
Abstract Interpretation of Reactive Systems

DENNIS DAMS and ROB GERTH

Eindhoven University of Technology

and

ORNA GRUMBERG

Technion� Haifa

The advent of ever more complex reactive systems in increasingly critical areas calls for the de�
velopment of automated veri�cation techniques� Model checking is one such technique� which has
proven quite successful� However� the state�explosion problem remains a major stumbling block�
Recent experience indicates that solutions are to be found in the application of techniques for
property�preserving abstraction and successive approximation of models� Most such applications
have so far been based solely on the property�preserving characteristics of simulation relations�
A major drawback of all these results is that they do not o�er a satisfactory formalisation of the
notion of precision of abstractions�

The theory of Abstract Interpretation o�ers a framework for the de�nition and justi�cation of
property�preservingabstractions� Furthermore� it provides a method for the e�ective computation
of abstract models directly from the text of a program� thereby avoiding the need for intermediate
storage of a full�blown model� Finally� it formalises the notion of optimality� while allowing to
trade precision for speed by computing sub�optimal approximations�

For a long time� applications of Abstract Interpretation have mainly focussed on the analysis
of universal safety properties� i�e� properties that hold in all states along every possible execution
path� In this paper� we extend Abstract Interpretation to the analysis of both existential and
universal reactive properties� as expressible in the modal ��calculus� It is shown how abstract
models may be constructed by symbolic execution of programs� A notion of approximation be�
tween abstract models is de�ned while conditions are given under which optimal models can be
constructed� Examples are given to illustrate this� We indicate conditions under which also false�
hood of formulae is preserved� Finally� we compare our approach to those based on simulation
relations�

Categories and Subject Descriptors� F���	
Logics and Meanings of Programs�� Specifying
and Verifying and Reasoning about Programs�Mechanical veri�cation Logics of programs D����

Software Engineering�� Program Veri�cation�Validation

General Terms� Reliability� Theory� Veri�cation

Additional Key Words and Phrases� Abstract interpretation� formal methods� model checking�
mu�calculus� reactive systems

Correspondence address� D� Dams� Dept� of Math� and Computing Science� Eindhoven University
of Technology� P�O� Box �	�� ���� MB Eindhoven� The Netherlands� wsindd�win�tue�nl
Permission to make digital�hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for pro�t or commercial advantage� the
ACM copyright�server notice� the title of the publication� and its date appear� and notice is given
that copying is by permission of the Association for Computing Machinery� Inc� �ACM�� To copy
otherwise� to republish� to post on servers� or to redistribute to lists requires prior speci�c
permission and�or a fee�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� ����� Pages ��������

��� � Dennis Dams et al�

�� INTRODUCTION

In the model�checking approach �Queille and Sifakis ����� Clarke et al� ���	� Vardi
and Wolper ���	� Kurshan ���
� Lichtenstein and Pnueli ����� to program veri�
cation� a model of the program is constructed over which formulae are checked for
satisfaction� The model re�ects the possible behaviours of the program� while the
formulae express certain required properties of such behaviours� Obviously� the size
of the model is a limiting factor to the feasibility of the model�checking approach�
In the worst case� it doubles with every extra bit of memory that the program may
access� This problem is referred to as the state�explosion problem� One solution to
it is the application of abstraction techniques� which aim to abstract the model to
a smaller one� in such a way that if some property holds for the abstracted model�
it also holds for the original model�
Such abstraction techniques are formalised in the framework of Abstract Inter�

pretation �Cousot and Cousot ������ which was originally conceived as a unifying
theory of compile�time �data��ow� analyses� For a long time� applications of Ab�
stract Interpretation have been focussed on the analysis of universal safety prop�
erties� that hold in all states �safety� along all possible executions �universality� of
the program��

With the advent of reactive systems� interest has broadened to a larger class of
properties� Reactive systems are systems whose main role is to maintain an on�
going interaction with the environment� rather than to produce some nal result
on termination� Usually� such systems consist of several concurrent processes� and
display a non�deterministic behaviour� Typical examples are �ight reservation sys�
tems� industrial plant controllers� embedded systems and operating systems� In
the presence of non�determinism� one may be interested to know whether some
property holds along some possible execution path� Such properties will be called
existential� Besides safety� another kind of property that is often considered is live�
ness� meaning that something should hold eventually �given an execution�� Thus�
we have classied properties into four kinds by the criteria universal�existential and
safety�liveness� A typical combination of universal safety and existential liveness
properties is �along every possible execution path� in every state there is a possible
continuation that will eventually reach a reset state��
The semantic models and abstraction techniques used in the analysis of universal

safety properties cannot be used for properties that involve aspects of existentiality
and eventuality� The reason is that these techniques abstract away from information
about the choices that a program encounters during execution� The analysis of
existentiality and eventuality properties of behaviours� however� requires models
that� in addition to information about single states� also provide the transitions
between states� For this reason� in model checking reactive systems� transition
systems are used to model the behaviour of programs� Being directed graphs over
program states� such transition systems give detailed information about program
executions� including the possible choices in every state� Our aim is to nd notions
of abstraction of such transition systems that preserve certain combined forms of

�The notions of universality and safety of a property are not always distinguished as explicitly as
we do in this paper� What we call �universal safety� is often just termed �safety� or �invariance�
elsewhere�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

universal�existential safety�liveness properties� This means that in order to know
that such a property holds in the original system� it su�ces to know that it holds
in the abstracted system�

The properties may be formalised by expressing them in a logic whose formu�
lae can be interpreted over transition systems� One such logic is L�� the modal
��calculus �Kozen ������ Besides a basic set of propositions stating local properties
about states� and the usual boolean operations� it contains modalities that express
that something holds in some next state or in all next states�� Furthermore� xpoint
operators allow to combine such next�state properties into formulae expressing exis�
tential and universal properties about execution paths� Although properties speci�
ed in the ��calculus are often less comprehensible than when expressed in temporal
logics like CTL� �computation tree logic� see Emerson and Halpern ����	��� L� is
preferable for our purposes� for the following reasons� Firstly� the basic temporal
modalities correspond directly to two types of abstract transition relations to be
dened� which improves understanding and facilitates proofs� Furthermore� L� al�
lows a clean identication of universal and existential properties � see Section ���
where this point is discussed� Finally� L��s expressivity exceeds that of many other
temporal logics� including CTL� �Dam ���
�� Hence� the results of this paper im�
mediately transfer to those logics as well� Together with the fact that the main
focus of this paper is on preservation results� and not on the practice of specifying
in L�� these reasons should justify our choice for the ��calculus�

The structure of this article is as follows� The next section introduces the formal
machinery to be used� In Section �� a notion of abstract transition system is
developed that preserves properties from L�� A canonical abstraction is chosen so
as to satisfy the maximum number of L� properties� This choice is then justied
in Section
� where an approximation order between such systems is dened� This
approximation order is shown to coincide with the L��property ordering� and the
canonical abstraction of Section � turns out to be optimal� i�e� it is the least element
with regard to this ordering which is still safe� Section � shows how abstract
transition systems may be computed directly from a program text by �lifting� the
operations of a programming language to a domain of data descriptions� Conditions
are given under which the constructed models are optimal� Furthermore� it is shown
that sub�optimal models are constructed when computing approximations to the
lifted operations� An elaborate example is presented in Section 	� Section � brie�y
indicates the consequences of insisting on strong preservation� meaning that not
only truth� but also falsehood of formulae is preserved� Section � compares ours to
related work� in particular to simulation�based approaches� and Section � concludes�

On rst reading� it may be helpful to skip the more technical results of Subsec�
tions
��� ���� ��� and ���� to get to the example in Section 	 rst�

	As models we consider Kripke structures� without action labelling� Hence� the modalities do not
refer to actions�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

�� PRELIMINARIES

��� Temporal logic

Given is a set Prop of propositions� We choose to dene L� in its negation nor�
mal form� i�e� negations only appear in front of propositions� This facilitates the
denition of the fragments �L� and �L� below� The set of literals is dened by
Lit � Prop � f�p j p � Propg�

De�nition ������ Let Var be a set of propositional variables� Moreover� let p �
Lit and x � Var � The logic L� is the set of formulae that is dened by the following
grammar�

� ��� p j x j � � � j � � � j �� j �� j �x�� j �x��

For � � L�� the formula�� is considered to be an abbreviation of the equivalent L�
formula in negation normal form �obtained in the usual way�� The abbreviations
true� false and � can then be dened as usual�
The universal and existential fragments�L� and �L� are subsets of L� in which

the only allowed next�state operators are � and � respectively� Likewise� a formula
that is �equivalent to a formula� in �L� ��L�� is called universal �existential��

A formula �� expresses that � is true for every �immediate� successor while ��
expresses that there exists at least one successor for which � is true� A propositional
variable from Var can be seen as a formula whose meaning �i�e� the set of states in
which it holds� depends on some environment that binds variables to sets of states�
�x�� and �x�� are the least resp� greatest xpoint operators� Their meaning is
the smallest �resp� greatest� set x of states in which � holds � where � typically
depends on x� Thus� e�g�� �x��p��x� expresses invariance of the truth of proposition
p� while �x��p ��x� expresses the possibility of establishing p� Formal denitions
and further examples are given in the next subsection�

��� Transition systems

L� formulae are interpreted over transition systems T � ��� I� R� where � is a set
of states� I � � is a set of initial states� and R � ��� is a transition relation over
�� By an execution� or path� we mean any sequence of pairwise related states that
is maximal� i�e� it is innite or its last state has no successors in T � State s � � is
reachable i� it lies on a path that starts from a state in I�
Associated to T � we assume a function k	kLit � Lit � P���� satisfying kpkLit

k�pkLit � � for every proposition p � Prop� that species the interpretation of
literals over states� Intuitively� kpkLit is the set of states where p holds� Transition
systems thus dened are closely related to Kripke structures �Kripke ��	��� The
main di�erence is that we have the function k	kLit instead of a labelling function
from � to sets of literals� The reason for not requiring kpkLit � k�pkLit � � will
become clear in Section ����
The following denition gives the meaning of L� formulae relative to a given

transition system by specifying a function k	k that maps a formula to the set of
states in which it holds� k	k has an additional argument� written behind it� which
is a function specifying the interpretation of propositional variables� The role of
this �environment� becomes clear in the cases of the xpoint formulae�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

De�nition ������ The function k	k	 � L� � �Var � P���� � P��� is dened as
follows� Let p � Lit� x � Var � �� ��� �� � L� and e � Var � P����

kpke � kpkLit
kxke � e�x�
k�� � ��ke � k��ke � k��ke
k�� � ��ke � k��ke
 k��ke
k��ke � fs � � j �s��� R�s� s�� s� � k�keg
k��ke � fs � � j �s��� R�s� s�� � s� � k�keg
k�x��ke �

T
fS � � j k�ke�x �� S� � Sg

k�x��ke �
S
fS � � j S � k�ke�x �� S�g

e�x �� S� is the mapping that is the same as e except in x� which is mapped to S�
�env is the environment that maps every x � Var to �� For a closed� formula ��
k�k abbreviates k�k�env� We write s j� � for s � k�k�

For a set S of states� the notation S j� � abbreviates �s�S s j� �� When there
may be confusion between di�erent systems� we write �T � s� j� � to denote that
s j� � in T � and similar for �T � S� j� �� T j� � abbreviates �T � I� j� ��

L� formulae can express a variety of properties of transition systems� The distinc�
tion between universal and existential properties is captured by the division into
�L� and �L�� Similarly� safety properties correspond to greatest xpoints while
liveness is expressed through least xpoints� For example� s j� �x��p��x� expresses
the universal safety property that p is true in all states that are reachable from s�
In the branching�time temporal logic CTL� this would be expressed as s j� �Gp�
The CTL� formula �Gp� which says that there exists a path along which p holds in
all states� is expressed in L� by �x��p��x� � this is an existential safety formula�
An existential liveness property like �there exists a path along which p eventually
holds� ��Fp in CTL�� is similarly expressed as �x��p��x�� Only universal liveness
properties require a slightly more involved formulation� The reason is that the ��
used to express universal properties� does not require the existence of a successor
state � i�e� a property �� is satised by any state that has no successors� On
the other hand� liveness does require the existence of successors� at least until the
point where the eventuality is fullled� Thus� �along all paths� p eventually holds�
is �x��p� ��true��x��� Note that this formula is neither universal nor existential�
the � is essential to express the �along all paths� part� while the � is needed to
re�ect correctly the meaning of �eventually�� One could say that the notion of
liveness has an existential character�� On the other hand� it is not di�cult to see
that for deadlock free transition systems� the �true may be dropped from formulae�

Lemma ������ Let T � ��� I� R� be a transition system such that every state
that is reachable from an initial state has at least one successor� Let � � L� and
denote by �� the formula obtained from � by replacing all subformulae of the form
�true by true� Then T j� � i� T j� ���

A formula is closed if every propositional variable that occurs in it is bound by a �xpoint operator�
�It is mainly this observation that has led us to present the preservation results for fragments of
the ��calculus� rather than for the fragments �CTL� and �CTL� of CTL� in which the existential
character of liveness remains hidden and would complicate the results �cf� Dams et al�
	������

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

Proof� Because every reachable state has at least one successor� �true is equiv�
alent to true in those states� As the truth of T j� � only depends on reachable states
and furthermore equivalence of formulae is a congruence� �true may be replaced
by true in ��

We x a transition system C � ��� I� R� called the concrete model � This will play
the role of the original� large model that we need to abstract in order to be able to
verify its L� properties�

��� Abstract Interpretation

A transition system forms the interpretation of a program� it models the possi�
ble behaviours� Formally� this is captured by an interpretation function I from
programs� to transition systems� Properties of a program P �s behaviour may be
analysed by studying I�P �� As this model may be too complex to handle �because
of the state explosion�� we look for abstractions of it that can provide partial in�
formation� Two points are of quintessential importance in the denition of such
abstracted transition systems� Firstly� the abstraction should preserve the infor�
mation that we are interested in� any �L�� property that holds for the abstract
model� should hold for the original concrete model as well� Sections � and
 focus
on this aspect� Secondly� such abstractions are to be constructed directly from the
program� and not by rst building a full model and then abstracting it� That is� we
are looking for an abstract interpretation function �I that maps each program P
to an abstraction of I�P �� Section � denes such a function� xing a simple notion
of program for this purpose�
In the rest of this section we review the framework of Abstract Interpretation�

which o�ers ways to formalise the notion of abstraction and provides means to
design �good� abstract interpretation functions through the notions of optimality
and approximation� Brie�y� the idea is as follows� As the concrete object that we
are interested in� in this case the concrete model� is too large to handle� we abstract
from certain aspects of the states� Thereby� states that were di�erent now become
identied� This is formally captured by introducing a set �� of abstract states and
a concretisation function � mapping each abstract state a to a set of concrete states
that are described by a� For example� we may wish to abstract from everything
but the fact whether variable x is greater than � or not� in which case we introduce
two abstract states named� e�g�� grt � and leq �� acting as descriptions of sets of
concrete states as specied by the function � with ��grt �� � fs � � j s�x� � �g and
��leq �� � fs � � j s�x� � �g �we view a state as a valuation function on variables
here�� The goal is then to construct transition systems over abstract states by
interpreting the operations occurring in the program over the data descriptions
grt � and leq �� For example� the execution of the assignment x �� x � � in the
abstract state grt � results in the state grt � again� On the other hand� executing
it in the state leq �� we do not know whether the result is grt � or leq �� both
are possible� Thus� information is lost� If this is unwanted� we could introduce a
new abstract state� leq �� with the obvious meaning� in order to capture this more
precisely� Similarly� we might introduce a state leq 	 to be able to capture the
e�ect of x �� x� � on leq �� etc� In order for each set of concrete states to have a

�In Section � we will become more speci�c about the syntax of programs�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

description� the set of abstract states should be such that for every subset C of ��
there exists an abstract state a with ��a� � C� Note that this does not imply that
there is a di�erent abstract state for each subset of concrete states� For example�
the abstract domain may consist of only the state � with ���� � �� On the other
hand� the requirement does imply that there must always be such a �top� state in
the abstract domain�
Abstract states may now be ordered according to their information content or

precision� Dene a � a� � ��a� � ��a��� in this case we say that a is more
precise than a�� or that a� approximates a� So� e�g�� leq � � leq � and leq � � ��
If for each set C of concrete states there exists a unique most precise description�
then an abstraction function 	 � P���� �� may be introduced that maps each C
to this description� Minimality with regard to � is also referred to as optimality�
Correctness of the abstract interpretation of the assignment x �� x � � can be
stated by requiring that for each abstract state a� a� � �� � 	���a� � �� �where
on the left�hand�side of the �� the quotes indicate that the function �� has to be
interpreted abstractly� over the domain of abstract values� on the right�hand�side�
�� is pointwise extended to sets��

The formalisation of these ideas as o�ered by the theory of Abstract Interpre�
tation �Cousot and Cousot ����� generalises the concrete and abstract domains �
�P������ and ������ resp� in the example above � to arbitrary partially ordered
sets �C�v� and �A���� The abstraction function 	 � C � A and concretisation
function � � A � C are usually required to form a Galois connection from �C�v�
to �A����

De�nition ������ �	 � C � A� � � A� C� is a Galois connection from �C�v� to
�A��� i� ��� 	 and � are total and monotonic� ��� for all c � C� � � 	�c� w c� and
��� for all a � A� 	 � ��a� � a�

Under these requirements� 	 by denition yields the optimal� that is ��least� ab�
straction of every c � C and � yields for every a � A the most general� that is
v�greatest� element that is abstracted by a� Note that this framework does not
necessarily imply that a � a� � ��a� v ��a��� If in addition that condition does
hold� like in our example above� then �and only then� we have 	 � ��a� � a for all
a � A� �	� �� is then called a Galois insertion from �C�v� to �A����
Under the assumptions of the Galois connection framework� a � A is an abstrac�

tion of c � C i� 	�c� � a �or� equivalently� c v ��a��� Given a program P � the goal
is to compute� in an e�cient manner� an abstraction �I�P � of I�P �� Usually� �I is
constructed by providing an abstract �counterpart� for each operation used in the
denition of I� For example� in this paper� where a transition system forms the
interpretation of a program� the function I is dened in terms of predicates ci and
ti that correspond to tests and transformations in programs� see the last point of
Denition �� ��� The abstract interpretation of programs is dened in a similar way
in terms of abstractions cFi � t

F
i � c

C
i and tCi � see the last points of Denition �� ���

A number of weaker frameworks than the Galois�connection framework have been
proposed in which the abstraction and�or concretisation functions are replaced by
relations �see Marriott ������ or Dams ����	� for an overview�� These cater for
situations where most precise abstractions and�or most general concretisations do

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��	 � Dennis Dams et al�

not exist� for example because concrete elements have a number of optimal abstrac�
tions that are mutually incomparable� or because the corresponding approximation
orderings have not been dened� or are pre� instead of partial orders� In this paper�
we start from a given Galois insertion on the level of states� and induce a notion
of abstraction between transition systems� where concrete systems are unordered
while the approximation order on abstract systems is a pre�order� Although there
may exist di�erent representations of the most precise abstraction of a given con�
crete system� all these representations share the same L� properties� In Section ��
an abstraction function is given that maps any concrete system to one such repre�
sentative� Hence� by comparing a computed abstraction to this representative� we
are able to discuss optimality issues�

A more extensive introduction to Abstract Interpretation and overview of its uses
can be found in Cousot and Cousot �����a� and Cousot and Cousot �����b��

��
 The relation transformers 	�� and 	��� �bisimulations

We use two relation transformers that are used to lift transition relations on states
to relations on sets of states�

De�nition ������ Let A and B be sets and R � A�B� The relations R��� R�� �
P�A� �P�B� are dened as follows�

�R�� � f�X�Y � j �x�X �y�Y R�x� y�g

�R�� � f�X�Y � j �x�X �y�Y R�x� y�g

So� if R is a transition relation� R���X�Y � i� some state in X can make an R�
transition to some state in Y � and R���X�Y � i� every state in X can make an
R�transition to some state in Y �

Finally� we recall the denitions of simulation �Milner ����� and bisimulation
�Park ������

De�nition ������ Let T� � ���� I�� R�� and T� � ���� I�� R�� be transition sys�
tems� A relation
 � �� � �� is a simulation �from T� to T�� i�
��R� � R�

��

�juxtaposition denotes composition of relations�� In this case we say that R�
�
simulates R��
 is a bisimulation if in addition
�� is a simulation from T� to T��
A simulation
 is consistent i�
�s�� s�� implies �p�Lit s� j� p s� j� p�

An equivalent denition of simulation is the following� �see� e�g�� Milner ��������
Whenever
�s�� s�� and R��s�� s���� then there exists s�� such that R��s�� s��� and

�s��� s

�
���

�� ABSTRACT TRANSITION SYSTEMS

The denition of an abstract system A starts from a given poset ������ of abstract
states together with a Galois insertion �	� �� from �P������ to ������ that de�
termines its relation to the concrete states� We usually write 	�c� for 	�fcg�� We
investigate how to dene abstract models in such a way that L� is preserved from

�The intuition is that R	 can �mimic� everything that R� can do� From this point of view� the
terminology �R� simulates R	�� which was introduced in Milner
	��	�� is awkward�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ��

the abstract to the concrete model� Our goal is to dene� given the abstraction
of states� an abstract transition system A that satises as many L� properties as
possible� The choices that are made in this section are motivated by this goal� In
Section
� we formally establish the optimality of this canonical abstraction A�
As we start from a notion of abstraction of states� it is natural to require preser�

vation of formulae on the level of individual states ��statewise preservation���

���L��a��� �A� a� j� � �C� ��a�� j� � ���

We take this requirement as the starting point in dening the abstract model A�
Besides ��� which is already given� we need three more ingredients for the denition
of such a model� a function �k	kLit specifying the interpretation of literals over
abstract states� a set �I of abstract initial states� and an abstract transition relation

�R� These points are considered in the following subsections�

��� Valuation of literals

In order to satisfy ��� for the literals in L�� we must have �A� a� j� p �C� ��a�� j�
p for every literal p and every abstract state a� On the other hand� as we intend to
use the abstract model in order to infer properties of the concrete model� we would
like as many literals as possible to hold in each abstract state�

De�nition ������ For p � Lit� dene �kpkLit � fa � �� j ��a� � kpkLitg�

This choice determines the valuation of literals in abstract states� Namely� the
value of �kpke� where �k	k	 has the functionality L�� �Var � P������ P����� is
dened as in the rst clause of Denition ������ where k	kLit has to be replaced by

�k	kLit� By this choice it can now easily be shown that �A� a� j� p � �C� ��a�� j� p�
for every a � �� and p � Lit� which implies that as many literals as possible hold in
each abstract state� Note that if a � �� is such that ��a� contains concrete states
in which p holds and concrete states in which �p holds� then a �� �kpkLit but also
a �� �k�pkLit� So� although it is always the case that either a j� p holds� or its
negation a �j� p� and similarly for �p� it may occur that for some a we have neither
a j� p nor a j� �p� In particular� a �j� p does not necessarily imply that a j� �p�

Furthermore� less�precise states satisfy fewer literals�

Lemma ������ Let a� a� � ��� If a� � a� then for all p � Lit a� j� p a j� p�

��� Abstract initial states

The abstract initial states should be chosen in such a way that the requirement ���
of statewise preservation implies preservation on the level of models� A j� � should
imply C j� �� for all � � L�� A su�cient condition for this is

S
f��a� j a � �Ig � I�

On the other hand� the set of abstract initial states has to be as small as possible�
so that the condition A j� � to be veried is as weak as possible� In general� it is
not possible to choose �I such that

S
f��a� j a � �Ig � I� However� the following

choice for �I yields the smallest set
S
f��a� j a � �Ig that still includes I�

De�nition ������ �I � f	�c� j c � Ig

One may wonder why we did not take 	�I� as the �single� abstract initial state�
The reason is that each element of f	�c� j c � Ig is in general at least as precise as
	�I�� because 	 distributes over

S
�see� e�g�� Cousot and Cousot �������� we have

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

	�I� �
W
f	�s� j s � Ig �where

W
denotes the least upper bound in ���� so that for

each s � I� 	�s� � 	�I�� Therefore� the set
S
f��a� j a � �Ig of concrete states to

which �I �as dened above� corresponds� is a subset of the concretisation ��	�I���

��� Abstract transition relations

We want to abstract a concrete by an abstract transition relation in such a way that
both existential and universal properties are preserved� However� such an abstract
transition relation �R will only exist if there exists a consistent bisimulation from
��� R� to ���� �R� �see� e�g�� Loiseaux et al� �������� which is a much too strong
condition� as it results in the falsehood of L� formulae being preserved as well� Our
solution is to dene instead two transition relations on ��� one preserving universal
properties� and the other existential properties�
It is not di�cult to see that if properties of the form �� are to be preserved� then

abstract state b may only be a successor of a if R�����a�� Y � for some Y � � with
Y � ��b�� For reasons of optimality we also would like a to have as many successors
as possible�� and� furthermore� each of them should be a description of Y that is
as precise as possible� The rst requirement is satised by letting b be a successor
of a whenever R�����a�� Y �� the second by choosing Y to be minimal and b to be
the most precise description of it� as specied by 	� A similar consideration for the
preservation of universal properties leads to the requirement that b is a successor
of a i� R�����a�� Y �� Y is minimal� and 	�Y � � b�

De�nition ������

��� �R
F �a� b� � b � f	�Y � j Y � minfY � j R�����a�� Y ��gg

��� �R
C�a� b� � b � f	�Y � j Y � minfY � j R�����a�� Y ��gg

�R
F and �R

C are called the free and constrained �abstract transition� relations
respectively� Note that for any a � ��� the minimal sets Y � such that R�����a�� Y ���
are all singletons	� Also� note that by the requirement of minimality of Y in the
denitions� it is not in general the case that �R

C � �R
F �

In order to accommodate these two di�erent transition relations in a single tran�
sition system� we give the following denition�

De�nition ������ A mixed transition system is a quadruple M � �S� I� F� C�
consisting of a set S of states� a set I of initial states� and two transition relations
F and C called the free and constrained �transition� relations respectively� A free
path is a path with all its transitions in F � a constrained path is a path with all its
transitions in C� The notion of reachability is taken relative to the union F �C of

