemma 2.3.7. O O

2.4 Interpolation Based Model Checking (ITP)

In [43], interpolation has been suggested for the first time in order to obtain
a SAT-based model checking algorithm for full verification. Before going into
details, and in order to better understand the algorithm and the motivation

behind it, we first review some basic concepts of Symbolic Model Checking
(SMC).

2.4.1 Symbolic Model Checking

SMC performs forward reachability analysis by computing sets of reachable
states S, where j is the number of transitions needed to reach a state in .S;
when starting from an initial state. More precisely, So(V') = INIT(V') and for
every j > 1, S; (V') =3V(S;(V)ATR(V,V")). The computation of S;,; is
referred to as an image operation on the set S;. Once S; is computed, if it

contains states violating p (recall that f = AGp), a counterexample of length

J is found and returned. Otherwise, if for j > 1 .5; C U S; then a fizpoint

has been reached, meaning that all reachable states have been found already.

If no reachable state violates the property then the algorithm concludes that
MEf.
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2.4.2 ITP Detailed

The algorithm, referred to as Interpolation Based Model Checking (ITP),
combines BMC and Interpolation [23].

As we have seen, BMC alone is only sound and not complete. In order to
be able to determine if M = f, current SAT-based model checking algorithms
are based on a computation that over-approximates the reachable states of

M. We use the notion of Reachability Sequence:

Definition 2.4.1. A Forward Reachability Sequence (FRS) of length k with
respect to a model M and a property AG p, denoted Fi ] (M, p), is a sequence
(Fo, ..., Fy) of propositional formulas over V' such that the following holds:

o [y =INIT
e FNTR= F{  for0<i<k
e [=pfor0<i<k

A reachability sequence F[k] is said to be monotonic (MFRS) when F; = F;
for 0 <i< k.

Recall that the formula F},, is equivalent to F;11[V <« V'], and that
implication between formulas corresponds to inclusion between the set of
states represented by the formulas. Thus, for non-monotonic reachability
sequence, the set of states represented by F; over-approximates the states
reachable from INIT in exactly i steps. When F’[k] is monotonic Fj represents
all the states that are reachable from INIT in i steps or less. We refer to ¢
as time frame (or frame) i. When M, p and k are clear from the context we

omit them and write F.

Definition 2.4.2 (Fixpoint). ! Let F' be a FRS of length n. We say that F

is at fizpoint if there exists 0 < k < mn s.t. Fj, = \/f:o1 F;.

INote that this is an abuse of the fixpoint notation.
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ITP uses interpolants to compute a forward reachability sequence (Defini-
tion 2.4.1). The algorithm concludes that the property holds when a fixpoint
is reached during the computation of the reachable states and none of the
computed states violates the property.

Informally, we will use the notion of fizpoint when we can conclude that
all reachable states in the model have been visited?. Using a FRS enables us

to determine wether a fixpoint has been reached or not.

Theorem 2.4.3. Let I be a FRS of length n for M and AGp. If F is at
fixpoint then M = AGp.

Proof. Suppose F is at fixpoint, i.e., there exists 0 < k < n s.t. F, =
Vi:ol F;. Denote by R the set of all states reachable from INIT (in any
number of steps). Recall that F; = p for every 0 < ¢ < n, which ensures
Vf:_ol F;, = p. It therefore suffices to show that R = \/f:_ol F; in order to
conclude that R = p and thus M = AGp.

We show that R = V?:_ol F;. Assume to the contrary that there exists a
state in R which is not in \/f:_o1 F;. Consider such a state s whose distance
from INIT is shortest. Let s, be the predecessor of s along a shortest path
from INIT to s. The distance of s, from INIT is shorter than the distance of
s. Thus, since s is the closest to INIT which is not in \/f:_o1 F;, it has to be
that s, € \/i:o1 i, which means there exists some 0 < 7 < k—1s.t. 5, € F}.
Since Fj A TR = Fj,, and s is a successor of s, this implies that s € Fj,
where 1 < j 4+ 1 < k. Therefore, s € \/f:0 F;. Since I}, = \/2:01 F;, we have
that \/f:_o1 F, = \/f:0 F;. We conclude that s € \/f:_o1 F;, in contradiction.

]

The following definition is useful in explaining the interpolation based
algorithm. Recall that the verified property is of the form f = AGp.

2Since an over-approximated sets of reachable states are computed, the computed sets
are not monotonic. Therefore, a monotonic function g for which the existence of a fixpoint
is guaranteed cannot be defined.
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1: function ITP(M p)

2 if INIT N\ —p == SAT then

3 return cex

4: end if

5: k=1

6 while true do

7 result = COMPUTEREACHABLE(M, p, k)
8 if result == fixpoint then

9 return Valid

10: else if result == cex then
11: return cex

12: end if

13: k=k+1

14: end while
15: end function

Figure 2.2: Interpolation-Based Model Checking (ITP)

Definition 2.4.4. For a set of states X, a natural number N € N and
1<j <N, X isa Sj-approzimation w.r.t N if the following two conditions
hold: S; € X and there is no path of length (N — j) or less violating p,
starting from a state s € X. We write S; <y X to denote that X is a

S;-approximation w.r.t N.

Note that the formula ¢* is used in BMC to represent a counterexample
of length exactly k. This formula can be modified to represent a counterex-
ample of length [ for 1 < I < k. We denote this formula by ¢'* and write
BMC (M, f,1,k) when BMC runs on @

Formula 3. "% = INIT(VOATR(VO, V) Apath™ (V1 ... . VE)A( —p(V7))

Consider the following partitioning for o'

e A=INIT(V°) A TR(VO, V')
e B= ’7\1 TR(V?, Vi+1) A(\k/ —p(V7)).

i=1 j=1
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16: function COMPUTEREACHABLE(M ,p, k)

17:  RE=INIT, Jb = INIT, n =1

18: if JE A path® A (=p(VY) V...V =p(V*)) == SAT then
19: return cex

20: end if

21: repeat

22: A=Jk (VOYANTRVO VY

23: B = path"* A (=p(V1) v ...V —p(VF))
24: J# = GETINTERPOLANT(A, B)

25: if J* = RF | then

26: return fizpoint

27: end if

28: RF =RE v Jk

29: n=n+1

30:  until J*_ | Apath® A (=p(V') V...V —p(VF)) == SAT
31: end function

Figure 2.3: Inner loop of ITP

Clearly ¢'* = A A B. Assume that o'* is unsatisfiable. By the interpo-
lation theorem [23], there exists an interpolant J¥ which, by Definition 2.3.1,

has the following properties:

e J is defined over the variables of Vars(A) N Vars(B), namely, V1.
o A= Jk Hence, S; C JI.

e JF(V1) A B is unsatisfiable. This means that there is no path of length

k — 1 or less, starting from J¥, which violates p.

By the above we get that S; <, JF. At this point, we get the reachability
sequence (INIT,J¥). We can now proceed by replacing the initial states
of M with the computed interpolant JF. BMC is reinvoked with the same
bound k and with the modified model M’ = (V, JF[V* < V], TR) in which
the initial states are J¥. A new interpolant Jy is then extracted. Jy satisfies
Sy <ka1 J§. The reachability sequence is then updated and contains a new
element (INIT, JF, J5).
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It is important to notice that JF now satisfies S; <41 JF since the BMC
run on M’ did not find a counterexample of length k starting from a state in
J¥. In the general case we replace INIT with Jf and get JF ;. By that, at
the end of the i-th iteration, for a given bound k, the reachability sequence
is (INIT, JE, J5, ... JF).

Figure 2.3 presents, for a given bound k, the computation of an over-
approximated set of reachable states. Note that after L iterations of the main
loop in CHECKREACHABLE we get L interpolants and for every 1 < ¢ < L,
Si Skar Jik . All computed states are collected in R. If at any iteration, the
interpolant J is contained in R, then all reachable states have been found
with no violation of f. CHECKREACHABLE then returns “fixpoint”.

On the other hand, if a counterexample is found on a modified model, then
COMPUTEREACHABLE(M, f,k) is aborted, the reachability sequence is dis-
carded, and COMPUTEREACHABLE(M, f k + 1) is initiated. CHECKREACH-
ABLE now tries to construct a new reachability sequence. Recall that the
counterexample has been obtained on an over-approximated set of states and
therefore might not represent a real counterexample in the original model. In
case a real counterexample exists, it will be found during a BMC run on the
original model M for a larger bound. The complete I'TP algorithm appears
in Figure 2.2
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Chapter 3

Exploiting
Interpolation-Sequence in
Model Checking

In this section we present a SAT-based algorithm for full verification (some-
times also called unbounded model checking (UMC)), which combines BMC
and interpolation-sequence [57]. BMC is used to search for counterexamples
while the interpolation-sequence is used to produce over-approximated sets
of reachable states and to check for termination.

Interpolation-sequence has been introduced and used in [38] and [44]. In
[38] it is used for computing an abstract model based on predicate abstrac-
tion for software model checking. In [44] interpolation-sequence is used for
software model checking and lazy abstraction and is applied to individual
execution paths in the control flow graph. The method presented in this sec-
tion exploits interpolation-sequence in a different manner. In particular, it
is applied to the whole model for imitating symbolic model checking (SMC).

From this point and on, we will use M to denote the finite state transition
system and f = AG p for a propositional formula p, as the property to be

verified.
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3.1 Interpolation-Sequence Based Model Check-
ing (ISB)

Note that, an interpolation-sequence exists for a bound N only when the
BMC formula ¢V is unsatisfiable, i.e. when there is no counterexample of
length N. In case a counterexample exists, BMC returns a counterexample

and the interpolation-sequence is not needed.

Definition 3.1.1 (BMC-partitioning). A BMC-partitioning for oV is the
sequence I' = (A}, Ay, ..., Ayyq) of formulas such that A, = INIT(V?) A
TR(VO, VY, for every 2 <i < N A; = TR(V7L Vi) and Axyy = —p(VY).

N+1

Note that ¢V = A A; (= A\T).
i=1

For a bound N, consider a BMC formula ¢ and its BMC-partitioning
I'. In case ¢” is unsatisfiable, the interpolation-sequence of I" is denoted by
IV = (1, IV, ... I§.,). Note that I contains N + 1 elements and therefore
the interpolation-sequence contains N + 2 elements where the first element
and the last one are always T and L, respectively.

Next, we intuitively explain our method. We start with NV = 1. Consider

L is unsatisfi-

the formula ¢! and its BMC-partitioning: (A;, As). In case ¢
able, there exists an interpolation-sequence of the form I'' = (I} = T, I}, I} =
1). By Definition 2.3.2, T A A} = I} where A; = INIT(V°) A TR(VO, V).
Therefore S; C I}, where S is the set of states reachable from the initial
states in one transition. Also, I§ A—p(V?') is unsatisfiable, since I A Ay = L,
where Ay = —p(V!). Therefore, I} = p.

In the next BMC iteration, for N = 2, consider ©? and its BMC-partitioning
(Ay, Ay, A3). In case ¢? is unsatisfiable, we get 12 = (T, 12,12, 1). Here too,
S; C 112 and the states reachable from it in one transition are a subset of
I3 since I} N Ay = I3. Also, Sp C I3 and I3 = p. Let us define the sets
Fy = I} NI} and F, = IZ. These sets have the following properties, S; C F,

Sy C Fy, Fy = pand F, = p. Moreover, Fy[V! < VIATR(V, V') = F,[V? «
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V7]
In the general case if ¢V is unsatisfiable then for every 1 < j < N,

N
S; € IV. If we now define F; = k/\]f then for every 1 < j < N we get:
=j

. }@):psinceljlzp.

o F; A TR(V,V') = Fl,, since I¥(VI) A TR(VI, VIt1) = Tk (VI+1) for
every 1 <k <N

e S; C Fjsince S; C IF for every 1 <k < N.

As a result, the sequence (Fy = INIT, Fy, Fs, ..., Fy) is a FRS (Defini-
tion 2.4.1) and can be used to determine if M |= f. Similarly to the sequence
obtained from ITP, the sets I; are over-approximations of S; computed by
SMC. Therefore, these sets can be used to imitate the forward reachability
analysis of the model’s state-space by means of an over-approximation. This
is done in the following manner. BMC runs as usual with one extension.
After checking bound N, if a counterexample is found, the algorithm termi-

nates. Otherwise, the interpolation- sequence IV is extracted and the sets F;

for 1 < j < N are updated. If F; = \/ F; for some 1 < j < N, then we

conclude that a fixpoint has been reached and all reachable states have been
visited. Thus, M = f. If no fixpoint is found, the bound N is increased
and the computation is repeated for N + 1. We elaborate mode on fixpoint
computation later.

Next, we explain why the algorithm uses F; = /]\< ]f rather than [ ]N

k=
in its Nth iteration. Informally, the following facts are needed in order to

guarantee the correctness of the algorithm. For every 1 < 7 < N we need

the following:
1. Fj should satisfy p.
2. F;(V)NTR(V,V') = F; 1 (V') for j # N.
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1: function UPDATEREACHABLE(k, Fiyy,I*)
2 =1

3 while (j < k) do

4 Fy=FAT

5: Fyli] = Fj

6 j=j+1

7 end while

s k= It

9: end function

Figure 3.1: Updating the reachability sequence F; (k]

3. 5, C Fj.

This means that the algorithm cannot be implemented using the extracted
interpolation sequence IV alone. This is because IV does not satisfy condi-
tion (1): while IY &= p, IJN for 7 # N, does not necessarily satisfy p. This

can be remedied by conjoining each IJN with Ig . However, now condition

N

(2) no longer holds. Taking F; = A\ I} results in a sequence with all three
k=j

properties. By that, the sequence follows the properties of Definition 2.4.1.

The algorithms for updating the FRS and checking for a fixpoint are
described in Figure 3.1 and Figure 3.2, respectively. The complete model
checking algorithm using the method described above is given in Figure 3.3.
We refer to it as Interpolation-Sequence Based Model Checking (ISB).

It is important to note that a call to UPDATEREACHABILITY changes all
elements of the FRS F; k). Therefore, the function FIXPOINTREACHED cannot
count on inclusion checks done in previous iterations and needs to search for
a fixpoint at every point in F[k]. Moreover, it is not sufficient to check for

inclusion of only the last element Iy of F[k]. Indeed, if there exists j < N

7j—1
such that F; = \/ F; then all reachable states have been found already.
i=1

N-1
However, the implication Fy = \/ F; might not hold due to additional

unreachable states in Iy. This is because forall 1 <j < N, Fj;; is an over-
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: function FIXPOINTREACHED(£,))
J=1 B
while (j < Fy.length) do

7j—1
R=\ F,

=0
¢ = F; N—R // Negation of F; = R
if (SAT(¢) == false) then return true
end if
j=7+1
end while
return false
end function

Figure 3.2: Checking if a fixpoint has been reached

: function ISB(M,f)
k=0
result = BMC(M, f,0)
if (result == cex) then
return cex
end if
Fiyy = (INIT) // Reachability sequence
while (true) do
k=k+1
result = BMC(M, f, k)
if (result == cex) then
return cex
end if
IF=(T,IF ... IF, 1)
UPDATEREACHABLE(Fly, ")
if (FIXPOINTREACHED(Fj)) == true) then
return true
end if
end while
: end function

Figure 3.3: The ISB Algorithm
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approximation of the states reachable from F; and not the exact image (that
is, F;(V) N TR(V,V') = F;1[V < V'] rather than F;(V) A TR(V,V') =
FyalV < V7).

Theorem 3.1.2. Assume there is no path of length N or less violating f in
j—1

M. If there exist 1 < j < N such that F; = \/ F;, then M = f.
i=1

Proof. By assumption, there is no path in M of length /N or less that violates
j—1
f. We now show that given F; = \/ F; we can conclude that there is no path
=0
j—1
of any length violating f. Let R = \/ F,. By assumption, F; = R and for

every 0 <i < j, F;(V)A TR(V,V") ZZ;OFiH(V’). Thus, R(V) AN TR(V, V') =
R(V") (1). Moreover, for every 1 < i < j F; = p. Hence, R = p is
unsatisfiable (2).

We can show by induction that all reachable states are in R. The base
case handles an initial state. This holds trivially by the definition of R. Now
let us assume it holds for all states reachable in k steps. It should be proved
for states reachable in k 4 1 steps. Let sz, 1 be a state reachable in k + 1
steps from an initial state. Let m = s¢, s1,..., Sk, Skr1 be an initial path to
Sk+1. By the induction hypothesis sp € R. By the fact that (sg,sri1) € TR
and by (1) we can conclude that sy11 € R.

By that and (2), the set of reachable states satisfy p which implies that
M = f.

O

Lemma 3.1.3. Suppose M |= f then there exists a bound N such that F =
{INIT, F\, F5, ..., Fn} and there exists an index 1 < j < N such that F; =

7j—1

\/ F..

i=1

Proof. The set of states S is finite. Let us define N =j = |S|+1. M f

hence for every 0 < k < N, ¢F is unsatisfiable. Thus, the interpolation-
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sequence I* exists for every 0 < k < N and by that the FRS F' = {INIT, I}, F5, . .

j—1

exists. Since |S| < oo we get F; = \/ F;. O
i=1

Theorem 3.1.4. There exists a path © of length N such that m violates f if

and only if ISB terminates and returns cex.

Proof. Assume that the minimal violating path is of length N. For N — 1

there is no path in M violating f. By Theorem 3.1.2 we get that for ev-
7j—1
ery j such that 1 < j < N, F; = \/ I; does not hold. Therefore, the

algorithm cannot terminate by returnmg true in the first N — 1 iterations.
When the algorithm reaches the N-th iteration, BMC(M, f, N) will return
a counterexample and the algorithm terminates. The other direction is im-
mediate. 0

Theorem 3.1.5. For every model M and property f = AG p there exists a
bound N such that ISB terminates. Moreover,
o M = f if and only if there exists an index 0 < j < N such that
i—1

i
F; = \/ F,.
=0

e There exists a path w of length N such that m violates f if and only if

ISB returns cex.

Proof. The proof is immediate from Lemma 3.1.3 and Lemma 3.1.4. O]

3.2 Comparing Interpolation-Sequence Based
MC to Interpolation Based MC

In the previous section we presented ISB, an algorithm, which combines BMC
and interpolation-sequence [57], and in the previous chapter we described the
Interpolation based algorithm (ITP) [43]. Both algorithms are based on the
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use of interpolation for computing a reachability sequence. In this section
we analyze the differences between the algorithms.

Both methods compute an over-approximation of the set of reachable
states. However, their state traversals are different. As a result, none is
better than the other in all cases. In specific cases, though, one may converge
faster.

Several technical details distinguish ISB from ITP. First, the formulas
from which the interpolants are extracted are different. For a given bound
N, ISB uses the formula ¢V while ITP uses V.

Second, the approximated sets are computed in different manners. ISB
computes the sets F; incrementally and refines them after each iteration of
BMC, as part of the BMC loop. ITP, on the other hand, recomputes the
interpolants whenever the bound is incremented (that is, whenever CHECK-
REACHABLE is called with a larger bound).

Third, ISB can be viewed as an addition to the BMC loop. At each
application of BMC (with a different bound), the addition includes the ex-
traction of an interpolation-sequence and the check if a fixpoint has been
reached. Indeed, after N iterations of the BMC loop in ISB, there are N
over-approximated sets of states, Fi, ..., Fiy satisfying, for each 1 < 7 < N,
S; 2n Fj.

On the other hand, ITP consists of two nested loops. The outer loop
increments the bounds while the inner loop computes over-approximated
sets of reachable states. If the outer loop is at some bound N > 1 and the
inner loop performs L iterations then there are L sets of states J¥, ..., JY,
each satisfying S; <y, J&¥ (1 < i < L). Table 3.1 summarizes the above
differences.

In summary, ITP can compute, at a given bound N, as many sets as
needed as long as no counterexample is found (not necessarily a real coun-
terexample). On the other hand, for bound N, ISB can only compute N

sets. However, it does not need recurrent BMC calls for each bound (only
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SMC ISB ITP
(S1,...,5N) (F1, Fy, ..., Fy) (JL I3, Jx)
Si 2N F; Si 2N J}E

After checking N iterations at
bounds 1 to N bound 1, if possible

(S1y. s Sne) || (Fuy oo Fry ooy Ener) (JNJN TN

Si v+ B Si Zngr SN, (1<i<L)

After checking L iterations at

bounds 1 to N + L bound N, if possible

Table 3.1: The correlation between the interpolants computed by ISB and
ITP to the sets computed by SMC

one is needed). Thus, we can conclude that in cases ITP can compute all the
needed sets at a low bound it performs better than ISB. However, for exam-
ples where the needed sets can only be computed using higher bounds, ISB
has an advantage. This fact is reflected in the experimental results reported
in the next section.

As mentioned before, when a counterexample exists the over-approximated
sets of reachable states are not needed. If a property is violated then there
exists a minimal bound N for which a violating path of length N exists.
Both algorithms have to reach this bound in order to find the counterexam-
ple. Here, ISB has a clear advantage over I'TP. This is because after each
BMC run on the original model, ITP executes at least one additional BMC
run on a modified model. Thus, ITP invokes at least two BMC runs for each
bound from 1 to N — 1. Clearly, the second BMC run is more demanding
than the inclusion check performed by ISB. In all experiments of [57], falsified

properties always favored ISB.
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Figure 3.4: Runtime (in seconds) of falsified properties on Intel’s micro-
architecture.

3.3 Implementation Details and Experimen-
tal Results

3.3.1 Implementation Details

Both the ISB and the ITP algorithms were implemented within Intel’s ver-
ification system using a SAT-based model checker which is based on Intel’s
in-house SAT solver Fureka. The interpolants are represented by a data-
structure similar to an And-Inverter Graph (AIG) and are simplified and
optimized using known methods such as constant propagation and sharing

of redundant expressions.

3.3.2 Experimental Results

The two algorithms have been checked on various models taken from two

of Intel’s CPU designs. The characteristics of the checked models appear
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Figure 3.5: Runtime (in seconds) of verified properties on Intel’s micro-

architecture.

Name | #Vars | B | Byrp | 81 | #1;7p | tBMC | 8BMCjrp | Time [s] | Time;rp [s]
fi 3406 || 16 15 136 80 16 80 970 5518
fa 1753 9 8 45 40 9 40 91 388
f3 1753 7 6 28 28 7 28 49 179
fa 1753 || 16 15 136 94 16 94 473 1901
fs 3406 6 5 21 13 6 13 68 208
fs 1761 2 1 3 2 2 2 5 4
fr 3972 3 1 6 3 3 3 19 14
fs 2197 3 1 6 3 3 3 10 7
fo 1629 || 23 6 276 39 23 39 2544 1340
fio 4894 5 1 15 3 5) 3 635 101

Table 3.2: Verified properties and their running parameters.
Unindexed columns refer to the ISB algorithm; columns indexed with ITP
refer to the I'TP algorithm. f Vars stands for the number of state variables in
the cone of influence. B - bound at convergence, I - number of interpolants
computed, BMC - number of calls to the BMC algorithm, and Time[s/ - the
runtime in seconds.
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in Table 3.3. The 136 properties chosen for the experiments were all real
safety properties used to verify the correctness of the designs. The cone of
influence for the properties contains thousands of state variables and tens of
thousands of gates and signals. The properties vary in that some are true
and some are false. During all checks, a timeout of 10,000 seconds has been
set. Experiments were conducted on systems with a dual core Xeon 5160
processors (Core 2 micro-architecture) running at 3.0GHz (4MB L2 cache)
with 32GB of main memory. Operating system running on the system is
Linux SUSE.