In De�nition ����	� we only consider minimal sets of successors in order to keep the relation
small� Of course� in the presence of BDD representations this does not necessarily imply that the
representation will actually be smaller� In general� any abstract transition relation in which these
minimal successors are present will be as good�
�With regard to the de�nition of �RC � we should point out that the set fY � j R�����a�� Y ��g
may have no minimal elements� �As an example� take R to be the ordering � on the integers
and ��a� the set of all integers�� By dropping the requirement of minimality in this case� every
abstract state will have an �RC�successor and as a result more existential formulae will hold in
the abstract model� The preservation results to be presented will still hold� observe that their
proofs do not depend on the minimality requirements�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

both transition relations� unless explicitly specied otherwise� The interpretation of
L� formulae over a mixed system is dened slightly di�erent from Denition ������
Besides replacing k	kLit by the valuation function that is associated with M � R has
to be replaced by F in the clause for k��ke and by C in the clause for k��ke�
An environment that maps propositional variables to sets of abstract states is

called an abstract environment� In particular� ��env maps every x � Var to ��
These mixed systems form our notion of abstract transition system� We now

dene the canonical� �best� abstraction 	M�C� of C as the mixed transition system
AM � ���� �I� �R

F � �R
C�� The valuation of literals in states of AM is specied by

the function �k	kLit dened in Subsection ��� above�

We then have�

Theorem ������ For every � � L�� AM j� � C j� ��

Proof� It is easy to see that it su�ces to prove statewise preservation for every
� in L�� for every state a � ��� �AM � a� j� � �C� ��a�� j� �� Let !� be the
extension of � to sets of abstract states� dened by !��A� �

S
f��a� j a � Ag� By

denition of j�� it su�ces to prove the stronger claim that

!���k�kd� � k�ke whenever the abstract environment d and the concrete
environment e are such that for every x � Var � !��d�x�� � e�x��

The result follows because clearly for every x � Var � !����env�x�� � �env�x��
This fact is easily proven for the base cases� If � is a literal p� then it follows

from Denition ������ If � is a variable x� then it follows from the assumption on
d and e�
Conjunctions and disjunctions are also easily proven� As for the next�state op�

erators� we show the case for �� � the case �� is similar� We have to show that
!���k��kd� � k��ke� Let c � !���k��kd�� which by denition of !� means that we
can choose a � �k��kd such that c � ��a�� We have to show that c � k��ke� i�e��
that there exists d � � such that R�c� d� and d � k�ke� Now� a � �k��kd means
that we can choose b � �� such that �i� �R

C�a� b� and �ii� b � �k�kd� From �i�� it
follows by denition of �R

C that b � 	�Y � for some Y � � satisfying R�����a�� Y ��
As c � ��a�� we can choose a d � Y such that R�c� d�� By monotonicity of 	
we have 	�d� � 	�Y � � b� From the latter� we obtain by monotonicity of � that
��	�d�� � ��b�� Because � � 	�C� � C� it now follows that d � ��b�� From �ii�� it
follows by the induction hypothesis that ��b� � k�ke� so we get d � k�ke�

From the xpoint formulae� we show the � case � � is similar� Consider
!���k�x��kd�� By denition of �k�x��kd� this is equal to !��

S
fA j A � �k�kd�x ��

A�g�� Clearly� !� distributes over
S
� so that this equals

S
f!��A� j A � �k�kd�x ��

A�g �iii�� Below� we show that f!��A� j A � �k�kd�x �� A�g � fC j C � k�ke�x ��
C�g� As a result� the expression �iii� is a subset of

S
fC j C � k�ke�x �� C�g� which

is by denition equal to k�x��ke��
Consider the expression A � �k�kd�x �� A�� By monotonicity of !�� it implies

!��A� � !���k�kd�x �� A��� By the induction hypothesis� the right�hand side of this
is a subset of k�ke�x �� !��A��� Therefore� f!��A� j A � �k�kd�x �� A�g is a subset
of f!��A� j !��A� � k�ke�x �� !��A��g� which is in turn easily seen to be a subset of
fC j C � k�ke�x �� C�g�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

So� mixed abstractions allow verication of full L� while the degree of reduction
is determined by the choice of the abstract domain and may hence be arbitrarily
large� In contrast� reductions with regard to bisimulation equivalence �Bouajjani
et al� ����� only allow a limited reduction� These facts may seem contradictory�
but the reader should note that by the denition of satisfaction of L� formulae over
mixed abstractions� it is possible that neither �� nor �� holds� this is not possible
with bisimulation reduction�

� APPROXIMATION AND OPTIMALITY

We have dened an abstraction function 	M mapping each concrete system C to
the best abstract system AM � It involves the denitions of the valuation of literals
in abstract states ��k	kLit�� of the abstract initial states ��I�� and of two abstract
transition relations ��RF and �R

C�� Each of these denitions� given in the previous
section� was motivated by the objective to dene the transition system 	M�C� in
such a way that it satises as many L� properties as possible� For example� the
free and constrained transition relations in AM were dened by always choosing�
for the successors of an abstract state� the ��least descriptions �as provided by 	�
of ��minimal sets of concrete states� and furthermore by having a minimal number
of free and a maximal number of constrained successors� In this section� we give
a formal justication of these choices by dening an approximation ordering � on
abstract systems� Just as 	M may be seen as the lifting of the abstraction function
	 from individual states to transition systems� � is the lifting of �� We show
that� under certain conditions� � coincides with the �L��property ordering� �i�e�
we show that A� � A�� i� A� enjoys at least the same L��properties as A��� and
furthermore that 	M �C� is the ��least abstract transition system �over the given set

�� of abstract states
� that is �safe� in the sense that L� properties are preserved
from 	M �C� to C� Thus� this formally establishes the optimality of 	M �C�� Another
reason for introducing approximations is that they turn out to occur in a natural
way when computing abstractions directly from a program� as will be done in the
next section�

De�nition ������ Let A� � ���� I �� F �� C�� and A�� � ���� I��� F ��� C��� be mixed
transition systems� A relation
 � ��� �� is a mixed simulation �from A� to A���
i� ���
 is consistent��� ��� F �
�simulates F ��� and ��� C��
���simulates C��
A� � A�� i� there exists a mixed simulation
 from A� to A�� such that �
� for

every a� � I� there exists a�� � I�� such that
�a�� a����

The following lemma expresses that this approximation order coincides with the
L��property ordering� A similar theorem was proven in Larsen ������� That paper
considers Hennessy�Milner Logic� which does not feature a xpoint operator� how�
ever� the proof for xpoint formulae is analogous to the xpoint case in the proof
of Theorem ������

�One point to mark is that all the mixed transition systems that we are comparing have the same
set �� of abstract states� Obviously� one can always construct better abstractions by re�ning this
abstract domain � up to the point where it contains the same amount of detail as the set � of
concrete states� The merit of an optimality result is that it identi�es the most precise abstraction
given the loss of information that is inherent to the choice of ���
��� is consistent i� ��s�� s	� implies �p�Lit s	 j� p � s� j� p� see De�nition ������

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

Theorem ������ Let A� and A�� be as in De�nition 	�
��� If A� � A��� then
for every � � L�� A

�� j� � A� j� �� Furthermore� if F � and C�� are �nitely
branching��� then the reverse holds as well� if for every � � L�� A�� j� � A� j�
�� then A� � A���

Note that the relation � over abstract systems is a pre�order but not a partial order
�i�e� A� � A�� and A�� � A� does not imply A� � A���� We turn it into a partial
order by identifying systems A� and A�� whenever both A� � A�� and A�� � A� hold�
by Theorem
� �� we are justied to do this� To improve readability� we do not
explicitly distinguish between equivalence classes and representants�
As an immediate corollary of this theorem and Theorem ������ we have�

Corollary ������ If A � 	M �C�� then for every � � L�� A j� � C j� ��

�� Optimality

Together� 	M and � induce the following abstraction �or description� relation �cf�
page �����

De�nition ������ A is an abstraction of C i� A � 	M�C��

Corollary
� �� above states that such an abstraction A is safe for C� However� we
still do not know how good �in the sense of �� the abstraction 	M �C� is with regard
to other transition systems over �� that are safe for C� The following theorem shows
that under a few additional conditions� 	M �C� is indeed the best abstraction of C�

Theorem ������ Let A� � ���� F �� C�� I �� be a mixed transition system with an
associated valuation function k	k�Lit that is such that for every c � � and every
a � ��

��p�Lit a j� p c j� p� c � ��a�� ���

Assume that ���L� �A�� a�� j� � �C� ��a��� j� � and furthermore that R �the
concrete transition relation� and F � are �nitely branching� Then � is a mixed
simulation from 	M�C� to A��
If� in addition to statewise preservation� we require global preservation to hold�

i�e� ���L� A
� j� � C j� �� and furthermore I� is �nite� then A� � 	M �C��

Assumption ��� in the theorem intuitively means that � is maximal in the sense
that whenever the truth of all literals is preserved from some a to some c� then a is
indeed a description of c� Note that this does not necessarily hold for the canonical
valuation function �k	kLit of Section ���� It may be the case that two abstract states
a and a� satisfy the same literals� but nevertheless describe di�erent sets of concrete
states� Assumption ��� forbids this� so that a and a� cannot be interchanged�

Proof of Theorem ������ Let A � 	M �C� � ���� �R
F � �R

C � �I�� Points ���
through �
� below correspond to the points in Denition
� ��� The rst three
points deal with the rst part of the theorem while the second part is proven in
point �
��

��A relation R � A�B is �nitely branching� or image��nite� i� for every a � A� the set fb � B j
R�a� b�g has �nite cardinality�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

��� Consistency of � follows from Lemma ������

��� Let a � a� and �R
F �a� b�� By denition of �R

F this means that we can choose
c� d � � such that c � ��a�� R�c� d� and b � 	�fdg�� Because a � a�� we also
have c � ��a��� By the assumption of statewise preservation� it now follows
that there exists b� such that F ��a�� b�� and d � ��b��� Namely� suppose there is
not� i�e� �b� F ��a�� b�� d �� ��b��� Then by assumption ��� in the theorem�
we can choose literals pb� such that b� j� pb� for every such b�� but d �j� pb� for
any such b�� Then a� j� �

W
b��F �a��b�� pb� � while c �j� �

W
b��F �a��b�� pb� � Because

F � is nitely branching� �
W
b��F �a��b�� pb� is a L� formula� and hence we have

arrived at a contradiction�

Furthermore� from fdg � ��b�� it follows that 	�fdg� � 	 � ��b��� i�e� b � b��

��� Let a � a� and �R
C�a�� b��� Let c � ��a�� So also c � ��a��� Then we can

choose d � ��b�� such that R�c� d�� Namely� suppose �d R�c� d� d �� ��b���
Then by assumption ��� in the theorem� we can choose literals pd such that
b� j� pd for every such d� but for any such d� d �j� pd� Then a� j� �

V
d�Rc�d� pd�

while c �j� �
V
d�Rc�d� pd� Because R is nitely branching� �

V
d�Rc�d� pd is a L�

formula� and hence we have arrived at a contradiction�

So� R�����a�� ��b���� Then we can choose Y to be a ��minimal Y � for which
R�����a�� Y �� in such a way that Y � ��b��� By denition of �R

C� we have

�R
C�a� 	�Y ��� As Y � ��b��� 	�Y � � 	���b���� i�e� 	�Y � � b��

�
� Next� we show that the additional assumption of ���L� C j� � � A� j� �
implies that �a��I �a��I� a � a��

Suppose this does not hold� i�e� we can choose a � �I such that �a��I� a �� a��
By denition of � this means �a��I� ��a� �� ��a��� By denition of �I �namely�
f	�fcg� j c � Ig�� we can choose c � I such that a � 	�fcg�� Below� we will
show that �a��I� c �� ��a��� By assumption ��� in the theorem� we can then
choose literals pa� such that a� j� pa� for every such a� but c �j� pa� for any such
a�� This implies that A� j�

W
a��I� pa� � while C �j�

W
a��I� pa� � By the assumption

that I� is nite� this formula is in L�� So we have arrived at a contradiction�

We need to show that �a��I� c �� ��a��� Suppose this does not hold� say c �
��a�� for some a� � I�� Then fcg � ��a��� hence 	�fcg� � a�� i�e� a � a��
Contradiction�

Note that we require both global and statewise preservation in Theorem
����� It
turns out that if we weaken the condition to global preservation ����L� A� j�
� C j� �� alone� we cannot prove A� � 	M �C� anymore� This means that
	M �C� is not the ��least safe description of C in that case� However� it can still
be shown that then A� �� 	M �C�� meaning that 	M �C� is ��minimal � although not
unique�
This section was motivated by Cleaveland et al� ������ that also establishes op�

timality results� be it in a more restricted context �see also Section ��� In that
restricted framework� their canonical abstraction �similar to our 	M �C�� is the
unique best description of C�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

�� COMPUTING ABSTRACT MODELS BY ABSTRACT INTERPRETATION

After having dened abstract models and proven their preservation properties� we
now get to the topic of how to compute such models directly from a program�
We will do this through abstract interpretation of the program text� An abstract
interpretation may be viewed as a non�standard semantics dened over a domain
of data�descriptions� where the functions are given corresponding non�standard
interpretations� The abstract states are then valuations of program variables over
the domain of data�descriptions� and the abstract transitions are computed by
evaluation of the abstract semantic functions over these domains�
In order to further develop the theory� we rst need to x a programming lan�

guage� We use a language that is based on action systems �Back and Kurki�Suonio
������ which� although being very simple� will help to grasp the idea of how to ab�
stractly interpret operations in �real� programming languages� as it contains rudi�
mentary forms of the common notions of assignment� test and loop� A program is
a set of actions of the form ci�"x�� ti�"x� "x

��� where i ranges over some index set J �
"x represents the vector of program variables� ci is a condition on their values and ti
species a transformation of their values into the new vector "x�� A program is run
by repeatedly nondeterministically choosing an action whose condition ci yields true
and updating the program variables as specied by the associated transformation��

ti� In the following� we let P be the program fci�"x� � ti�"x� "x�� j i � Jg� Val the
set of values that the vector "x may take� and IVal � Val the set of values that it
may have initially� Thus� each ci is a predicate over Val and each ti a relation on
Val � Val�

De�nition ������ P �s �concrete� interpretation I�P � is the transition system
��� I� R� dened as follows�

�� � Val

�I � IVal

�R � f�"v� "v�� � Val� j �i�J ci�"v� � ti�"v� "v��g

Henceforth� we identify I�P � with the concrete Kripke structure C�
Next� we assume a set �Val of descriptions of sets of values in Val� via a Galois

insertion �	� ��� and dene two types of non�standard� abstract interpretations of
the ci�s and ti�s over �Val in such a way that abstractions of the concrete models
of programs may be computed by interpreting the operators in the program corre�
spondingly� Note the similarity of the following denitions with Denition ����� of

�R
F and �R

C �

De�nition ������ For i � J � let cFi � c
C
i be conditions on �Val and tFi � t

C
i be trans�

formations on �Val � �Val�

�cFi is a free abstract interpretation of ci i� for every a � �Val�
cFi �a�� ��v��a� ci�"v��

�tFi is a free abstract interpretation of ti i� for every a� b � �Val�

�	As ti is a relation� there may be several di�erent updated states �x�� In this case� one of these is
selected nondeterministically�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

tFi �a� b� � b � f	�Y � j Y � minfY � j ti
�����a�� Y ��gg�

�cCi is a constrained abstract interpretation of ci i� for every a � �Val�
cCi �a�� ��v��a� ci�"v��

�tCi is a constrained abstract interpretation of ti i� for every a� b � �Val�
tCi �a� b� � b � f	�Y � j Y � minfY � j ti

�����a�� Y ��gg�

Furthermore� we dene the abstract interpretation �I�P � of P as the system dAM �

���� �I� d�RF � d�RC� where�

��� � �Val

��I � f	�"v� j "v � IValg

�d
�RF � f�a� b� � �Val

� j �i�J cFi �a� � tFi �a� b�g

�d
�RC � f�a� b� � �Val

� j �i�J cCi �a� � tCi �a� b�g

d
�RF and d

�RC are called the computed free and constrained transition relations
respectively�

Of course� the abstract interpretations cFi � t
F
i and cCi � t

C
i should be e�ectively

computable� The idea of abstract interpretation is that an analysis tool� when
provided with the domain of abstract values and corresponding abstractions of the
operators� should be able to automatically evaluate the abstract semantics �I�P �
of any program P �

��� Abstract interpretation gives approximations

The following theorem expresses that the abstract interpretations given above can
be used to compute approximations to AM �� 	M �C���

Theorem ������ dAM � AM �i�e�� �I�P � � 	�I�P ����

Proof� We show that � satises points ��� through �
� in Denition
� ��� ���
follows from Lemma ������ As to points ��� and ���� observe that it easily follows

from the denitions of d�RF and �R
C that d�RF ��simulates d�RF and that �R

C ��

simulates �R
C� Hence� by Lemmata ����� and ����� below� �R

F ��simulates d�RF

and d
�RC ��simulates �R

C � Finally� �
� is immediate as the initial states of dAM

and AM are identical�

Lemma ������ Let R� and R�� be transition relations over ���

�� � If for all a� b � ��� R
��a� b� �b��b R���a� b�� and R�� ��simulates R��� then

R� ��simulates R���

� � If for all a� b� � ��� R
���a� b�� �b�b� R��a� b� and R� ��simulates R�� then

R�� ��simulates R��

Note that R��a� b� �b��b R
���a� b�� is satised if R� � R��� and that R���a� b��

�b�b�R��a�b� holds if R�� � R��

Lemma ������

�� � �R
F � d

�RF �

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

� � For all a� b � ��� d�RC�a� b� �b���b �R
C�a� b����

Proof�

��� Let a� b � �Val and suppose �a� b� � �R
F � By Denition ����� of �R

F � Def�
inition ��
�� of R�� and Denition �� �� of R� this is equivalent to b � f	�Y � j
Y � minfY � j ��v��a�� �w�Y � ��i�J �ci�"v� � ti�"v� "w���gg� Exchanging existential quan�
tiers yields the equivalent b � f	�Y � j Y � minfY � j �i�J ���v��a�� �w�Y � �ci�"v� �
ti�"v� "w���gg�
Because the elements of the set minfY � j �i�J � � �g are singletons �see the remark
below Denition ������� the subterm Y � minfY � j �i�J � � �g is easily seen to be
equivalent with �i�J Y � minfY � j � � �g� After performing this replacement� we can
bring the �i�J outside� resulting in the equivalent formula

�i�J �b � f	�Y � j Y � minfY � j ��v��a�� �w�Y � �ci�"v� � ti�"v� "w��gg�� ���

Now this is weakened by distributing the innermost existential quantier over the
��

�i�J �b � f	�Y � j Y � minfY � j ��v��a� �ci�"v�� � ��v��a�� �w�Y � �ti�"v� "w��gg�� �
�

Because both the innermost and outermost sets do not depend on ��v��a� �ci�"v���

this conjunct may be taken out of the set brackets� Using Denition ��
�� of ti
��

and Denition �� �� of cFi � t
F
i � and

d
�RF � the resulting equivalent term can then be

rewritten to �a� b� � d�RF �

��� Let a� b � �Val and suppose �a� b� � d
�RC � By Denition �� �� of d�RC � cCi

and tCi � and Denition ��
�� of ti��� this is equivalent to �i�J ���v��a� �ci�"v�� � b �
f	�Y � j Y � minfY � j ��v��a� � �w�Y � �ti�"v� "w��gg�� This expression can be rewritten
to the equivalent�

b � f	�Y � j �i�J �Y � minfY � j ��v��a� � �w�Y � �ci�"v� � ti�"v� "w��g�g ���

�dene min� � � in this proof�� Now consider the subexpression

�i�J �Y � minfY � j ��v��a� � �w�Y � �ci�"v� � ti�"v� "w��g�� �	�

Compare this to the expression that is obtained by pushing the �i�J inside�

Y � minfY � j �i�J ���v��a� � �w�Y � �ci�"v� � ti�"v� "w���g� ���

If Y satises �	�� then there exists an i � J such that Y is minimal among all ����
successors� of ��a� that correspond to action i� On the other hand� if Y satises ����
then Y is minimal among all the ���successors of ��a�� regardless of the specic i�
Hence� this latter Y will be a subset of �or possibly equal to� the Y that satises �	��
So� for each set that satises �	�� there exists a subset of it that satises ���� so
that if b satises ���� there exists b� � b that satises�

b� � f	�Y � j Y � minfY � j �i�J ���v��a� � �w�Y � �ci�"v� � ti�"v� "w���gg� ���

A similar step can be made again� if b� satises ���� then there exists b�� � b�

satisfying�

b�� � f	�Y � j Y � minfY � j ��v��a� � �w�Y � �i�J �ci�"v� � ti�"v� "w��gg ���

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��	 � Dennis Dams et al�

which is� by Denition �� �� of R� Denition ��
�� of R�� and Denition ����� of

�R
C � equivalent to �R

C�a� b����

��� Optimal abstract interpretations

Construction of an abstract model by abstract interpretation of the �elementary�
operations �the ci and ti� occurring in a program is a natural thing to do � it
resembles the way abstractions are computed in traditional applications of Abstract
Interpretation� However� the computed abstract models �Denition �� ��� are� in
general� less precise than the optimal abstractions of Denition ������ How much
precision is lost exactly depends on the program to be analysed and the choice of
the abstract domain� In order to get some insight� we discuss two approaches to
obtain optimality� Firstly� we derive su�cient conditions on the abstract domain
�and program� for the computed abstract models of Denition �� �� to be optimal
�i�e� equal to 	M�C��� Secondly� we brie�y sketch how� alternatively� the abstract
interpretation of programs may be adapted in such a way that computed models
are optimal�

Conditions on the abstract domain� In order to pinpoint the reasons why the
computed abstractions are not optimal� we analyse the proof of Lemma ������ In
part �� concerning the free abstraction� the only place where the formula being ma�
nipulated is �strictly� weakened� is when the term ��v��a�� �w�Y � �ci�"v��ti�"v� "w�� �T��
is replaced by ��v��a� �ci�"v�� � ��v��a�� �w�Y � �ti�"v� "w�� �T���The following small ex�
ample illustrates what happens� Suppose that the concrete state space consists of
a single integer variable v� and that the abstract domain contains values e and o�
being descriptions of the even and the odd numbers respectively� Assume that P
contains as action i� v �
 � v �� v�
 �specifying ci�v� to be v �
 and ti�v� w� to
be w � v�
�� Then �T��� with e for a and ��e� for Y �� does not hold� On the other
hand� �T�� does hold� there exists an even number that is equal to
 and there
exists a �di�erent� even number that� when divided by
� yields an even number�
In order to enforce equivalence of �T�� and �T��� we can impose a condition on the
abstract states� For an abstract state a� this condition intuitively requires that the
concrete states in ��a� behave uniformly with respect to every condition ci�

Lemma ������ Let dAM � �I�P � be the abstract model computed according to
De�nition ��
�� and let a � ��� If for every i � J � we have either ��v��a� ci�"v� or

��v��a� �ci�"v�� then every outgoing d�RF �transition of a is in �R
F �

Proof� The precondition of the lemma is easily seen to imply equivalence of the
terms T� and T� and hence of the formulae ��� and �
� in the proof of Lemma ������
The conclusion then follows directly�

So� under the given condition� all outgoing free transitions of state a are optimal�
Clearly� the condition is very strong for ���large� states� E�g� if a � �� then it
is only satised if all program conditions ci are either tautologies or unsatisable�
However� as far as properties � � �L� are concerned� it is su�cient to require
the condition to hold only for those states on which � depends� In that case� the

result of model checking � over the computed model dAM will be the same as when

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ��

checking it over the optimal model AM � As a consequence� unreachable states may
be ignored alltogether� As to the reachable states� observe that only the atoms of
the abstract domain� i�e� the elements f	�fcg� j c � �g� can be reachable via a
free transition� This follows from the observation� below Denition ������ that 	 is
only applied to singletons� Hence� we should preferably choose the abstract domain
in such a way that these atoms are ��small��� However� if � is a subformula of a
formula that contains��s� then also certain states that are reachable via constrained
transitions may have to satisfy the condition of Lemma ������

Although su�cient� the condition required in Lemma ����� is not necessary� How�
ever� it is a reasonable condition that can be checked rather easily� one has to check
that for each atomic abstract state a and each condition ci of the program� either
�a ci� or �a
 ci � ��� For instance� in the example above� �being even� neither
implies nor excludes �being equal to
�� so the condition is not met� The condi�
tion also gives a deeper insight in how to design �good� abstract domains given a
program�ming language��

For the constrained relation� we analyse part � of the proof of Lemma ������

The last two steps in this proof introduce the di�erences between d
�RC and �R

C �

We consider these steps in reverse direction� going from �R
C to d

�RC � While in
formula ��� the ����successors� Y � of ��a� are taken relative to transitions via any
action �i�e� all states in ��a� must be able to make a transition to some state in
Y � via no matter which action i�� the ���successors Y � of ��a� in ��� are taken
�per action�� i�e� for a single action i � J � all states in ��a� must be able to make
a transition to some state in Y � via action i� This means that in the latter case�

certain ���successors Y � may be �missed� and consequently� d�RC may contain fewer
transitions than �R

C � However� note that if for such a transition� say from a to b�

which is in �R
C but not in d�RC � there exists another transition in d�RC from a to

a more precise state b� � b� this loss does not matter� d�RC will not be less precise
�in the sense of Denition
� ��� than �R

C because of this� It is this observation
on which the condition in Lemma ����� below is based�
Now consider the step from ��� to ��� � more precisely� the replacement of

subformula ��� by �	�� In ���� the minimality of Y is determined globally over all
actions� while in �	� all Y �s that are minimal relative to a single action i � J are

taken� As a result� the set of successors under d�RC of some abstract state a may

be a superset of its successors under �R
C �the fact that d�RC is not strictly more

precise than �R
C is explained by observing that for each such extra successor b�

under d�RC there will be a more precise successor b � b� under �R
C�� Hence� this

e�ect does not negatively a�ect the precision of d�RC w�r�t� �R
C�

Lemma ������ Let a � �� and suppose that both of the following conditions hold�

�� � For every i � J � ��v��a� ci�"v� or ��v��a� �ci�"v��

� � For all i� j � J with i �� j and bi� bj � �� with cCi �a� � tCi �a� bi� and cCj �a� �

tCj �a� bj�� for every b � �� with ��bi�
 ��b� �� � and ��bj�
 ��b� �� �� there

�
See
Cousot and Cousot 	���� for a variety of techniques for the construction of suitable abstract
domains�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

exist k � J and bk � �� with cCk �a� � tCk �a� bk� such that ��bk� � ��b��

Then for every b� � ��� �R
C�a� b�� �b�b� d�RC�a� b��

Note that condition ��� in this lemma is similar to the condition in Lemma �����
above� Condition ��� species that two abstract successors bi and bj of a corre�
sponding to di�erent actions �i �� j� may only both be �partially or completely�
overlapped by a third state b if b completely overlaps some successor bk �possibly
k � i or k � j� of a�

Proof of Lemma ������ It may be helpful to realise that we are� roughly speak�
ing� trying to reverse the direction of the argument in point ��� of the proof of
Lemma ������ Let b� � �� and assume �R