Figure 3.4 and Figure 3.5 show the runtime in seconds for the two algo-
rithms. Each point represents a property from the set of chosen properties.
The X axis represents runtime for I'TP while the Y axis represents the run-
time using ISB. We can see that the results vary. Figure 3.4 shows the
runtime for the falsified properties. Figure 3.5 shows the runtime for the ver-
ified properties. All falsified properties (total of 67) favor ISB. There are five
properties that can be verified by ISB and not by ITP (due to timeout) and
two properties that can be falsified using ISB while cannot be falsified using
ITP. On the other hand, there are seven properties that cannot be verified
by ISB but can be verified by ITP. The rest of the properties (57 total) are
all verified by both algorithms.

A more accurate analysis of the algorithms is shown in Table 3.2 that
presents running parameters (number of state variables in the cone of in-
fluence, bound at convergence, number of interpolants computed, number
of calls to BMC and runtime) on various properties for both I'TP and ISB.
For some cases, even though I'TP converges at a lower bound, and computes
fewer interpolants than ISB, ISB still converges faster by means of runtime.
This is due to the fact that BMC calls are computationally heavier than the
extraction of the interpolants. Since I'TP issues more calls to BMC than
ISB in these cases, the influence on its runtime is noticeable. Through all

our experiments, when convergence for I'TP could be achieved only at high

37



Name | f Latches | § Inputs | § Gates
M, 3611 3 84570
My 4968 2079 133255
M; 12806 402 89392
My 1672 459 11195
M 19213 305 146717

Table 3.3: Models used for testing

bounds, ISB always performed better while for convergence at lower bounds,

ITP performs better. This result is supported by the analysis presented in

the previous section.
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Chapter 4

Intertwined Forward-Backward
Reachability Analysis Using

Interpolants

The work we present in this chapter appeared in [59]. We develop a novel
SAT-based verification approach which is based on interpolation. The novelty
of our approach is in extracting interpolants in both forward and backward
manner and exploiting them for an intertwined approximated forward and
backward reachability analysis. Our approach is also mostly local and avoids
unrolling of the checked model as much as possible. This results in an efficient
and complete SAT-based verification algorithm.

In previous chapters we showed how I'TP uses interpolation to extract an
over-approximation of a set of reachable states from a proof of unsatisfiability,
generated by a SAT-solver. The set of reachable states computed by the
reachability analysis is used by ITP to check if a system M satisfies a safety
property AGp.

In [8] an alternative SAT-based algorithm, called IC3, is introduced. Sim-
ilarly to I'TP, IC3 also computes over-approximations of sets of reachable

states. However, ITP unrolls the model in order to obtain more precise ap-
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proximations. In many cases, this is a bottleneck of the approach. IC3, on
the other hand, improves the precision of the approximations by performing
many local checks that do not require unrolling. We will go into more details
about IC3 in Chapter 6.

Both ITP and IC3 compute over-approximations of the sets of states
obtained by a forward reachability analysis. The forward analysis starts from
the initial states of M, and iteratively computes successors while making sure
that no bad state violating p is reached. Verification based on reachability can
also be performed in a dual manner using a backward reachability analysis.
The backward analysis starts from the states satisfying —p and iteratively
computes ancestors while making sure that no initial state is reached.

Traditionally, BDD-based verification methods [20] use both forward and
backward analyses [15, 56], while SAT-based methods mainly implement the
forward one. Recently, a few works considered backward analysis in the
context of SAT as well (e.g. [14, 26]). Most such works use forward and
backward analyses independently of each other, or use a weak combination
of the two, such as replacing the role of the initial states in the backward
analysis by the reachable states computed by a forward analysis.

In the work presented in this chapter, we propose an interpolation-based
verification method that applies mostly local checks and avoids unrolling of
the model as much as possible. Our approach combines approximated for-
ward and backward analyses in a tight and intertwined way, and uses each
of them to enhance the precision of the other. Thus, the tight combina-
tion of the two analyses replaces unrolling in enhancing the precision of the
computed over-approximated sets of states.

Our work uses the observation that a single SAT check entails infor-
mation both about states reachable from the initial states (via post-image
operations) and about states that reach the bad-states (via pre-image opera-
tions). We exemplify this observation by examining the propositional formula
INIT(V)N TR(V, V') A=p(V') where INIT and —p describe the sets of initial
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states and bad states, respectively, and TR(V, V') describes the transition
relation. If this formula is satisfiable, then there exists a path of length one
from the initial states to the bad states. If it is unsatisfiable, then all states
reachable from the initial states in one transition are a subset of p. This fact
is often used in forward reachability. We now note that the unsatisfiability
of this formula can be used in backward reachability as well. This can be
done by interpreting it as “all states that can reach the bad states in one
transition are disjoint from the initial states”.

We exploit this dual observation by extracting two different interpolants
from the unsatisfiabe formula INIT(V) A TR(V, V') A =p(V"). The forward
interpolant (the one used in ITP) provides an over-approximation of the
post-image of INIT which is disjoint from —p. The backward interpolant,
computed for the same formula when it is read backward, from right to left,
provides an over-approximation of the pre-image of —p which is disjoint from
INIT.

We use the above observation as a key element in traversing the state
space in a dual fashion, both forward from the initial states and backwards
from the bad states.

Our algorithm, Dual Approxzimated Reachability (DAR), computes a For-
ward Reachability Sequence F = (Fy, F,...), and a Backward Reachability
Sequence B = (By, By, ...). The set F; represents an over-approximation of
the set of states which are reachable from INIT in exactly ¢ transitions. Fur-
ther, F; is disjoint from —p. Similarly, B; represents an over-approximation
of the set of states that can reach —p in exactly i transitions, and it is also
disjoint from INIT. Thus, the existence of either F or B of length n ensures
that no counterexample of length n exists in M.

The goal of DAR is to gradually strengthen (make more precise) and ex-
tend F and B, until a counterexample is found or until one of F or B reaches
a firpoint, that is, no new states are found when the sequence is further ex-

tended. To do this, DAR employs local strengthening phases, assisted by
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a global strengthening phase, when needed. Only the global strengthening
involves unrolling. Thus, the number of unrolling applications is limited. In
addition, the depth of the unrolling is also limited.

Initially, F' = (Fy) and B = (B,), where Fy = INIT and By = —p. At
iteration n, we define the sequence Il = ( INIT, F1AB,,, FoAB,_1, ..., F,A
By, —p ). Il represents an over-approximation of the set of all possible paths
from INIT to —p of length n+ 1 in M. That is, Il over-approximates the set
of all counterexamples in M of length n + 1. DAR attempts to show that II
represents no counterexample.

The local strengthening phase checks whether there are in fact transitions
between every two consecutive sets in II. It turns out that this can be done
by applying local checks of the form F;(V) A TR(V,V') A B,,—;(V'). If such
a formula is unsatisfiable, then no transition exists from F; A B,,_; ;1 to its
successor along II, thus no counterexample of length n + 1 exists. This
can also be understood by observing that the unsatisfiability of F;(V) A
TR(V,V') A B,—i(V') means that the states reachable from the initial states
in ¢ transitions cannot reach B, _; in one transition. Since B,,_; includes all
states reaching —p in n — ¢ transitions, no counterexample of length n + 1
exists.

In this case, the forward interpolant of F;(V) A TR(V, V') A B,—_;(V’) is
used to strengthen F;,; while the backward interpolant strengthens B,,_;.1.
Strengthening is now propagated along F' and B. This reflects the fact that
the components of one sequence are strengthened based on the components
of the other everywhere along the sequences, making the analyses closely
intertwined. Next, F and B are extended by initializing F,,.; to be the for-
ward interpolant of F,,(V)A TR(V, V')A By(V') and B,,11 to be the backward
interpolant of Fo(V') A TR(V, V') A B, (V).

The global strengthening phase is applied when F;(V)ATR(V,V')AB, (V")
is satisfiable for all 7. This implies that a transition exists between every two

consecutive sets in I, making local reasoning insufficient. We therefore grad-
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ually unroll the model M and check whether the states in F; A B,,_;,1 are
unreachable from INIT via 4 transitions of M. Once we find such an i, the
unrolling can stop. We are certain that no counterexample of length n + 1
exists. We strengthen F' up to depth i using an interpolation-sequence [38],
and return to the local strengthening phase for further strengthening and for
extending F and B to length n + 1.

We implemented our DAR algorithm and compared it to both ITP and
IC3, on real-life industrial designs as well as examples from the HWMCC’11
benchmark. In many cases, our algorithm outperformed both methods. We
noticed that the number of iterations where global strengthening was needed,
as well as the depth of the unrolling in the global strengthening phase is often
smaller relative to the length of F' and B. This reflects the fact that our use
of unrolling is limited.

To summarize, the novelty of our approach is twofold. It suggests a
SAT-based intertwined forward-backward reachability analysis. Further, the
reachability analysis is interpolation-based. Yet, it is mostly local and avoids

unrolling as much as possible.

4.1 Related Work

Several works use interpolation in the context of model checking. Interpolation-
based model checking (ITP) was initially introduced in [43]. Similarly to ITP,
DAR also uses interpolation to compute over-approximated sets of reachable
states. However, ITP computes interpolants based on an unrolled formula
and increases unrolling to make the over-approximation more precise. DAR,
on the other hand, mostly avoids unrolling and uses backward and forward
interpolants from local checks for strengthening. In addition, ITP restarts
when it finds a spurious counterexample, increasing the depth of unrolling. In
contrast, DAR keeps strengthening the computed over-approximations from

previous iterations. In [14] improvements for ITP are suggested. They im-
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plement a backward-traversal using interpolants. Unlike our method, their
backward traversal is an adaptation of I'TP and is not tightly integrated with
the forward traversal.

The work in [26] is also based on ITP in the sense of computing in-
terpolants based on unrolling of the model, where the depth of unrolling
increases in each iteration. Their work integrates the use of forward and
backward analyses: in each iteration the result of the backward analysis is
used to restrict the initial states and the result of the forward analysis is used
to restrict the bad states. Our approach, on the other hand, uses the result
of the forward analysis to strengthen all intermediate sets of B. Similarly
the result of the backward analysis stregthens F.

Interpolation-sequence, which extends the notion of an interpolant for a
sequence of formulas has been proposed and used for model checking [38,
44, 57, 16]. DAR makes a similar use of interpolation-sequence in its global
strengthening phase. In contrast to the other methods, interpolation-sequence
is not a key element of DAR since it is only applied occasionally. Further, it
is applied to a restricted depth of unrolling.

The introduction of IC3 [8] suggested a different way to compute informa-
tion about reachable states. During this process, sets of states that are similar
in characteristics to interpolants are computed. Unlike interpolation-based
approaches 1C3 requires no unrolling and is based on inductive reasoning.
The main difference between DAR and IC3 is in the way they strengthen
the over-approximated sets of states. IC3 finds a state that can reach —p
and if it concludes that this state is not reachable, it tries to generalize this
fact and removes more than just one state. DAR on the other hand finds
an over-approximation of all states that can reach —p, rather than a single
state. It then tries to prove that the entire set is unreachable. Also, when
DAR fails to strengthen using local reasoning, it applies a limited unrolling
in the global phase. On the other hand, IC3 can fall into state enumeration

if generalization is not successful.
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4.2 Using Interpolants for Forward and Back-

ward Analysis

Let @ be a propositional formula over V. The post-image of QQ w.r.t. M
is the set of all states reachable from () in one transition, defined by the
formula IV[Q(V) A TR(V,V’)] (note that this formula is defined over V).
The pre-image of Q w.r.t. M is the set of all states that can reach () in one
transition, defined by IV'[TR(V, V') A Q(V')].

Definition 4.2.1. Let M be a transition system and let ¢ and ¢ be proposi-
tional formulas over V. We define the formula I'y; (¢, 1) = o(V)ATR(V, V')A
»(V') to be a local reachability check w.r.t. M, ¢ and 1.

Whenever M is clear from the context we omit M and write I'(¢, ¢).

4.2.1 Forward and Backward Interpolants

Let R and @) be propositional formulas over V representing sets of states,
and let TR(V, V") be a transition relation. Suppose we would like to know if
the post image of R, i.e., the set of states reachable from R in one transition,
is disjoint from (). This property can be checked by checking the formula
['(R,Q) = R(V) AN TRV, V") A Q(V') for unsatisfiability. If the formula is
unsatisfiable then the answer is yes, meaning that () is not reachable from
R in one step. Moreover, using interpolation enables us to derive from the
unsatisfiable formula an over-approximation of the post image of R that is
still disjoint from Q. Specifically, let ¢~ = R(V) A TR(V,V') and ¢t =
Q(V"). An interpolant I = I(p~, ") satisfies R(V) A TR(V,V') = I(V")
and I(V') AQ(V') = L. Therefore, I represents an over approximation of
the states reachable from R in one transition, and it is also disjoint from Q).

The unsatisfiability of the formula I'(R, Q) = R(V) A TR(V, V') A Q(V)
can also be interpreted in a different manner, shedding light on the pre-

image of ). More precisely, the unsatisfiability of the formula states that
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the pre-image of @, i.e., the set of all states that can reach () in one tran-
sition, is disjoint from R. This view leads to a different way of using in-
terpolation in this setting. For the backward interpretation, we now define
o~ = TR(V,V') AQ(V') and ¢t = R(V). Again, since ¢~ A @' is un-
satisfiable, an interpolant I exists. Formally TR(V,V') A Q(V') = I(V),
therefore [ is an over-approximation of the pre-image of (). Moreover, I A R
is unsatisfiable and therefore I is disjoint from R.

We conclude that interpolation gives us a way to approximate both post-
image and pre-image computations. Formally, we define forward and back-

ward interpolants:

Definition 4.2.2 (Forward and Backward Interpolants). Let R and @ be
propositional formulas over V s.t. I'(R,Q) = L. The forward interpolant
of T(R, Q), denoted FI(R, Q), is I(R(V) A TR(V, V"), Q(V'))[V' « V]. The
backward interpolant of I'(R, @), denoted BI(R, Q), is I( TR(V, V') AQ(V"), R(V)).

Note that I(R(V) A TR(V,V"),Q(V")) is defined over V’. Therefore, we
substitute V' for V' in the definition of a forward interpolant. As explained

above:

Theorem 4.2.3. FI(R,(Q) over-approxzimates the post-image of R, and is
disjoint from Q. Similarly, BI(R, Q) over-approximates the pre-image of @,

and s disjoint from R.

Proof. By definition, FI(R, Q) = I[(R(V) A TR(V,V"),Q(V")[V' «+ V]. By
the properties of an interpolant, R(V)ATR(V, V') = I(R(V)ATR(V,V"),Q(V")).
Recall that I(R(V) A TR(V,V"),Q(V")) is defined over V' only. There-
fore, the above implication implies that IV[R(V) A TR(V,V")] = I(R(V) A
TR(V,V"),Q(V")) which ensures that the interpolant over-approximates the
post-image of R. In addition, I(R(V)ATR(V,V'),Q(V'))AQ(V') = L, which
ensures that the interpolant is disjoint from ). The proof for BI(R, Q) is

similar. O
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4.2.2 Forward and Backward Reachability Sequences

Our model checking algorithm for safety properties, described in Section 4.3,
uses forward and backward interpolants for the computation of over-approximated
sets of forward and backward reachable states. Technically, we consider both
forward and backward reachability approximations:

Recall the definition of a FRS (Definition 2.4.1). We now define the dual

backward reachability sequence.

Definition 4.2.4. A Backward Reachability Sequence (BRS) w.r.t. M and
a property AGp is a sequence B[n] = (Bo, By, ..., B,) of sets of states s.t.

[} Bozﬁp
e B, (V)< TR(V, V') A B{(V') for 0 <i < n.
o B, = —INIT for 0 <1 <n.

We define the length of F[n] and B[n] to be n. When n is clear from the
context, we omit it from the notation and simply use £ and B. The second
condition in Definition 2.4.1 (Definition 4.2.4) states that Fj,; (B;11) is an
over-approximation of the post(pre)-image of F; (B;) w.r.t. M. Iterating
these properties, we conclude that F; over-approximates the set of states
reachable from INIT in i steps, and B; over-approximates the set of states
reaching a violation of p in ¢ steps. The following properties hold for FRS
and BRS:

Theorem 4.2.5. A FRS of length n for M and AGp exists iff there is no
counterexample of length n or less in M for AGp. Similarly for a BRS.

Proof. Consider a FRS of length n. Denote by R; the set of states reachable
from INIT in exactly ¢ steps. It can be shown inductively that R; = F;:
Initially, Fy = INIT = Ry, and for the induction step: R;(V)A TR(V,V') =
F,(V) AN TR(V,V') = F;1(V'). Since the right-hand side is defined over
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V' only, this implication implies that R;1(V’') = AV[R;(V) A TR(V,V")] =
Fra(V).

Now suppose there exists a FRS of length n. For every 0 < ¢ < n,
R; = F; = p (the second implication is due to the third property of a FRS).
This means that all states reachable from INIT in n steps or less satisfy p.
Hence no counterexample of length n or less exists.

For the other direction, suppose there is no counterexample of length
n or less. Then a FRS of length n can be defined by setting F; = R; for
every 0 < i < n. The sequence (Ry,...,R,) satisfies all the requirement
of a FRS: Ry = INIT. R; (V') = 3VI[R;(V) A TR(V,V")]. Therefore,
Ri1(V') <= R;(V) AN TR(V,V"). Finally, since no counterexample of length
< n exists, R; = p for every 0 <17 < n.

The proof for a BRS is similar, when replacing R; with the set ); of states
that reach —p in exactly 7 steps.

O

Next we extend the definition of a fizpoint (Definition 2.4.2) and the
resulting theorem (Theorem 2.4.3) to include also the BRS:

Definition 4.2.6 (Fixpoint). Let F' be a FRS and B a BRS of length n.
We say that F is at fizpoint if there exists 0 < k < n s.t. Fj, = sz_ol F;.
Similarly, we say that B is at fizpoint if there exists 0 < k < n s.t. B, =

k-1
i—o Bi-

Theorem 4.2.7. Let F be a FRS and B a BRS of length n for M and AGp.
If F or B is at fizpoint then M |= AGp.

Proof. The proof for F is similar to the one appearing for Theorem 2.4.3.
The proof for B is similar, where instead of R we use the set Q of all

states that can reach —p in any number of steps. [ O

Note that a fixpoint in one of the sequences suffices to conclude that
M = AGp.
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4.3 Dual Approximated Reachability

In this section we describe our Dual Approximated Reachability (DAR) algo-
rithm for model checking safety properties. DAR computes over-approximated
sets of reachable states for both forward and backward reachability analysis
by means of a FRS and a BRS, using interpolants. The computations are in-
tertwined where each of them is used to make the other tighter. DAR avoids
unrolling of the transition system unless it is really needed.

Technically, DAR computes a FRS F and a BRS B and gradually extends
them until either a counterexample is found or a fixpoint is reached on either
F or B. Since the state-space of M is finite, one of the above is bound to

happen, which ensures that:

Theorem 4.3.1. Given a model M and a safety property ¢ = AGp, DAR
always terminates. Moreover, M |= ¢ if and only if DAR returns “Verified”.

We defer the proof of Theorem. 4.3.1 to the end of the section. We now
describe DAR in detail. The pseudocode of DAR appears in Figure 4.1.

Initialization of DAR (lines 2-5) starts by checking the formula INITA—p.
If this formula is unsatisfiable, the initial states of M satisfy the property. If
not, a counterexample exists. In the former case, DAR initializes ' = (I}, =
INIT) and B = (By = —p). Clearly F' and B are FRS and BRS, respectively.

The iterative part of DAR (lines 8-13) then gradually extends and strength-
ens F' and B s.t. they remain a FRS and a BRS respectively. As ensured
by Lemma 4.2.5, this is possible as long as no counterexample of the cor-
responding length exists. In the following, we describe a single iteration of

DAR, strengthening and extending F and B, or reporting a counterexample.

4.3.1 First Iteration of DAR

Let us first present the first iteration of DAR. Recall that initially F' = (Fy =
INIT) and B = (By = —p). DAR then checks the formula Fy A TR A B} =
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1: function DAR(M ,p)

2 if INIT N\ —p == SAT then

3 return cex

4: end if

5. F=(F,=INIT), B = (By = —p)

6: n =70

7 while ! F.FIxPoINT()A! B.F1xPOINT() do

8 if LOCSTRENGTHEN(F, B,n) == false then
9 if GLBSTRENGTHEN(F, B,n) == false then
10: return cex

11: end if

12: end if

13: n=n+1

14: end while

15: return Verified

16: end function

Figure 4.1: Dual Approximated Reachability

INIT N TR N —p' for satisfiability. In case this formula is satisfiable a coun-
terexample of length one exists. Otherwise, the formula is unsatisfiable,
meaning all states reachable from INIT in one transition satisfy p. Alterna-
tively, all states that can reach —p in one transition are not part of INIT.
Thus, the unsatisfiability of INIT A TR A —p’ entails information both about
the post-image of INIT and about the pre-image of —p.

The above gives us an intuition of how to extend both the FRS and the
BRS. For the FRS we define Fy = FI(Fy, By). For the extension of the BRS,
we define By = BI(Fp, By). Due to the properties of the interpolants, the
sequences F' = (Fy, F}) and B = (By, B;) are a FRS and a BRS respectively.

4.3.2 General Iteration of DAR

Let us now discuss a general iteration n + 1. Consider the FRS F[n] =
(Fo, F1, ..., F,) and the BRS B[n} = (By, By, ... B,) obtained at iteration n.

The goal of iteration n + 1 is to check if a counterexample of length n + 1
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exists, and if not, extend these sequences to length n + 1 s.t. they remain a
FRS and a BRS.

The combination of F[n} and B[n] provides an approximate description
of all possible counterexamples of length n + 1 in M. Namely, recall that
F; over-approximates the set of all states reachable from INIT in i steps.
Similarly, B; over-approximates the set of all states that can reach —p in j
steps. Their intersection, F; A B; therefore over-approximates the set of all
states that are both reachable from INIT in i steps and can reach —p in j
steps. These are states that appear in the i-th step of a counterexample of
length i+ j for AGp in M. In particular, when we align F' and B one against
the other, conjoining F; with B,_;.1, we obtain an over-approximation of the
set of all states that appear in the i-th step of a counterexample of length
n+ 1 for AGp in M. The sequence

H(F[n],B[n]) = (INIT,Fy AN B,, s, N B,_1, ..., F, A\ By,—p)

therefore over-approximates the set of all counterexamples of length n+ 1 in
M for AGp.

We refer to the sequence I1(F} n]> B[n]) as an approximated Counterexample
(aCEX). Whenever clear from the context we write I and refer to the i-th
element in the sequence as II;. A sequence of states sg, ..., s,+1 in M matches

IT if for every 0 <i <n+1, s; € II;. Formally, II has the following property.

Lemma 4.3.2. Let 1 = sg,...,Sp11 be a counterexample in M. Then, w

matches 11.

Proof. Since m is a path in M, for every 0 < ¢ < n, we have that s; is
reachable in ¢ steps from INIT. Therefore, s; € F;. In addition, since 7 is a
counterexample, s, 11 = —p. This ensures that for every 1 <i < n+1, s; can
reach —p in n — ¢ + 1 transitions. Therefore, s; € B, _;11. We conclude that
so € Fo =1y, spy1 € B =11,41, and forevery 1 << n,s; € F;AB,,_i41 =
IT;. Therefore m matches II. O ]
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By Lemma 4.3.2, checking if a counterexample exists amounts to checking
if some path matches II. Such a path is necessarily a counterexample of length
n + 1. If such a path exists, we say that II is valid.

DAR first attempts to check for (in)validity of the aCEX using local
checks in a local strengthening phase. If this fails, DAR moves on to the
global strengthening phase that applies global checks. In both phases, if the
invalidity of the aCEX is established, the FRS and BRS are strengthened
and extended into a FRS and a BRS of length n + 1. Otherwise, the aCEX
is found to be valid and a counterexample of length n + 1 is obtained in the

process.

4.3.2.1 Local Strengthening Phase

The local strengthening phase aims at checking if II is locally invalid, which

provides a sufficient condition for its invalidity.

Theorem 4.3.3. 11 is locally invalid if there exists 0 < i < n s.t. T'(Il;,11;41) =
1.

Theorem 4.3.4. If 11 is locally invalid, then it is also invalid.

Proof. Suppose I'(11;, ;1) = II; A TRATIL,,, = L for some 0 < i <. As-
sume to the contrary that a counterexample sg, ..., S, exists in M. By
Lemma 4.3.2, it matches II. In particular, s; € 1I; and s;41 € II;.;. More-
over, since So, ..., Sp11 18 a path in M, (s;,8;41) € TR, which implies that
I; A TRAIL, # L, in contradiction. O O

In order to check if II is locally invalid, we use the following observation.

Lemma 4.3.5. Let F[n] be a FRS, B’[n] be a BRS, and 1 < i < n. Then
T(F; A By_isr, For A Bp_i) = D(F}, Bu_y). Similarly, T(INIT, Fy A B,) =
['(Fy, B,), and T'(F,, A\ By,—p) = I'(F,, By). We conclude that for every
0<i<n, D(IL;, 1) = L iff D(Fy, Byy) = L.
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Proof. We first show that I'(F; A By —it1, Fis1 ABn—i) = T'(F}, B,—;). This fol-
lows from the property of a FRS, where F;(V) A TR(V, V') = F,,1(V'), and
the property of a BRS, where B, _;11(V) < TR(V,V') A B,_;(V’). Specifi-
cally, since F;(V) A TR(V,V') = F,,1(V"), we get that F;(V) A TR(V, V') A
B,_i(V') = F,1(V'), and as a result I'(F}, B,—;) = F;(V) AN TR(V,V') A
B,_i(V") = F,(V) N TR(V,V') A B,—i(V') A Fix1 (V') (1). Similarly, since
Bn_it1(V) < TR(V, V')A B,,—;(V'), we conclude that B,_;11(V) < F;(V) A
TR(V,V') N B,,—;(V') A Fi41(V") holds as well, which means that F;(V) A
TR(V,V'AB,—i(VYANF;1(V') = F{(V)ABu—ix1(V)ATR(V, V' )AB,_i(V')A
Fip (V') = T'(F; A Bp—is1, Fis1 A By—;) (2). Finally, by concatenating the
sequence of equivalences in (1) and (2) we conclude that I'(F;, B,—;) =
L(Fi A Bp—iv1, Figr N Byy).

The proof for I'(INIT, Fy A B,,) = T'(Fo, B,,) is similar, except that only
Fo(V) AN TR(V, V') = Fy(V') is used. Specifically, because of the above,
Fo(V) N TR(V,V') A B,(V') = F(V'). Therefore, I'(Fy, B,) = Fo(V) A
TR(V,V'YAB,(V') = Fo(V)ANTR(V,V')AB,(VYAF (V") =T'(Fo, F1A\B,,) =
L(INIT, Fy A By,). Dually, in the proof of I'(F,, A By, —p) = I'(F,,, By), only
By (V) <= TR(V, V') A By(V’) is used.

The conclusion described in the second part of the lemma results from
the fact that T(ITy,IT,) = D(INIT, Fy A B,), D(I,, s1) = D(F, A By, —p)
and for every 1 <i <n, I'(I;,11;41) = '(F; A Bp—iz1, Fixi AN Bny). O O

Lemma 4.3.5 implies that if there exists 0 < i < n s.t. ['(F}, B,_;) =
L, then the aCEX is locally invalid and hence invalid. This can also be
understood intuitively, as the above means that the (over-approximated) set
of states reachable from INIT in i steps and the (over-approximated) set of
states that can reach —p in n — ¢ steps are not reachable from one another
in one step. This means that altogether —p is not reachable from INIT in
i+ (n—1i)+1=n+1 steps, and hence no counterexample of length n + 1
exists.

In the local strengthening phase, DAR therefore searches for an index
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0<i<mnst I'(F,B,;) = L. It starts by checking the formula I'(F,,, By),
setting ¢ = n. In case it is satisfiable, DAR starts to iteratively go back-
wards along F' and B decreasing i by 1. The traversal continues until either
['(F;, B,,—;) turns out to be unsatisfiable for some 0 < i < n or until I'( Fy, B,,)
is found to be satisfiable.

If an index ¢ is found s.t. T'(F}, B,—;) = L, then the aCEX is locally
invalid and by Lemma 4.3.4 we conclude that no counterexample of length
n + 1 exists. Moreover, in this case, the FRS and BRS are locally and

gradually strengthened and extended as follows.

Iterative Local Strengthening: Iterative local strengthening is reached
when it is already known that no counterexample of length n+1 exists. Thus,
as Lemma 4.2.5 ensures, there exist a FRS and BRS of length n+1. However,
F in and B[n] cannot necessarily be extended immediately. For example, if
['(F,, Bo) = Fo,(V)ANTR(V, V') A=p(V') # L, then no F,, ;1 can be obtained
st. F,(V)ANTR(V,V') = F,;1(V’') and in addition F,1; = p. On the
other hand, if I'(F,,, By) = L then F, ;1 can be initialized using FI(F,,, By)
while maintaining the properties of a FRS (similarly to the initialization of
F1). Dually, if ['(Fy, B,) # L, then no extension of By, is possible, while if
['(Fy, B,) = L, we can set B, 11 = BI(Fpy, B,,). We therefore first strengthen
the components of F[n] and B[n} until ['(F,, By) = L and I'(Fy, B,) = L,
which is a necessary and sufficient condition for extending F and B5.

Recall that I'(F;, B,—;) = L for some 0 < ¢ < n. This means that even
though the components of F; (] and B[n] may not be precise enough to enable
their extension, they are precise enough at least in one place that allowed us
to conclude that no counterexample of length n + 1 exists. DAR uses this
“local” precision to strengthen the entire sequences, as described below.

In order to simplify the references to the indices, we replace the use of
iand n—iby 0 <i,7 <nst i+ j =n. Therefore I'(F;, B;) = L for

some 0 < 4,7 < ns.t. 1+ j =n. This ensures that there exists a forward
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interpolant FI(F;, B;), as well as a backward interpolant BI(F;, B;). We can

therefore perform a local strengthening step updating Fi,; and Bjq:

Definition 4.3.6. Let F[n] be a FRS and B[n] be a BRS s.t. I'(F},B;) = L
for some 0 < i,j < ms.t. i+ j=mn. A forward strengthening step at (i,7)
strengthens F[n]: Ifi <n, Fiy1 = Fii1 AFI(F}, B;). A backward strengthening
step at (i, j) strengthens By, : If j < n, Bjy1 = Bj11 A BI(F}, B).

We refer to i, 7 < n since F, 1 and B, are not yet defined and therefore
cannot be updated. The strengthening propagates the unsatisfiability of
I'(F;, B;) one step forward and one step backward:

Lemma 4.3.7. Let F[n] and B[n] be the result of a forward or backward
strengthening step at (i,j) s.t. i+ j =n. Then

e For a forward strengthening step, if i <n, I'(Fi41, Bj_1) = L.
e For a backward strengthening step, if j <n, I'(F;_1, Bj+1) = L.

Proof. We first show that F[n] remains a FRS. The proof for BM is sim-
ilar. Recall that F[n] was updated by setting Fi11 = Fip1 A FI(F}, B;j).
The other components have not changed. It therefore suffices to show that
after this update the following properties still hold: (1) Fiyy = p, (2)
E(V)N TRV, V') = F1(V'), and (3) Fix1 (V) AN TR(V, V') = Fi (V).
For the sake of the proof, we denote by F} | the old copy of Fji, before the
update. We therefore have that F;,, = F, A FI(F}, B;), and in particular
Fipn = Fiyy

1. Fit1 = p: holds since Fiy1 = F7 | = p.

2. F;,(V) N TR(V,V') = F;1(V’'): holds since F;(V) A TR(V,V') =
F? (V'). In addition, by the properties of an interpolant, F;(V) A
TR(V,V') = FI(F;, B;)(V'). Conjoining the two implications, we con-
clude that F(V) A TR(V,V') = F2. (V') AFI(F;, B,)(V') = For (V).
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3. Fii(V) AN TR(V, V') = Fiya(V'): holds since Fj1y = F?, |, which im-
plies that Fiui(V) A TR(V, V') = E2, (V) A TR(V, V') = Fia(V').

We now consider the second part of the lemma. Consider first a forward
strengthening step for i < n (and accordingly j > 0), where F; ;1 = F;iq A
FI(F;, B;). By the properties of an interpolant, we know that FI(F;, B;) A
B; = 1. Therefore, after the update, Fj;1 A B; = L. This implies that
I'(Fi41,Bj—1) = L: Recall that B;(V) < TR(V, V') A Bj_1(V"). Therefore,
I'(Fit1,Bj-1) = Fii(V) N TRV, V') A Bj_1 (V') = Fia(V) A Bj(V). Since
the right hand side is unsatisfiable, so is I'(Fi41, Bj_1).

The proof for a backward strengthening step is similar: in this case
B;i1 = Bji1 A BI(F;, Bj). By the properties of an interpolant, we know
that BI(F}, B;) A F; = L. Therefore, after the update F; A Bj;1 = L. Again,
this implies that I'(F;_;, Bj41) = L: Recall that F;_(V) A TR(V,V’) =
F;(V"). Therefore I'(F;_1, Bj41) = Fioa(V)ANTR(V,V')ABj 1 (V') = F;(V)A
B;11(V). Hence, unsatisfiability of the right hand side implies that which
implies that I'(F;_1, B;41) is also unsatisfiable. O O

Again, the indices are restricted since F,, 1 and B, are not yet defined.

Moreover, the strengthening maintains the properties of a FRS and a BRS:

Lemma 4.3.8. Let F[n] and B[n] be the result of a forward or backward
strengthening step at (i,j) s.t. i+ j = n. Then Fj, and By, remain a
FRS and a BRS resp.

Proof. We show that F i) Temains a FRS. The proof for B[n] is similar. Recall
that £, was updated by setting Fi;1 = F;11 AFI(F}, B;). The other compo-
nents have not changed. It therefore suffices to show that after this update
the following properties still hold: (1) Fii1 = p, (2) Fi(V) A TR(V,V') =
Fi1(V'), and (3) Fiir (V)ANTR(V, V') = Fi15(V'). For the sake of the proof,
we denote by F,; the old copy of Fi, before the update. We therefore have
that F;11 = F?, ANFI(F}, B;), and in particular Fi, = F?,.
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1. Fiy1 = p: holds since Fi 1 = F7 | = p.

2. F;,(V) N TR(V,V') = F;1(V'): holds since F;(V) A TR(V,V') =
F? ((V'). In addition, by the properties of an interpolant, Fj(V) A
TR(V,V') = FI(F;, B;)(V'). Conjoining the two implications, we con-
clude that F;(V) A TR(V, V') = F2(V') NFI(F;, B;)(V') = Fia (V7).

3. Fi(V) AN TR(V, V') = Fiyo(V'): holds since Fj1q = F?,, which im-
plies that Fyyi (V) A TR(V, V') = F2, (V) A TR(V, V') = Fyya(VY).

[l [l

Lemma 4.3.7 and Lemma 4.3.8 imply that if I'(F;, B;) = L for some
0 <i,5 <nst. i+ 7 = n, then by iterating the forward and backward
strengthening steps, we can eventually ensure that I'(F;, B;) = L for every
0 <1,j <nst i+ j=n,and in particular for i = 0,7 = n and i =
n,j = 0. Thus, we apply an iterative local strengthening starting from (3, j),

strengthening and extending F and B:

Definition 4.3.9 (Iterative Local Strengthening). Let 0 < ¢, 5 < n be indices
st. i+ j =nand I'(F}, B;) = L. Iterative local strengthening from (i, j)

performs:

1. Forward strengthening steps starting at (i, j), proceeding forward while
increasing i and decreasing j until (n—1, 1) (strengthening Fy 4, ..., F},),

and

2. Backward strengthening steps starting at (7, j), proceeding backward

while increasing j and decreasing ¢ until (1,n—1) (strengthening B; 4, . ..

and

3. Finally, once I'(F,, By) = L, F,41 is initialized by FI(F,,, By). Simi-
larly, once I'(Fy, B,) = L, B,y is initialized by BI(Fy, B,,).
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[terative local strengthening from (i, j) strengthens Fj.4, ..., F, and ini-
tializes F,1;. Similarly, it strengthens B;.i,..., B, and initializes B,;.
Lemma 4.3.7 ensures that forward and backward propagation of the strength-
ening steps is possible, and Lemma 4.3.8 ensures that a FRS and a BRS are

obtained by strengthening.

Lemma 4.3.10. Let 0 < 4,5 < n be indices s.t. i+j =n andI'(F;, B;) = L.
Iterative local strengthening from (i, j) terminates with a FRS and a BRS of
length n + 1.

Proof. Termination of iterative local strengthening follows from Lemma 4.3.8
and Lemma 4.3.7 that ensure that after a local strengthening step, we still
have a FRS and a BRS, and in addition, the unsatisfiability of the local reach-
ability check is propagated one step forward or backward. This ensures that
the process can continue until eventually I'(F,,, By) = L, and I'(Fy, B,,) = L,
allowing to compute F),.; and B, ;. Lemma 4.2.3 ensures that the initializa-
tion of F,, 1 and B, using FI(F,,, By) and BI(F}, B,,) maintains the proper-
ties of a FRS and a BRS. This is because F,, A TR = FI(F,,, By)’ = F},,, and
in addition F,, 1 A—p = FI(F,,, By)ABy = L. Similarly, B, = BI(Fy, B,,) <
TR A B], and in addition B, 1 A INIT = BI(Fy, B,) N Fo = L. O n

Iterative local strengthening uses the BRS for the strengthening of the
FRS and vice versa, demonstrating how each of them is used to make the
other over-approximation tighter. The complete local strengthening proce-

dure is described in Figure 4.2.

4.3.2.2 Global Strengthening Phase

We now consider the case where I'(F};, B,,_;) # L for every 0 <i < n in F in]
and B[n]. By Lemma 4.3.5, this means that there is a real transition between
every pair of consecutive sets in the aCEX II, making local strengthening

inapplicable since the aCEX is not locally invalid. Clearly this does not
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17: function LOCSTRENGTHEN(F, B, n)
18: i = FINDSTRENGTHEN(F', B, n)
19: if i == —1 then

20: // No local strengthening

21: // point was found

22: //Move to GLBSTRENGTHEN
23: return false

24: else

25: ITERLS(F, B,n,i,n — 1)

26: return true

27: end if
28: end function
(a) Local Strengthening
29: function ITERLS(F, B, n, i, j)
30: while i < n do
31: Fiy1 = Fiy NFI(F;, B,_y)
32: 1=1+1
33: end while
34:  F.ApD(FI(F,, By))
35: while 7 <n do
36: Bji1 = Bj41 ABI(F,_;, Bj)
37 j=J+1
38: end while
39:  B.ApD(BI(Fp, B,))
40: end function

(b) Iterative Local Strengthening

Figure 4.2: Local strengthening procedures

imply that the aCEX is valid, and further checks are needed. We therefore
turn to examine the (in)validity of the aCEX in a more global manner.
Similarly to the principle used in CEGAR [19] for an abstract counterex-
ample, here too, if the aCEX II is invalid, there exists a minimal index
1 < n+ 1 representing the minimal prefix of the aCEX that has no matching
path in M.
The idea behind checking the validity of an aCEX 1y — ... — II,,1; in
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a global manner is therefore to search for such a minimal index where the
aCEX becomes invalid, if such an index exists. In order to find a matching
counterexample for Iy — ... — II,,; in M or ensure that none exists, we
therefore search for an index where the aCEX becomes invalid, if it exists.
Since in our case the aCEX is known not to be locally invalid, we know that
the prefix Ilg, I1; is necessarily valid. The search therefore starts from the
prefix Xy, X1, X5 and goes forward gradually, while extending the prefix. In
the i-th step (starting from ¢ = 2), we consider the prefix Ily, ..., II;. The
goal is to check if [Ig A TRATI} A TRATIGA ... AN TRA HZ@> (*) is satisfiable,
meaning that a matching path to this prefix of the aCEX exists in M.
Recall that for ¢ < n, (*) is actually the formula INIT A TR A (Fy A
B, ANTRA (Fy ANBp_1)" A...NTRA (F; A By_iy1)®. Fori = n + 1 the
last conjunct consists of By only (without an F-component). In fact, since
in a FRS F; A TR = Fj,,, then removing all F components except for
the first (INIT) results in an equivalent formula. Similarly, since in a BRS
Bji1 <= TR A Bj, removing all B components but the last (B,_;;1) again

results in an equivalent formula. This simplifies the formula as follows.

Lemma 4.3.11. For every2 < i <n+1: IIyATR(V, V) AIILATR(V', V") A
I A ... ATR(VEL VI ALY s equivalent to INIT A TR(V, V') A ... A
TRV, VYA B, .

Proof. Similarly to the proof of Lemma 4.3.5, it can be shown that INIT A
TRA(FiAB,) ANTRA(FyAB,_1)"A...ANTRA(F;ABy,_iy1) is equivalent to
INITNTRANTRA...A TR/\BSZZ»H, where the removal of the F-components
is due to the property F; A TR = Fj,, of a FRS, and the removal of the
B-components is due to the property B;.; <= TR A B; of a BRS. A similar
equivalence holds for ¢ = n + 1, when the last conjunct in the formula is

B (without an F-component). O O

DAR therefore checks formulas of the form INITATRA...NTRA Bfle 41

starting from ¢ = 2. It keeps on adding transitions until either the formula
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becomes unsatisfiable, or until i = n + 1 is reached (ending with By = —p).
If the formula is still satisfiable for © = n 4 1, a counterexample of length
n + 1 is found and DAR terminates.

If for some 2 < ¢ <n+1, INITNTRA. /\TR/\Bn i+
unsatisfiable, making the aCEX invalid, then first Fi in] is strengthened:

, turns out to be

Definition 4.3.12. Let INITA TRA...ATRABY ., | = 1 for some 2 < i <
n+1, and let (Iy, I1,. .., I;1+1) be an interpolation-sequence for (A; = INITA
TR,Ay = TR,...,A; = TR, Ay, = ,<1>Z+1> A global strengthening step at
index 1 strengthens F; for every 1 < j < min{i,n} by setting F; = Fj A ;.

The condition 1 < j < min{i,n} ensures that if i = n + 1, strengthening
is applied only up to F,, since F,,,; is not yet defined!. The following Lemma,
along with Lemma 4.3.5 ensures that after a global strengthening step, the

strengthened aCEX is locally invalid.

Lemma 4.3.13. Let F[n} be the result of a global strengthening step at index
2<i¢<n-+1. Then F[n} remains a FRS. In addition, T'(F;_1, By,—i+1) = L.

Proof. We first show that F] in) remains a FRS. Since the F}’s are only strength-
ened, the implications F; = p still hold for every 0 < j < n. We now show
that F; A TR = Fj,, still holds as well for every 0 < j < n — 1. For
t+1 < j<n—1no proof is needed since F; and Fj;; have not changed in
this case. We now consider 0 < j < min{i,n — 1}. Prior to strengthening,
it was the case that (1) F; A TR = Fj,, (a property of a FRS). In addition,
for j = 0, Ig AN Ay = I, meaning that T A INIT AN TR = I; (a property
of an interpolation-sequence). Therefore Fy A TR = T AN INIT AN TR = 1.
Conjoining this with (1), implies that Fy A TR = (F} A I;)’. Similarly, for
0 <j <min{i,n — 1}, I; A Aj;1 = I}, meaning that [; A TR = I, (a

property of an interpolation-sequence). Therefore, by conjoining this impli-
cation with (1) we get that for 0 < j < min{i,n — 1}, (F; A [;) N TR =

If a global strengthening step is performed at i = n + 1, then F}, ;1 can be initialized
to In-i—l-
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(Fjs1 A Ljp1)" = Fj,. Therefore, the implications required by a FRS still
hold after the updates of F; to Fj A I; for 0 < j < min{i,n}.
We now show that I'(F;_1, B,,—;+1) = L. By the definition of an interpolation-

sequence, I; AA; 1 = I;11 where [;,; = 1, which means that | = [AA;;; =
I; A B,_iy1. In addition, I;_; A A; = I;, meaning that I,_y A TR = I]. Thus,
due to the strengthening of F;_; by conjoining it with I; 1, we conclude that
after the update F;,_y = I;_; and hence F;_ 1 ATR = I, 1 AN TR = I]. Along
with the property that I; A B,,_;+1 = L, we conclude that I'(F;,_1, Bp_i11) =
FANTRAB, . =L ANB,_ ., =1 ] O

DAR now uses iterative local strengthening from (i —1,n—i+ 1) (Defini-
tion 4.3.9) to strengthen Fj, ..., F,, and B, 2, ... , B2, as well as initialize
F,y1 and B,;;. The complete global strengthening procedure is described
in Figure 4.3.

4.3.3 Correctness of DAR

Having described all the components of DAR, we now return to the proof of

Theorem. 4.3.1, which ensures that DAR terminates with a correct answer.

Theorem. 4.3.1. We first consider iteration n. The iteration performs a fi-
nite number of operations (as described in the local and global strengthening
phases), and hence it necessarily terminates. Moreover, it terminates success-
fully while extending the FRS and the BRS iff no counterexample of length
n exists. This can be seen since a counterexample is reported in the global
strengthening phase when the formula INITA TRA TRA ... A TR A B{" =

2Note that instead of performing a local strengthening of B as part of the iterative local
strengthening, an interpolation-sequence (Jo, J1,...,Ji11) for (A3 = TR A Bf;fi”,Az =
TR,...A; = TR,A;y1 = INIT) can be used to strengthen B,_;;1,...,B, by setting
By_iyj = Bn_iyj NJj for 1 < j <4, and to initialize B,,41 to Ji41. In this case, iterative
local strengthening will be performed only forward, updating F' only. For simplicity of the
presentation, we use iterative local strengthening both forward and backward instead of

using an interpolation-sequence for the backward update.
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41: function GLBSTRENGTHEN(F, B, n)
42: fori=2—->n-+1do // n =0 does not go into the loop

13; if INITATR...ATRABY,, == UNSAT then
44: I = GETINTERPOLATIONSEQ()

45: for j =1 — min{i,n} do

46: Fi=F; A

47: end for

48: ITERLS(F, B,n,i —1,n —i+1)

49: return {rue

50: end if

51: end for

52: return false // counterexample

53: end function

Figure 4.3: Global strengthening procedure

INITATRA...ATRA=p'™ is satisfiable (see line 43 in Figure 4.3), thus a sat-
isfying assignment to it provides a real counterexample. (An additional case
happens in the first iteration, when n = 0 and the formula INIT A TR N\ —p
is satisfiable). In all other cases, the FRS and BRS are extended successfully
by iterative local strengthening (see Lemma 4.3.10) and by Lemma 4.2.5,
this ensures that no counterexample of length n exists.

Thus, if a counterexample of length n exists, then DAR will find it and
will terminate at iteration n at latest reporting a counterexample (lines 3
and 10 in Figure 4.1). It might terminate earlier if a shorter counterexample
is found, but it cannot terminate with a “Verified” result, since this only
happens if fixpoint is reached, in which case by Lemma 4.2.7, M = AGp in
contradiction to the existence of a counterexample.

On the other hand, if M | AGp, all iterations of DAR terminate suc-
cessfully computing a FRS and a BRS (since there is no counterexample of
any length). For every n, at the end of iteration n, if no fixpoint is reached
then in particular F},;; includes at least one state that is not in \/?:0 F;. Now
consider N = 2/ +1. N is well-defined since V is finite (as M is). Since 2V
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is the set of all states in M and N = 2IVI 41, at iteration N at latest all the
states of M are already in \/i]\i0 F;, and a fixpoint must be reached. In this

case, DAR terminates and returns “Verified” (see line 7 in Figure 4.1). [
O

4.4 Experimental Results

To implement DAR we collaborated with Jasper Design Automation3. We
measured the efficiency of DAR by comparing it against two top-tier meth-
ods: ITP and IC3. We used Jasper’s formal verification platform in order to
implement DAR, ITP and IC3. Collaborating with Jasper allowed us to ex-
periment with various real-life industrial designs and properties from various
major semiconductor companies.

Our implementations use known optimizations for the checked methods
(e.g. [14, 28]) and are comparable to other optimized implementations avail-
able online. For DAR we used some basic procedures to simplify the com-
puted interpolants when possible. Our implementation of DAR is preliminary
and can be further optimized.

For the experiments we used 37 real safety properties from real industrial
hardware designs. The timeout was set to 1800 seconds and experiments
were conducted on systems with Intel Xeon X5660 running at 2.8GHz and
24GB of main memory.

Table 4.1 shows different parameters for all three algorithms on various
industrial examples. The parameters presented are: time is the runtime in
seconds; depth represents the number of over-approximated sets of states
computed when the algorithm converges (for ITP, the number of sets com-
puted for the last bound used, and for DAR, the length of ' and B); mai-
mum unrolling is shown for ITP and DAR (IC3 does not use unrolling) and

represents the maximum unrolling used during verification; and for DAR

3An EDA company: http://www.jasper-da.com
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(a) Runtime DAR vs. IC3. (b) Runtime DAR vs. ITP.

Figure 4.4: Y-axis represents DAR’s runtime in seconds. X-axis represents
runtime in seconds for the compared algorithm (IC3 or ITP). Points below
the diagonal are in favor of DAR.

we present §GS and GSg, which are the number of iterations where Global
Strengthening was used and the ratio between the global strengthening to the
total number of iterations. §GS also indicates the number of iterations where
local strengthening was insufficient (requiring to use global strengthening and
therefore unrolling).

Examining the results shows that the use of unrolling in DAR is indeed
limited and that local strengthening plays a major part during verification,
with GSr < 0.5 in most cases, indicating that local strengthening is often
sufficient. Moreover, even when unrolling is used, its depth is usually smaller
compared to the convergence depth, as indicated by maximum unrolling.
Note that the maximum unrolling provides an upper bound on the unrolling,
and the actual unrolling can be smaller in some global strengthening phases.
For falsified properties (counterexample exists) unrolling is necessarily ap-
plied up to the length of the counterexample in the last iteration. Yet, in
many cases local strengthening is still sufficient in previous iterations.

Another conclusion from the table is that a lower depth of convergence
does not necessarily translate to a better runtime. We can see that in many

cases, while ITP converges with less computed sets it takes more time than
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DAR. This is not surprising since the number of computed sets presented
for ITP considers only the sets computed in the last bound that was used,
disregarding sets from previous bounds. The same can be seen with regards
to IC3. While IC3 converges at a lower depth (on some cases), it still does
not necessarily perform better. This is mainly due to the different effort
invested by each algorithm in the strengthening and addition of a new over-
approximated set.

Figure 5.11 shows a runtime comparison between DAR and IC3 (Fig-
ure 4.4a) and ITP (Figure 4.4b) on all 37 industrial examples, including
those from Table 4.1. In 19 out of 37 cases, DAR outperforms I'TP, and in 25
out of 37 cases it outperforms IC3. In 18 out of 37 cases DAR outperforms
both methods. DAR could not solve only 5 cases, whereas I'TP and IC3
failed to solve 7 and 12 cases respectively. The overall performance, when
summarized, is in favor of DAR with 36% improvement in run time when
compared to ITP and 52% improvement when compared to IC3.

Cases where DAR outperforms I'TP can be explained by the following
factors. First, DAR avoids unrolling when not needed, therefore its SAT
calls are simpler. Second, DAR uses over-approximated sets computed in
early iterations and strengthens them as needed, while ITP does not re-use
sets that were computed for lower bounds and restarts its computation when
a spurious counterexample is encountered. Cases where DAR outperforms
IC3 are typically when DAR’s strengthening is more efficient than 1C3’s
inductive generalization, requiring less computation power at each iteration.

Since DAR relies heavily on interpolants, the cases where DAR performs
worse than IC3 are usually those where the interpolants grow large and con-
tain redundancies. This is also true when comparing to I'TP. Since DAR
computes more interpolants than I'TP and also accumulates them, it is more
sensitive to the size of the computed interpolants.

We also used the HWMCC’11 benchmark in our experiments. While

there are a lot of cases where all methods perform the same, there are also
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examples where DAR outperforms both IC3 and ITP (some are shown at the
bottom of Table 4.1). The benchmark also includes examples where IC3 or
ITP perform better than DAR. The majority of these cases are simple and

solved in a few seconds.
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1C3 ITP DAR
Name | gVars | Status | D | Time[s] | D | MaxU | Times] || D | MaxU | §GS | GSg | Time]s|

Ind, 11854 | true 46 799 41 28 1138 49 35 21 | 0.42 303

Inds 11866 | true 11 82 ) 2 19.1 11 8 4 1033 29.9
Indy 11877 | true || NA TO 33 12 307 36 30 18 | 0.48 194

~ Inds | 11871 | false | NA| TO |NA| 20 | 88 | 19 20 | 10|05 ] (.
Inds 11843 | false || NA TO NA 19 7 18 19 9 | 047 70

~ Ind; | 1247 | true | 6 | 1.5 | 3] 2 | 2 | 17| 5 | 9 | 05| 563

Indyy 3837 | false || NA TO NA 69 487 68 69 25 | 0.56 269
 Indy; | 3836 | true | 6 | 42 | 4 | 2 | 2.3 || 70| 64 | 32 1045 | 243

Indyg | 11860 | true 9 32.5 5 2 114 33 32 16 | 0.47 144
 Indy; | 11878 | true | 14 | 68 || 70 4 | 184 | 1| g | - 4 1033 295

Indg 3836 true NA TO 6 17 27.3 15 6 6 | 0.837 10
intel007 | 1307 true 5 53.5 NA | NA TO NA | NA NA | NA TO
intel018 | 491 true NA TO 57 35 695 78 51 33 | 0.42 64
intel0l9 | 510 | true | NA| TO | ! 52 | 35 | 515 | 96 | 57 | 43 | 044 | 310

intel023 | 358 true | NA TO NA | NA TO 86 93 35 | 0.4 66

intel026 | 492 true 33 47.1 a0 35 21.9 70 51 34 | 0.48 27.8

Table 4.1: Parameters of the experiments. Name: name of the verified prop-
erty; § Vars: number of state variables in the cone of influence; Status: true
- verified property, false - indicates a counterexample; D: convergence depth
representing the number of over-approximated sets of states computed when
the algorithm converges (for ITP, the number of sets computed for the last
bound used, and for DAR, the length of F' and B); MaxU: mazimum un-
rolling used during verification; § GS: number of times Global Strengthening
is used in DAR; GSg: ratio between iterations using global strengthening to
the total number of iterations; Time/s/: time in seconds. Minimal runtime
appears in boldface. Properties above the full line are from real industrial
designs. Those underneath the line are from HWMCC’11.
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Chapter 5

Efficient Generation of Small
Interpolants in Conjuctive

Normal Form

The work presented in this chapter appeared in [60]. This chapter describes
a novel approach for interpolant computation in the context of SAT-based
model checking. The main contribution of this work is the ability to produce
small interpolants in Conjunctive Normal Form (CNF) efficiently. In order
to compute an interpolant, our work takes advantage both of the properties
of the resolution refutation, generated by the SAT solver, and of the struc-
ture of the model checking problem at hand. Another contribution of this
work is the algorithm CNF-ITP, which is an enhanced version of the original
interpolation-based model checking algorithm [43] (ITP). CNF-ITP exploits
of the fact that interpolants are given in CNF.

Interpolants are used in various domains. Here, like in previous chapters,
we focus on ITP. In his seminal work [43], McMillan presents a recursive
procedure for interpolant generation from a proof. The procedure initially
assigns a propositional formula to each one of the leaves in the resolution

refutation (hypothesis clauses). It then recursively assigns a propositional
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formula to every node in the refutation by either conjoining or disjoining the
propositional formulas of its predecessors. Choosing between conjunction or
disjunction depends on whether the pivot variable is local to A(X,Y") or not.
The formula that is assigned for the empty clause represents the interpolant.

While this algorithm is linear in the size of the proof, the resulting in-
terpolant is a non-CNF propositional formula that mirrors the structure of
the resolution refutation. Thus, when the resolution refutation is large, so is
the interpolant. Moreover, the resulting formula is often highly redundant,
meaning that the interpolant can be simplified and be represented by an
equivalent smaller formula.

ITP (Section 2.4) requires the interpolants to be fed back into the SAT
solver for computing the next interpolant. Therefore, in those cases where the
size of interpolants is large, the resulting SAT problem may be intractable.

We strive to solve this problem by directly generating small interpolants
in CNF. One way to compute an interpolant is by existential quantifica-
tion. Considering the unsatisfiable formula A(X,Y) A B(Y, Z), I(Y) =
JX(A(X,Y)) is an interpolant. For a CNF formula A(X,Y), 3X(A(X,Y))
can be created by iteratively applying variable elimination! on X variables
in A(X,Y). The problem with this approach is that variable elimination is
exponential, and, therefore impractical, given a large set of variables.

In this work, we provide a novel resolution-refutation-guided method for
variable elimination in order to derive an interpolant in CNF. This procedure,
while creating less clauses than naive variable elimination procedures, might
still result in an exponential blow-up.

Our solution is first to build an approzimated interpolant I,,(Y") for which
I,(Y) A B(Y,Z) may be satisfiable. We refer to such an interpolant as a
Bear-interpolant. Computing the Byea-interpolant is based on the method

of resolution-refutation-guided variable elimination but is much more effi-

L Variable elimination [24] is an operation that eliminates all occurrences of a vari-
able v from a CNF formula by replacing clauses containing v with the result of pairwise
resolutions between all clauses containing the literal v and those containing the literal —v
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cient. The second stage of our method aims at strengthening I,,(Y") and
transforming it into an interpolant I(Y") where I(Y') A B(Y, Z) is unsatisfi-
able. We refer to this process as B-Strengthing.

In order to transform a Byea-interpolant into an interpolant we need to
make sure that A(X,Y) = I,(Y) and that 1,(Y) A B(Y, Z) is unsatisfiable.
This can be done by finding all satisfying assignments s(Y") to I,,(Y)AB(Y, Z)
and conjoining —s(Y') with I,,(Y). Clearly, since A(X,Y)A B(Y, Z) is unsat-
isfiable, A(X,Y") = —s(Y) for all such assignments. Note that an assignment
s is a conjunction of literals, and therefore its negation is a clause. By this
we keep I,,(Y) in CNF. The number of such assignments may be vast, and
therefore this is an inefficient method.

To overcome this, instead of adding a clause to I,,(Y) we generalize it to
a sub-clause so as to block a larger set of assignments. In order to perform
an efficient generalization we use the structure of A. In the context of model
checking, A(V, V') = Q(V) A TR(V, V') where V is the set of variables in the
checked system and TR is the transition relation. Using this fact allows us
to perform inductive generalization [8].

We implemented CNF-ITP, a model checking algorithm which is a variant
of ITP [43], but which uses the above method to compute the interpolants.
Our goal was to measure the impact of our interpolant computation method
on the underlying model checking algorithm. However, CNF-ITP also ex-
ploits the fact that interpolants are given in CNF in order to improve the
traditional ITP. Our improvements to ITP were inspired by [8].

For the experiments we used the HWMCC’12 benchmark set. The in-
terpolants computed by our method, compared to those computed by the
original ITP algorithm of [43], were much smaller in size in the vast majority
of cases. Sometimes, the size was up to two orders of magnitude smaller.
Our procedure significantly outperformed I'TP and solved some test cases
that ITP could not solve. To complete our experiments, we also compared
CNF-ITP to the successful IC3 [8] algorithm. We found that CNF-ITP out-
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performed IC3 [8] in a large number of cases.

5.0.1 Related Work

A well-known problem of interpolants is their size. Several works try to deal
with this problem. The work in [14] suggests dealing with the increasing
size of interpolants by using circuit compaction. While this process can be
efficient in some cases, it may consume considerable resources for very large
interpolants. Moreover, compacting an interpolant does not result in a CNF
formula, whereas our approach results in interpolants in CNF.

As we have already noted, an interpolant computed from a resolution
refutation mirrors its structure. Several works [2, 52| deal with reductions to
the resolution refutation. Since our method uses resolution refutation it too
can benefit from such an approach.

During interpolant computation, our approach only uses the relevant
parts of the resolution refutation. The idea of holding and maintaining only
the relevant parts of the resolution derivation was proposed and proved useful
in [53] in the context of group-oriented minimal unsatisfiable core extraction.

Deriving interpolants in CNF was suggested in [38]. The authors suggest
applying a set of reordering rules for resolution refutations so that the re-
sulting interpolant will be in CNF. As the authors state in the paper, the
described procedure does not always return an interpolant in CNF. Also, the
reordering of a resolution refutation may result in an exponential blow up of
the proof and, as stated in [25], reordering is not always possible. In contrast
to [38], our method does not rewrite the resolution refutation generated by
the SAT solver.

The work in [17] suggests an interpolant computation method that does
not use the generated resolution refutation. In addition, an interpolant that
results from the use of that method is in a Disjunctive Normal Form (DNF).
Our work, on the other hand, uses the resolution refutation and generates

interpolants in CNF efficiently.
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5.1 Preliminaries

For a model M, with a slight abuse of notation, we sometimes refer to a
propositional formula over V' as a set of states in M. We treat CNF formulas
as sets of clauses and use a union of sets to denote a conjunction of two CNF
formulas. In addition, given a sequence of clauses m, we will use a € 7 to
denote a clause « that is part of the sequence 7.

Recall that for a formula X, Vars(X) is the set of variables appearing in
X.

Definition 5.1.1 (Local and Global Variable). Let (A, B) be a pair of for-
mulas in CNF. A variable v is A-local (B-local) iff v € Vars(A)\Vars(B)
(v € Vars(B)\Vars(A)); v is (A, B)-global or, simply, global, iff v € Vars(A)N
Vars(B).

We will use the notions of weaker versions of interpolants that fulfill two

out of three interpolant properties (recall Definition 2.3.1).

Definition 5.1.2 (Byea-Interpolant). Let (A, B) be a pair of formulas in
CNF such that AA B = L. The Byea-interpolant for (A, B) is a formula [
such that:

o A=1.
e Vars(I) C Vars(A) N Vars(B).

Definition 5.1.3 (Non-Global-Interpolant). Let (A, B) be a pair of formulas
in CNF such that A A B = L. The non-global-interpolant for (A, B) is a

formula I such that:
o A=1.

e IANB=1.
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Recall that a resolution derivation 7 can naturally be conceived of as a
directed acyclic graph (DAG) whose vertices correspond to all the clauses of
7 and in which there is an edge from a clause o to a clause a; iff o; = a;® .
A clause § € 7 is a parent of o €  iff there is an edge from 5 to a. A clause
B € 7 is backward reachable from v € 7 if there is a path (of 0 or more edges)
from [ to . The set of all vertices backward reachable from 5 € 7 is denoted
L(m, ).

For this work, we will need a definition of an A-resolution refutation, that

is, a projection of a given resolution refutation 7 to the clause set A:

Definition 5.1.4 (A-Resolution Refutation). Let m = (ay, ag,...,0) be a
resolution refutation of length n of the CNF formula G = A A B. The A-
resolution refutation w4 derived from 7 is defined as follows: 74 = 7} where

7'y is defined incrementally:

0 i=0
T = a; € A or
a; = o @Y ay, such that o; € 7ri(1 or oy € 7rf4’1

In DAG terminology 74 is a sub-graph of 7 that contains only those
vertices whose clauses belong to A, and the edges between such clauses.
Note that a clause @ € m may have 0 or 2 parents, while a clause o € 74
may also have 1 parent (if the second parent is implied only by the clauses
of B).

Given a clauses set F', we denote the set of clauses containing the lit-
eral v and —w as F, and F, respectively. Given a CNF formula F' and a
variable v € Vars(F'), variable elimination [24] is an operation that removes
v from F by replacing clauses containing the variable v with the result of
all pairwise resolution between F\ and F . The resulting formula VE(F,v)
is equisatisfiable with F' [24]. The DP algorithm for deciding propositional

satisfiability [24] uses variable elimination until either the empty clause OJ is
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derived, in which case the formula is unsatisfiable, or all the variables appear
in one polarity only, in which case the formula is satisfiable. It is well known
that the original DP algorithm suffers from exponential blow-up.

A bounded version of variable elimination has been an essential contrib-
utor to the efficiency of modern SAT preprocessing algorithms (that is, algo-
rithms that truncate the size of the CNF formula before embarking on the
search) since the introduction of the SatELite preprocesor [27]. In bounded
variable elimination, used in SatELite, a variable v is eliminated iff the op-

eration does not increase the number of clauses.

5.2 Generating Interpolant Approximation in
CNF

In this section we propose a method for generating a Byeax-interpolant (re-
call Definition 5.1.2) in CNF. First, we describe two algorithms for generating
interpolants in CNF. In practice, both algorithms are not applicable to all
cases, because of exponential blow-up. Thereafter we introduce an efficient
algorithm which is guaranteed to return a Byea-interpolant in CNF, and
which may for some cases return an interpolant in CNF'.

We start with the following lemma which follows directly from resolution

derivation properties. This lemma serves as the basis for our first algorithm.

Lemma 5.2.1. Let m4 be an A-resolution refutation. Let P(ay) for a; €
wa \ A) be the set of (1 or 2) parents of ;. Then, P(a;) AN B = «

Our first algorithm for generating an interpolant in CNF is based on naive
variable elimination. First it generates a resolution refutation of the given for-
mula using a SAT solver. Then it initializes the interpolant by those clauses
of A that are backward reachable from [J (the empty clause). Note that at
this stage I is a non-global-interpolant since it contains A-local variables (re-

call Definition 5.1.3). Finally, the algorithm gradually turns the non-global-
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Figure 5.1: An example of a resolution refutation. Assume A = {ay,..., a4}

and B = {ﬁl,...,ﬁg}.

: function ILVE(A, B)
Generate a resolution refutation 7 using a SAT solver
Ip:=ANT(r,0)
1:=0
for all v € Vars(/) N Vars(A) do
Iy = VE(I;,v)
=141
end for
0: return J;
10: end function

Figure 5.2: Interpolant by A-Local Variables Elimination

interpolant into an interpolant by applying variable elimination over all A-
local variables. Consider the example in Figure 5.1. Our algorithm would
generate the following interpolant: I = {(g1 V ¢2), (91 V 94), (93 V 92), (g3 V 94) }.
Unfortunately, the algorithm suffers from the same drawback as the DP algo-
rithm [24]: exponential blow-up when variables keep being eliminated. The
complete algorithm is presented in Figure 5.2

We show that Algorithm ILVE is correct.

Lemma 5.2.2. Algorithm ILVE returns an interpolant.

Proof. We will show that all the three interpolant properties hold for I:

1. A =TI holds, since all the clauses of I are generated by resolution over

A clauses.
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2. INB = 1. We prove the statement by induction on the number of
iterations in the loop. For the first iteration it holds that Iy = (AN
I'(m,0)) A B = L, since the structure of 7 implies that [J is reachable
from (ANT(m,0)) AB (ANT(r,0) are the leaves in 7 that belong to
A, and AN B = 1). Consider iteration ¢ + 1. By induction hypothesis
it holds that I; A B = L. By correctness of variable elimination [24], we
have VE(I; A B,v) = L. Note that v ¢ Vars(B), since v is A-local by
construction, hence VE(I; A B,v) = VE(I;,v) A B = L, which proves

our property, since I,y is exactly VE(I;,v).

3. Vars() C Vars(A) N Vars(B) holds, since all the A-local variables are

eliminated from Ij.

[]

Recall that Algorithm 5.2 suffers from the same drawback as the DP algo-
rithm [24]: exponential blow-up when variables are eliminated. We therefore
move on to introduce our second attempt.

Our next algorithm is based on the observation that to eliminate a vari-
able v from F, it is not necessary to apply resolution over all the pairs in
Ff and F, but rather only over those subsets that contribute to deriving
a common ancestor in the resolution derivation. We need to introduce the

notion of clause-interpolant.

Definition 5.2.3 (Clause-Interpolant). Let (A, B) be an unsatisfiable pair
of CNF formulas. Let « be a clause. Then, I(«) is a Clause-Interpolant of
a iff:

e A= I(a)
o [()NB=«

e Vars(I(a)) C (Vars(A) N Vars(B)) U (Vars(A) N Vars(«))
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A clause-interpolant is a generalization of an interpolant that allows one
to associate an interpolant with every clause « in A-resolution refutation (re-
call Definition 5.1.4). As in the case of the standard interpolant, the clause-
interpolant is implied by A. The conjunction of the clause-interpolant with
B implies the clause « (instead of [J for the standard interpolant). Finally,
the clause-interpolant is allowed to contain in addition to global variables
also A-local variables that appear in a. Note that a clause-interpolant of [

is an interpolant.
Lemma 5.2.4. A clause-interpolant of the empty clause (1 is an interpolant.

Proof. Each of the three conditions in the definition of a clause-interpolant

yields the corresponding condition in the definition of the interpolant. O

The second algorithm for deriving an interpolant in CNF works as fol-
lows: it traverses the A-resolution refutation from the input clauses towards
(0. It constructs a clause-interpolant for each traversed clause as follows.
The clause-interpolant of each initial clause « is set to {a}. For creat-
ing the clause-interpolant of a derived clause «, the algorithm first conjoins
the clause-interpolants of a’s parents. Then, if o was created by resolution
over a local variable v, v is eliminated from the result by applying variable
elimination (Figure 5.3, line 12). The clause-interpolant of [J is returned
as the interpolant. Consider again the example in Figure 5.1. We have
I{as) = a1 @ ag = g1 V go; () = a3 @ agy = g3V g4; I(a7) = I(as);
I(ag) = I(ag) = I(ag). Finally, the interpolant is I(0) = I(ar) U I(ag) =
{01V g2,93 V g4}. Note that for our example, the interpolant generated by
the current algorithm is smaller than the one generated by our previous algo-
rithm, which applies exhaustive variable elimination. In practice, however,
the current algorithm is not always scalable either, due to the same problem
— exponential blow-up caused by variable elimination. Also note that for our
simple example the intepolant comprises a cut {as, g} in the A-resolution

refutation, where all the clauses are implied by A only. One can show that
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1: function IGCI(74 = (o, g, . . ., Qg Qgi1, Qs - - ., = )
2: for all: € {1,2,...,¢q} do

3: I(;) :={a;}

4: end for

5: forallie {¢g+1,¢q+2,...,p=0} do

6: if «; has exactly one parent 5 then

7: I(ay) = 1(P)

8: else

9: if oy = a; ®” oy, where v is global then

10: I(a;) == I(ay) UI(ag)

11: else /] a; = a; ®" ay, where v is A-local
12: o) == VE(I(a;) U (o), v)

13: end if

14: end if

15: end for

16: return /()
17: end function

Figure 5.3: Interpolant Generation with Clause-Interpolants

whenever such a cut exists it comprises an interpolant. Unfortunately, in the
general case such cuts do not usually exist. The complete algorithm appears
in Figure 5.3.

We prove the algorithm’s correctness starting with a straightforward

lemma.

Lemma 5.2.5. Let P, and P, be formulas in propositional logic. Then,
P, = P, if and only if P, NP, = 1.

We need to prove additional two lemmas.

Lemma 5.2.6. Let [ and B be formulas in CNF, o be a clause, and v be a

variable, such that:

1. INB=a«a

2. v ¢ Vars(BU «)
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Then, VE(I,v) AN B = a.

Proof. By applying Lemma 5.2.5 over the lemma’s first condition / A B = «
we have I A B A -« = L. By variable elimination properties [24] we have
VE(I N B A —a,v) = L. The latter statement and the lemma’s second
condition v ¢ Vars(BU«) imply VE(IANBA—-«a,v) = VE(I,v)ABA—a = L.
Finally, by again applying Lemma 5.2.5 we have VE(I,v) A B = «. [

Lemma 5.2.7. Let 7 be a resolution refutation and let w4 be the A-resolution
input sequence for IGCI. Then, for every I(«;) computed by IGCI, I(«ay;) is

a clause interpolant.

Proof. The proof is by induction on the number of iterations of both loops.

For every clause o € A, I(a) = {a}. Clearly, I(a) meets the three
requirements of clause-interpolant (Definition 5.2.3)

We omit the proofs for cases where a derived clause «; has only one parent
B, and where o; = a;; ®" oy, where v is global, since they are straightforward.

Consider the case where o;; = oj ®” a,, where v is A-local. By induction
hypothesis we have A = I(«;) and A = I(ay), hence A = I(a;)UI(ay). All
the clauses created by variable elimination VE(I(a;) U I(ay),v) are derived
from I (o) UI(ay) using resolution, hence we have A = VE(I(a;)UI(oy),v)
and the first requirement is met.

By induction hyphotheses we have I(o;) A B = «a; and I(ay) A B = ay.
By Lemma 5.2.1 we have a; A ay A B = «;. Hence, I(a;) A I(oy) A B =
ajNaxyANB = «;. Note that v ¢ B, since v is A-local and v ¢ «;, since o; was
created by resolution over v. Hence, by Lemma 5.2.6 VE(I (o) A I(ag),v) A
B = «; and the second requirement is met.

Finally, by construction I(c;) contains the union of all the variables in
I(a;) and I(ay) with the exception of v. Also by construction, the A-local
variables of o; comprise the union of all the A-local variables of a; and oy,
with the exception of v. These facts and the induction hypothesis for the
third requirement for o; and oy, yield that the third requirement for «; is

met.
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O

Theorem 5.2.8. Given an A-resolution refutation, IGCI returns an inter-

polant.

Proof. The set I(0J) is the clause-interpolant for OJ by Lemma 5.2.7, hence
it is an interpolant by Lemma 5.2.4. O

Unfortunately, in practice IGCI is still not always scalable because of the
exponential blow-up resulting from variable elimination.

Now we are ready to present a scalable algorithm for the construction
of an approximated interpolant by generating a Byeac-interpolant. The first
stage of our algorithm traverses the resolution refutation to generate a non-
global-interpolant. The second stage uses bounded variable elimination and
then incomplete variable elimination (defined below), if required, to convert

the non-global-interpolant to a Byeac-interpolant.

Definition 5.2.9 (Incomplete Variable Elimination). Given a CNF formula
F and a variable v € Vars(F'), incomplete variable elimination is an operation
that removes v from F' by replacing clauses containing the variable v with
the set IVE(F,v) which contains some of the results of a pairwise resolution

between F,S and F,, where two requirements are met:
L [IVE(F,v)] < |F| + [F/]

2. Let a € F} (F,) be a clause, if there exists a clause § € F, (F,),
such that a ®" 8 is not a tautology, then there exists a clause v € F
(EF) where a ®" v € IVE(F,v) and o ®" 7y is not a tautology.

The idea behind incomplete variable elimination is to omit some of the re-
solvents when eliminating the variable v in order not to increase the number
of clauses, yet to guarantee that each clause containing v has some contri-
bution to the generated set of clauses. Note that while incomplete variable

elimination is not sufficient to maintain unsatisfiability for all cases, it may
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be sufficient for some cases. Incomplete variable elimination is not uniquely
defined.

Our implementation of the procedure is provided in Figure 5.4.

Before presenting our final algorithm, we need to introduce the notion of

a non-global-clause-interpolant:

Definition 5.2.10 (Non-Global-Clause-Interpolant). Let (A, B) be an un-
satisfiable pair of CNF formulas. Let « be a clause. Then, I(«) is a Non-
Global-Clause-Interpolant of « iff:

e A= I(a)
o () NB=«

Note that a non-global-clause-interpolant of [J is a non-global-interpolant.

Consider now the algorithm described in Figure 5.5. Its first part (lines 2-
21) traverses the resolution refutation and asssociates a non-global-clause-
interpolant with each clause. Consider a visited clause o; = a; ®"” oy, when
v is local. First, the algorithm sets I(a;) to be the union of I(«;) and I(ay).
It eliminates the variable v if the following two conditions hold: First, that
eliminating v does not increase the clause size of I(«;) (as in the bounded
variable elimination of SatELite [27]), and second, that variable elimination
has been performed for all clauses backward reachable from «;. (The second
condition is ensured by using an auxiliary set Skipped for marking clauses for
which variable elimination was skipped). The second stage of the algorithm
(starting from line 22) uses bounded variable elimination and then incomplete
variable elimination to convert the non-global-interpolant to the eventually
returned Byeac-interpolant by eliminating A-local variables. Note that the
bounded variable elimination stage is non-redundant even though bounded
variable elimination was performed locally for resolution refutation clauses,
since sometimes bounded variable elimination is possible given a large set of
clauses while it is impossible given a subset of that set. Note also that the

algorithm returns an interpolant rather than merely a Byeac-interpolant if
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10:
11:
12:
13:
14:

15:

16:
17:
18:
19:

function IVE(Fv)
IVE(F,v) :={}
for all o € Ff do
if There exists a non-marked clause 5 € F, such that o ®" 3 is
not a tautology then
IVE(F,v) := IVE(F,v) Ua ®" 3 // B: the first clause
that meets if-condition
Mark S
else
if There exists a clause 5 € F,, such that o ®" 3 is not a
tautology then
IVE(F,v):=IVE(F,v)Ua " // B: the first clause
that meets if-condition
end if
end if
end for
for all Unmarked 8 € F,” do
if There exists a clause a € F,, such that a®"( is not a tautology
then
IVE(F,v) == IVE(F,v) Ua ®" // B: the first clause
that meets if-condition
end if
end for
return [VE(F,v)
end function

Figure 5.4: Incomplete Variable Elimination
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all the A-local variables are succesfully removed before incomplete variable
elimination is applied.
Next, we present the proof of Algorithm 5.5 starting with a number of

lemmas.

Lemma 5.2.11. A non-global-clause-interpolant of the empty clause OJ is a

non-global-interpolant.

Proof. Each of the two conditions in the definition of a non-global-clause-
interpolant yields the corresponding condition in the definition of the non-

global-interpolant. O]

Lemma 5.2.12. Each iteration of both for-loops of Algorithm 5.5 constructs

a non-global-clause-interpolant I1(c;) for the currently traversed clause «;.

Proof. The proof is only briefly sketched here, since it is a simpler version of
the proof of Lemma 5.2.7. The proof is again by induction on the number
of loop iterations. One needs to prove only the first two clause-interpolant
properties in this lemma as compared to the three properties which need to be
proved for Lemma 5.2.7 (which makes the proof simpler). Another difference
is that variable elimination is not always applied when «o; = a; ®” «,, where
v is A-local. However, the proof for both properties is straightforward when

variable elimination is not applied. O

Theorem 5.2.13. Given an A-resolution refutation, Algorithm 5.5 returns

a Byeap-interpolant.

Proof. At line 22 of the algorithm, the set I(OJ) is the non-global-clause-
interpolant for [J by Lemma 5.2.12, hence it is a non-global-interpolant by
Lemma 5.2.11. It is not hard to see that after bounded variable elimination
is applied, I(0) is still a non-global-interpolant (or an interpolant if all the
A-local variables are eliminated). If incomplete variable elimination is ap-
plied, it clearly maintains the property A = I(0), while at the end of the
procedure the property Vars(/) C Vars(A) N Vars(B) is met, since all the

A-local variables are eliminated. Hence I(0) is a Byeak-interpolant. O
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1: function SIG(74 = (a1, a9, ..., g, Qgt1, Qgi2, . .., = 0))
2 Skipped := {}

3 for alli € {1,2,...,¢} do

4: I(ay) :=={a;}

5: end for

6 forallie {¢g+1,q+2,...,p=0} do

7 if o; has exactly one parent 5 then

8

9

I(a) = I(B)
else
10: if o; = a; ®” ay, where v is global then
11: o) == I(a;) UI(a)
12: else /] a; = a; ®" ay, where v is A-local
13: () == I(ay) U (o)
14: if |VE(I(ay) U I(o),v)| < |[I(e) UI(ag)| and {oy, ar} N
Skipped = () then
15: I(a;) == VE(I(ay),v)
16: else
17: Skipped := Skipped U {c; }
18: end if
19: end if
20: end if
21: end for
22: Apply bounded variable elimination for A-local variables over I([J)
23: if 7(O) then do not contain A-local variables
24: return /(0O) // In this case I(O) is an interpolant
25: else
26: Apply incomplete variable elimination for A-local variables over
I(O)
27 return /(OJ) // In this case I(0) is a Byeax-interpolant

28: end if
29: end function

Figure 5.5: Byeac-Interpolant Generation
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5.3 Using Byeak-Interpolants In Model Check-
ing

In this section we describe a model checking algorithm that uses Byeak-
interpolants. Our algorithm is composed of two main stages. Recall that
by Definition 5.1.2, a Byeax-interpolant fulfills two out of the three conditions
of an interpolant. Therefore, the first stage transforms the Byca-interpolant
into an interpolant.

The second stage uses interpolants computed by the first stage. In essence,
the second stage is a modification of the original I'TP and is called CNF-ITP.
Besides the fact that CNF-ITP uses interpolants in CNF, it further takes
advantage of this fact by applying optimizations which are possible only as
a result of using interpolants in CNF.

Before going into the details of CNF-ITP, we describe ITP.

5.3.1 Interpolation-Based Model Checking Revisited

We have described ITP in detail in Chapter 2, we give a quick overview
here. ITP [43] is a complete SAT-based model checking algorithm. It uses
interpolation to over-approximate the reachable states in a transition system
M with respect to a property p. ITP uses nested loops where the outer loop
increases the depth of unrolling and the inner loop computes the reachable
states. ITP is described in Figure 5.6

Definition 5.3.1. Let k£ and n be the depth of unrolling used in the outer
loop and the iteration of the inner loop of I'TP, respectively. Let us denote
F = (INIT, I} ..., I*) the resulting FRS. We define R¥ = INITVIiVIEY. ..V
I* to be the set of reachable states computed by the inner loop of ITP after
n iterations and with respect to unrolling depth k. For a given 1 < j < n,

1 J"‘ is the interpolant computed in the j-th iteration of the inner loop.

From this point and on, k£ and n refer to the depth of unrolling used in
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1: function ITP(M p)

2 if INIT N\ —p == SAT then

3 return cex

4: end if

5: k=1

6 while true do

7 result = COMPUTEREACHABLE(M, p, k)
8 if result == fixpoint then

9 return Valid

10: else if result == cex then
11: return cex

12: end if

13: k=k+1

14: end while
15: end function

Figure 5.6: Interpolation-Based Model Checking (ITP)

the outer loop and the iteration of the inner loop of ITP, respectively.

In general, the inner loop checks a fixed-bound BMC [4] formula where
at each iteration only the initial states are replaced with an interpolant com-
puted at a previous iteration (lines 22 and 30). This is done until the BMC
formula becomes SAT (line: 30) or until a fixpoint is reached (lines: 25-27). In
the former case, the outer loop increases the unrolling depth by 12 (line: 13)
in order to either increase the precision of the over-approximations or to find

a counterexample.
Lemma 5.3.2. RF(VO) A path®* ' A (\/f;é —=p(V7)) is unsatisfiable.

Proof. The proof is immediate from the interpolant definition (Definition 2.3.1)
and from the definition of R*. Let k and n be the depth of unrolling used
in the outer loop and the iteration of the inner loop of ITP respectively
and let FF = (I} = INIT,IF... I*) be the FRS computed by ITP. For

2Some works choose different ways of increasing k. For example, k can be increased
by the number of iterations executed in the inner loop: k = k 4+ n. In our experiments
k =k + 1 yielded better results.
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16: function COMPUTEREACHABLE(M ,p, k)

172 RE=INIT, I} = INIT, n =1

18:  if IF Apath®® A (=p(VY) V...V =p(V*)) == SAT then
19: return cex

20: end if

21: repeat

22: A=1F (VOYA TRV V)

23: B = path"™ A (=p(V1) v ...V —p(VF))
24: I"” = GETINTERPOLANT(A, B)

25: if I* = RF | then

26: return fizpoint

27: end if

28: Rt =RF Vv IFE

29: n=n+1

30 until I* | Apath® A (=p(V') V...V —p(VF)) == SAT
31: end function

Figure 5.7: Inner loop of ITP

0<j<n—1 I}V A path® A (\/?:0 —p(V7)) is unsatisfiable and I},
is the interpolant derived from the proof of unsatisfiability for this formula.
Thus, for 0 < j < n I¥(V°) A path® =" A (\/;:é —p(V7)) is unsatisfiable, and
by that R*(V°) A path™ ! A (Vf;ol —p(V7)) is unsatisfiable. O O

RF is also referred to as (k — 1)-adequate.

5.3.2 Transforming a Byeak-Interpolant Into an Inter-

polant Using Inductive Reasoning

As we have shown in Section 5.2, given a pair of formulas (A, B) such that
A A B is unsatisfiable, a Byea-interpolant I, can be computed. By Def-
inition 5.1.2, A = I, and Vars(l,) C Vars(A) N Vars(B), but it is not
guaranteed that I, A B is unsatisfiable. Intuitively, we can think of I, as be-
ing too over-approximated and therefore needing strengthening with respect

to B.
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Definition 5.3.3 (B-adequate). Let (A, B) be a pair of formulas s.t. AAB =
1 and let I, be a Byeax-interpolant for (A, B). We say that I, is B-adequate
iff I, N\B= 1.

Following the above definition, our purpose is to make a Byeac-interpolant
I, B-adequate. We refer to this procedure as B-Strengthening.
The purpose of this section is to demonstrate the use of Byeac-interpolants

for model checking, in particular in the context of ITP.

Definition 5.3.4 (k-n-pair). Given the formulas A = I* | (VO)ATR(VO, V1)
and B = path™* A (\/1_, =p(V?)). The pair (A, B) is called a k-n-pair. When
AN B =1 we call (A, B) an inconsistent k-n-pair.

Consider a run of ITP for a given k and n. We aim at computing I*.
Let (A, B) be an inconsistent k-n-pair and let I,, be the Byeax-interpolant
for (A, B). If I, is B-adequate then it is an interpolant and therefore I*
can be defined to be I,. If I, is not B-adequate we are required to apply
B-Strengthening and transform [, into an interpolant.

Let us assume that I,, is not B-adequate and that I,,(V')A B is satisfiable.
There exists a state s € I, such that s(V') A B is satisfiable. Intuitively, in
order to make [,, B-adequate, and by that an interpolant, we would like to
remove s from it.

Clearly, A A s(V!) is unsatisfiable; otherwise A A B would have been
satisfiable. Thus, B-Strengthening can be done by iterating all assignments
for I,(V') A B, extracting a state s € I, from an assignment and blocking it
in I,,. This is an inefficient way to perform B-Strengthening since the number
of such assignments may be too large.

To overcome this, we use knowledge about the problem at hand. Namely,
we take into account the fact that A is of the following form: A = I* (V) A
TR(V, V).

Definition 5.3.5 (Relatively Inductive). Let R and @ be propositional for-

mulas and M a transition system. We say that () is relatively inductive with

89



respect to R and M if (R(V)AQ(V)) ATR(V,V') = Q(V'). When M is

clear from the context we omit it.

Recall that by Definition 5.3.1 R represents an over-approximation of
all reachable states after up to n transitions and it is (k — 1)-adequate
(Lemma 5.3.2).

Lemma 5.3.6. Let (A, B) be an inconsistent k-n-pair. Let I,, be the Beqx-
interpolant for (A, B) . If s is an assignment to V s.t. s(VY)AB is satisfiable,
then the following holds:

[ ] Rfl—l = TS
[ J R’lr{:Lfl /\ TR :> _‘S/

Proof. From Lemma 5.3.2 we know that R, (V) Apath® ~*A(\/¥Z ) —p(V?))
is unsatisfiable. Since s represents a state that can reach the bad states in k—
1 steps or less, s cannot be part of R* ;. Thus, s ¢ RF_, and R¥ | = —s. We
now need to show that s cannot be reached from RF_,. By Definition 5.3.1,
RF | = INITV IFv ...V IF . Since (A, B) is an inconsistent k-n-pair,
I*_(VO) A TR(VO, V1) A path™* A (5, =p(V?)) is unsatisfiable. By that,
and by the fact that R%_ (V) A path® " A (V¥ —p(V?)) is unsatisfaible
(RE_, is (k—1)-adequte) we know that RE | (V) Apath® A (\/¥_, —p(V1) is
unsatisfiable. Using the same reasoning as before, since s represents a state
that can reach the bad states in k — 1 steps or less, it cannot be reached from
RF | and thus it is immediate that R | A TR = =5’ ] ]

The above lemma states that if a state s can reach a bad state in up to
k — 1 transitions, it cannot be a state in the set Rﬁfl. Consider a Byeak-
interpolant [,, derived from the pair (A, B), and assume s € [, (derived
from the satisfying assignment to I,,(V') A B), then s follows the condition
in Lemma 5.3.6. Therefore, R¥ | = —s and R | A TR = —s' hold and by
that (RE_; A—s)A TR = —s holds. By Definition 5.3.5 —s is relatively induc-

tive with respect to R%_|. Therefore, —s can be inductively generalized [8].
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32: function FINDMISSINGCLAUSES(R,/,,, B, n)

33  C =10

34: while (I, AC)(V)AB == SAT do // When C' = () it is evaluated
as [

35: Get s € I, from the SAT assignment

36: ¢ = INDUCTIVEGENERALIZATION(R, s, (')
37 C=CUc

38: end while

39: STORECLAUSES(n)

40: return C
41: end function

Figure 5.8: Find the clauses needed for the Byeac-interpolant I, to be B-
adequate

Inductive generalization results in a sub-clause ¢ of —s such that (R¥ | A
¢) AN TR = ¢ and INIT = c. c can then be used to strengthen I,, and Rf_,.
Adding the clause ¢ to I, removes s from [,,. This process is then iterated
until I, becomes B-adequate and hence an interpolant. The algorithm for

finding the clauses that make I, B-adequate is described in Figure 5.8.

Theorem 5.3.7. Let (A, B) be an inconsistent k-n-pair. Let I, be a Byeqr-
interpolant and let ¢y, ..., c, be clauses s.t. INIT = ¢; and ¢; is relatively
inductive with respect to RE_| for 1 <i < m. If (I, A Njoi¢j) ANB = L then
Lo AN, ¢ is aninterpolant w.r.t A = (IF_ (VO) AN, ¢;(VO)ATR(VC, V)
and B = path™* A (\/1_, =p(V1)).

Proof. Let us denote I = I, A\, ¢;. Clearly, I A B is unsatisfiable and I
is over the shared variables of A and B. We only need to show that A = I.
Since [, is a Byeax-interpolant, A = [,,. Now we only need to show that
A = A,c. Each ¢ is relatively inductive w.r.t. RF_,. In particular,
IF J(VOYATR(VO VY = ¢ for 1 <i <m. Thus, A= ¢ for 1 <i <m and
therefore A = A", ¢;. Thus, A= 1. O O
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5.3.3 CNF-ITP: Using Byeak-Interpolants in ITP

Above we described how a Byeac-interpolant is transformed into an inter-
polant efficiently for model checking. In this section we present CNF-ITP, a
model checking algorithm that is based on ITP. CNF-ITP uses the method
described above to compute interpolants. In addition, it uses optimizations
that are possible as a result of using interpolants in CNF.

Like the original ITP, our version consists of two nested loops. Since
the computation of interpolants is performed in the inner loop, this is where
we have made most of our modifications and optimizations. Recall that
in the inner loop a BMC formula of a fixed-bound is checked iteratively,
where at each iteration only the initial states are replaced by the interpolants
computed in the previous iteration. Our modified version of the inner loop
appears in Figure 5.9

As before, we consider k to be the unrolling depth set by the outer loop
and used in the inner loop and n to be the iteration during the execution of
the inner loop.

The beginning of the loop is similar to the original inner loop of ITP.
First, a counterexample of length £ is checked (lines: 44-46). If no counterex-
ample exists the pair (A, B) is defined and a Byea-interpolant I, is computed
(line: 50). Then, two optimizations are applied. First, clauses are pushed for-
ward (line: 51). Second, previously computed interpolant is conjoined to the
currently computed Byeai-interpolant (line: 52). We will go into more details
in the next section. Since [, may not be B-adequate, the B-Strengthening
process may need to add clauses to it (to strengthen it). Adding clauses
to I, before B-Strengthening results in a more efficient B-Strengthening.
Moreover, after pushing clauses forward and adding clauses from the previ-
ously computed interpolant, [,, may become B-adequate, thereby rendering
B-Strengthening redundant.

After applying the two optimizations, B-Strengthening is invoked (line 53).

Then the clauses learned during this process are conjoined with R* | and
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I* | (line 56), and I,, (line 57). After conjoining the clauses, I* is an inter-
polant. The rest of the loop is identical to the original inner loop of I'TP.

We now describe the optimizations in more detail.

5.3.3.1 Pushing Clauses Forward

Let us consider the interpolant I¥ computed during the n-th iteration of the
inner loop. Since I* is given in CNF, assume that I* | = {cy, ..., ¢, } where

¢; is a clause for every 1 <17 < m.

Definition 5.3.8. Let M be a transition system and let F' = {¢y,...,¢n} be
a formula in CNF where ¢; is a clause over V for every 1 <i < m. A clause
¢; for some 1 < i < n is said to be pushable if F(V) A TR(V,V') = ¢;(V')
holds.

After the computation of a Byeac-interpolant I,,, we try to find pushable
clauses in the previous interpolant. Those clauses can be made part of the
new interpolant. More precisely, if a clause ¢; € I* | is pushable then we
add it to I, such that I, = I, A ¢;. Adding the pushable clauses to the

Byeax-interpolant strengthens it and may make it B-adequate.

5.3.3.2 Incremental Interpolants

The outer loop of CNF-ITP (and ITP) increases the unrolling depth when a
more precise over-approximation is needed. Let I be the interpolant com-
puted in the first iteration of the inner loop for k = 1 and let I? be the in-
terpolant computed in the first iteration of the inner loop for k = 2. Clearly,
since both I and I? over-approximate the states reachable in one transition
from the initial states, I] A I is also an over-approximation of the same set of
states. Usually, the size of the interpolants is an issue. Therefore, whenever
the inner loop terminates and the bound is increased, all computed inter-
polants are discarded and are not re-used [42]. Since our method produces

interpolants in CNF that are usually small, this conjunction does not create
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42: function COMPUTEREACHABLECNF (M p, k)

43:  RE=INIT, I} = INIT, n = 1

a4:  if IF A path®™ A (=p(V1) V...V —p(V*)) == SAT then
45: return cex

46: end if

47: repeat

48: A=TF (VOYATR(VO, V)

49: B = path™™ A (=p(V1) v ...V —p(VF))
50: I, = GETBWEAKINTERPOLANT(A, B)
51: PUSHINDUCTIVECLAUSES(/,,,n — 1)

52: Ly=I,NIF"  //Fork=1,10=T
53: C = FINDMISSINGCLAUSES(RF . I,,, B)
54: " =1,

55: for all c € C do

56 RF  =RF  Ac  //Implicitly conjoining ¢ with I*_,
57: IF=T1FAc

58: end for

59: if I¥ = RF_, then

60: return fizpoint

61: end if

62: RF=RE Vv IF

63: n=n+1

64:  until I¥_| Apath®™ A (=p(V1) V...V —p(VF)) == SAT
65: end function

Figure 5.9: Inner loop of CNF-ITP

huge CNF formula. This re-use of previously computed interpolants increases
the efficiency of CNF-ITP as compared to I'TP.

5.4 Experimental Results

Our approach includes two major parts. The first part computes a Byeax-
interpolant from a resolution refutation, and the second part applies B-

Strengthening and a model checking algorithm CNF-ITP. The computation
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of Byeak-interpolants was implemented on top of MiniSAT 2.2. CNF-ITP
and ITP were implemented in a closed-source model checker. For 1C3 we
used the publicly available ABC framework®. In the results we also include
the runtime for ABC’s ITP implementation in order to show the efficiency
of our implementation.

To evaluate our method we used a representative subset of the HWMCC’12
benchmark set. All experiments were conducted on a system with an Intel
E5-2687W running at 3.1GHz with 32GB of memory. Timeout was set to
900 seconds. As mentioned, we sought to test two aspects: the size of the
resulting interpolants and the impact on model checking.

In Figure 5.10 a comparison between interpolants sizes is presented. Note
that in the majority of cases, interpolants generated by CNF-ITP are orders
of magnitude smaller than those generated by the traditional method (For
ITP, the number of clauses is after translation of the interpolants to CNF).
Considering the entire set of benchmarks we see that CNF-ITP generates in-
terpolants that are 117 times smaller than those generated by the traditional
method.

Comparing the run-time of the model checking algorithms shows that
our CNF-ITP algorithm outperforms ITP and IC3 in terms of the overall
run-time on this subset. CNF-ITP outperforms ITP on 32 instances, where
in 16 of these instances I'TP times out. ITP outperforms CNF-ITP in 21
cases only. CNF-ITP outperforms IC3 in 18 cases, but IC3 is preferable in
23 cases. CNF-ITP is the absolutely best algorithm in 14 cases. Figure 5.11
shows a comparison of CNF-ITP to the other two algorithms.

Table 5.1 presents a detailed analysis of the experiments. We chose all
valid benchmarks that either ITP or CNF-ITP could prove in the given
time frame (55 cases). Consider Table 5.1. As was shown in Figure 5.10
our method generates significantly smaller interpolants in almost every case.

Summarizing the average size of all computed interpolants shows that CNF-

3https://bitbucket.org/alanmi/abc

95



10000000

1000000

100000

10000

1000

1 10 100 1000 10000 100000 1000000 10000000

Figure 5.10: Comparing sizes of generated interpolants. Y-axis represents
interpolants generated by CNF-ITP and X-axis represents interpolants gen-
erated by ITP.
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ITP generates interpolants that are 49 times smaller than those generated by
ITP. Note that average interpolant computation time is in the same ballpark
for both methods.

Another interesting aspect of the comparison between CNF-ITP and ITP
is the convergence bound. We can see that in many cases the bound is
different. This indicates that the strength of the interpolants computed by
the two methods is different and affects the results of the model checking
algorithm.

Analysis of the results in the table shows that whenever the number of
clauses in the interpolants computed by CNF-ITP is significantly smaller
than the number of clauses in the interpolants computed by I'TP, the former
performs better.

In the cases where the size of interpolants is fairly the same, I'TP performs
better. This can be explained by the fact that I'TP computes small inter-
polants when the resolution refutation is small. Therefore, computing the
interpolants in I'TP is more efficient in these cases since it only requires lin-
ear traversal over the resolution refutation. In contrast, our method requires
B-Strengthening, a process that is in some cases expensive. We conclude that
when the resulting interpolants in I'TP are large, CNF-ITP has a significant
advantage in the vast majority of cases.

When analyzing results from the entire HWMCC’12 benchmark, we have
found that in CNF-ITP 95% of the clauses are generated using SIG. This
result shows the importance of SIG when computing the interpolants. Yet,
B-strengthening is also critical, since only around 25% of the instances were
solved solely by SIG.

5.5 Conclusions

CNF-ITP uses key elements of ITP and IC3. On the one hand, like ITP,

CNF-ITP uses the resolution refutation to get information about the reach-
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able states. This information is only partial, and therefore CNF-ITP also
uses inductive generalization, a key element of IC3, to complete the com-
putation of reachable states. Since the reachable states are computed by
means of over-approximations, there are cases in which the precision of these
approximations must be increased. To do so, CNF-ITP uses unrolling, like
in I'TP. In addition, it uses the fact that interpolants are given in CNF and
tries to reuse clauses that have already been learnt (both by pushing the
clauses forward and by using previously computed interpolants). CNF-ITP
can be viewed as a hybridization of the monolithic approach (ITP) and the
incremental approach (IC3). We believe that there are well-founded grounds
for comparing the three algorithms, and that further development can bring
about an even tighter integration of ITP and IC3. This discussion, however,

is outside the scope of this paper and is an avenue for future research.
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(a) Runtime ITP vs. CNF-ITP.
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(b) Runtime IC3 vs. CNF-ITP

Figure 5.11: Y-axis represents CNF-ITP’s runtime in seconds. X-axis rep-
resents runtime in seconds for the compared algorithm (IC3 or ITP). Points
below the diagonal are in favor of CNF-ITP.
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Table 5.1: Experiment parameters on part of the benchmarks. Name: property
name; f Vars: number of state variables in the cone of influence; & is the bound
of the outer loop at which fixpoint was found; total, is the total number of it-
erations executed by the inner loop; clausesayg is the average number of clauses
representing each computed interpolant; Extract[s] is the average time to compute
an interpolant in seconds; MC][s] is the total runtime of the algorithm in seconds.
Values in boldface are the best of all three. Underlined runtime is for cases where
CNEF-ITP outperforms ITP and Italic is for cases where CNF-ITP outperforms
1C3.

103amc | TTPanc TP CNF-ITP
Name fVars || MCls] MC[s] k | total, | clausesay, | Extract[s] | MC[s] | k | total, | clausesyy, | Extract[s] | MC[s]

beembkrylbl 76 4.68 758 15 72 94495 3.14 792 20 83 1830 0.65 248

Total 26442 33920 3279594 143 26519 66454 326 22996




Chapter 6

Lazy Abstraction and
SAT-based Reachability

This work is based a paper that appeared in [58]. In this work we introduce
a novel lazy abstraction-refinement technique for hardware model checking,
integrated with the SAT-based algorithm 1C3 [8].

Most SAT-based model checking algorithms are based on an unrolling of
the model’s transition relation in order to traverse its state space. In contrast,
the recently introduced 1C3 algorithm [8] avoids such unrolling. To verify a
safety property, IC3 gradually builds a series of sets of states Fy,..., F, ...,
where F; over-approximates the set of states reachable within ¢ steps from
the initial states. The computation moves back and forth along the F;’s and
strengthens them by eliminating unreachable states. This is done via local
reachability checks between consecutive sets F; and Fj,,. 1C3 either reaches
a fixpoint, in which case all reachable states satisfy the desired property, or
returns a counterexample.

Abstraction-refinement is a well known methodology for tackling the
state-explosion problem. Abstraction hides model details that are not rele-
vant for the checked property. The resulting abstract model is then smaller.

Lazy abstraction [36, 44], developed for software model checking, is a spe-
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cific type of abstraction that allows hiding different model details at different
steps of the verification.

In this work we develop, for the first time, a lazy abstraction-refinement
framework for hardware. We use the visible variables abstraction [40], which
is particularly suitable for hardware. However, we use it in a lazy manner in
the sense that different sets of visible variables are used in different iterations
of the state-space traversal.

We find the IC3 algorithm most suitable for lazy abstraction since its state
traversal is performed by means of local reachability checks, each involving
only two consecutive sets. Thus, at each check a different set of variables is
relevant.

Our model checking algorithm, called L-1C3, thus integrates a lazy abstraction-
refinement mechanism into IC3. Similarly to IC3, L-IC3 computes a series
of over-approximating sets F;. However, L-1C3 considers abstractions of the
model during this computation. When constructing F;.;, we determine a
set of variables U;, needed for its construction, and abstract both states and
transitions accordingly. The variables in U; are referred to as “visible”, while
the others are invisible and treated as inputs.

The key ingredients of L-IC3 are therefore a series F of over-approximating
sets of states F; and an abstraction sequence U of sets of variables U;.

L-1C3 works in stages. Each stage consists of an abstract model checking
step, followed by a refinement step. At a given stage, the abstract model
checking extends both F' and U and checks if they include a potential abstract
counterexample. If not, the sequences are further extended. If a potential
abstract counterexample is found, the algorithm strengthens the sets F; by
eliminating abstract states that might be a part of an abstract counterexam-
ple.

We use a nonstandard notion of abstract counterexample, based on both
F and U. It consists of a sequence of abstract states connected by abstract

transitions, satisfying:
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1. each transition is based on a different abstraction U;, and
2. each abstract state intersects the set F; at the corresponding time frame

Our notion of counterexample reflects the incorporation of lazy abstraction
into the mechanism of computing F.

If an abstract counterexample is found, meaning that no strengthening is
possible anymore based on the abstractions, the refinement step is invoked.
Refinement applies just one iteration of a concrete variation of IC3, on the
F computed by the abstract model checking. By doing so, it either finds a
concrete counterexample or strengthens the F;’s so that all concrete coun-
terexamples of length k are eliminated. In the latter case, the U;’s are also
refined by adding more visible variables to each of them, as needed and where
needed. Once refinement is finished we move to the next L-IC3 stage and
the abstract model checking is re-invoked, continuing the computation from
iteration k+1, with the refined sequences. This makes L-1C3 incremental.

L-IC3 terminates with either a fixpoint, in which case we conclude that
the system satisfies the property, or with a concrete counterexample.

In summary, the main contribution of our work is a novel lazy abstraction-
refinement technique for hardware. To the best of our knowledge this is the
first time lazy abstraction is considered in the context of hardware. Our
abstract model checking and refinement are SAT-based. Both avoid unrolling
of the transition relation.

In order to evaluate our algorithm we compared it with IC3 on a set of
large industrial designs and properties. We obtained speedups of up to two
orders of magnitude. Our experiments demonstrate that our lazy abstraction
indeed uses different sets of variables in different time frames. Moreover, only

a small portion of the design’s variables are used.
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6.0.1 Related Work

28] and [10] suggest optimizations and extensions to IC3, but they do not
combine it with a lazy abstraction-refinement mechanism ([28] suggests the
use of abstraction for IC3 but without implementation details nor results).
In [45, 35, 32, 18, 33|, SAT-based refinement is introduced. However, they
use an unrolling of the model while we use local checks a-la IC3. Similarly
to [45, 18], we also exploit an unSAT-core for refinement. However, we never
unroll the model, while [45] does. Further, [45] is not incremental since after
refinement it resumes its (abstract) model checking from time frame 0.

IC3 [8] is sometimes also viewed as an abstraction-refinement algorithm,
since it refers to over-approximated sets F; and the strengthening of these
sets resembles refinement. However, the underlying model used by IC3 is
concrete, and only the concrete transition relation is considered. We, on the
other hand, alternate between abstract transition relations (in the abstract
model checking step) and the concrete transition relation (in the refinement
step). Our algorithm thus adds a layer of abstraction-refinement on top of

this over-approximation-strengthening mechanism.

6.1 Preliminaries

In this chapter, we will use a slightly different version of a transition system
than the one given in Defintion 2.0.1. In the following definition, we explicity

distinguish state variables from input variables.

Definition 6.1.1. A finite state transition system (a model) is a tuple M =
(V,U, INIT, TR) where V is a set of Boolean variables, U C V is a set of
state variables, V' \ U is a set of input variables, INIT(V) is a propositional
formula over V' describing the initial states, and TR(V, V') describes a total
transition relation which is defined as a propositional formula over V' and the
next-state variables V' = {v' | v € V'}.
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The transition relation is described using next-state functions for each

state variable. Namely, TR(V, V') = A (V' = f,(V, V")) where f,(V,V’) is a
vel
propositional formula that assigns the next value to v € U based on current

and next-state variables. Note that for an input variable v € V'\ U, f, is not
defined.

Definition 6.1.2. Let F be an MFRS (recall Definition 2.4.1). A formula 7
is inductive up to j, if F; An A TR = 1. n is an invariant up to level j if
F; = n holds for each i < j.

Note that if 7 is inductive up to j then F; An A TR = 1’ holds for each
i < j. This follows from the monotonicity of . Further, if 7 is an invariant
up to j then it is inductive up to level j — 1, and in addition Fy = n
(initialization). However, the opposite implication does not necessarily hold

since the F} sets are over-approximate).
pp

Definition 6.1.3. Let F' be an MFRS. A formula 7 is a potential invariant
up to j, if the sequence F'* obtained by setting F* = F;An for every i < j and
F!" = F; otherwise remains an MFRS. Note that 7 is (trivially) an invariant

up to j w.r.t. Fv.

Thus, a potential invariant 7 can safely be used to strengthen the F;
components, turning 7 into an invariant. Using the notion of a potential
invariant we can now say that 7 is a potential invariant up to j iff it is
inductive up to level j — 1, and in addition Fy = 7 (initialization).

The algorithms discussed in this chapter use the following simple obser-

vation:

Lemma 6.1.4. Let F' be an MFRS and 1 a formula such that n is an in-
variant up to j — 1 and F;_y ATR = n'. Then n is a potential invariant up
to j.

Note that given that 7 is an invariant up to j — 1, the requirement F;_; A
TR = n' is equivalent to requiring that 7 is inductive up to j — 1 since in
this case Fj_1 An = Fj_;.
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6.1.1 SAT-based Reachability via I1C3

IC3 [8] is a SAT-based model checking algorithm that, given a model M
and a property AGp, computes increasingly long sequences F(M,p). The
algorithm works iteratively, where at iteration k, the MFRS of length k£ + 1
is extended to an MFRS of length k£ + 2 by initializing the set Fj,; and
possibly updating previous sets (with index ¢ < k + 1). The computation
continues until either a counterexample is found or a fixpoint is reached (i.e.
F; 1 = F; for some 1).

One of the main features of IC3 is the fact that no unrolling of the tran-
sition relation is needed. We give a brief overview of how it operates. More
details are given along the chapter as needed. For the exact details we refer
the reader to [8].

IC3 starts by checking if INIT N\ —p or INIT N TR A —p is satisfiable,
in which case a counterexample of length zero or one is found and the al-
gorithm terminates. If both are unsatisfiable, Fy is initialized to INIT and
F is initialized to p. (Fp, Fy) is an MFRS (it satisfies the conditions in
Definition 2.4.1).

IC3 extends and updates F', while strengthening the F;’s. The kth itera-
tion starts from an MERS (Fp, ..., Fy). Then Fj, is initialized to p. Clearly,
Fy = Fj.1 and Fy,q = p hold. Therefore, the purpose of strengthening is
to ensure that Fj, A TR = F}_ ;. This is done by checking that Fj, A TR A\ —p'
is unsatisfiable. If this formula is satisfiable then a state s € F}, is retrieved
from the satisfying assignment. s is a bad state since it reaches —p (and by
that violates Fi, A TR = F}_,). At this point, either s is reachable from
INIT, in which case a counterexample exists, or s is unreachable and needs
to be removed from Fj. In order to determine if s is reachable, IC3 checks
the formula: F,_y A TR A s'. If this formula is unsatisfiable, then s can be
removed from Fj (since the property Fyp_y A TR = F] of an MFRS holds
without it as well), and the same process is repeated for other states in Fj

that can reach —p (if any). However, if F_; A TR A §' is satisfiable, a pre-
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decessor t € Fj_; of s is extracted and handled similarly to s in order to
determine if ¢ (which is also a bad state) is reachable from INIT or not. IC3
therefore moves back and forth along the F;’s, while retrieving bad states b
and checking their reachability from INIT via local reachability checks of the
form F; A TRAV. During this process, the F;’s are strengthened by removing
bad states that are not reachable!. If a state in Fy = INIT is reached during

the backwards traversal, then a counterexample is obtained.

Definition 6.1.5. Satisfiability checks of the form F; A TR A n (where
Vars(n) C V U V') are called i-reachability checks.

6.1.2 Abstraction

As mentioned before, in this chapter we consider the “visible variables”
abstraction [40], which is particularly suitable for hardware. Let M, =
(V,U,INIT, TR) be a model and let U; C U be a set of state-variables.
We refer to U; as the set of “visible variables”.

Given U;, we consider an abstract model M; = (V;, U;, TR;) of M. where

TR, = N\ (v = f,(V,V')) is an abstract transition relation, and V; = {v €
vel;

V' |v e Vars(TR;)Vv' € Vars(TR;)} C V. Note that the behavior of invisible
state variables (in U \ U;) is nondeterministic.

We do not introduce an abstraction of INIT as part of M; since we always
consider the concrete set of initial states. M; is an abstraction of M., denoted
M. < M;, in the sense that both its set of states and its transition relation
are abstractions of the concrete ones, as explained next. M, induces a set
of abstract states S; which includes all valuations to V;. Specifically, each
concrete state s € S is abstracted by the abstract state s; € S; that agrees
with s on the assignment to the joint variables in V;. In this case we write

s =< s;. We sometimes refer to s; as the set of concrete states it abstracts:

'In fact, in order to remove a bad state b from Fj, IC3 finds a clause ¢ that is an
invariant up to ¢ and implies —b, and adds ¢ to F; as a conjunct.
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{s € S|s = s;}.

In addition, TR is abstracted by TR; in the sense that TR = TR,.
Formally, the relation {(s,s;) | s =< s;} is a simulation relation from M, to
M;.

Given an MFRS F(M.,p) = (Fp, ..., F}) and an abstract model M;, we
say that a formula 7 is inductive up to level j w.r.t. M;, if F; AnA TR, = 1.

Lemma 6.1.6. Any formula inductive up to j w.r.t. M; is also inductive up
to 53 w.r.t. M,.

The lemma holds since TR = TR;. When we do not explicitly mention
a model, we refer to inductiveness w.r.t. M,.. The notion of an invariant

always refers to M..

6.1.3 Lazy Abstraction

As mentioned above, lazy abstraction [36] allows to use different details of
the model at different iterations of the state-space traversal. We adapt the
notion of lazy abstraction to abstraction based on wisible variables [40], and

allow different variables to be visible at different time frames.

Definition 6.1.7. An abstraction sequence w.r.t. a model M, is a sequence

U = (Uy,...,U) where U; C U for 0 < i < k, is a set of visible state-

variables. U is monotonic if U; C U;y1 for each 0 <1 < k.

An abstraction sequence U represents different levels of abstraction of M,.
It induces a sequence of abstract models (M, ..., M) where M; is defined as
in Section 6.1.2. If U is monotonic, the induced sequence of abstract models
is also monotonic in the sense that My » ... = M, »= M..

Definition 6.1.8. Let U = (Uy,...,U;) be a monotonic abstraction se-
quence and F(M.,p) = (Fy, ..., F},) an MFRS. A sequence s, ..., s; of ab-
stract states where 0 <7 < j < k+11is an abstract path from i to j it
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1. foreach i <1< j—1, (s1,841) = TR, and
2. for each i <1 < min{j, k}, s; N F; # (2.

An abstract path sg,...,s; from 0 to j is an abstract counterexample of
length j if s; N —=p # 0.

Note that the definition above is not standard. It refers to different
transition relations at different steps. Also, it requires the abstract states to
be part of the corresponding F; in the sense that s; N F; # (. Unlike with
concrete states, it is possible that s; N F; # () but s; € F;. As a result we do

not write s; € Fj.

Definition 6.1.9. An abstraction sequence (Uy", ..., Uy") is a refinement of

an abstraction sequence (Uy, ..., Uy) if U; C U;" for each i.

6.2 Lazy Abstraction and I1C3

In this section we describe our proposed algorithm for lazy abstraction, called
L-IC3. The key ingredients of L-IC3 are an abstraction sequence U that

induces different abstractions at different time frames as well as an MFRS

F.

L-1C3 starts with an initialization step and then works in stages (Fig-
ure 6.1). Its initialization (lines 2-5) is similar to the initialization of IC3 with
one exception. If no counterexample of length 0 or 1 exists, then in addition
to initializing F to (Fy = INIT, Fy = p), it initializes U to (Uy = Vars(p)).
Clearly, after initialization, F' is an MFRS.

Each L-IC3 stage (lines 6-10) consists of an abstract model checking step
and a refinement step, both performed by variations of IC3. U and F are

updated in both steps.

2Note that s; is an abstract state thus representing a set of concrete states. Therefore,
an intersection (N) is used. Also, requirement (2) dismisses paths that are known to be
spurious based on F. min{j, k} is used for the case where j = k + 1, in which nonempty
intersection is required only up to k.
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1: function L-IC3(p)

2 F = (INIT,p); U = (Vars(p))

3 if INIT-IC3(F,U,p) == cex then
4: return cex

5: end if

6 while A-IC3(F,U) == abs-cex do
7 if REFINE(F,U) == cex then
8
9

return cex

end if
10: end while
11: return fixpoint

12: end function

Figure 6.1: L-1C3

The abstract model checking A-IC3 gradually extends and updates the
MFRS F by adding F; sets and strengthening the components of F until
either a fixpoint is reached, or an abstract counterexample is found (line 6).
In the former case, the property is proved and L-IC3 terminates (line 11). In
the latter case, the counterexample is abstract since it is computed w.r.t. the
abstract transitions. However, it is also restricted by F' (see Definition 6.1.8).
A refinement is then performed (line 7). If the refinement finds a concrete
counterexample then it terminates. Otherwise it refines U and updates F into
an MFRS (of the same length). A new L-IC3 stage (line 6) of abstraction-
refinement then begins, invoking A-IC3 with the updated F and the refined
U.

Both the abstract model checking and the refinement update the compo-
nents of the MFRS, however only the abstract model checking extends it by
adding sets. The abstract model checking step also adds new components
to the abstraction sequence when needed, but they are simply initialized to
the last component in the sequence. Existing components of the abstraction
sequence are updated (refined) only by the refinement.

Altogether, an invocation of L-IC3 results in either a fixpoint (in which
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case the property is proved) or a concrete counterexample.

Iterations of L-IC3 The stages of L-IC3 should not be confused with the
iterations of IC3 as a stage may extend £ by more than one set. Similarly
to 1C3, we define an teration of L-1C3 to include the effort involved in the
extension of F' by one set. In iteration k, F' is extended from (Fy, ..., F})
to (Fo, ..., Fy, Fyr1). If no abstract counterexample is found, the iteration
is performed in full by A-IC3. In fact, several iterations can be performed
by a single invocation of A-IC3 (within a single stage of L-IC3), extending F
by several sets (as long as no abstract counterexample is found). When an
abstract counterexample is found, the corresponding iteration that starts at

A-IC3 continues at the refinement step.

6.2.1 Abstract Model Checking via A-IC3

The abstract model checking algorithm, A-IC3 (Figure 6.2), either finds an
abstract counterexample (line 22), or reaches a fixpoint (line 26) by comput-
ing an MFRS F.
Using different abstractions The computation of F is done using a vari-
ation of IC3 which considers a sequence of abstract models, induced by a
monotonic abstraction sequence U = (Uy...,Uy). A-IC3 uses the abstrac-
tion sequence U and extends it as necessary, but does not change its existing
components. Both abstract transition relations and abstract states are used.
Recall that IC3 performs ¢-reachability checks of the form F; A TR A n.
A-IC3 also performs these checks (within STRENGTHEN, line 20), but instead
of using the concrete TR it uses the abstract TR;. This means that when
traversing the model’s state space, A-IC3 uses different abstract transition
relations at different time frames. Further, when F; A TR; A n is satisfiable,
A-IC3 retrieves an abstract state s, € M, from the satisfying assignment.
This abstract state is either used to strengthen F, or it is part of an abstract

counterexample.
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13: function A-IC3(F,U)
14: k= |F’_— 1
15: while F'. fixpoint() == false do

16: U = U1

17: U.add(Uy,)

18: Fpi=p

19: F.add(Fyi1)

20: result = STRENGTHEN (F, U, k)
21: if result == abs-cex then
22: return abs-cex

23: end if

24: k=k+1

25: end while

26: return fixpoint

27: end function

Figure 6.2: A-IC3

On the other hand, when A-IC3 strengthens some set F;,; by adding to
it a clause ¢ which is initial (i.e. Fy = ¢) and inductive at M; up to i, i.e.
F, Nc AN TR; = ¢, then the clause c is added to all Fj such that j <, even
though it might not be inductive w.r.t. to TR;. The justification is that c is
inductive w.r.t. the concrete model (as TR = TR;). As a result, even though
abstract models are used, the obtained MFRS satisfies the requirements of
Definition 2.4.1, which refer to the concrete transition relation TR. It does
not necessarily satisfy the requirements of Definition 2.4.1 w.r.t. the abstract
transition relations. To emphasize this, we sometimes refer to the sequence
as a concrete MFRS.
Incrementality A-1C3 is an iterative algorithm. The iterations of L-IC3
and A-IC3 coincide, except that when an abstract counterexample is found,
an iteration of L-IC3 consists of an iteration of A-1C3 followed by refinement.
If A-IC3 finds a counterexample at iteration k it returns. After refinement
(line 7) A-IC3 is re-invoked with an updated F that is an MFRS of the same
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length. The computation of F' resumes from iteration k + 1 (line 14)3.

Iterations In iteration k > 1, the MFRS (Fy,..., Fi) and the abstraction
sequence (Uy, ..., U_1) are extended by 1 and updated as follows (see Fig-
ure 6.2).

1. Check if a fixpoint is reached. If not:
2. Uy is initialized to U_; and added to U.
3. Fjq is initialized to p and added to F.

4. The sets Fy, ..., Fyy1 are strengthened iteratively until (Fp, ..., Fyy1)

becomes an MFRS, or an abstract counterexample is found.

Note that if no counterexample is found, then an iteration of A-IC3 and
an iteration of L-IC3 coincide. However, if an abstract counterexample is
found, then the corresponding iteration of L-IC3 includes the iteration of
A-IC3 as well as the following refinement step.

Below we describe items 2 and 4 in more detail.

(2) Extending U: U, is initialized to Uj_; (line 16). This is aimed at
immediately eliminating from T'Rj spurious transitions that lead from states
in F,_1 C F} to -p and were already removed from TRy ;. Note that this
initialization does not imply that the U; sets will always be equal, since
refinement might change them in different ways.

(4) Iterative Strengtheming of F: At the beginning of the iteration,
(Fy, ..., Fy) is a concrete MFRS. However, the addition of Fy; = p might
cause the implication Fy A TR = F}j1 not to hold. When considering the
abstract models and transition relations (as does A-IC3) this means that
Fy N TRy = Fj4q does not hold, i.e., there exists a bad abstract state at Fj
that reaches —Fj,1; = —p. To ensure that Fy A TR = Fj1, A-1IC3 attempts

to eliminate this state from Fj (even if in fact it only violates the abstract

#An abstract counterexample is found w.r.t. F={(F,... ; Fi41) produced in iteration
k, where |F| = k + 2. When A-IC3 is re-invoked, k is set to |F| — 1=k + 1.
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implication and not the concrete one). To do so, A-IC3 first makes sure
that there is no abstract predecessor of the bad state in Fj_;. If there is
one, then A-IC3 also tries to eliminate it since it contradicts the implication
Fr_1 N TRy = F}, (and hence potentially violates F,_y A TR = F}), and so
on. Each of these states is also a bad abstract state that reaches —p along an
abstract path in Fp, ..., Fy. In this sense, A-IC3 obtains an MFRS of length
k4 1 by strengthening the F;’s to exclude bad abstract states that reach —p
along an abstract path in Fy, ..., F;. A sequence of such bad states of length
k + 1 is an abstract counterexample of length k£ + 1.

A-IC3 can also be viewed as trying to eliminate all (suffixes) of abstract
counterexamples of length k£ + 1 w.r.t. (Fp,..., Fy). From this point of
view, A-IC3 identifies abstract states that might be a part of an abstract
counterexample at a certain time frame, and attempts to block them by
learning corresponding invariants. Recall that the abstract counterexamples
we consider are restricted not only by the abstract transition relations, but
also by the F; sets (Definition 6.1.7).

Technically, bad abstract states are described by abstract proof obliga-

tions (similarly to the notion of proof obligations used in 1C3).

Definition 6.2.1. An abstract proof obligation, or an obligation in short, is

a pair (sq,n) consisting of a level n < k and an abstract state s, such that
1. s, is a “bad state” that reaches —p along some abstract path ,
2. T8, is an invariant up until n,
3. 8¢ N F,i1 # 0, and
4. F,, reaches s, in one step of TR,,.

Thus n + 1 is the minimal level intersecting s,, and F), reaches s, in one
abstract step. Note that it is possible that F, cannot reach s, along the
concrete transitions. A-IC3 maintains two sets of obligations - may and

must.
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Definition 6.2.2. An obligation (s,,n) is a must obligation w.r.t. iteration
k if s, must be shown unreachable from F}, in one step w.r.t. TR, in order
to ensure that no abstract counterexample of length k£ + 1 exists. All other

obligations are may obligations w.r.t. k.

If s, can reach —p via an abstract path from level n + 1 to level k + 1,
then (s,,n) is a must obligation: unless s, is blocked from F},;; (by removing
from F,, all states that reach s, in one step), an abstract counterexample of
length k& + 1 would exist. The same violation may also be reached from s,
in later levels Fj, n+1 < j < k+ 1, in which case it will be a suffix of a
longer abstract counterexample with a longer prefix up to s,. Therefore, we
may also want to block s, in Fj, n+1 < j < k+ 1. However, since different
abstract transition relations are considered at each level, it is also possible
that the same path leading from s, to —p is not valid from level j > n + 1
since, for example, U; D U, and hence the first transition along the path
does not satisfy T'R;. In this case, a longer counterexample is not a valid
abstract path since its suffix is not valid. The attempt to block a state s,
that is known to reach a violation from level n+1 in levels greater than n+1
creates may obligations®.

The may obligations are not required to be blocked, but blocking them
can prevent A-IC3 from encountering the same obligations/states in future
iterations. On the other hand, if we report an abstract counterexample based
on a may obligation, it is possible that no real abstract counterexample exists,
resulting in an unnecessary refinement step which can damage the efficiency
of the algorithm. We therefore greedily try to handle may obligations and
strengthen F' accordingly, but refrain from reporting abstract counterexam-
ples based on them. Note that in the latter case, if the may obligation is in
fact a must w.r.t. some greater k, then it will reappear as a must obligation

in the following iterations.

41C3 does not make a distinction between may and must obligations and handles them
all the same since in the concrete case, a longer counterexample is always a valid path (its
suffix reaching a violation is always valid).
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In order to handle an obligation (s,,n) and show s, to be unreachable
from F), in one step, A-IC3 attempts to strengthen F,, by extracting prede-
cessors t, of s, that satisfy F, A TR, A s,, defining new proof obligations
based on them, and handling these obligations (by the same procedure). If
F,, is successfully strengthened s.t. F, A TR, A s, becomes unsatisfiable,
then —s, becomes an invariant up to n + 1. s, is blocked by strengthening
Fy, ..., F,4q accordingly.

Key procedures used by A-IC3 are described in Section 6.2.2.

6.2.2 Detailed Description of Strengthening

We now describe the procedures used by A-IC3 in detail.

Strengthen (Figure 6.3)

STRENGTHEN starts by checking Fi, A TR A—p’ (line 29). If it is unsatisfiable,
then F, A TR A —p’ is unsatisfiable as well (since TR = TR},). Thus F is
already an MFRS and no further strengthening is needed.

Assume Fj, A TR, A —p' is satisfiable. An abstract state s, € M, that
reaches —p in one abstract step is extracted from the satisfying assignment,
meaning s, N Fy # (). All concrete states in s, N F}, can reach —p via TR,
and therefore, if the property is to be proven, s, must be blocked in Fj.
Otherwise, an abstract counterexample exists.

In order to block s, in F}, STRENGTHEN calls BLOCKSTATE on the bad
state s, at level k (line 32).

Lemma 6.2.3. s, satisfies the requirements of BLOCKSTATE at level k.

Proof. Clearly, s, is a “bad state” at level k as it reaches —p in one abstract
step and s, N F}, # (), since s, was retrieved from a satisfying assignment to
F, N TR, AN —p', ie. a satisfying assignment to Fy. Furthermore, —s, is an
invariant up to k — 1, otherwise the same violation would have been found

and eliminated in the previous iteration. ] ]
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28: function STRENGTHEN(F,U k)

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

while F, A TRy A —p' == SAT do
obligations = ()
retrieve abstract predecessor sy
if BLOCKSTATE(F,sy,k,k,must) == abs-cex then
return abs-cex
end if
while obligations # () do
((sa,m), handleMay) = CHOOSENEXT (obligations)
if F, A TR, A s, == SAT then
retrieve abstract predecessor t,
if BLOCKSTATE(F ,t,,n,k,must) == abs-cex then
if handleMay then
obligations.clearAllMust()
else
return abs-cex
end if
end if
else
obligations.removeMust(sq,n)
BLOCKSTATE(F,54,n + 2,k,may)
end if
end while
end while
PROPAGATECLAUSES(F)
return done

54: end function

Figure 6.3: Iterative strengthening of A-1C3
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BLOCKSTATE either finds a counterexample or initializes the set(s) of
obligations to reflect the need to block s, (and possibly adds invariants to
the F}’s).

STRENGTHEN then handles the proof obligations one at a time. CHOOSENEXT
(line 36) first considers obligations from the must set only. Obligations are
chosen in increasing order of their time frames. If the must set becomes
empty, then as long as the may set is not empty, one may obligation with a
minimal time frame is moved from the may set to the must set. STRENGTHEN
then continues, with the exception that counterexamples are no longer re-
ported.

Given a proof obligation (s,,n):

e If F,, can indeed reach s, in one (abstract) step, i.e., F,, AN TR, A s,
is satisfiable, then a predecessor t, of s, s.t. t, N F, # () is extracted
from the satisfying assignment (line 38). By Lemma 6.2.4 (see below),
ta N F; = () for all i < n. Thus —t, is an invariant up to n — 1. Next,
the state t, needs to be blocked (eliminated) from level I = n (line 39).

e When F, A TR, A s!, becomes unsatisfiable, the proof obligation (s,,n)
is removed (line 47) since s, can no longer be reached from level n. In
fact, s, is now a potential invariant up to level n+1 (see Lemma 6.2.6
below).In order not to encounter s, in later iterations, we speculatively
attempt to block (eliminate) s, from level [ = n + 2, while using the
may parameter (line 48). The call to BLOCKSTATE also adds —s, (or

a stronger clause) as an invariant (line 71).

Lemma 6.2.4. Let (s,,n) be a proof obligation, and let t, be an abstract
state such that (t,, sq) = TR,. Then t, N F; =0 for every i < n — 1.

Proof. Let (s4,n) be a proof obligation. In particular, s,NF, 1 # 0. Suppose
further that (t,,s,) E TR,. We show that t, N F; = () for every i < n — 1.
Since F; C F,_; for every 1 < n — 1, it suffices to show that t, N F,,_; = 0.
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At the beginning of the n — 1'th L-1C3-iteration (which added F,), it was
the case that s, N F,, # (). This is because F}, was initialized to p, and clearly
SqNp # 0 (since F,11 € pand s, N F,yq # 0). On the other hand, at the
current L-IC3-iteration s, N F,, = (), since for a proof obligation (s,,n), 78,
is an invariant up to n.

This means that there is a set of clauses C that were added to F,, such
that pN( C'Ns, = 0 and for every ¢ € C, s, € ¢ or equivalently s, N ¢ # ()
(other clauses are not considered as they do not contribute to blocking s,
anyway). Every clause ¢ added to F}, is inductive at some time frame > n—1
(see Lemma ?7?). Therefore, for every ¢ € C there is a frame i. > n — 1 such
that F;, A ¢ A TR;, = . Furthermore, since s, N F, 11 # 0, at least one of
these clauses was not added to Fj,.; which ensures that there is some c € C'
such that i, < n — 1 (recall that when ¢ is inductive at i. it is added up
to i, + 1), i.e. i. = n — 1. We denote such a clause by ¢q. We have that
Fo_1NcoyNTR,—1 = ¢, or equivalently F,,_1 Aco A TR,,_1 AN—cy == UNSAT.

Now assume to the contrary that ¢, N F,,_; # (). To reach a contradiction
we first note that since (t,,s.) = TRy, it is also the case that (t,,s.) |
TR,,_1. Therefore by our assumption we have that (¢,,s,) | Fr1ATR,—1 =
F,_ 1 Ncog N TR, _1. The equivalence is since ¢ is a clause in Fj,_;. Together
with the property that s, N =y # 0 (since ¢y € C' and by the choice of C),
we have that (¢, s,) is a satisfying assignment for F,,_; A co A TR,,—1 A ¢y,
in contradiction to the property that it is UNSAT. O] O]

Lemma 6.2.5. Let (s,,n) be a proof obligation, and let t, be an abstract state
such that (t4, sq) = TR,,. Thent, satisfies the requirements of BLOCKSTATE

from level | = n.

Proof. First, t, is a “bad state” at level n as it reaches s, in one abstract step
and s, itself, being a part of a proof obligation, is a “bad state” that reaches
—p along an abstract path. In addition, t, N F,, # 0, since t, was retrieved
from a satisfying assignment to F,, A TR, A s/, i.e. a satisfying assignment

to F,,. Last, by Lemma 6.2.4 —t, is an invariant up to n — 1. ] ]
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55: function BLOCKSTATE(F t,,l.k type)
56: if | > k+1 then

o7: min =k+1

58: else

59: min = FINDNONINDUCTIVE(F,—t4,l — 1,k)
60: if min == 0 then

61: return abs-cex

62: end if

63: if min < k then

64: if type == must && min == I-1 then
65: obligations.addMust(t,, min)

66: else

67: obligations.addMay(t,,, min)

68: end if

69: end if

70: end if

71: ADDINVARIANT(F,~t,,min)

72: return done

73: end function

Figure 6.4: BLOCKSTATE procedure of A-IC3

Lemma 6.2.6. Let (s,,n) be a proof obligation. If F, AN TR, A s, becomes
unsatisfiable then s, satisfies the requirements of BLOCKSTATE from level
l=n+2.

Proof. First, s, is a “bad state” at level n+2 as it reaches —p in one abstract
step of TR,, (but not necessarily of TR, 5, which is why the may flag is used)
and s,NF, 1o # 0, since s,NF, 1 # B (recall that (s,,n) is a proof obligation)
and F,, .1 = F,,o. Furthermore, by Lemma 6.1.4 since —s, is an invariant
up to n (as a proof obligation) and F, A TR, A s’ becomes unsatisfiable, then

S, 18 a potential invariant up to n + 1. ] ]

As explained above, a counterexample found by BLOCKSTATE is reported
by STRENGTHEN iff may obligations are not yet handled (lines 33 and 43).

Remark 1. Note that ignoring a counterexample reported by BLOCKSTATE
when it failed to block a may obligation (s,,n) does not compromise the cor-

rectness of the algorithm, since an MFRS up to level k + 1 is still obtained.

120



Moreover, if s, does reach a wviolation from level n 4+ 1, which means that
the same obligation is in fact required for the property to hold, then it will
reappear as a must obligation in the following iterations. In fact, even if the
abstract counterexample is a real abstract counterezample, it might be worth
while to defer handling it. This is because it s possible that in later iterations,
where the abstraction becomes more precise, it will cease to exist, whereas a
pre-mature invocation of refinement, which traverses the concrete state apace

restricted by the F;’s, might be costly.

BlockState (Figure 6.4)

BLOCKSTATE(F t4,l,k,type) is used for blocking a “bad state” ¢, from level
[ (i.e. tyNF; #0) up to k+ 1, where —t, is already known to be a potential
invariant up to [ — 1. t, is a “bad state” as at reaches —p along some abstract
path, however this path might not be from level [, in which case the may
flag is used.

Note that if { > k+1 (line 57) then ¢, is already blocked up to k+1. Thus
—t, is added as an invariant up to £+ 1 (line 71). Otherwise, BLOCKSTATE
looks for a level such that —t, is a potential invariant up to it.

Specifically, BLOCKSTATE looks for the minimal level min between [ — 1
and k s.t. Fin A TRy At is satisfiable (line 59) (meaning that ¢, can
be reached in one step from min). The important property is that —t, is a
potential invariant up to min: If min = [ — 1, this holds since —t, is already
known to be a potential invariant up to level [ —1 (this is also why the search
for min starts at [—1). If min > [—1, then the fact that ;1A TRyin—1 AL,
is unsatisfiable implies that —t, is inductive at min — 1 w.r.t. M,,;,_1, and
hence, by Lemma 6.1.6 also w.r.t. M,.. Thus, it is a potential invariant up
to min.

If min = 0, then the “bad state” ¢, is reachable from INIT in one step of
TRy. Thus, an abstract counterexample is reported (line 61). If min = k+1

then no corresponding level was found up to k, i.e., —t, is a potential invariant
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up to k + 1 and no new proof obligation is added. However, if min < k is
found then the pair (¢,,min) is added as a new proof obligation (lines 64-68).
Either way, —t, is added as an invariant up to min by calling ADDINVARIANT
(line 71). ADDINVARIANT learns an invariant that strengthens —t, and adds
it to Fo, ..., Froun.

Lemma 6.2.7. If min < k is found then the pair (t,,min) is a proof obli-

gation.
Proof. By Definition 6.2.1, we need to show that:
1. t, is a “bad state” that reaches —p along some abstract path,
2. —t, is an invariant up until min,
3. ta N EFine1 # 0, and
4. F,., reaches t, in one step of TR,,;n

Item 1 is a property of the input ¢, of BLOCKSTATE. Items 2 and 4 hold by
the choice of min, as explained above, with the addition that ADDINVARIANT
is called turning —t, from a potential invariant to an actual invariant up to
min. Finally, t, N F} # 0 (as a property of the inputs of BLOCKSTATE). In
addition, min > [ — 1 (by the choice of min), therefore F,;,.1 2 F, and
hence item 3 holds. O [

Classifying obligations as may /must is performed in lines 64- 68 of BLOCK-
STATE. Note that only obligations of the form (¢,,{—1) are must obligations.
The initial obligations generated by the call BLOCKSTATE(F,s4,k,k,must) in
line 32 of STRENGTHEN whose level is exactly £k — 1 become must obliga-
tions. Later on, only obligations of the form (¢,,n — 1) generated by the call
to BLOCKSTATE(F t,,n,k,must) in line 39 of STRENGTHEN when handling
a must obligation (s,,n), where ¢, is a predecessor of s,, are considered must

obligations. The rest are may obligations.

122



AddInvariant

If for some state t, and some level min < k41, the formula —t, is a potential
invariant up to level min, then ADDINVARIANT (called from BLOCKSTATE
line 71) is used to add a strengthening of —t, to all F}’s s.t. j < min.
More precisely, —t, is strengthened to some subclause® ¢ s.t. Fy = ¢ and
Frin-1 ANc AN TRyim—1 = ¢, ie. cis inductive w.r.t. M,,;,_1 and hence, by
Lemma 6.1.6, also w.r.t. M,.. Consequently, c is also a potential invariant up
to min, but it is a stronger invariant than —t, (since ¢ = —t,). The clause ¢
is added as a conjunct to Fy,..., F),;, while maintaining the properties of a
(concrete) MFRS®. ADDINVARIANT always finds a clause to add, since —t,

itself satisfies the requirements.

Lemma 6.2.8. Let (Fy, ..., F}) be an MFRS. Let n < k and let ¢ be a clause
that is inductive up to n + 1 w.r.t. M.. If Fy = c and if F} = F; N\ c for
t < n+1 and F} = F; otherwise, then c is an invariant up to n + 1 and
(Fy, ..., EFY) is also an MFRS.

Proof. c is inductive up to n + 1 w.r.t. M,.. Therefore, it follows that F; A
cNTR = ¢ for 0 < i <mn. Let us define (Fg,..., F}) s.t. F] = F; A c for
t <n+1and F' = F; otherwise. Since F = ¢, Fj = Fpy. Using the fact
that F; Ac AN TR = ¢ for 0 <i < n, we get that F;* A TR = ¢ for 0 <i < n.
From this it follows that (F{, ..., F}) is a MFRS. By the definition of F}, it
follows directly that F* = ¢ for 0 <7 < n 41 and thus c is an invariant up
ton+ 1. O O

5A state t, is represented by a conjunction of literals, which makes its negation —t, a
clause (i.e., a disjunction of literals). A subclause of —t, consists of a subset of its literals.

SNote that while ¢ is inductive w.r.t. M,;—1 Up to min — 1, it is not necessarily
inductive w.r.t. M; where i < min — 1 (in case U; C Upin—1). Still, it is safely added to
F; 14 for i < min — 1 since it is an invariant w.r.t. M..
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74: function REFINE(F,U) )
75: result = C-STRENGTHEN(F')

76: if result == cex then

e return cex

78: end if

79:  REFINEABSTRACTION(F,U)
80: return done

81: end function

Figure 6.5: REFINE procedure of A-IC3

PropagateClauses

Similarly to IC3, if the main loop in STRENGTHEN terminates, added clauses
are propagated forward by PROPAGATECLAUSES (line 52). Specifically, if
F; AN c N TR; N = is unsatisfiable then the clause ¢ from F; can safely be
added to Fjy; while maintaining the properties of an MFRS. This is done

in order to get to a fixpoint.

6.2.3 Refinement

If A-IC3 finds an abstract counterexample of length k + 1, refinement is in-
voked by L-IC3 (line 7). Refinement either finds a concrete counterexample
or eliminates all concrete spurious counterexamples of length £ + 1. In the
latter case, refinement also refines U to ensure that no abstract counterex-
ample of length k+ 1 existsBoth an updated MFRS F" = (F, ..., Fy, ) and
a refined monotonic abstraction sequence U" = (U7, ..., U}) are returned.
The REFINE procedure is described in Figure 6.5. REFINE first invokes
C-STRENGTHEN, the strengthening procedure of the concrete 1C3, on the
sequence (Fy, ..., Fyy1) (whose prefix up to Fy is an MFRS) obtained from
the abstract model checking. If a concrete counterexample is found the al-
gorithm terminates (lines 75-78). Otherwise, no concrete counterexample of
length & + 1 exists. Moreover, the updated (strengthened) sets Ff, ..., F]

comprise an MFRS. It remains to refine the abstraction sequence U in or-
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der to eliminate all abstract counterexamples of length k + 1 as well. Thus,
REFINEABSTRACTION is invoked (line 79).

RefineAbstraction

A-IC3 found an abstract counterexample since it failed to strengthen the F;’s.
Meaning, the relevant i-reachability checks F; A TR; At!, (or Fy A TRy A —p')
could not be made unsatisfiable when using TR;. C-STRENGTHEN, on the
other hand, succeeds to do so. Namely, for each i-satisfiability check F; A
TR; At (resp. Fx A TR A—p') of A-IC3 that was satisfiable, C-STRENGTHEN
manages to make the corresponding check F] A TR At for each t < ¢, (resp.
FJ N TR A —p') unsatisfiable, either by strengthening F or simply since
it considers TR. Moreover, once F] A TR A t' becomes unsatisfiable, C-
STRENGTHEN derives from it a clause ¢ = —t s.t. ¢ is inductive up to 1,
ie. F/' AcA TR = ¢ holds. C-STRENGTHEN strengthens I by adding c
(invariant) as a new clause in all sets up to F},,. We consider it a learned
clause at level ¢ + 1. To handle clauses that were propagated forward, we
consider them learned clauses at the highest level in which they were added
(instead of at the level in which they were actually learned). Recall that
propagation to level i + 1 also takes place only after checking that the clause
is inductive up to i.  The purpose of REFINEABSTRACTION is to ensure
that for a learned clause c at level i+ 1, FI AcA TR, = ¢ (with TR] instead
of TR) also holds. Meaning, ¢ is inductive up to ¢ w.r.t. (the refined) M.

Lemma 6.2.9. Let ¢ be a clause learned by C-STRENGTHEN at level i + 1.
If T ATR] = F.y' then Ff Ae ATR! = ¢

Proof. Consider a learned clause c at level ¢ + 1. Assume that ] A TR, =
F},,'. Since c is a learned clause at level i + 1, then by the property of IC3,
c was added to both F} and F}, ;. As a result, it holds that Fj Ac= F; and
F}. , = c. Therefore, we have that F] AcA TR; = ¢ O O

Based on the previous lemma, in order to ensure F A c A TR, = ¢, it
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suffices to ensure unsatisfiability of F' A TR; A —F],," for every level 1 +1 in
which learned clauses exist.

In addition, to handle the possibility that F, A TRy A —p' is satisfiable
while F, A TR A —p' is unsatisfiable (without any strengthening), refinement
also makes sure that Fj A TR; A—F}, ;" becomes unsatisfiable. This addresses
the case where an abstract counterexample was reported, however the last
abstract transition along the counterexample admits no corresponding con-
crete transition, hence refinement does not update the MFRS (i.e., F] = F;
for every 0 <i < k + 1) and no learned clauses exist.

To ensure unsatisfiability of a formula F A TR A —F/,,’, we consider
the same formula over TR, which is clearly unsatisfiable. We derive from
it an unSAT-core. The next-state variables that appear in the unSAT-core,
denoted NS(unSatCore) = {v € V | v/ € Vars(UnSatCore)}, are added to
U,.

Lemma 6.2.10. Let FY ATRAn be an unsatisfiable formula and let UnSatCore
be its unsat core. Let Ul 2 NS(UnSatCore). Then F| N'TR; An' is unsat-
isfiable.

Finally, we propagate variables that were added to U] forward in order to
obtain a monotonic abstraction sequence. Since we only add variables to U/,
i.e. make the transition relation TR; more precise, then the corresponding
formulas remain unsatisfiable.

As an immediate conclusion of Lemma 6.2.9 and Lemma 6.2.10, the re-
finement of U ensures the following property which is important for the

correctness of the algorithm:

Lemma 6.2.11. Let F" = (F§, ..., F{,1) be the updated MFRS, and let
U = {(Us,...,U) be the refined abstraction sequence. Then, for any clause
c that was added to the MFRS, if c was learned at level 141 then c is inductive

up to i w.r.t. (the refined) M.
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6.2.4 Correctness Arguments

The MFRS obtained by L-IC3 is concrete. Specifically, it does not neces-
sarily satisfy F; A TR; = F;.1. This results both from refinement that adds
invariants learned based on the concrete TR, and from A-IC3 that learns an
invariant based on some TR;, but also adds it to Fji; for j < i even if it is
not inductive w.r.t. TR;. This complicates the correctness proof.

In particular, in IC3, when a proof obligation (s,n) is handled, then for
any predecessor t of s, =t is an invariant up to n — 1, otherwise s would
belong to a lower frame (since F; A TR = Fj;;1). Now consider an abstract
proof obligation (s,,n). If we assume to the contrary that the predecessor
t, intersects some F; (for i < n) then we can still deduce that the transition
(ta, $a) E TR, also exists at a lower frame, i.e. (t,,s,) E TR; for i < n.
This is since TR,, = TR; (recall that the same does not necessarily hold for
i > n). However, we cannot immediately deduce that s, N F;y; # 0 since
F; N TR; = F;11 might not hold. It turns out that this property does hold
(see Lemma 6.2.4), but more complicated arguments are needed, based on

the following:

Lemma 6.2.12. Let ' = (Fy, ..., Fiy1) and U = (Uy,...,U;) be the se-
quences obtained at the end of the k’th iteration of L-1CS3, i.e. either at the
end of a refinement step or at the end of an iteration of A-IC3 in the case

that no counterexample was found. Then

1. F is an MFRS.

2. For every clause ¢ that was added to some F; in F there exists some

Jj=>1—1s.t. cisinductive up to j w.r.t. M;.

3. No abstract counterexample of length k + 1 exists w.r.t. the prefix
<F0,...,Fk> OfF

Proof. The proof is inductive. Consider an iteration of L-IC3. It consists of

an iteration of A-IC3 adding F},1, possibly followed by a refinement step.
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We first show that for every clause ¢ that was added to some F; in F
during the above, there exists some j > i —1 s.t. ¢ is inductive up to j w.r.t.
M;. An important property to note is that during the run of the algorithm,
the F; sets, as well as the TR; transition relations are only strengthened
(resp., refined). Therefore, if at some point during the algorithm a clause ¢
is inductive up to j w.r.t. M; for some j, meaning that F; Ac A TR; = ¢
holds, then ¢ will remain inductive up to 57 w.r.t. M, later on as well, since
F; Nc N TR; = ¢ will keep holding with the strengthened sets (and refined
transition relations). This is because the strengthening only strengthens the
left hand side and hence does not damage the implication. As a result,
it suffices to show that every clause ¢ that was added to some Fj in F is
inductive up to some j <1i—1w.r.t. M;, at some point during the iteration.

If a clause ¢ is added by A-IC3 to Fj, then it is either added by calling
ADDINVARIANT at some level min > i or by calling PROPAGATECLAUSES
at level min = 7. In both cases c is inductive at level min — 1 > ¢ — 1 w.r.t.
TRin—1 when it is added. If a clause in F; is added during refinement,
then there is some level j + 1 > ¢ where it is a learned clause. Thus by
Lemma 6.2.11 at the end of the refinement step it is inductive up to j > i—1
w.r.t. (the refined) M;.

We now show that the obtained F' is an MFRS. Fy = INIT holds due to
the initialization. Similarly, F; = p holds due to the initialization of the F;
sets to p, and due to the property that the sets are only strengthened later
on. F; = F;;; holds when Fj; is initialized (since it is initialized to p and
F; = p), and continues to hold since any clause that is added to Fj,; is also
added to F;. Finally, it remains to show that F; A TR = F,,. We show this
in two parts. First, we show that it holds at the end of the L-IC3 iteration
(possibly including a refinement step) that added Fj;; to the MFRS. Next,
we show that later updates of F; and Fj,; maintain this property.

To show that F; A TR = Fj,, holds at the end of the iteration that
added Fj,; to the MFRS, we recall that Fj,, is initialized to p and we note
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that the termination condition of an iteration of A-IC3 is that F; A TR; A
—p' == UNSAT (see STRENGTHEN), meaning that F; A TR, = p' = F],,.
Moreover, since TR = TR;, the latter implies that F; A TR = p’ = Fj,|.
Similarly, the termination condition of the refinement step (if applicable)
is that F; A TR = p’ = F{_,. To show that later updates of F; and Fj
maintain this property, we rely on the property that any clause added to
Fii; is inductive up to some j > ¢ w.r.t. M;. This means, that it is also
inductive w.r.t. to M,.. Therefore, F; Ac A\ TR = . Since ¢ is added both
to F; and to Fjy4, the property F; A TR = F},, is maintained.

It remains to show that no abstract counterexample of length k+ 1 exists
w.r.t. the prefix (Fp,..., F}) of F. If refinement was not needed then this
holds trivially since the termination condition of STRENGTHEN is that F} A
TRy N—p==UNSAT.

[ [

In particular, this means that the clauses added to the last set of the
sequence, Fj.1, are inductive up to k w.r.t. My, hence at the end of the k'th
iteration of L-IC3 adding Fj.; it holds that Fj, A TRy = Fj.1 (recall that

the same does not necessarily hold for i < k).

Theorem 6.2.13. L-1C3 either terminates with a fixpoint, in which case the

property holds, or with a concrete counterexample.

6.2.5 Monotonicity of the Abstraction Sequence

Monotonicity of the abstraction sequence ensures that when A-IC3 attempts
to block a state t, that reaches a violation at level n, then —t, is necessarily
an invariant up until n — 1 (see Lemma 6.2.4). Recall that if some state
t, reaches a violation from step n along the abstract transitions, it is not
guaranteed that the same violation can be reached from t, at level i > n.
However, the fact that for each i < n, U; C U,, and as a result TR,, <= TR;,

ensures that the same violation can be reached from t, at any level i < n.
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This ensures that —t, is an invariant up until n — 1, otherwise, the violation
would have been found in previous iterations.

The same property does not hold if a non-monotonic abstraction sequence
is used, which means that in this case deducing that —t, is an invariant up
to n — 1 when attempting to block a state ¢, at level n is simply incorrect.

Another motivation for the monotonicity of the abstraction sequence is
the following. Recall that F; C F;; for each i. This means that any state
t, € F;, and in particular states that reach a violation along some abstract
path, will be encountered again in F;,;. As a result, the same information
needed to show that t, € F; cannot reach a violation from level ¢ is likely
to be needed to show that t, cannot reach a violation from Fj,; as well.
Restricting the discussion to monotonic abstraction sequences automatically
ensures that if the abstract transition relations carry enough information to
refute all violations starting at states from Fj, then the same holds when
considering the same states in F;;;. While it is possible that a different
abstraction can be used to refute the existence of a violation from ¢ + 1, in
most cases the effort of computing this abstraction (by invoking refinement

multiple times) exceeds its potential benefit.

6.3 Experimental Results

For the implementation of the two algorithms we collaborated with Jasper
Design Automation”. We used Jasper’s formal verification platform in order
to implement both the original IC3 and our L-IC3 algorithm. In both im-
plementations we used optimizations from [28] (such as ternary simulation).
Implementing these algorithms using Jasper’s platform allowed us to develop
and experiment with various real-life industrial designs and properties from
various major semiconductor companies. All designs contain thousands of

state variables in the cone of influence of the properties.

"An EDA company: http://www.jasper-da.com
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Figure 6.6: Runtime information for L-IC3 and IC3

The timeout was set to 3600 seconds and experiments were conducted
on systems with Intel Xeon X5660 running at 2.8GHz and 24GB of main
memory.

We experimented with 122 real safety properties from different designs.
Figure 6.6 shows two different analyses comparing the runtime of L-1IC3 and
IC3. Runtime trends are shown in Figure 6.6a. As can be seen, the over-
all trend is in favor of L-IC3. In Figure 6.6b runtime for IC3 and L-IC3 is
represented by the X-axis and Y-axis respectively. We can clearly see the
advantage of using L-IC3 on the more complicated test cases. These test
cases are represented by the dots that are below the diagonal by a big mar-

gin. On these examples, the improvement in runtime is up to two orders
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of magnitude. The cases where IC3 performs better are usually cases where
L-IC3 spends most of the time in refinement. Also, for false properties (coun-
terexample exists), the performance of L-IC3 is affected by the way we treat
may and must obligations. Due to our special handling, L-IC3 may lose the
ability to find a counterexample which is longer than the length of the com-
puted €. In those cases, IC3 may perform better. Note that the scatter at
the middle is a bunch of comparable properties where both algorithms are
on par.

In the given timeout, 7 properties cannot be solved by IC3 but are solved
by L-IC3; 5 properties cannot be solved by L-IC3 but are solved by IC3.
There are also 5 properties that cannot be solved by either algorithm. The
overall runtime for IC3 is 75558 seconds while for L-IC3 it is 55424 seconds.

The laziness of our abstraction-refinement algorithm is demonstrated in
Table 6.1. The table shows how the abstraction is refined along increasing
time frames. Different frames contain different variables that are needed in
order to prove or disprove the given property. This demonstrates the fact
that L-IC3 indeed takes advantage of the lazy abstraction framework.

Table 6.2 presents runtime characteristics for L-1C3 and I1C3. In partic-
ular, it shows the number of clauses and the number of variables in {2 when
either a fixpoint or a counterexample is found. In many of the examples the
number of clauses produced by L-IC3 for its €2 is significantly smaller than
the number of clauses produced by IC3. Recall that each of the clauses is
learned via several local reachability checks. The reduced number of clauses
thus indicates that L-IC3 applies a smaller number of checks and therefore
issues a smaller number of calls to the SAT solver. This can explain the
speedups it obtains.

An additional reason for the speedups is the fact that the local reachability
checks of L-IC3 are easier than those of IC3. This is because the abstract
transition relations T'R; are much smaller (in number of variables) than TR
(see table 6.1). Further, the sets F;, computed by L-IC3 are smaller than
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those computed by IC3 (see Table 6.2).

Recall that in Section 6.2.1 we distinguish between must and may obli-
gations. The results reported above are obtained while using this distinction
and handling all the may obligations after the must obligations, as described
there. We also tried other configurations. For example, we ran experiments
that do not distinguish between must and may obligations. Our experiments
show that distinguishing between the two yields a better overall performance.

In addition to the industrial experiments, we also ran experiments on the
HWMCC’11 benchmark. We used the test-cases with single properties. Most
of the properties in this benchmark are fairly easy and can be solved in a
matter of a few seconds both by IC3 and L-IC3. There are also a few cases
where IC3 performs better or even reaches a result while L-IC3 does not.
In these cases L-IC3 spends most of the time in refinement. On the other
hand, there are several test cases that can only be solved by L-1C3 while 1C3

reaches timeout.
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N | #Vars | Stat | #V[Q] | §V[Qy] 1CIQ] 1CIQL) || K | kL T T

f1 | 11866 | false 1001 818 8457 3939 15| 18 || 1646 | 599
fo | 5693 | true 236 11 617 62 141 8 133 9.2
fs | 5693 | true || 229 | 121 | 1314 | 570 [ 13| 8 [ 351 | 40.5
f1 | 5693 | true 104 24 2101 32 32|14 | 513 | 13.6

fr | 1247 | true | 250 152 10732 238 |[11| 8 | 432 | 2.6
fs | 1247 | true | 177 96 14702 203 | 8 | 7| 520 | 3.5
- fo | 1277 |false | 357 | 331 | 8762 | 3788 || 13|27 | 164 | 101
fio | 1389 | false | 397 417 12455 | 19742 || 13 | 19 | 262 | 1268
fu| 1183 | true || 114 | 106 | 29183 | 2589 || 9 |10 | 1153 | 109
fi2 | 1204 | true | 114 105 18698 229 | 8 | 8 || 818 | 3.0
fi3| 3844 | true || 320 | . 518 | 547 | 1529 | 10 | 12 || 16.7 | 59.1 |
fia | 3832 | true | 650 488 2414 1553 || 12 [ 11 | 117 | 61

Table 6.2: Running parameters for various properties. N stands for the name
of the verified property. §Vars stands for the number of state variables in the
cone of influence. §V[Q?] - number of variables in €2, §C[€2] - number of clauses
in Q, k - size of Q(M,p) and T - the runtime in seconds. The subscript L
represents the value for the Lazy version (L-I1C3).
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Chapter 7
Conclusion

We presented four methods that aim at improving existing SAT-based un-
bounded model checking. The first three, ISB, DAR and CNF-ITP, are based
on interpolation. With ISB and DAR we show different ways to use inter-
polants for reachability analysis. With CNF-ITP, we present a novel method
for interpolants computation that yields interpolants in CNF. Further we
show how this fact can be used in an interpolation-based algorithm. The
last method we present, L-1C3, is based on IC3. Unlike interpolation-based
methods, IC3 and L-IC3 are based on local reachability checks. With L-IC3
we show how to tightly integrate a lazy abstraction mechanism into 1C3.

We believe there is more to be done in order to make SAT-based model
checking more efficient. One possibility is to integrate interpolation and IC3-
style approaches in a tighter manner. Each of the approach uses a different
generalization mechanism when computing the over-approximation of reach-
able states. It may be the case, that integrating the two may yield better
performance.

In the context of interpolation, another possibility is to better understand
interpolants in the context of resolution proofs. By analyzing the mechanics
of CDCL SAT-solvers, one can try and make the proof produced by such

solvers better suited for interpolants in the context of model checking.
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