C�a� b��� By Denition ����� of �R
C �

Denition ��
�� of R�� and Denition �� �� of R� this is equivalent to saying that
b� is an element of

f	�Y � j Y � minfY � j ��v��a� � �w�Y � �i�J �ci�"v� � ti�"v� "w��gg� �� �

Next� consider the set that is obtained by taking the �i�J outside of the scope of
��v��a�� �w�Y � �

f	�Y � j Y � minfY � j �i�J ���v��a� � �w�Y � �ci�"v� � ti�"v� "w���gg� ����

We consider two cases� If b� is an element of ����� then we proceed as follows� The
subexpression

Y � minfY � j �i�J ���v��a� � �w�Y � �ci�"v� � ti�"v� "w���g ����

of ���� is weakened by bringing the �i�J outside�

�i�J �Y � minfY � j ��v��a� � �w�Y � �ci�"v� � ti�"v� "w��g�� ����

Therefore� b� is also an element of the set obtained by replacing subexpression ����
of ���� by ����� resulting in the set

f	�Y � j �i�J �Y � minfY � j ��v��a� � �w�Y � �ci�"v� � ti�"v� "w��g�g� ��
�

Similar to the rst two steps in point ��� of the proof of Lemma ������ but in reverse

order� this implies that �a� b�� � d�RC �
The other case is that b� is not in ����� Let Z � � be such that b� � 	�Z��

Because b� is in �� � but not in ����� we can choose i� j � J with i �� j� "vi� "vj � ��a�
and "wi� "wj � Z such that ci�"vi� � ti�"vi� "wi� and cj�"vj� � tj�"vj� "wj�� Because� by
condition ��� of the lemma� ��v��a� ci�"v� and ��v��a� cj�"v�� we can also choose
Zi� Zj � � such that "wi � Zi and "wj � Zj � Hence� 	�Z� must have a non�empty
intersection with both 	�Zi� and with 	�Zj�� Condition ��� of the lemma then
requires that there exist k � J and bk � �� with cCk �a� � tCk �a� bk� �and therefore

�a� bk� � d
�RC� such that bk � 	�Z�� i�e� bk � b��

Again� for a formula � � �L� being checked� it su�ces to impose the conditions
of this lemma only on those states on which the interpretation of � depends� If
� contains ��operators as well� then the condition of Lemma ����� should hold in
those states on whose outgoing free transitions � depends and the conditions of
Lemma ����� should hold in those states on whose outgoing constrained transitions

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

� depends� In that case� model checking � over the computed mixed abstractiondAM of Denition �� �� gives the same result as checking it over the optimal AM �

Adapting the abstract interpretation� Instead of imposing conditions guarantee�
ing optimality of abstract models computed as specied by Denition �� ��� we
may change the denition of these abstract interpretations themselves in such a
way that the �loss� of Lemma ����� does not occur� For the free abstract inter�
pretation� this means that it may not be distributed over the individual condition
and transformation parts of an action� In case of the example given above� this
would mean that an abstract interpretation actFi has to be provided for the action
acti�v� w� � v �
 � w � v�
 as a whole� satisfying actFi �a� b� � �v��a� �ci�v��

b � f	�Y � j Y � minfY � j ti���fvg� Y ��gg��
In case of the constrained abstract interpretations� loss of optimality already oc�

curs at the point where they are distributed over the individual actions of a program�
Here� the adaptation would require the generalisation of the abstract interpreta�
tion of actions by taking into account the e�ect of executing an arbitrary number
of actions �at the same time� by dening actfi������ikg�a� b� � �a������ak�b������bk���
�a� � 	 	 	 � ak � a� b� � 	 	 	 � bk � b� �j�f��			�kg c

C
ij
�aj� � tCij �aj � bj�� for subsets fi��

� � � � ikg of J �� denotes the least upper bound on ���� This approach corresponds
to the merge over all paths analysis of Cousot and Cousot �������

��� Computing approximations

One may choose to compute non�optimal abstractions by specifying approximations
to the abstract interpretations of the ci and ti� A reason for doing so may be that
the computation of optimal abstract interpretations is too complex� when the ci
and ti involve intricate operations for example� In that case� even if the abstract
interpretations are optimal� it may be cumbersome to actually prove so� and one
may settle for proving approximation without bothering about optimality�

De�nition ������ The denition of approximation is extended to abstract inter�
pretations of the transformation operators� as follows� For abstract operations��

t� t � �Val � �Val�

t � t � �
a�b�b � �Val

h
t�a� b� �

b�b t�a� b�
i

�
h
t�a� b� �

b�b t�a� b�
i

Approximations tFi � tFi and tCi � tCi �for every i � J� to the free and con�

strained interpretations �see Denition �� ��� induce the abstract model AM �

���� �I� �RF � �RC�� where�

��� � �Val

��I � f	�"v� j "v � IValg

��RF � f�a� b� � �Val
� j �i�I cFi �a� � tFi �a� b�g

��RC � f�a� b� � �Val
� j �i�I cCi �a� � tCi �a� b�g

Lemma ������ AM � dAM �

��Recall that such �operations� are binary relations�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

Proof� We show that � is a mixed simulation from dAM to AM � The non�trivial

parts are to show that ��� d�RF ��simulates �RF and ��� �RC ��simulates d�RC �

��� Let a� a�� a � �� with d
�RF �a� a�� and a � a� We show that there exists

a� � a� such that �RF �a� a��� By Denition �� �� of d�RF � d�RF �a� a�� equiv�
ales �i�I �cFi �a� � tFi �a� a���� Because a � a� we have cFi �a� cFi �a� and also
tFi �a� a�� tFi �a� a�� �see Denition �� �� of cFi and tFi and Denition ��
�� of 	����

so �i�I �cFi �a�� t
F
i �a� a���� By Denition ����� of tFi � there exists a� � a� such that

�i�I �cFi �a� � tFi �a� a���� i�e� �R
F �a� a���

��� Let a� a�� a
� � �� with �RC�a� a�� and a� � a� We show that there exists

a�� � a� such that d�RC�a�� a���� We have �RC�a� a��� By Denition ����� of �RC

and tCi � there exists a��� � a� such that �i�I �cCi �a� � t
C
i �a� a

��
���� Because a

� � a� we
have cCi �a� cCi �a

��� and also there must be some a�� � a��� such that tCi �a
�� a��� �see

Denition �� �� of cCi and tCi and Denition ��
�� of 	���� So �i�I �cCi �a
���tCi �a

�� a�����

i�e�� d�RC�a�� a���� and� by transitivity of �� a�� � a��

��
 Practical application

The use of abstract interpretation to model check a property � for a program P
is characterised by the following phases� First� an abstract domain �Val has to
be chosen and for all operation symbols occurring in P � abstract interpretations
have to be provided� Typically� the tests and transformations are dened in terms
of more elementary operations� in which case abstract interpretations may be pro�
vided for these� Depending on the property � to be checked� free and�or constrained
interpretations should be given� these have to satisfy Denition �� ��� Then� the
abstract model can be constructed by a symbolic evaluation of the program over
the abstract domain� interpreting the operations according to their abstract inter�
pretations� Finally� � is model checked over the abstract model under the adapted
denition of satisfaction �Denition ������� It is important to notice that only posi�
tive results of this model checking carry over to the concrete model� because the �
and � next�state operators of � are interpreted along di�erent kinds of transitions
of the abstract model� a negative result A �j� � does not imply that A j� �� and
hence does not justify the conclusion that C j� ��� in spite of the fact that �� is
�an abbreviation of� a L� formula� However� it may be possible to resolve such a
negative answer for � by checking the negation ��� If true is returned� then we
know that A j� �� and hence C j� ��� i�e� C �j� �� As �� contains the dual�� op�
erators of those in �� its satisfaction by the mixed Kripke structure A may depend
on di�erent paths � in particular� it may not hold either� So� whether this �trick�
to resolve negative answers is successful� depends on how the dual abstractions �in
the sense of free vs� constrained� are chosen� We do not further investigate this
point here� the interested reader is referred to Kelb et al� �������

The same idea of constructing an abstract model by abstract interpretation of
program operations� although based on a di�erent theoretical framework �Loiseaux

��Recall that �� is the abbreviation of a L� formula in negation�normal form�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

think�

�a�

odd�n� even�n�

think�

even�n� �

eat� eat�

n �� n�	

n ��

 � n � �

�� � think� odd�n� 	
 �� �� eat
�� � eat 	
 �� �� think� n �� � � n� 	

�� � think� even�n� 	
 �� �� eat
�� � eat� even�n� 	
 �� �� think� n �� n��

�b�

Fig� 	� The dining mathematicians �a� expressed as an action system �b��

et al� ����� Loiseaux ���
� �see Section � for a comparison�� is applied to a �real�
life� example in Graf ����
�� Graf shows in that paper how a distributed cache
memory� which is in principle an innite state system because request queues are
unbounded� can be veried by providing a nite abstract domain and corresponding
abstract operations�
Although the model checking procedure itself is an automated process� it is not

obvious how the choice of an appropriate abstract domain with corresponding ab�
stract operations� as well as the proofs that these operations satisfy the conditions
of Denition �� ��� can be performed in an automated fashion� So far we have as�
sumed that the abstract domain is provided by the user of the method� an example
of this may be found in Graf ����
�� In Loiseaux ����
�� the process is automated�
but this is only possible because the concrete domain is required to be nite� The
proofs for the abstract operators may form a di�cult step in the method� In Kelb
et al� ������� approximations to the transition relation of StateCharts �Harel �����
are used to verify ��calculus properties of a production cell �Damm et al� ����� in
a compositional fashion� In Dams et al� ������ and Dams et al� ����
�� a method
is developed that aims at full automation of these steps� However� it is potentially
more expensive than to evaluate properties over the concrete domain�

�� EXAMPLE

In this section we illustrate the theory on a small example� Consider the system
consisting of two concurrent processes depicted in Figure ��a�� which is a parallel
variant of the Collatz �n � � program� We chose this example because it is small
but nevertheless displays a non�trivial interplay between data and control� The
properties that we will verify concern certain control aspects that depend on the
values that the integer variable n takes under the various operations that are per�
formed on it� Because the state space is innite� data�abstraction will be necessary
in order to verify aspects of the control��ow� It serves as an illustration of the fact
that abstraction techniques bring into reach the model checking of systems that
cannot be veried through the standard approach�

The program may be viewed as a protocol controlling the mutually exclusive
access to a common resource of two concurrent processes� modelling the behaviour
of two mathematicians� numbered and �� They both cycle through an innite

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

sequence of �think� and �eat� states� The right to enjoy a meal in strict solitude
is regulated by having them inspect the value of n before eating� letting the one go
ahead only if n has an odd value� and the other only if n is even� Upon exit from the
dining room� each mathematician has its own procedure for assigning a new value
to n� Transitions can only be taken when the enabling conditions are satised� e�g��
mathematician � can only leave the dining room if n is divisible by �� An execution
is a maximal sequence of �arbitrarily� interleaved steps of both processes that starts
in a state where both mathematicians are in their thinking state� and n is set to
some arbitrary positive integer value� We want to verify mutual exclusion and
the absence of individual starvation along every execution� In order to formalise
this� we rst express the program as an action system��� see Figure ��b�� As data
and control are treated uniformly in such systems� we introduce variables �� and
��� both ranging over fthink� eatg� to encode the e�ect of �being in a location�
thinki or eati� The state space � of this program is the set fthink� eatg�� INnf g
of values that the vector h��� ��� ni of program variables may assume� The initial
states are I � fhthink� think� ni j n � IN nf gg� The transitions are dened as
in Denition �� ��� using the standard interpretations of the tests �� even� odd
and operations ��� �� and �� �the latter three are considered as operations on one
argument� i�e� functional binary relations� where �� is assumed to be dened for
even numbers only��
The properties to be veried are expressed in L� as follows�

�x������ � eat � �� � eat� ��x� ����

�x���� � eat� ��y���� � eat � ��true ��y��� ��x� ��	�

�x���� � eat� ��y���� � eat � ��true ��y��� ��x� ����

Formula ���� says that the property ���� � eat � �� � eat� holds in every state
along every execution� ��	� expresses that whenever a state is reached in which
�� � eat holds� then along every continuation� there must eventually be a state in
which �� � eat� ���� says the same with �� and �� reversed� The rst formula is
in �L�� while the other two are in neither fragment of L�� However� we will see
later in this section that the program is deadlock free� so that by Lemma ������ the
�true conjuncts may be dropped from the formulae� The resulting formulae are
contained in �L�� so that we can verify them via a free abstraction�

The abstract domain is dened by providing abstractions of the components that
comprise the concrete domain� We choose to leave the components fthink� eatg the
same� Formally� this means that we take an abstract domain containing elements
think and eat whose concretisations are fthinkg and featg respectively� To abstract
IN nf g� we choose an abstract domain in which n may take the values e and o�
describing the even and odd positive integers respectively� i�e� ��e� � f��
� 	� � � �g
and ��o� � f�� �� � � � �g� To both abstract domains� we add a top element �� The
set �� of abstract states is thus dened as follows�

�� � fthink� eat��g� � fe� o��g

��We use the more operational notion of assignment� ��� rather than the primed variables of
De�nition ����	�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

Free� �e� e� �e� o� �e��� �o� e� �o�o� �o��� ��� e� ��� o� �����

��F true false false false true false true true false

�	F false true false true false false true true false

��F true true false false false false true true false

�a�

Free� e o �

evenF true false true

oddF false true true

�b�

Constr�� �o� ���� �o� e� �o� o� �o���

��C false false true false

�	C false true false false

��C false false false false

�c�

Constr�� ��� e o �

evenC true true false false

oddC false false true false

�d�

Constr�� think eat �

� thinkC true false false

� eatC false true false

�e�

Fig� �� Free abstract interpretations of operations �a� and some of the tests �b�� Constrained
abstract interpretations of some operations �c� and tests �d and e��

Its top element is h�����i� while the approximation relation � is the obvious
extension of the orderings on each of the three components� It is easily veried
that the concretisation function thus dened determines a Galois insertion from
�P������ to ������� The valuations of the propositions �� � eat and �� � eat
over the abstract states� given by Denition ������ are as expected� For the abstract
initial states we have� according to Denition ������

�I � fhthink� think� ei� hthink� think� oig

Having chosen an abstract domain� we also have to provide abstract interpreta�
tions� over this domain� of the operations that appear in the program� along the
lines of Denition �� ��� Tables �a� and �b� in Figure � give the denitions of the free
abstract interpretations of some of the transformations and tests on the abstract
domain fe� o��g� The operations ��� �� and �� are considered single symbols� The
tables have to be interpreted as indicated by the following examples� The entry
true in Table �b�� row evenF � column e� indicates that evenF �e� holds� i�e� �cf�
Denition �� ��� �n��e� even�n�� The entry false in Table �a�� row ��F � column

�e� e�� means that ��F �e� e� is false� i�e� for any minimal Y such that �������e�� Y ��
we have 	�Y � �� e �see Denitions �� �� and ��
���� From these diagrams we see
for example that ��F is not functional �Table �a�� row ��F � rst two columns� as
well as the columns for ��� e� and ��� o��� illustrating that a function may become
a relation when abstracted� The abstract interpretation of the composed operation
� � ���� � that occurs as a transformation in the program� is now obtained by com�
position of the abstract interpretations of the constituents� The tables �c�#�e� are
explained below�

Now we can abstractly interpret the program over this abstract domain� using the
interpretations given in the tables� Such an abstract execution yields the abstract

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

Fig� �� The free abstract model�

think�
ei

hthink�
think�
oi

oi
think�
heat�

hthink
eat�
ei

hthink�

model of Figure �� In this model� only those states are shown that are reachable
along the computed free transition relation� We see that in no reachable state
the property �� � eat � �� � eat holds� Hence we have established property �����
Furthermore� every path from the state where �� � eat� reaches �� � eat within �
steps� so we have also veried property ��	��

However� the abstraction does not allow verication of the other non�starvation
property� ����� a counterexample in the abstract model is the path cycling innitely
between hthink� think� ei and hthink� eat� ei� It turns out that the negation of prop�
erty ���� can also not be established via the constrained transition relation� So�
only renement of the abstract domain may bring the answer� In this case� the
abstract states where n � e would have to be unraveled into innitely many states
representing the cases where n is divisible by
� by �� by �	� � � � � Hence� with our
methodology� it is impossible to verify property ���� through a nite abstraction�

Nevertheless� an interesting question is how the renement of an abstract model�
in order to decide indeterminate results� can be computed� Ongoing work� which
concentrates on including fairness constraints in the abstract models� has meanwhile
yielded results that enable the verication of property ���� via a nite abstraction�

It is easy to check that for each condition ci of the action system in Figure � �b�
and each abstract state a of the system of Figure �� either ci evaluates to true in all
concrete states in a�s concretisation� or it evaluates to false in all those states� This
implies by Lemma ����� that �the reachable part of� the computed free abstraction
coincides with �the reachable part of� the optimal free abstraction as dened by
Denition ������

In order to illustrate the use of the constrained abstraction� we consider a small
extension to the program� we add a third concurrent process that can �restart� the
system by setting n to value � � This may only be done when both mathematicians
are thinking� otherwise there may be executions possible that violate the mutual
exclusion property� To this e�ect� the following fth action is added to the program�

�� � think� �� � think �� n �� �

We want to check whether along every possible execution path� in every state there
is a possible continuation that will eventually reach a �restart� state� Writing
restart for �� � think � �� � think � n � � � this property is expressed in L� by�

�x���y��restart ��y� ��x� ����

We extend the abstract domain for n by the value ���� where ������ � f� g�
Formula ���� not being in �L� or �L�� we need a mixed abstraction� The tables
�c�#�e� in Figure � provide some of the entries that will be needed in an abstract
execution of the program� The other tables from Figure � have to be extended in

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

think�
hthink�

hthink� hthink� hthink�
think� think�

think�

think�

hthink� hthink�

�i

ei

���i ���i

oi

� restart

oi ei

eat�

eat�

heat�

Fig� �� The mixed abstract model for the modi�ed program�

order to take into account the new abstract value ���� Being straightforward� these
extensions are left to the reader�
The resulting abstraction is depicted in Figure
� Solid arrows denote free transi�

tions� dashed arrows represent constrained transitions� Not all reachable states are
shown� The complete model would include � more states� which are only reachable
via free transitions starting from hthink� think��i� However� as the formula to be
checked does not depend on these� they have been omitted� On the other hand�
the presence of the state hthink� think��i� though not reachable via free transitions
alone� is essential in proving the property� Note that it is not in general the case that

�R
C � �R

F � as is illustrated by the arrow from hthink� eat� ei to hthink� think��i�
Property ���� is veried on this model� interpreting the � modalities along the

free transitions� and the �s along the constrained transitions� It can easily be seen
that ���� holds� hence� we have established its validity in the concrete program�
Also� we can see from this abstraction that the program is deadlock free� as it
satises the formula �x���true��x� which expresses that there exists a successor
in every reachable state�

In order to check optimality of transitions in the model of Figure
� we verify
the preconditions of Lemmata ����� and ����� for its states� Earlier� we checked the
precondition of Lemma ����� for those states that already occur in the free model of
Figure �� The concretisations of the states hthink� think� ���i and hthink� eat� ���i are
singletons� from which it directly follows that also for these states� the precondition
of Lemma ����� is satised� whence their outgoing free transitions are optimal� For
hthink� think��i� the precondition of Lemma ����� does not hold� Indeed� the free
transitions starting from this state that are not shown in the gure� are not optimal�
Those optimal free edges would lead back to hthink� eat� ei and to heat� think� oi�
Next� we check the constrained transitions� As condition ��� of Lemma ����� is

the same as in Lemma ������ it remains to check condition ���� The only states
that have two di�erent �constrained� successors �corresponding to the bi and bj
in Lemma ������ are hthink� think� ei� hthink� think� oi and hthink� think� ���i� The
successors of hthink� think� ei are hthink� eat� ei and hthink� think� ���i� The states in

�� �corresponding to the b in Lemma ������ that �partly� overlap both of these
are hthink��� ���i and all states that are ��greater than it� Because hthink��� ���i
completely overlaps a successor of hthink� think� ei� namely hthink� think� ���i �bk

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��	 � Dennis Dams et al�

hthink�
think�
�i

hthink�
think�
ei

hthink�
think�
oi

hthink�
eat�
ei

heat�
think�
oi

Fig� �� An approximation to the free abstraction�

in Lemma ������� all states that are ��greater than hthink��� ���i also overlap
this successor� In a similar way� condition ��� of Lemma ����� can be shown to
hold for hthink� think� oi and for hthink� think� ���i too� The conclusion is that only
the constrained transition that starts in the state hthink� think��i may be non�
optimal��� as condition ��� did not hold�

As an example of the computation of approximations by choosing non�optimal
abstract interpretations ti of operations in the program� consider the dining math�
ematicians without the �restart� extension� Take the same free abstract inter�
pretations as before for all operations except ��� for which we take the following
approximation� ��F �o��� � true while ��F �o� e� � ��F �o� o� � false� This is easily
checked to satisfy Denition ������ We get the free abstraction of Figure �� from
which still various properties may be deduced� such as the fact that at least one
mathematician will keep engaged in a cycle of thinking and eating�

	� STRONG PRESERVATION

In Section ���� we have identied conditions under which computed abstract mod�
els are optimal in the standard sense of Abstract Interpretation� This notion of
optimality concerns the quality of the abstract interpretation used to compute an
abstraction� �I�P �� relative to the �ideal� abstraction 	�I�P ��� In particular� it is
optimality with respect to a given abstract domain ���

A di�erent notion of quality is the aptness of the abstract domain itself for the set
of properties to be checked� In other words� given an abstract domain� how often
will we get indeterminate answers as in the case of property ���� in Section 	$
In posing this question� we enter in fact the area of specic applications of the
framework presented so far� the answer to the question depends very much on
the specic set of properties to be checked and on the programming language that
is analysed� Nevertheless� we present a few general results that characterise the
preservation quality of abstract domains� We say that a set of properties is strongly
preserved when for every property� it is satised in the abstract model if and only
if it is satised in the concrete model�

According to a well�known result in modal logic �van Benthem et al� ���
�� two
image�nite transition systems satisfy the same closed L� formulae if and only if
they are bisimilar� In our case this implies the following�

�In fact� it is optimal� as is easily seen� This indicates that Lemma ����� only gives a su�cient
condition�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ��

Lemma ������ Consider C � ��� I� R� and A
 � ���� �I� �R
F � �R

C� and let
�� and ��

� be the reachable states of C and A
 resp� If the relation � �� � ��
�

de�ned by �c� a� � 	�c� � a is a bisimulation from C to A
 and both and ��

are consistent�	� then every closed formula in L� is strongly preserved�

Proof� Using induction on the structure of L� formula� Note that is total by
totality of 	�

It is not di�cult to see that a su�cient condition for this in terms of �� is that the
partitioning f��a� j a � atoms����g of � �where atoms���� � f	�fcg� j c � �g� is
at least as ne as the partitioning induced by the coarsest bisimulation on ��

Reversely� assuming that C and A
 have image�nite transition relations� if every
closed formula in L� is strongly preserved� then there exists a consistent bisimula�
tion from C to A
� although this need not be the relation that is induced by the
Galois insertion�
In search for a strongly preserving abstract domain� the following may also be

useful�

Lemma ������ Let be as in Lemma ��
��� A is an abstraction that is �
bisimilar to C if and only if �R

F � �R
C�

The price for strong preservation of full L� is that the attainable reduction of the
concrete model is bounded by its quotient under bisimulation equivalence� However�
it may well be the case that we can identify a subset of L� in which all the properties
of interest can be expressed� Such a subset induces a coarser equivalence on the
concrete states� in general� In Dams et al� ������ and Dams et al� ����
�� we develop
algorithms that can be used to reduce the system with respect to the equivalences
induced by �CTL� and by a single �CTL formula�

�� RELATED WORK

Property�preserving abstractions of reactive systems have been the topic of inten�
sive research lately� Most of these e�orts are based on the notion of simulation �see
Denition ��
���� Homomorphisms �see e�g� Ginzburg ���	���� used in automata
theory to construct language preserving reductions of automata� can be viewed as
a precursor of this� Adapted to our notion of transition system� h � � � �� is a
homomorphism i� c � I implies h�c� � �I and R�c� d� implies �R�h�c�� h�d��� where

�I is the set of initial abstract states and �R the abstract transition relation� In
Milner ������� Milner introduced the term simulation to denote a homomorphism
between deterministic systems� Since then� it has been re�adapted to nondetermin�
istic transition systems and has become popular in the areas of program renement
and verication� Sifakis ������� Sifakis ������ and Hennessy and Milner ���� � are
some early papers on this topic� Dill ������ and Kurshan ���� � focus on trace
�linear time� semantics and universal safety and liveness properties� Some of the
rst papers that consider the �strong� preservation of full CTL� and L� are Clarke
et al� ������ and Bensalem et al� �������
Following Kurshan ���� �� Clarke et al� ������ denes the relation between the

concrete and abstract model by means of a homomorphism h� which induces an

��See De�nition ������

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

equivalence relation � on the concrete states� dened by c � d � h�c� � h�d��
The abstract states are then representations of the equivalence classes of �� It is
shown that universal properties �expressed in �CTL�� are preserved from the ab�
stract to the concrete model� Preservation of full CTL� is shown to hold when h
is exact� which boils down to requiring the concrete and abstract Kripke structures
to be bisimilar� Consequently� CTL� is strongly preserved in that case� thus only
allowing for relatively small reductions in the size of model� A notion of approxima�
tion between abstract systems is given based on the subset ordering on transition
relations� As a result� an abstraction that is based on an exact h cannot be approx�
imated� except by itself� Our approach to dening approximations in Section
 is
a generalisation of this � see Lemma ����� and the remark below it� Furthermore�
our notion of abstract Kripke structure does allow proper approximations in the
context of weak preservation of the full logic� in this case L�� Clarke et al� ������
also explains the construction of abstract models and approximations thereof� by
abstract interpretation of elementary operations �called abstract compilation�� and
illustrates this with a number of examples� A journal version appeared as Clarke
et al� ����
�� Long ������ also contains these results� presented in a slightly more
general setting�
Bensalem et al� ������ presents similar ideas in a more general setting by consid�

ering simulation relations to connect the concrete and abstract transition systems�
Preservation of both �L� and �L� is dealt with in the setting of weak preserva�
tion� It is shown that if there exists a simulation from C to A that is total on ��
then properties expressed in �L� are preserved from A to C� while properties in
�L� are preserved from C to A� Again� preservation of the full ��calculus is only
shown for abstractions that are bisimilar to C� The construction of abstract models�
which is only brie�y touched upon in Bensalem et al� ������� is worked out further
in the journal version� Loiseaux et al� ������� where it is shown in addition how
the abstraction of a concurrent system can be constructed compositionally from
the abstractions of the individual components� In Loiseaux ����
�� this theory is
not only worked out in full detail� but the implementation of a tool based on it is
described and analysed too� A closely related paper is Graf and Loiseaux �������
The approach is similar to that taken in Section �� although the results deviate
because the underlying frameworks are slightly di�erent�
Loiseaux et al� ������ also uses Galois connections to relate concrete and abstract

states spaces� but in a di�erent way than we do� It is shown that in their case�
this is equivalent to using simulation relations� However� being between P��� and
P����� these connections do not impose structure on the set �� of abstract states�
In particular� no approximation ordering � to relate the precision of abstract states
is dened� As a result� that approach is more general� but fails to capture the notion
of optimality� both on the level of states and on the level of complete transition sys�
tems� On the other hand� our approach is a proper instance of the simulation�based
framework� and does distinguish between optimal abstractions of transition systems
�as captured by the abstraction function 	M � and approximations �expressed by
the relation � on abstract transition systems� see Denition
� ���� This is further
discussed in Section ��� below�

Kelb ������ also discusses the preservation of universal and existential ��calculus
properties within the framework of Abstract Interpretation� As in Bensalem et al�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

������� the relation between abstract and concrete systems is dened through sim�
ulations cast in the form of Galois connections� The interpretation of a ��calculus
formula� which is a set of states� is approximated from below and above� By com�
bining these dual approximate interpretations� using one for the ��operator and
the other for the �� weak preservation of arbitrary ��calculus formulae is obtained�
This technique is similar to the mixed abstractions presented in this paper� A strong
point of Kelb�s thesis is the integration of these theoretical results with symbolic
�BDD�based� representations� Indeed� Kelb ������ proceeds by decribing practical
experiments on the symbolic verication of StateChart programs� including part of
the material from Kelb et al� �������
Cleaveland et al� ����
� is based on an early version� Dams et al� ������� of this

paper� and independently develops the idea of mixing both free and constrained
abstractions in a single abstract system to attain preservation of full CTL�� More
recently� Cleaveland et al� ������ focusses on the issue of optimality� An approxima�
tion ordering �h �relative to a homomorphism h� on abstract transition systems is
dened and shown to coincide with the CTL��property ordering� i�e� T� �h T� �T�
is an approximation of T�� if and only if any CTL��property satised by T� is sat�
ised by T� as well� Cleaveland et al� ������ denes an abstraction function �cf� our
	M � that maps transition systems to ��h�optimal��
 abstractions� Our approach
in Section
 is similar� but it should be noted that the framework of Cleaveland
et al� ������� being based on functional homomorphisms h� is less general than ours�
Cleaveland and Riely ����
� presents a framework for the abstract interpretation

of processes that pass values� Application of Abstract Interpretation to verify
properties of CCS is described in De Francesco et al� �������
While developed independently� and from a di�erent perspective� Abstract Krip�

ke structures bear some resemblance to the modal transition systems of Larsen and
Thomsen ������� which also combine two types of transition relations ��may� and
�must��transitions� in one system� Modal transition systems have been developed
in the area of specication� Must�transitions specify what is required while may�
transitions specify what is admissible� In Larsen and Thomsen ������� a notion of
renement is dened such that the must�transitions in the specication simulate
those in the rened system� while the may�transitions in the rened system simu�
late those in the specication� This is similar to our denition of approximation
between Abstract Kripke structures �Denition
� ���� On the other hand� in modal
transition systems� the must�relation is required to be a subset of the may�relation�
Also� there is no notion of approximation ordering between states�
A recent paper� Kelb et al� ������� reports on an application of abstract�interpre�

tation techniques to the verication of properties of a production cell�

��� Comparing the simulation�based and Galois�insertion approaches

Above� we have discussed several related papers in which the relation between the
concrete and the abstract systems is dened in terms of simulation relations� much
in the same way as we have dened the approximation relation � among abstract
systems in Section
� Our denition of abstraction� in terms of Galois insertions� is
a special case of this� In this subsection� we compare these alternative approaches

��In Cleaveland et al�
	����� a di�erent notation is used for this�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

in some more depth�

The conditions under which L� is preserved from a mixed transition system
A� � ���� I�� F �� C�� to the concrete system C � ��� I� R� may be formulated entirely
in terms of simulations as follows� There should exist a relation � � � �� such
that�

��� is consistent�

��� R �simulates F ��

��� C� ���simulates R�

�
� For every c � I there exists a � I� such that �c� a��

Such a simulation�based approach� as we call it� is a generalisation of our approach
using Galois insertions� as expressed by the following lemma�

Lemma 	����� Let A� � ���� I�� F �� C�� such that A� � 	M�C�� Then there is a
relation � �� �� such that the conditions �����	� above are satis�ed�

Proof� By Denition
� ���A� � 	M �C� implies that �� is equal to the set �� of
abstract states that is connected to the concrete states via �	� �� and on which the
valuation �k	kLit of literals has been dened� Consider the underlying description
relation � � � � �� dened by ��c� a� � c � ��a�� Furthermore� let
 be
the mixed simulation from 	M �C� to A� that exists by Denition
� ��� satisfying
points ��� through �
� from that denition� We show that dened as �
 satises
the conditions ���#�
� above�

��� Suppose that �c� a� and a j� p� By denition of we can choose a� � ��
such that ��c� a�� and
�a�� a�� By condition ��� in Denition
� ��� a� j� p� i�e�
a� � �kpkLit� ��c� a�� implies that 	�c� � a�� so� by Lemma ������ 	�c� j� p� By
Denition ����� and the fact that ��	�c�� � fcg� it follows that c � kpkLit�

��� % ��� For the optimal abstraction 	M �C�� it is easily shown that R ��simu�

lates �R
F and �R

C ����simulates R� From the fact that A� � 	M�C� it follows by
Denition
� �� that �R

F
�simulatesF � and C�
���simulates �R
C � By transitivity

of simulation it now follows that R �simulates F � and C� ���simulates R�

�
� Let c � I� Then by Denition ����� of abstract initial states� 	�c� � �I �the
initial states of 	M�C��� From point �
� in Denition
� �� of A� � 	M�C� it now
follows that there exists a � I� with
�	�c�� a�� Because we have ��c� 	�c��� it
follows that �c� a��

Conversely� if for a mixed system A� � ���� I�� F �� C��� there exists a relation � ��
�� such that conditions ���#�
� above hold� then it need not be the case that A� �

	M �C�� although every concretisation function � induces a relation satisfying
conditions ���#�
� �see the proof above�� an arbitrary does not necessarily induce
the concretisation function of a Galois insertion� So why use Galois insertions when
the simulation�based approach is more general$ We see two main advantages of our
framework�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

C A

a

�

b� b�

R

c� c�

d� d�

Fig� �� Finding simulations in both ways�

Useful constrained abstractions� First� in order to dene useful abstractions that
preserve existential properties� where with useful we mean that a fair amount of
existential properties indeed hold in the abstract system� the abstract states need to
be partially ordered anyway� We illustrate this by an example� Consider Figure 	�
c�� c�� d� and d� are concrete states while a� b� and b� are abstract� The relation
� indicated by dashed arrows� gives the relation between concrete and abstract
states� so one could say that c� is described by a� or that c� is in the concretisation
of a �although a Galois insertion does not necessarily exist�� In order for universal
properties to be preserved from a to its concretisation� R has to �simulate the
abstract transition relation� This implies that there have to be abstract transitions
from a to both b� and to b�� It is not hard to see that as long as is total on
the concrete states� it is always possible to nd a total abstract transition relation
F such that R �simulates F � In order for existential properties to be preserved�
the abstract transition relation C should ���simulate R� For the situation of
Figure 	� no C�transition from a is possible under this requirement� This shows
that an abstract domain that is suitable for dening useful abstractions preserving
universal properties is not necessarily also suitable for dening useful abstractions
that preserve existential properties� In the case of this example� if we want to also
have an outgoing C�transition from a� we need to extend the abstract domain with
a state that describes �at least� both d� and d�� In general� in order to dene useful
abstractions preserving existential properties� the abstract domain should contain
states describing subsets of concrete states of various sizes� In particular� if it should
always be possible for C to be total� the abstract domain should in particular have
a �top� element describing all concrete states� The abstract state hthink� think��i
in Figure
 is a good example of this� Without it� property ���� �page ��
� could
not have been veried�

Optimal abstractions vs� approximations� Second� the mere requirement that a
simulation must exist in order for preservation to hold has the drawback that it
leaves too much freedom in the choice of �good� abstractions� The Galois�insertion

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

c

�

R

d

d�

C A

b�

b�

�

�R

a

Fig� �� Abstraction with states of comparable precision�

framework in which we developed our results may be seen as a successful attempt to
try and quantify the notion of precision of abstractions by distinguishing between
the notions of �optimal� abstraction and approximation� This point is discussed in
the following comparison of our work with that of Loiseaux et al� �������

We focus on free abstractions� Given the concrete transition system C � ��� I� R�
and a set �� of abstract states that is related to the concrete states by a �description
relation� � � � �� �total on ��� the requirement ��R � �R

�� �R simulates

�R�� viewed as an inequality over �R� has many solutions� From the point of
view of property preservation� the ��minimal solutions are interesting� However�
even such minimal solutions may have comparable quality� as illustrated by the
example in Figure �� where the problem is to choose an �R�successor of a such that
��R � �R

�� is satised� The ��minimal solutions are obtained by taking either
b� or b� as successor �but not both�� However� choosing b� will generally give better
property preservation� as it describes fewer concrete states�
However� instead of exploring this freedom in order to rene their notion of

quality of abstract transition relations� Loiseaux et al� propose a condition under
which all minimal solutions are bisimilar to each other� This condition is

�� � � ����

Expressed in words� it says that if two concrete states share a description �abstract
state�� then they share all descriptions� For example� in Figure � also the states
d� and b� would have to be related by � It is easy to see that the generality of
simulations over Galois insertions� namely the possibility to have several optimal
but mutually incomparable abstractions of a set of concrete states� is eliminated by
this condition� In fact� requirement ���� implies that it is useless to have a that
is not functional� This is expressed in the following lemma �which can be found
in Loiseaux et al� �������� It implies that whenever �c� a� and �c� a�� �a �� a��
for some c � i�e� is not functional � then a and a� are bisimilar� If the goal of

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

abstraction is to produce abstract systems with a minimal number of states��� then
one of a and a� should be removed from A in this case�

Lemma 	����� If is total on �� �R is a ��minimal relation such that R �
simulates �R� and �� � � then �� is a bisimulation on A�

Proof� We have to show that �� and ������ are simulations on A� Be�
cause ������ � ��� it su�ces to show that �� is a simulation� i�e� �by
Denition ��
���� that ������

�R � �R�
������ i�e�� �� �R � �R �� �&��

Because any minimal solution �R satises �R � ��R �see Loiseaux et al� ��������
�&� is equivalent to ����R � ��R��� Because �� � and therefore
also ���� � ��� this is equivalent to ��R � ��R� which is true�

So� in order to be able to distinguish optimal abstractions from approximations�
Loiseaux et al� ������ makes assumption ����� which renders their framework less
general than the Galois�insertion approach� because� under the reasonable assump�
tion that the abstract system does not contain bisimilar states� it forces to be
functional�
Consider Figure � again� In our framework� the simulation relation induces the

following Galois insertion on sets of states� for any a � ��� ��a� � fc j �c� a�g and
for any C � �� 	�C� �

V
fa j ��a� � Cg� where

V
denotes the meet operation

corresponding to the ordering � dened by a � a� � ��a� � ��a��� Taking �R to
be �R

F as specied by Denition ������ point ���� yields b� as the only successor of
a� as desired�

�� CONCLUSIONS

The results of this paper may be seen from two points of view� From the position
of Abstract Interpretation� we have presented a generalisation of the framework�
extending it to the analysis of reactive properties� This generalisation consists
in allowing the next�state relation of a non�deterministic transition system to be
abstracted to a relation� and not to a function as is common practice� This allows
the analysis� via the abstraction� of not only universal properties � expressing that
something holds along all possible executions �� but also existential properties �
expressing the existence of paths satisfying some property� Furthermore� both
safety as well as liveness properties are preserved� We have proven that the truth
of every property expressible in L� is preserved from abstract to concrete model�
As is common in Abstract Interpretation� the attained reduction depends solely
on the choice of the abstraction function� thus allowing better reductions than is
the case with minimisation based on bisimulation� This was possible by considering
abstract transition systems having two di�erent transition relations� each preserving
a separate fragment of L�� The use of a Galois insertion to relate concrete and
abstract states allowed the denition of both types of transitions over the same set
of abstract states� resulting in the preservation of full L�� The price to be paid is
that there exist formulae � and increasingly many when the abstraction becomes

	�In general� the goal is to have minimal representations of the system� When states are not
represented explicitly� but by BDDs for example� the size of the representationmay actually shrink
as the number of states grows� In such cases� it may indeed be useful to have some �redundant�
states around�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��� � Dennis Dams et al�

coarser � that do not hold in the abstraction� and neither do their negations�
In case of persistence on strong preservation �i�e� preservation of both truth and
falsehood of formulae�� which renders the abstract model bisimilar to the concrete
model� we have shown the implications for the form that the abstract domain takes�

From the viewpoint of property�preserving characteristics of simulation relations�
we have managed to dene a notion of precision that allows us to �separate the
wheat from the cha��� An abstraction function 	M species the optimal abstract
model for a given concrete system� while an approximation order � distinguishes
the relative precision between abstract models� The embedding of the property�
preservation results for simulation in the framework of Abstract Interpretation
opens up the possibility of constructing abstract models directly from the text of a
program� thereby avoiding the intermediate construction of the full concrete model�
This construction is possible by associating non�standard� abstract interpretations
with the operators in a programming language� which allows their evaluation over
descriptions of data� To this purpose� we chose a simple programming language and
dened abstract interpretations of its tests and operations� Conditions were given
under which the free and constrained abstract transition relations thus computed
coincide with the optimal relations as specied by 	� Furthermore� a notion of
approximation on the level of operations was given by which the user may simplify
the task without loosing the preservation results� Such approximations can accel�
erate the computation of abstract models� be it at the risk of obtaining a model
that does not contain enough information in order to verify the property� It was
illustrated by an example that these techniques can be applied to verify properties
of systems with an innite state space�

Further work� As pointed out in Section 	� the construction of abstract models
that strongly preserve a given property of interest may require renement of the
abstract domain� The framework of Abstract Interpretation� being based on a given
abstract domain� does not o�er a methodological approach to such renement� A
trial�and�error approach would benet much from the development of heuristics
that are specic to the domain of application� while also a set of powerful diagnostic
tools in addition to the model checker are invaluable in that case�
In the light of the quest for fully automated verication methods� we are cur�

rently investigating the use of partition re�nement algorithms for the construction
of strongly preserving models� see Dams ����	�� Other� rather preliminary ideas
point in the direction of using theorem provers and algebraic manipulation tools�
Although the problem is undecidable in general� there may well be interesting sub�
classes that can be decided e�ciently�
In a recent paper� Kelb et al� ������� we apply the ideas developed in this paper

and in Kelb ����
� to verify ��calculus properties of a production cell �Damm et al�
����� in a compositional fashion�
Interesting extensions of the framework that we plan to investigate are fairness

and action labelling�

ACKNOWLEDGMENTS

We thank Susanne Graf for many interesting and stimulating discussions� and Nis�
sim Francez for his helpful comments� Anthony McIsaac pointed out some mistakes�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ���

We are much indebted to the anonymous referees� who contributed many substan�
tial improvements�
Orna Grumberg has been partially supported by the E� and J� Bishop research

fund� and Rob Gerth has been partially supported by ESPRIT project P	 ���
�Building Correct Reactive Systems �REACT��� We are particularly grateful to
the Netherlands Organisation for International Co�operation in Higher Education
�Nu�c� for funding a working visit to the Technion in Haifa�

REFERENCES

Back� R� J� R� and Kurki�Suonio� R� 	���� Decentralization of process nets with centralized
control� In �nd ACM SIGACT�SIGOPS Symp� on Principles of Distributed Computing� ACM�
New York� 	�	�	���

Bensalem� S�� Bouajjani� A�� Loiseaux� C�� and Sifakis� J� 	���� Property preserving simula�
tions� In Computer�Aided Veri�cation� G� von Bochmann and D� Probst� Eds� Number ��� in
LNCS� Springer�Verlag� New York� ��	�����

Bouajjani� A�� Fernandez� J��C��Halbwachs� N�� Raymond� P�� and Ratel� C� 	���� Minimal
state graph generation� Sci� Comput� Program� �	� ��������

Clarke� E�� Emerson� E�� and Sistla� A� 	���� Automatic veri�cation of �nite�state concurrent
systems using temporal logic speci�cations� ACM Trans� Program� Lang� Syst� 	
 � �Apr���
��������

Clarke� E�� Grumberg� O�� and Long� D� 	���� Model checking and abstraction� In ��th
Annual ACM SIGPLAN�SIGACT Symposium on Principles of Programming Languages� ACM
SIGACT�SIGPLAN�

Clarke� E�� Grumberg� O�� and Long� D� 	���� Model checking and abstraction� ACM Trans�
Program� Lang� Syst� ��
 � �Sept��� 	�	��	����

Cleaveland� R�� Iyer� P�� and Yankelevich� D� 	���� Optimality in abstractions of model
checking� In Static Analysis� A� Mycroft� Ed� Number ��� in LNCS� Springer�Verlag� New
York� �	����

Cleaveland� R�� Iyer� S� P�� and Yankelevich� D� 	���� Abstractions for preserving all CTL�

formulae� Tech� Rep� ������ Dept� of Comp� Sc�� North Carolina State University� Raleigh� NC
������ Apr�

Cleaveland� R� and Riely� J� 	���� Testing�based abstractions for value�passing systems� In
CONCUR ��� Concurrency Theory� B� Jonsson and J� Parrow� Eds� Number ��� in LNCS�
Springer�Verlag� Berlin� �	������

Codish� M�� Falaschi� M�� and Marriott� K� 	���� Suspension analysis for concurrent logic
programs� ACM Trans� Program� Lang� Syst� ��
 � �May�� ��������

Courcoubetis� C�� Ed� 	���� Computer Aided Veri�cation� Number ��� in LNCS� Springer�
Verlag� Berlin�

Cousot� P� and Cousot� R� 	���� Abstract interpretation� A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints� In Proc� �th ACM Symp�
on Principles of Programming Languages� Los Angeles� California� ��������

Cousot� P� and Cousot� R� 	���� Systematic design of program analysis frameworks� In Proc�
�th ACM Symp� on Principles of Programming Languages� San Antonio� Texas� ��������

Cousot� P� and Cousot� R� 	���a� Abstract interpretation and application to logic programs�
Journal of Logic Programming ��� 	���	���

Cousot� P� and Cousot� R� 	���b� Abstract interpretation frameworks� J� Logic and Com�
put� �
 �� �		�����

Dam� M� 	���� CTL� and ECTL� as fragments of the modal ��calculus� Theor� Comput� Sci� ����
������

Damm� W�� Hungar� H�� Kelb� P�� and Schl�or� R� 	���� Statecharts� Using graphical speci�ca�
tion languages and symbolic model checking in the veri�cation of a production cell� In Formal
Development of Reactive Systems� Case Study Production Cell� C� Lewerenz and T� Lindner�
Eds� Number ��	 in LNCS� Springer�Verlag� Berlin� 	�	�	���

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

��	 � Dennis Dams et al�

Dams� D�� Gerth� R�� D�ohmen� G�� Herrmann� R�� Kelb� P�� and Pargmann� H� 	���� Model
checking using adaptive state and data abstraction� See Dill
	����� ��������

Dams� D�� Gerth� R�� and Grumberg� O� 	���� Generation of reduced models for checking
fragments of CTL� See Courcoubetis
	����� ��������

Dams� D�� Grumberg� O�� and Gerth� R� 	���� Abstract interpretation of reactive systems�
Abstractions preserving ACTL� � ECTL� and CTL�� Draft�

Dams� D�� Grumberg� O�� and Gerth� R� 	���� Abstract interpretation of reactive systems�
Preservation of CTL�� Logic Group Preprint Series 	��� Utrecht University� Dept� of Philosophy�
Heidelberglaan �� ���� CS Utrecht� The Netherlands� May� Also appears as Computing Science
Note ���	�� Eindhoven University of Technology� Dept� of Math� and Comp� Sc�

Dams� D� R� 	���� Abstract interpretation and partition re�nement for model checking� Ph�D�
thesis� Eindhoven University of Technology� P�O� Box �	�� ���� MB Eindhoven� The Nether�
lands�

De Francesco� N�� Fantechi� A�� Gnesi� S�� and Inverardi� P� 	���� Model checking of non�
�nite state processes by �nite approximations� In Tools and Algorithms for the Construction
and Analysis of Systems� E� Brinksma� W� R� Cleaveland� K� G� Larsen� T� Margaria� and
B� Ste�en� Eds� Number 	�	� in LNCS� Springer� Berlin� 	����	��

Dill� D� 	���� Trace Theory for Automatic Hierarchical Veri�cation of Speed�Independent Cir�
cuits� ACM Distinguished Dissertations� The MIT Press� London�

Dill� D� L�� Ed� 	���� Computer Aided Veri�cation� Number �	� in LNCS� Springer�Verlag�
Berlin�

Emerson� E� and Halpern� J� 	���� Sometimes and not never revisited� On branching versus
linear time� Journal of the Association for Computing Machinery ��
 	� 	�	�	���

Ginzburg� A� 	���� Algebraic Theory of Automata� ACM Monograph Series� Academic Press�
New York�London�

Graf� S� 	���� Veri�cation of a distributed cache memory by using abstractions� See Dill
	�����
�����	�� To appear in Distributed Computing�

Graf� S� and Loiseaux� C� 	���� A tool for symbolic program veri�cation and abstraction� See
Courcoubetis
	����� �	����

Harel� D� 	���� Statecharts� A visual formalism for complex systems� Sci� Comput� Program� 	�
��	�����

Hennessy� M� and Milner� R� 	���� On observing nondeterminism and concurrency� In Proc�
of the �th International Colloquium on Automata Languages and Programming �ICALP��
J� de Bakker and J� van Leeuwen� Eds� Number �� in LNCS� Springer�Verlag� Berlin� ����
����

Kelb� P� 	���� Model checking and abstraction� A framework preserving both truth and failure
information� University of Oldenburg� Germany� Unpublished note�

Kelb� P� 	���� Abstraktionstechniken f ur automatische veri�kationsmethoden� Ph�D� thesis� Carl
von Ossietzky University of Oldenburg� Germany�

Kelb� P�� Dams� D�� and Gerth� R� 	���� E!cient symbolic model checking of the full ��calculus
using compositional abstractions� Computing Science Reports ����	� Eindhoven University of
Technology� P�O� Box �	�� ���� MB Eindhoven� The Netherlands� Oct�

Kozen� D� 	���� Results on the propositional ��calculus� Theor� Comput� Sci� ��� ��������

Kripke� S� 	���� A semantical analysis of modal logic I� normal modal propositional calculi�
Zeitschrift f�ur Mathematische Logik und Grundlagen der Mathematik �� ������

Kurshan� R� P� 	���� Analysis of discrete event coordination� In Stepwise Re�nement of Dis�
tributed Systems� Models
 Formalisms
 Correctness� J� W� de Bakker� W��P� de Roever� and
G� Rozenberg� Eds� Number ��� in LNCS� Springer�Verlag� Berlin� �	������

Kurshan� R� P� 	���� Computer�Aided Veri�cation of Coordinating Processes� The Automata�
Theoretic Approach� Princeton Series in Computer Science� Princeton University Press� Prince�
ton� NJ�

Larsen� K� G� 	���� Modal speci�cations� In Automatic Veri�cation Methods for Finite State
Systems �CAV	��� J� Sifakis� Ed� Number ��� in LNCS� Springer�Verlag� Berlin� ��������

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

Abstract Interpretation of Reactive Systems � ��

Larsen� K� G� and Thomsen� B� 	���� A modal process logic� In ��		 IEEE Symposium on
Logic in Computer Science� TC�MFC� Computer Society Press� Washington� �����	��

Lichtenstein� O� and Pnueli� A� 	���� Checking that �nite state concurrent programs satisfy
their linear speci�cation� In ��th Annual ACM Symposium on Principles of Programming
Languages� ACM SIGACT�SIGPLAN� ���	���

Loiseaux� C� 	���� V"eri�cation symbolique de syst#emes r"eactifs #a l$aide d$abstractions� Ph�D�
thesis� Universit"e Joseph Fourier � Grenoble I� Grenoble� France�

Loiseaux� C�� Graf� S�� Sifakis� J�� Bouajjani� A�� and Bensalem� S� 	���� Property preserving
abstractions for the veri�cation of concurrent systems� Formal Methods in System Design ��
		����

Long� D� E� 	���� Model checking� abstraction� and compositional veri�cation� Ph�D� thesis�
School of Comp� Sc�� Carnegie Mellon University� Pittsburgh� PA 	��	��

Marriott� K� 	���� Frameworks for abstract interpretation� Acta Inf� ��
 �� 	���	���

Milner� R� 	��	� An algebraic de�nition of simulation between programs� In �nd International
Joint Conference on Arti�cial Intelligence� British Computer Society� London� ��	�����

Park� D� 	��	� Concurrency and automata on in�nite sequences� In Theoretical Computer
Science� P� Deussen� Ed� Number 	�� in LNCS� Springer�Verlag� Berlin� 	���	���

Queille� J� P� and Sifakis� J� 	���� Speci�cation and veri�cation of concurrent systems in CE�
SAR� In International Symposium on Programming� M� Dezani�Ciancaglini and U� Montanari�
Eds� Number 	�� in LNCS� Springer�Verlag� Berlin� ������	�

Sifakis� J� 	���� Property preserving homomorphisms and a notion of simulation for transition
systems� Rapport de Recherche ���� IMAG� Grenoble� France� Nov�

Sifakis� J� 	���� Property preserving homomorphisms of transition systems� In �thW orkshop
on Logics of Programs� E� Clarke and D� Kozen� Eds� Number 	�� in LNCS� Springer�Verlag�
Berlin� ��������

van Benthem� J�� van Eijck� J�� and Stebletsova� V� 	���� Modal logic� transition systems
and processes� J� of Logic and Comput� �
 �� �		�����

Vardi� M� Y� and Wolper� P� 	���� An automata�theoretic approach to automatic program ver�
i�cation �preliminary report�� In Logic in Computer Science� IEEE TC�MFC� IEEE Computer
Society Press� ��������

Received May 	��� revised May 	��� November 	��� September 	��� accepted � � �

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����

