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The advent of ever more complex reactive systems in increasingly critical areas calls for the de�
velopment of automated veri�cation techniques� Model checking is one such technique� which has
proven quite successful� However� the state�explosion problem remains a major stumbling block�
Recent experience indicates that solutions are to be found in the application of techniques for
property�preserving abstraction and successive approximation of models� Most such applications
have so far been based solely on the property�preserving characteristics of simulation relations�
A major drawback of all these results is that they do not o�er a satisfactory formalisation of the
notion of precision of abstractions�

The theory of Abstract Interpretation o�ers a framework for the de�nition and justi�cation of
property�preservingabstractions� Furthermore� it provides a method for the e�ective computation
of abstract models directly from the text of a program� thereby avoiding the need for intermediate
storage of a full�blown model� Finally� it formalises the notion of optimality� while allowing to
trade precision for speed by computing sub�optimal approximations�

For a long time� applications of Abstract Interpretation have mainly focussed on the analysis
of universal safety properties� i�e� properties that hold in all states along every possible execution
path� In this paper� we extend Abstract Interpretation to the analysis of both existential and
universal reactive properties� as expressible in the modal ��calculus� It is shown how abstract
models may be constructed by symbolic execution of programs� A notion of approximation be�
tween abstract models is de�ned while conditions are given under which optimal models can be
constructed� Examples are given to illustrate this� We indicate conditions under which also false�
hood of formulae is preserved� Finally� we compare our approach to those based on simulation
relations�
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�� INTRODUCTION

In the model�checking approach �Queille and Sifakis ����� Clarke et al� ���	� Vardi
and Wolper ���	� Kurshan ���
� Lichtenstein and Pnueli ����� to program veri
�
cation� a model of the program is constructed over which formulae are checked for
satisfaction� The model re�ects the possible behaviours of the program� while the
formulae express certain required properties of such behaviours� Obviously� the size
of the model is a limiting factor to the feasibility of the model�checking approach�
In the worst case� it doubles with every extra bit of memory that the program may
access� This problem is referred to as the state�explosion problem� One solution to
it is the application of abstraction techniques� which aim to abstract the model to
a smaller one� in such a way that if some property holds for the abstracted model�
it also holds for the original model�
Such abstraction techniques are formalised in the framework of Abstract Inter�

pretation �Cousot and Cousot ������ which was originally conceived as a unifying
theory of compile�time �data��ow� analyses� For a long time� applications of Ab�
stract Interpretation have been focussed on the analysis of universal safety prop�
erties� that hold in all states �safety� along all possible executions �universality� of
the program��

With the advent of reactive systems� interest has broadened to a larger class of
properties� Reactive systems are systems whose main role is to maintain an on�
going interaction with the environment� rather than to produce some 
nal result
on termination� Usually� such systems consist of several concurrent processes� and
display a non�deterministic behaviour� Typical examples are �ight reservation sys�
tems� industrial plant controllers� embedded systems and operating systems� In
the presence of non�determinism� one may be interested to know whether some
property holds along some possible execution path� Such properties will be called
existential� Besides safety� another kind of property that is often considered is live�
ness� meaning that something should hold eventually �given an execution�� Thus�
we have classi
ed properties into four kinds by the criteria universal�existential and
safety�liveness� A typical combination of universal safety and existential liveness
properties is �along every possible execution path� in every state there is a possible
continuation that will eventually reach a reset state��
The semantic models and abstraction techniques used in the analysis of universal

safety properties cannot be used for properties that involve aspects of existentiality
and eventuality� The reason is that these techniques abstract away from information
about the choices that a program encounters during execution� The analysis of
existentiality and eventuality properties of behaviours� however� requires models
that� in addition to information about single states� also provide the transitions
between states� For this reason� in model checking reactive systems� transition
systems are used to model the behaviour of programs� Being directed graphs over
program states� such transition systems give detailed information about program
executions� including the possible choices in every state� Our aim is to 
nd notions
of abstraction of such transition systems that preserve certain combined forms of

�The notions of universality and safety of a property are not always distinguished as explicitly as
we do in this paper� What we call �universal safety� is often just termed �safety� or �invariance�
elsewhere�
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universal�existential safety�liveness properties� This means that in order to know
that such a property holds in the original system� it su�ces to know that it holds
in the abstracted system�

The properties may be formalised by expressing them in a logic whose formu�
lae can be interpreted over transition systems� One such logic is L�� the modal
��calculus �Kozen ������ Besides a basic set of propositions stating local properties
about states� and the usual boolean operations� it contains modalities that express
that something holds in some next state or in all next states�� Furthermore� 
xpoint
operators allow to combine such next�state properties into formulae expressing exis�
tential and universal properties about execution paths� Although properties speci�

ed in the ��calculus are often less comprehensible than when expressed in temporal
logics like CTL� �computation tree logic� see Emerson and Halpern ����	��� L� is
preferable for our purposes� for the following reasons� Firstly� the basic temporal
modalities correspond directly to two types of abstract transition relations to be
de
ned� which improves understanding and facilitates proofs� Furthermore� L� al�
lows a clean identi
cation of universal and existential properties � see Section ���
where this point is discussed� Finally� L��s expressivity exceeds that of many other
temporal logics� including CTL� �Dam ���
�� Hence� the results of this paper im�
mediately transfer to those logics as well� Together with the fact that the main
focus of this paper is on preservation results� and not on the practice of specifying
in L�� these reasons should justify our choice for the ��calculus�

The structure of this article is as follows� The next section introduces the formal
machinery to be used� In Section �� a notion of abstract transition system is
developed that preserves properties from L�� A canonical abstraction is chosen so
as to satisfy the maximum number of L� properties� This choice is then justi
ed
in Section 
� where an approximation order between such systems is de
ned� This
approximation order is shown to coincide with the L��property ordering� and the
canonical abstraction of Section � turns out to be optimal� i�e� it is the least element
with regard to this ordering which is still safe� Section � shows how abstract
transition systems may be computed directly from a program text by �lifting� the
operations of a programming language to a domain of data descriptions� Conditions
are given under which the constructed models are optimal� Furthermore� it is shown
that sub�optimal models are constructed when computing approximations to the
lifted operations� An elaborate example is presented in Section 	� Section � brie�y
indicates the consequences of insisting on strong preservation� meaning that not
only truth� but also falsehood of formulae is preserved� Section � compares ours to
related work� in particular to simulation�based approaches� and Section � concludes�

On 
rst reading� it may be helpful to skip the more technical results of Subsec�
tions 
��� ���� ��� and ���� to get to the example in Section 	 
rst�

	As models we consider Kripke structures� without action labelling� Hence� the modalities do not
refer to actions�
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�� PRELIMINARIES

��� Temporal logic

Given is a set Prop of propositions� We choose to de
ne L� in its negation nor�
mal form� i�e� negations only appear in front of propositions� This facilitates the
de
nition of the fragments �L� and �L� below� The set of literals is de
ned by
Lit � Prop � f�p j p � Propg�

De�nition ������ Let Var be a set of propositional variables� Moreover� let p �
Lit and x � Var � The logic L� is the set of formulae that is de
ned by the following
grammar�

� ��� p j x j � � � j � � � j �� j �� j �x�� j �x��

For � � L�� the formula�� is considered to be an abbreviation of the equivalent L�
formula in negation normal form �obtained in the usual way�� The abbreviations
true� false and � can then be de
ned as usual�
The universal and existential fragments�L� and �L� are subsets of L� in which

the only allowed next�state operators are � and � respectively� Likewise� a formula
that is �equivalent to a formula� in �L� ��L�� is called universal �existential��

A formula �� expresses that � is true for every �immediate� successor while ��
expresses that there exists at least one successor for which � is true� A propositional
variable from Var can be seen as a formula whose meaning �i�e� the set of states in
which it holds� depends on some environment that binds variables to sets of states�
�x�� and �x�� are the least resp� greatest 
xpoint operators� Their meaning is
the smallest �resp� greatest� set x of states in which � holds � where � typically
depends on x� Thus� e�g�� �x��p��x� expresses invariance of the truth of proposition
p� while �x��p ��x� expresses the possibility of establishing p� Formal de
nitions
and further examples are given in the next subsection�

��� Transition systems

L� formulae are interpreted over transition systems T � ��� I� R� where � is a set
of states� I � � is a set of initial states� and R � ��� is a transition relation over
�� By an execution� or path� we mean any sequence of pairwise related states that
is maximal� i�e� it is in
nite or its last state has no successors in T � State s � � is
reachable i� it lies on a path that starts from a state in I�
Associated to T � we assume a function k	kLit � Lit � P���� satisfying kpkLit 


k�pkLit � � for every proposition p � Prop� that speci
es the interpretation of
literals over states� Intuitively� kpkLit is the set of states where p holds� Transition
systems thus de
ned are closely related to Kripke structures �Kripke ��	��� The
main di�erence is that we have the function k	kLit instead of a labelling function
from � to sets of literals� The reason for not requiring kpkLit � k�pkLit � � will
become clear in Section ����
The following de
nition gives the meaning of L� formulae relative to a given

transition system by specifying a function k	k that maps a formula to the set of
states in which it holds� k	k has an additional argument� written behind it� which
is a function specifying the interpretation of propositional variables� The role of
this �environment� becomes clear in the cases of the 
xpoint formulae�
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De�nition ������ The function k	k	 � L� � �Var � P���� � P��� is de
ned as
follows� Let p � Lit� x � Var � �� ��� �� � L� and e � Var � P����

kpke � kpkLit
kxke � e�x�
k�� � ��ke � k��ke � k��ke
k�� � ��ke � k��ke 
 k��ke
k��ke � fs � � j �s��� R�s� s��
 s� � k�keg
k��ke � fs � � j �s��� R�s� s�� � s� � k�keg
k�x��ke �

T
fS � � j k�ke�x �� S� � Sg

k�x��ke �
S
fS � � j S � k�ke�x �� S�g

e�x �� S� is the mapping that is the same as e except in x� which is mapped to S�
�env is the environment that maps every x � Var to �� For a closed� formula ��
k�k abbreviates k�k�env� We write s j� � for s � k�k�

For a set S of states� the notation S j� � abbreviates �s�S s j� �� When there
may be confusion between di�erent systems� we write �T � s� j� � to denote that
s j� � in T � and similar for �T � S� j� �� T j� � abbreviates �T � I� j� ��

L� formulae can express a variety of properties of transition systems� The distinc�
tion between universal and existential properties is captured by the division into
�L� and �L�� Similarly� safety properties correspond to greatest 
xpoints while
liveness is expressed through least 
xpoints� For example� s j� �x��p��x� expresses
the universal safety property that p is true in all states that are reachable from s�
In the branching�time temporal logic CTL� this would be expressed as s j� �Gp�
The CTL� formula �Gp� which says that there exists a path along which p holds in
all states� is expressed in L� by �x��p��x� � this is an existential safety formula�
An existential liveness property like �there exists a path along which p eventually
holds� ��Fp in CTL�� is similarly expressed as �x��p��x�� Only universal liveness
properties require a slightly more involved formulation� The reason is that the ��
used to express universal properties� does not require the existence of a successor
state � i�e� a property �� is satis
ed by any state that has no successors� On
the other hand� liveness does require the existence of successors� at least until the
point where the eventuality is ful
lled� Thus� �along all paths� p eventually holds�
is �x��p� ��true��x��� Note that this formula is neither universal nor existential�
the � is essential to express the �along all paths� part� while the � is needed to
re�ect correctly the meaning of �eventually�� One could say that the notion of
liveness has an existential character�� On the other hand� it is not di�cult to see
that for deadlock free transition systems� the �true may be dropped from formulae�

Lemma ������ Let T � ��� I� R� be a transition system such that every state
that is reachable from an initial state has at least one successor� Let � � L� and
denote by �� the formula obtained from � by replacing all subformulae of the form
�true by true� Then T j� � i� T j� ���


A formula is closed if every propositional variable that occurs in it is bound by a �xpoint operator�
�It is mainly this observation that has led us to present the preservation results for fragments of
the ��calculus� rather than for the fragments �CTL� and �CTL� of CTL� in which the existential
character of liveness remains hidden and would complicate the results �cf� Dams et al� 
	������
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Proof� Because every reachable state has at least one successor� �true is equiv�
alent to true in those states� As the truth of T j� � only depends on reachable states
and furthermore equivalence of formulae is a congruence� �true may be replaced
by true in ��

We 
x a transition system C � ��� I� R� called the concrete model � This will play
the role of the original� large model that we need to abstract in order to be able to
verify its L� properties�

��� Abstract Interpretation

A transition system forms the interpretation of a program� it models the possi�
ble behaviours� Formally� this is captured by an interpretation function I from
programs� to transition systems� Properties of a program P �s behaviour may be
analysed by studying I�P �� As this model may be too complex to handle �because
of the state explosion�� we look for abstractions of it that can provide partial in�
formation� Two points are of quintessential importance in the de
nition of such
abstracted transition systems� Firstly� the abstraction should preserve the infor�
mation that we are interested in� any �L�� property that holds for the abstract
model� should hold for the original concrete model as well� Sections � and 
 focus
on this aspect� Secondly� such abstractions are to be constructed directly from the
program� and not by 
rst building a full model and then abstracting it� That is� we
are looking for an abstract interpretation function �I that maps each program P
to an abstraction of I�P �� Section � de
nes such a function� 
xing a simple notion
of program for this purpose�
In the rest of this section we review the framework of Abstract Interpretation�

which o�ers ways to formalise the notion of abstraction and provides means to
design �good� abstract interpretation functions through the notions of optimality
and approximation� Brie�y� the idea is as follows� As the concrete object that we
are interested in� in this case the concrete model� is too large to handle� we abstract
from certain aspects of the states� Thereby� states that were di�erent now become
identi
ed� This is formally captured by introducing a set �� of abstract states and
a concretisation function � mapping each abstract state a to a set of concrete states
that are described by a� For example� we may wish to abstract from everything
but the fact whether variable x is greater than � or not� in which case we introduce
two abstract states named� e�g�� grt � and leq �� acting as descriptions of sets of
concrete states as speci
ed by the function � with ��grt �� � fs � � j s�x� � �g and
��leq �� � fs � � j s�x� � �g �we view a state as a valuation function on variables
here�� The goal is then to construct transition systems over abstract states by
interpreting the operations occurring in the program over the data descriptions
grt � and leq �� For example� the execution of the assignment x �� x � � in the
abstract state grt � results in the state grt � again� On the other hand� executing
it in the state leq �� we do not know whether the result is grt � or leq �� both
are possible� Thus� information is lost� If this is unwanted� we could introduce a
new abstract state� leq �� with the obvious meaning� in order to capture this more
precisely� Similarly� we might introduce a state leq 	 to be able to capture the
e�ect of x �� x� � on leq �� etc� In order for each set of concrete states to have a

�In Section � we will become more speci�c about the syntax of programs�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����



Abstract Interpretation of Reactive Systems � ���

description� the set of abstract states should be such that for every subset C of ��
there exists an abstract state a with ��a� � C� Note that this does not imply that
there is a di�erent abstract state for each subset of concrete states� For example�
the abstract domain may consist of only the state � with ���� � �� On the other
hand� the requirement does imply that there must always be such a �top� state in
the abstract domain�
Abstract states may now be ordered according to their information content or

precision� De
ne a � a� � ��a� � ��a��� in this case we say that a is more
precise than a�� or that a� approximates a� So� e�g�� leq � � leq � and leq � � ��
If for each set C of concrete states there exists a unique most precise description�
then an abstraction function 	 � P���� �� may be introduced that maps each C
to this description� Minimality with regard to � is also referred to as optimality�
Correctness of the abstract interpretation of the assignment x �� x � � can be
stated by requiring that for each abstract state a� a� � �� � 	���a� � �� �where
on the left�hand�side of the �� the quotes indicate that the function �� has to be
interpreted abstractly� over the domain of abstract values� on the right�hand�side�
�� is pointwise extended to sets��

The formalisation of these ideas as o�ered by the theory of Abstract Interpre�
tation �Cousot and Cousot ����� generalises the concrete and abstract domains �
�P������ and ������ resp� in the example above � to arbitrary partially ordered
sets �C�v� and �A���� The abstraction function 	 � C � A and concretisation
function � � A � C are usually required to form a Galois connection from �C�v�
to �A����

De�nition ������ �	 � C � A� � � A� C� is a Galois connection from �C�v� to
�A��� i� ��� 	 and � are total and monotonic� ��� for all c � C� � � 	�c� w c� and
��� for all a � A� 	 � ��a� � a�

Under these requirements� 	 by de
nition yields the optimal� that is ��least� ab�
straction of every c � C and � yields for every a � A the most general� that is
v�greatest� element that is abstracted by a� Note that this framework does not
necessarily imply that a � a� � ��a� v ��a��� If in addition that condition does
hold� like in our example above� then �and only then� we have 	 � ��a� � a for all
a � A� �	� �� is then called a Galois insertion from �C�v� to �A����
Under the assumptions of the Galois connection framework� a � A is an abstrac�

tion of c � C i� 	�c� � a �or� equivalently� c v ��a��� Given a program P � the goal
is to compute� in an e�cient manner� an abstraction �I�P � of I�P �� Usually� �I is
constructed by providing an abstract �counterpart� for each operation used in the
de
nition of I� For example� in this paper� where a transition system forms the
interpretation of a program� the function I is de
ned in terms of predicates ci and
ti that correspond to tests and transformations in programs� see the last point of
De
nition �� ��� The abstract interpretation of programs is de
ned in a similar way
in terms of abstractions cFi � t

F
i � c

C
i and tCi � see the last points of De
nition �� ���

A number of weaker frameworks than the Galois�connection framework have been
proposed in which the abstraction and�or concretisation functions are replaced by
relations �see Marriott ������ or Dams ����	� for an overview�� These cater for
situations where most precise abstractions and�or most general concretisations do
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not exist� for example because concrete elements have a number of optimal abstrac�
tions that are mutually incomparable� or because the corresponding approximation
orderings have not been de
ned� or are pre� instead of partial orders� In this paper�
we start from a given Galois insertion on the level of states� and induce a notion
of abstraction between transition systems� where concrete systems are unordered
while the approximation order on abstract systems is a pre�order� Although there
may exist di�erent representations of the most precise abstraction of a given con�
crete system� all these representations share the same L� properties� In Section ��
an abstraction function is given that maps any concrete system to one such repre�
sentative� Hence� by comparing a computed abstraction to this representative� we
are able to discuss optimality issues�

A more extensive introduction to Abstract Interpretation and overview of its uses
can be found in Cousot and Cousot �����a� and Cousot and Cousot �����b��

��
 The relation transformers 	�� and 	��� �bi
simulations

We use two relation transformers that are used to lift transition relations on states
to relations on sets of states�

De�nition ������ Let A and B be sets and R � A�B� The relations R��� R�� �
P�A� �P�B� are de
ned as follows�

�R�� � f�X�Y � j �x�X �y�Y R�x� y�g

�R�� � f�X�Y � j �x�X �y�Y R�x� y�g

So� if R is a transition relation� R���X�Y � i� some state in X can make an R�
transition to some state in Y � and R���X�Y � i� every state in X can make an
R�transition to some state in Y �

Finally� we recall the de
nitions of simulation �Milner ����� and bisimulation
�Park ������

De�nition ������ Let T� � ���� I�� R�� and T� � ���� I�� R�� be transition sys�
tems� A relation 
 � �� � �� is a simulation �from T� to T�� i� 
��R� � R�


��

�juxtaposition denotes composition of relations�� In this case we say that R� 
�
simulates R�� 
 is a bisimulation if in addition 
�� is a simulation from T� to T��
A simulation 
 is consistent i� 
�s�� s�� implies �p�Lit s� j� p 
 s� j� p�

An equivalent de
nition of simulation is the following� �see� e�g�� Milner ��������
Whenever 
�s�� s�� and R��s�� s���� then there exists s�� such that R��s�� s��� and

�s��� s

�
���

�� ABSTRACT TRANSITION SYSTEMS

The de
nition of an abstract system A starts from a given poset ������ of abstract
states together with a Galois insertion �	� �� from �P������ to ������ that de�
termines its relation to the concrete states� We usually write 	�c� for 	�fcg�� We
investigate how to de
ne abstract models in such a way that L� is preserved from

�The intuition is that R	 can �mimic� everything that R� can do� From this point of view� the
terminology �R� simulates R	�� which was introduced in Milner 
	��	�� is awkward�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����



Abstract Interpretation of Reactive Systems � ��


the abstract to the concrete model� Our goal is to de
ne� given the abstraction
of states� an abstract transition system A that satis
es as many L� properties as
possible� The choices that are made in this section are motivated by this goal� In
Section 
� we formally establish the optimality of this canonical abstraction A�
As we start from a notion of abstraction of states� it is natural to require preser�

vation of formulae on the level of individual states ��statewise preservation���

���L��a��� �A� a� j� � 
 �C� ��a�� j� � ���

We take this requirement as the starting point in de
ning the abstract model A�
Besides ��� which is already given� we need three more ingredients for the de
nition
of such a model� a function �k	kLit specifying the interpretation of literals over
abstract states� a set �I of abstract initial states� and an abstract transition relation

�R� These points are considered in the following subsections�

��� Valuation of literals

In order to satisfy ��� for the literals in L�� we must have �A� a� j� p 
 �C� ��a�� j�
p for every literal p and every abstract state a� On the other hand� as we intend to
use the abstract model in order to infer properties of the concrete model� we would
like as many literals as possible to hold in each abstract state�

De�nition ������ For p � Lit� de
ne �kpkLit � fa � �� j ��a� � kpkLitg�

This choice determines the valuation of literals in abstract states� Namely� the
value of �kpke� where �k	k	 has the functionality L�� �Var � P������ P����� is
de
ned as in the 
rst clause of De
nition ������ where k	kLit has to be replaced by

�k	kLit� By this choice it can now easily be shown that �A� a� j� p � �C� ��a�� j� p�
for every a � �� and p � Lit� which implies that as many literals as possible hold in
each abstract state� Note that if a � �� is such that ��a� contains concrete states
in which p holds and concrete states in which �p holds� then a �� �kpkLit but also
a �� �k�pkLit� So� although it is always the case that either a j� p holds� or its
negation a �j� p� and similarly for �p� it may occur that for some a we have neither
a j� p nor a j� �p� In particular� a �j� p does not necessarily imply that a j� �p�

Furthermore� less�precise states satisfy fewer literals�

Lemma ������ Let a� a� � ��� If a� � a� then for all p � Lit a� j� p
 a j� p�

��� Abstract initial states

The abstract initial states should be chosen in such a way that the requirement ���
of statewise preservation implies preservation on the level of models� A j� � should
imply C j� �� for all � � L�� A su�cient condition for this is

S
f��a� j a � �Ig � I�

On the other hand� the set of abstract initial states has to be as small as possible�
so that the condition A j� � to be veri
ed is as weak as possible� In general� it is
not possible to choose �I such that

S
f��a� j a � �Ig � I� However� the following

choice for �I yields the smallest set
S
f��a� j a � �Ig that still includes I�

De�nition ������ �I � f	�c� j c � Ig

One may wonder why we did not take 	�I� as the �single� abstract initial state�
The reason is that each element of f	�c� j c � Ig is in general at least as precise as
	�I�� because 	 distributes over

S
�see� e�g�� Cousot and Cousot �������� we have
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	�I� �
W
f	�s� j s � Ig �where

W
denotes the least upper bound in ���� so that for

each s � I� 	�s� � 	�I�� Therefore� the set
S
f��a� j a � �Ig of concrete states to

which �I �as de
ned above� corresponds� is a subset of the concretisation ��	�I���

��� Abstract transition relations

We want to abstract a concrete by an abstract transition relation in such a way that
both existential and universal properties are preserved� However� such an abstract
transition relation �R will only exist if there exists a consistent bisimulation from
��� R� to ���� �R� �see� e�g�� Loiseaux et al� �������� which is a much too strong
condition� as it results in the falsehood of L� formulae being preserved as well� Our
solution is to de
ne instead two transition relations on ��� one preserving universal
properties� and the other existential properties�
It is not di�cult to see that if properties of the form �� are to be preserved� then

abstract state b may only be a successor of a if R�����a�� Y � for some Y � � with
Y � ��b�� For reasons of optimality we also would like a to have as many successors
as possible�� and� furthermore� each of them should be a description of Y that is
as precise as possible� The 
rst requirement is satis
ed by letting b be a successor
of a whenever R�����a�� Y �� the second by choosing Y to be minimal and b to be
the most precise description of it� as speci
ed by 	� A similar consideration for the
preservation of universal properties leads to the requirement that b is a successor
of a i� R�����a�� Y �� Y is minimal� and 	�Y � � b�

De�nition ������

��� �R
F �a� b� � b � f	�Y � j Y � minfY � j R�����a�� Y ��gg

��� �R
C�a� b� � b � f	�Y � j Y � minfY � j R�����a�� Y ��gg

�R
F and �R

C are called the free and constrained �abstract transition� relations
respectively� Note that for any a � ��� the minimal sets Y � such that R�����a�� Y ���
are all singletons	� Also� note that by the requirement of minimality of Y in the
de
nitions� it is not in general the case that �R

C � �R
F �

In order to accommodate these two di�erent transition relations in a single tran�
sition system� we give the following de
nition�

De�nition ������ A mixed transition system is a quadruple M � �S� I� F� C�
consisting of a set S of states� a set I of initial states� and two transition relations
F and C called the free and constrained �transition� relations respectively� A free
path is a path with all its transitions in F � a constrained path is a path with all its
transitions in C� The notion of reachability is taken relative to the union F �C of


In De�nition ����	� we only consider minimal sets of successors in order to keep the relation
small� Of course� in the presence of BDD representations this does not necessarily imply that the
representation will actually be smaller� In general� any abstract transition relation in which these
minimal successors are present will be as good�
�With regard to the de�nition of �RC � we should point out that the set fY � j R�����a�� Y ��g
may have no minimal elements� �As an example� take R to be the ordering � on the integers
and ��a� the set of all integers�� By dropping the requirement of minimality in this case� every
abstract state will have an �RC�successor and as a result more existential formulae will hold in
the abstract model� The preservation results to be presented will still hold� observe that their
proofs do not depend on the minimality requirements�
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both transition relations� unless explicitly speci
ed otherwise� The interpretation of
L� formulae over a mixed system is de
ned slightly di�erent from De
nition ������
Besides replacing k	kLit by the valuation function that is associated with M � R has
to be replaced by F in the clause for k��ke and by C in the clause for k��ke�
An environment that maps propositional variables to sets of abstract states is

called an abstract environment� In particular� ��env maps every x � Var to ��
These mixed systems form our notion of abstract transition system� We now

de
ne the canonical� �best� abstraction 	M�C� of C as the mixed transition system
AM � ���� �I� �R

F � �R
C�� The valuation of literals in states of AM is speci
ed by

the function �k	kLit de
ned in Subsection ��� above�

We then have�

Theorem ������ For every � � L�� AM j� � 
 C j� ��

Proof� It is easy to see that it su�ces to prove statewise preservation for every
� in L�� for every state a � ��� �AM � a� j� � 
 �C� ��a�� j� �� Let !� be the
extension of � to sets of abstract states� de
ned by !��A� �

S
f��a� j a � Ag� By

de
nition of j�� it su�ces to prove the stronger claim that

!���k�kd� � k�ke whenever the abstract environment d and the concrete
environment e are such that for every x � Var � !��d�x�� � e�x��

The result follows because clearly for every x � Var � !����env�x�� � �env�x��
This fact is easily proven for the base cases� If � is a literal p� then it follows

from De
nition ������ If � is a variable x� then it follows from the assumption on
d and e�
Conjunctions and disjunctions are also easily proven� As for the next�state op�

erators� we show the case for �� � the case �� is similar� We have to show that
!���k��kd� � k��ke� Let c � !���k��kd�� which by de
nition of !� means that we
can choose a � �k��kd such that c � ��a�� We have to show that c � k��ke� i�e��
that there exists d � � such that R�c� d� and d � k�ke� Now� a � �k��kd means
that we can choose b � �� such that �i� �R

C�a� b� and �ii� b � �k�kd� From �i�� it
follows by de
nition of �R

C that b � 	�Y � for some Y � � satisfying R�����a�� Y ��
As c � ��a�� we can choose a d � Y such that R�c� d�� By monotonicity of 	
we have 	�d� � 	�Y � � b� From the latter� we obtain by monotonicity of � that
��	�d�� � ��b�� Because � � 	�C� � C� it now follows that d � ��b�� From �ii�� it
follows by the induction hypothesis that ��b� � k�ke� so we get d � k�ke�

From the 
xpoint formulae� we show the � case � � is similar� Consider
!���k�x��kd�� By de
nition of �k�x��kd� this is equal to !��

S
fA j A � �k�kd�x ��

A�g�� Clearly� !� distributes over
S
� so that this equals

S
f!��A� j A � �k�kd�x ��

A�g �iii�� Below� we show that f!��A� j A � �k�kd�x �� A�g � fC j C � k�ke�x ��
C�g� As a result� the expression �iii� is a subset of

S
fC j C � k�ke�x �� C�g� which

is by de
nition equal to k�x��ke��
Consider the expression A � �k�kd�x �� A�� By monotonicity of !�� it implies

!��A� � !���k�kd�x �� A��� By the induction hypothesis� the right�hand side of this
is a subset of k�ke�x �� !��A��� Therefore� f!��A� j A � �k�kd�x �� A�g is a subset
of f!��A� j !��A� � k�ke�x �� !��A��g� which is in turn easily seen to be a subset of
fC j C � k�ke�x �� C�g�
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So� mixed abstractions allow veri
cation of full L� while the degree of reduction
is determined by the choice of the abstract domain and may hence be arbitrarily
large� In contrast� reductions with regard to bisimulation equivalence �Bouajjani
et al� ����� only allow a limited reduction� These facts may seem contradictory�
but the reader should note that by the de
nition of satisfaction of L� formulae over
mixed abstractions� it is possible that neither �� nor �� holds� this is not possible
with bisimulation reduction�


� APPROXIMATION AND OPTIMALITY

We have de
ned an abstraction function 	M mapping each concrete system C to
the best abstract system AM � It involves the de
nitions of the valuation of literals
in abstract states ��k	kLit�� of the abstract initial states ��I�� and of two abstract
transition relations ��RF and �R

C�� Each of these de
nitions� given in the previous
section� was motivated by the objective to de
ne the transition system 	M�C� in
such a way that it satis
es as many L� properties as possible� For example� the
free and constrained transition relations in AM were de
ned by always choosing�
for the successors of an abstract state� the ��least descriptions �as provided by 	�
of ��minimal sets of concrete states� and furthermore by having a minimal number
of free and a maximal number of constrained successors� In this section� we give
a formal justi
cation of these choices by de
ning an approximation ordering � on
abstract systems� Just as 	M may be seen as the lifting of the abstraction function
	 from individual states to transition systems� � is the lifting of �� We show
that� under certain conditions� � coincides with the �L��property ordering� �i�e�
we show that A� � A�� i� A� enjoys at least the same L��properties as A��� and
furthermore that 	M �C� is the ��least abstract transition system �over the given set

�� of abstract states
� that is �safe� in the sense that L� properties are preserved
from 	M �C� to C� Thus� this formally establishes the optimality of 	M �C�� Another
reason for introducing approximations is that they turn out to occur in a natural
way when computing abstractions directly from a program� as will be done in the
next section�

De�nition ������ Let A� � ���� I �� F �� C�� and A�� � ���� I��� F ��� C��� be mixed
transition systems� A relation 
 � ��� �� is a mixed simulation �from A� to A���
i� ��� 
 is consistent��� ��� F � 
�simulates F ��� and ��� C�� 
���simulates C��
A� � A�� i� there exists a mixed simulation 
 from A� to A�� such that �
� for

every a� � I� there exists a�� � I�� such that 
�a�� a����

The following lemma expresses that this approximation order coincides with the
L��property ordering� A similar theorem was proven in Larsen ������� That paper
considers Hennessy�Milner Logic� which does not feature a 
xpoint operator� how�
ever� the proof for 
xpoint formulae is analogous to the 
xpoint case in the proof
of Theorem ������

�One point to mark is that all the mixed transition systems that we are comparing have the same
set �� of abstract states� Obviously� one can always construct better abstractions by re�ning this
abstract domain � up to the point where it contains the same amount of detail as the set � of
concrete states� The merit of an optimality result is that it identi�es the most precise abstraction
given the loss of information that is inherent to the choice of ���
��� is consistent i� ��s�� s	� implies �p�Lit s	 j� p � s� j� p� see De�nition ������
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Theorem ������ Let A� and A�� be as in De�nition 	�
��� If A� � A��� then
for every � � L�� A

�� j� � 
 A� j� �� Furthermore� if F � and C�� are �nitely
branching��� then the reverse holds as well� if for every � � L�� A�� j� � 
 A� j�
�� then A� � A���

Note that the relation � over abstract systems is a pre�order but not a partial order
�i�e� A� � A�� and A�� � A� does not imply A� � A���� We turn it into a partial
order by identifying systems A� and A�� whenever both A� � A�� and A�� � A� hold�
by Theorem 
� �� we are justi
ed to do this� To improve readability� we do not
explicitly distinguish between equivalence classes and representants�
As an immediate corollary of this theorem and Theorem ������ we have�

Corollary ������ If A � 	M �C�� then for every � � L�� A j� � 
 C j� ��


�� Optimality

Together� 	M and � induce the following abstraction �or description� relation �cf�
page �����

De�nition ������ A is an abstraction of C i� A � 	M�C��

Corollary 
� �� above states that such an abstraction A is safe for C� However� we
still do not know how good �in the sense of �� the abstraction 	M �C� is with regard
to other transition systems over �� that are safe for C� The following theorem shows
that under a few additional conditions� 	M �C� is indeed the best abstraction of C�

Theorem ������ Let A� � ���� F �� C�� I �� be a mixed transition system with an
associated valuation function k	k�Lit that is such that for every c � � and every
a � ��

��p�Lit a j� p 
 c j� p� 
 c � ��a�� ���

Assume that ���L� �A�� a�� j� � 
 �C� ��a��� j� � and furthermore that R �the
concrete transition relation� and F � are �nitely branching� Then � is a mixed
simulation from 	M�C� to A��
If� in addition to statewise preservation� we require global preservation to hold�

i�e� ���L� A
� j� � 
 C j� �� and furthermore I� is �nite� then A� � 	M �C��

Assumption ��� in the theorem intuitively means that � is maximal in the sense
that whenever the truth of all literals is preserved from some a to some c� then a is
indeed a description of c� Note that this does not necessarily hold for the canonical
valuation function �k	kLit of Section ���� It may be the case that two abstract states
a and a� satisfy the same literals� but nevertheless describe di�erent sets of concrete
states� Assumption ��� forbids this� so that a and a� cannot be interchanged�

Proof of Theorem ������ Let A � 	M �C� � ���� �R
F � �R

C � �I�� Points ���
through �
� below correspond to the points in De
nition 
� ��� The 
rst three
points deal with the 
rst part of the theorem while the second part is proven in
point �
��

��A relation R � A�B is �nitely branching� or image��nite� i� for every a � A� the set fb � B j
R�a� b�g has �nite cardinality�
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��� Consistency of � follows from Lemma ������

��� Let a � a� and �R
F �a� b�� By de
nition of �R

F this means that we can choose
c� d � � such that c � ��a�� R�c� d� and b � 	�fdg�� Because a � a�� we also
have c � ��a��� By the assumption of statewise preservation� it now follows
that there exists b� such that F ��a�� b�� and d � ��b��� Namely� suppose there is
not� i�e� �b� F ��a�� b�� 
 d �� ��b��� Then by assumption ��� in the theorem�
we can choose literals pb� such that b� j� pb� for every such b�� but d �j� pb� for
any such b�� Then a� j� �

W
b��F �
a��b�� pb� � while c �j� �

W
b��F �
a��b�� pb� � Because

F � is 
nitely branching� �
W
b��F �
a��b�� pb� is a L� formula� and hence we have

arrived at a contradiction�

Furthermore� from fdg � ��b�� it follows that 	�fdg� � 	 � ��b��� i�e� b � b��

��� Let a � a� and �R
C�a�� b��� Let c � ��a�� So also c � ��a��� Then we can

choose d � ��b�� such that R�c� d�� Namely� suppose �d R�c� d� 
 d �� ��b���
Then by assumption ��� in the theorem� we can choose literals pd such that
b� j� pd for every such d� but for any such d� d �j� pd� Then a� j� �

V
d�R
c�d� pd�

while c �j� �
V
d�R
c�d� pd� Because R is 
nitely branching� �

V
d�R
c�d� pd is a L�

formula� and hence we have arrived at a contradiction�

So� R�����a�� ��b���� Then we can choose Y to be a ��minimal Y � for which
R�����a�� Y �� in such a way that Y � ��b��� By de
nition of �R

C� we have

�R
C�a� 	�Y ��� As Y � ��b��� 	�Y � � 	���b���� i�e� 	�Y � � b��

�
� Next� we show that the additional assumption of ���L� C j� � � A� j� �
implies that �a��I �a��I� a � a��

Suppose this does not hold� i�e� we can choose a � �I such that �a��I� a �� a��
By de
nition of � this means �a��I� ��a� �� ��a��� By de
nition of �I �namely�
f	�fcg� j c � Ig�� we can choose c � I such that a � 	�fcg�� Below� we will
show that �a��I� c �� ��a��� By assumption ��� in the theorem� we can then
choose literals pa� such that a� j� pa� for every such a� but c �j� pa� for any such
a�� This implies that A� j�

W
a��I� pa� � while C �j�

W
a��I� pa� � By the assumption

that I� is 
nite� this formula is in L�� So we have arrived at a contradiction�

We need to show that �a��I� c �� ��a��� Suppose this does not hold� say c �
��a�� for some a� � I�� Then fcg � ��a��� hence 	�fcg� � a�� i�e� a � a��
Contradiction�

Note that we require both global and statewise preservation in Theorem 
����� It
turns out that if we weaken the condition to global preservation ����L� A� j�
� 
 C j� �� alone� we cannot prove A� � 	M �C� anymore� This means that
	M �C� is not the ��least safe description of C in that case� However� it can still
be shown that then A� �� 	M �C�� meaning that 	M �C� is ��minimal � although not
unique�
This section was motivated by Cleaveland et al� ������ that also establishes op�

timality results� be it in a more restricted context �see also Section ��� In that
restricted framework� their canonical abstraction �similar to our 	M �C�� is the
unique best description of C�
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�� COMPUTING ABSTRACT MODELS BY ABSTRACT INTERPRETATION

After having de
ned abstract models and proven their preservation properties� we
now get to the topic of how to compute such models directly from a program�
We will do this through abstract interpretation of the program text� An abstract
interpretation may be viewed as a non�standard semantics de
ned over a domain
of data�descriptions� where the functions are given corresponding non�standard
interpretations� The abstract states are then valuations of program variables over
the domain of data�descriptions� and the abstract transitions are computed by
evaluation of the abstract semantic functions over these domains�
In order to further develop the theory� we 
rst need to 
x a programming lan�

guage� We use a language that is based on action systems �Back and Kurki�Suonio
������ which� although being very simple� will help to grasp the idea of how to ab�
stractly interpret operations in �real� programming languages� as it contains rudi�
mentary forms of the common notions of assignment� test and loop� A program is
a set of actions of the form ci�"x�� ti�"x� "x

��� where i ranges over some index set J �
"x represents the vector of program variables� ci is a condition on their values and ti
speci
es a transformation of their values into the new vector "x�� A program is run
by repeatedly nondeterministically choosing an action whose condition ci yields true
and updating the program variables as speci
ed by the associated transformation��

ti� In the following� we let P be the program fci�"x� � ti�"x� "x�� j i � Jg� Val the
set of values that the vector "x may take� and IVal � Val the set of values that it
may have initially� Thus� each ci is a predicate over Val and each ti a relation on
Val � Val�

De�nition ������ P �s �concrete� interpretation I�P � is the transition system
��� I� R� de
ned as follows�

�� � Val

�I � IVal

�R � f�"v� "v�� � Val� j �i�J ci�"v� � ti�"v� "v��g

Henceforth� we identify I�P � with the concrete Kripke structure C�
Next� we assume a set �Val of descriptions of sets of values in Val� via a Galois

insertion �	� ��� and de
ne two types of non�standard� abstract interpretations of
the ci�s and ti�s over �Val in such a way that abstractions of the concrete models
of programs may be computed by interpreting the operators in the program corre�
spondingly� Note the similarity of the following de
nitions with De
nition ����� of

�R
F and �R

C �

De�nition ������ For i � J � let cFi � c
C
i be conditions on �Val and tFi � t

C
i be trans�

formations on �Val � �Val�

�cFi is a free abstract interpretation of ci i� for every a � �Val�
cFi �a�� ��v��
a� ci�"v��

�tFi is a free abstract interpretation of ti i� for every a� b � �Val�

�	As ti is a relation� there may be several di�erent updated states �x�� In this case� one of these is
selected nondeterministically�
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tFi �a� b� � b � f	�Y � j Y � minfY � j ti
�����a�� Y ��gg�

�cCi is a constrained abstract interpretation of ci i� for every a � �Val�
cCi �a�� ��v��
a� ci�"v��

�tCi is a constrained abstract interpretation of ti i� for every a� b � �Val�
tCi �a� b� � b � f	�Y � j Y � minfY � j ti

�����a�� Y ��gg�

Furthermore� we de
ne the abstract interpretation �I�P � of P as the system dAM �

���� �I� d�RF � d�RC� where�

��� � �Val

��I � f	�"v� j "v � IValg

�d
�RF � f�a� b� � �Val

� j �i�J cFi �a� � tFi �a� b�g

�d
�RC � f�a� b� � �Val

� j �i�J cCi �a� � tCi �a� b�g

d
�RF and d

�RC are called the computed free and constrained transition relations
respectively�

Of course� the abstract interpretations cFi � t
F
i and cCi � t

C
i should be e�ectively

computable� The idea of abstract interpretation is that an analysis tool� when
provided with the domain of abstract values and corresponding abstractions of the
operators� should be able to automatically evaluate the abstract semantics �I�P �
of any program P �

��� Abstract interpretation gives approximations

The following theorem expresses that the abstract interpretations given above can
be used to compute approximations to AM �� 	M �C���

Theorem ������ dAM � AM �i�e�� �I�P � � 	�I�P ����

Proof� We show that � satis
es points ��� through �
� in De
nition 
� ��� ���
follows from Lemma ������ As to points ��� and ���� observe that it easily follows

from the de
nitions of d�RF and �R
C that d�RF ��simulates d�RF and that �R

C ��

simulates �R
C� Hence� by Lemmata ����� and ����� below� �R

F ��simulates d�RF

and d
�RC ��simulates �R

C � Finally� �
� is immediate as the initial states of dAM

and AM are identical�

Lemma ������ Let R� and R�� be transition relations over ���

�� � If for all a� b � ��� R
��a� b� 
 �b��b R���a� b�� and R�� ��simulates R��� then

R� ��simulates R���

�
 � If for all a� b� � ��� R
���a� b�� 
 �b�b� R��a� b� and R� ��simulates R�� then

R�� ��simulates R��

Note that R��a� b� 
 �b��b R
���a� b�� is satis
ed if R� � R��� and that R���a� b�� 


�b�b�R��a�b� holds if R�� � R��

Lemma ������

�� � �R
F � d

�RF �
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�
 � For all a� b � ��� d�RC�a� b� 
 �b���b �R
C�a� b����

Proof�

��� Let a� b � �Val and suppose �a� b� � �R
F � By De
nition ����� of �R

F � Def�
inition ��
�� of R�� and De
nition �� �� of R� this is equivalent to b � f	�Y � j
Y � minfY � j ��v��
a�� �w�Y � ��i�J �ci�"v� � ti�"v� "w���gg� Exchanging existential quan�
ti
ers yields the equivalent b � f	�Y � j Y � minfY � j �i�J ���v��
a�� �w�Y � �ci�"v� �
ti�"v� "w���gg�
Because the elements of the set minfY � j �i�J � � �g are singletons �see the remark
below De
nition ������� the subterm Y � minfY � j �i�J � � �g is easily seen to be
equivalent with �i�J Y � minfY � j � � �g� After performing this replacement� we can
bring the �i�J outside� resulting in the equivalent formula

�i�J �b � f	�Y � j Y � minfY � j ��v��
a�� �w�Y � �ci�"v� � ti�"v� "w��gg�� ���

Now this is weakened by distributing the innermost existential quanti
er over the
��

�i�J �b � f	�Y � j Y � minfY � j ��v��
a� �ci�"v�� � ��v��
a�� �w�Y � �ti�"v� "w��gg�� �
�

Because both the innermost and outermost sets do not depend on ��v��
a� �ci�"v���

this conjunct may be taken out of the set brackets� Using De
nition ��
�� of ti
��

and De
nition �� �� of cFi � t
F
i � and

d
�RF � the resulting equivalent term can then be

rewritten to �a� b� � d�RF �

��� Let a� b � �Val and suppose �a� b� � d
�RC � By De
nition �� �� of d�RC � cCi

and tCi � and De
nition ��
�� of ti��� this is equivalent to �i�J ���v��
a� �ci�"v�� � b �
f	�Y � j Y � minfY � j ��v��
a� � �w�Y � �ti�"v� "w��gg�� This expression can be rewritten
to the equivalent�

b � f	�Y � j �i�J �Y � minfY � j ��v��
a� � �w�Y � �ci�"v� � ti�"v� "w��g�g ���

�de
ne min� � � in this proof�� Now consider the subexpression

�i�J �Y � minfY � j ��v��
a� � �w�Y � �ci�"v� � ti�"v� "w��g�� �	�

Compare this to the expression that is obtained by pushing the �i�J inside�

Y � minfY � j �i�J ���v��
a� � �w�Y � �ci�"v� � ti�"v� "w���g� ���

If Y satis
es �	�� then there exists an i � J such that Y is minimal among all ����
successors� of ��a� that correspond to action i� On the other hand� if Y satis
es ����
then Y is minimal among all the ���successors of ��a�� regardless of the speci
c i�
Hence� this latter Y will be a subset of �or possibly equal to� the Y that satis
es �	��
So� for each set that satis
es �	�� there exists a subset of it that satis
es ���� so
that if b satis
es ���� there exists b� � b that satis
es�

b� � f	�Y � j Y � minfY � j �i�J ���v��
a� � �w�Y � �ci�"v� � ti�"v� "w���gg� ���

A similar step can be made again� if b� satis
es ���� then there exists b�� � b�

satisfying�

b�� � f	�Y � j Y � minfY � j ��v��
a� � �w�Y � �i�J �ci�"v� � ti�"v� "w��gg ���
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which is� by De
nition �� �� of R� De
nition ��
�� of R�� and De
nition ����� of

�R
C � equivalent to �R

C�a� b����

��� Optimal abstract interpretations

Construction of an abstract model by abstract interpretation of the �elementary�
operations �the ci and ti� occurring in a program is a natural thing to do � it
resembles the way abstractions are computed in traditional applications of Abstract
Interpretation� However� the computed abstract models �De
nition �� ��� are� in
general� less precise than the optimal abstractions of De
nition ������ How much
precision is lost exactly depends on the program to be analysed and the choice of
the abstract domain� In order to get some insight� we discuss two approaches to
obtain optimality� Firstly� we derive su�cient conditions on the abstract domain
�and program� for the computed abstract models of De
nition �� �� to be optimal
�i�e� equal to 	M�C��� Secondly� we brie�y sketch how� alternatively� the abstract
interpretation of programs may be adapted in such a way that computed models
are optimal�

Conditions on the abstract domain� In order to pinpoint the reasons why the
computed abstractions are not optimal� we analyse the proof of Lemma ������ In
part �� concerning the free abstraction� the only place where the formula being ma�
nipulated is �strictly� weakened� is when the term ��v��
a�� �w�Y � �ci�"v��ti�"v� "w�� �T��
is replaced by ��v��
a� �ci�"v�� � ��v��
a�� �w�Y � �ti�"v� "w�� �T���The following small ex�
ample illustrates what happens� Suppose that the concrete state space consists of
a single integer variable v� and that the abstract domain contains values e and o�
being descriptions of the even and the odd numbers respectively� Assume that P
contains as action i� v � 
 � v �� v�
 �specifying ci�v� to be v � 
 and ti�v� w� to
be w � v�
�� Then �T��� with e for a and ��e� for Y �� does not hold� On the other
hand� �T�� does hold� there exists an even number that is equal to 
 and there
exists a �di�erent� even number that� when divided by 
� yields an even number�
In order to enforce equivalence of �T�� and �T��� we can impose a condition on the
abstract states� For an abstract state a� this condition intuitively requires that the
concrete states in ��a� behave uniformly with respect to every condition ci�

Lemma ������ Let dAM � �I�P � be the abstract model computed according to
De�nition ��
�
� and let a � ��� If for every i � J � we have either ��v��
a� ci�"v� or

��v��
a� �ci�"v�� then every outgoing d�RF �transition of a is in �R
F �

Proof� The precondition of the lemma is easily seen to imply equivalence of the
terms T� and T� and hence of the formulae ��� and �
� in the proof of Lemma ������
The conclusion then follows directly�

So� under the given condition� all outgoing free transitions of state a are optimal�
Clearly� the condition is very strong for ���large� states� E�g� if a � �� then it
is only satis
ed if all program conditions ci are either tautologies or unsatis
able�
However� as far as properties � � �L� are concerned� it is su�cient to require
the condition to hold only for those states on which � depends� In that case� the

result of model checking � over the computed model dAM will be the same as when
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checking it over the optimal model AM � As a consequence� unreachable states may
be ignored alltogether� As to the reachable states� observe that only the atoms of
the abstract domain� i�e� the elements f	�fcg� j c � �g� can be reachable via a
free transition� This follows from the observation� below De
nition ������ that 	 is
only applied to singletons� Hence� we should preferably choose the abstract domain
in such a way that these atoms are ��small��� However� if � is a subformula of a
formula that contains��s� then also certain states that are reachable via constrained
transitions may have to satisfy the condition of Lemma ������

Although su�cient� the condition required in Lemma ����� is not necessary� How�
ever� it is a reasonable condition that can be checked rather easily� one has to check
that for each atomic abstract state a and each condition ci of the program� either
�a
 ci� or �a
 ci � ��� For instance� in the example above� �being even� neither
implies nor excludes �being equal to 
�� so the condition is not met� The condi�
tion also gives a deeper insight in how to design �good� abstract domains given a
program�ming language��

For the constrained relation� we analyse part � of the proof of Lemma ������

The last two steps in this proof introduce the di�erences between d
�RC and �R

C �

We consider these steps in reverse direction� going from �R
C to d

�RC � While in
formula ��� the ����successors� Y � of ��a� are taken relative to transitions via any
action �i�e� all states in ��a� must be able to make a transition to some state in
Y � via no matter which action i�� the ���successors Y � of ��a� in ��� are taken
�per action�� i�e� for a single action i � J � all states in ��a� must be able to make
a transition to some state in Y � via action i� This means that in the latter case�

certain ���successors Y � may be �missed� and consequently� d�RC may contain fewer
transitions than �R

C � However� note that if for such a transition� say from a to b�

which is in �R
C but not in d�RC � there exists another transition in d�RC from a to

a more precise state b� � b� this loss does not matter� d�RC will not be less precise
�in the sense of De
nition 
� ��� than �R

C because of this� It is this observation
on which the condition in Lemma ����� below is based�
Now consider the step from ��� to ��� � more precisely� the replacement of

subformula ��� by �	�� In ���� the minimality of Y is determined globally over all
actions� while in �	� all Y �s that are minimal relative to a single action i � J are

taken� As a result� the set of successors under d�RC of some abstract state a may

be a superset of its successors under �R
C �the fact that d�RC is not strictly more

precise than �R
C is explained by observing that for each such extra successor b�

under d�RC there will be a more precise successor b � b� under �R
C�� Hence� this

e�ect does not negatively a�ect the precision of d�RC w�r�t� �R
C�

Lemma ������ Let a � �� and suppose that both of the following conditions hold�

�� � For every i � J � ��v��
a� ci�"v� or ��v��
a� �ci�"v��

�
 � For all i� j � J with i �� j and bi� bj � �� with cCi �a� � tCi �a� bi� and cCj �a� �

tCj �a� bj�� for every b � �� with ��bi� 
 ��b� �� � and ��bj� 
 ��b� �� �� there

�
See 
Cousot and Cousot 	���� for a variety of techniques for the construction of suitable abstract
domains�
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exist k � J and bk � �� with cCk �a� � tCk �a� bk� such that ��bk� � ��b��

Then for every b� � ��� �R
C�a� b��
 �b�b� d�RC�a� b��

Note that condition ��� in this lemma is similar to the condition in Lemma �����
above� Condition ��� speci
es that two abstract successors bi and bj of a corre�
sponding to di�erent actions �i �� j� may only both be �partially or completely�
overlapped by a third state b if b completely overlaps some successor bk �possibly
k � i or k � j� of a�

Proof of Lemma ������ It may be helpful to realise that we are� roughly speak�
ing� trying to reverse the direction of the argument in point ��� of the proof of
Lemma ������ Let b� � �� and assume �R

C�a� b��� By De
nition ����� of �R
C �

De
nition ��
�� of R�� and De
nition �� �� of R� this is equivalent to saying that
b� is an element of

f	�Y � j Y � minfY � j ��v��
a� � �w�Y � �i�J �ci�"v� � ti�"v� "w��gg� �� �

Next� consider the set that is obtained by taking the �i�J outside of the scope of
��v��
a�� �w�Y � �

f	�Y � j Y � minfY � j �i�J ���v��
a� � �w�Y � �ci�"v� � ti�"v� "w���gg� ����

We consider two cases� If b� is an element of ����� then we proceed as follows� The
subexpression

Y � minfY � j �i�J ���v��
a� � �w�Y � �ci�"v� � ti�"v� "w���g ����

of ���� is weakened by bringing the �i�J outside�

�i�J �Y � minfY � j ��v��
a� � �w�Y � �ci�"v� � ti�"v� "w��g�� ����

Therefore� b� is also an element of the set obtained by replacing subexpression ����
of ���� by ����� resulting in the set

f	�Y � j �i�J �Y � minfY � j ��v��
a� � �w�Y � �ci�"v� � ti�"v� "w��g�g� ��
�

Similar to the 
rst two steps in point ��� of the proof of Lemma ������ but in reverse

order� this implies that �a� b�� � d�RC �
The other case is that b� is not in ����� Let Z � � be such that b� � 	�Z��

Because b� is in �� � but not in ����� we can choose i� j � J with i �� j� "vi� "vj � ��a�
and "wi� "wj � Z such that ci�"vi� � ti�"vi� "wi� and cj�"vj� � tj�"vj� "wj�� Because� by
condition ��� of the lemma� ��v��
a� ci�"v� and ��v��
a� cj�"v�� we can also choose
Zi� Zj � � such that "wi � Zi and "wj � Zj � Hence� 	�Z� must have a non�empty
intersection with both 	�Zi� and with 	�Zj�� Condition ��� of the lemma then
requires that there exist k � J and bk � �� with cCk �a� � tCk �a� bk� �and therefore

�a� bk� � d
�RC� such that bk � 	�Z�� i�e� bk � b��

Again� for a formula � � �L� being checked� it su�ces to impose the conditions
of this lemma only on those states on which the interpretation of � depends� If
� contains ��operators as well� then the condition of Lemma ����� should hold in
those states on whose outgoing free transitions � depends and the conditions of
Lemma ����� should hold in those states on whose outgoing constrained transitions
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� depends� In that case� model checking � over the computed mixed abstractiondAM of De
nition �� �� gives the same result as checking it over the optimal AM �

Adapting the abstract interpretation� Instead of imposing conditions guarantee�
ing optimality of abstract models computed as speci
ed by De
nition �� ��� we
may change the de
nition of these abstract interpretations themselves in such a
way that the �loss� of Lemma ����� does not occur� For the free abstract inter�
pretation� this means that it may not be distributed over the individual condition
and transformation parts of an action� In case of the example given above� this
would mean that an abstract interpretation actFi has to be provided for the action
acti�v� w� � v � 
 � w � v�
 as a whole� satisfying actFi �a� b� � �v��
a� �ci�v��

b � f	�Y � j Y � minfY � j ti���fvg� Y ��gg��
In case of the constrained abstract interpretations� loss of optimality already oc�

curs at the point where they are distributed over the individual actions of a program�
Here� the adaptation would require the generalisation of the abstract interpreta�
tion of actions by taking into account the e�ect of executing an arbitrary number
of actions �at the same time� by de
ning actfi������ikg�a� b� � �a������ak�b������bk���
�a� � 	 	 	 � ak � a� b� � 	 	 	 � bk � b� �j�f��			�kg c

C
ij
�aj� � tCij �aj � bj�� for subsets fi��

� � � � ikg of J �� denotes the least upper bound on ���� This approach corresponds
to the merge over all paths analysis of Cousot and Cousot �������

��� Computing approximations

One may choose to compute non�optimal abstractions by specifying approximations
to the abstract interpretations of the ci and ti� A reason for doing so may be that
the computation of optimal abstract interpretations is too complex� when the ci
and ti involve intricate operations for example� In that case� even if the abstract
interpretations are optimal� it may be cumbersome to actually prove so� and one
may settle for proving approximation without bothering about optimality�

De�nition ������ The de
nition of approximation is extended to abstract inter�
pretations of the transformation operators� as follows� For abstract operations��

t� t � �Val � �Val�

t � t � �
a�b�b � �Val

h
t�a� b�
 �

b�b t�a� b�
i

�
h
t�a� b�
 �

b�b t�a� b�
i

Approximations tFi � tFi and tCi � tCi �for every i � J� to the free and con�

strained interpretations �see De
nition �� ��� induce the abstract model AM �

���� �I� �RF � �RC�� where�

��� � �Val

��I � f	�"v� j "v � IValg

��RF � f�a� b� � �Val
� j �i�I cFi �a� � tFi �a� b�g

��RC � f�a� b� � �Val
� j �i�I cCi �a� � tCi �a� b�g

Lemma ������ AM � dAM �

��Recall that such �operations� are binary relations�
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Proof� We show that � is a mixed simulation from dAM to AM � The non�trivial

parts are to show that ��� d�RF ��simulates �RF and ��� �RC ��simulates d�RC �

��� Let a� a�� a � �� with d
�RF �a� a�� and a � a� We show that there exists

a� � a� such that �RF �a� a��� By De
nition �� �� of d�RF � d�RF �a� a�� equiv�
ales �i�I �cFi �a� � tFi �a� a���� Because a � a� we have cFi �a� 
 cFi �a� and also
tFi �a� a��
 tFi �a� a�� �see De
nition �� �� of cFi and tFi and De
nition ��
�� of 	����

so �i�I �cFi �a�� t
F
i �a� a���� By De
nition ����� of tFi � there exists a� � a� such that

�i�I �cFi �a� � tFi �a� a���� i�e� �R
F �a� a���

��� Let a� a�� a
� � �� with �RC�a� a�� and a� � a� We show that there exists

a�� � a� such that d�RC�a�� a���� We have �RC�a� a��� By De
nition ����� of �RC

and tCi � there exists a��� � a� such that �i�I �cCi �a� � t
C
i �a� a

��
���� Because a

� � a� we
have cCi �a�
 cCi �a

��� and also there must be some a�� � a��� such that tCi �a
�� a��� �see

De
nition �� �� of cCi and tCi and De
nition ��
�� of 	���� So �i�I �cCi �a
���tCi �a

�� a�����

i�e�� d�RC�a�� a���� and� by transitivity of �� a�� � a��

��
 Practical application

The use of abstract interpretation to model check a property � for a program P
is characterised by the following phases� First� an abstract domain �Val has to
be chosen and for all operation symbols occurring in P � abstract interpretations
have to be provided� Typically� the tests and transformations are de
ned in terms
of more elementary operations� in which case abstract interpretations may be pro�
vided for these� Depending on the property � to be checked� free and�or constrained
interpretations should be given� these have to satisfy De
nition �� ��� Then� the
abstract model can be constructed by a symbolic evaluation of the program over
the abstract domain� interpreting the operations according to their abstract inter�
pretations� Finally� � is model checked over the abstract model under the adapted
de
nition of satisfaction �De
nition ������� It is important to notice that only posi�
tive results of this model checking carry over to the concrete model� because the �
and � next�state operators of � are interpreted along di�erent kinds of transitions
of the abstract model� a negative result A �j� � does not imply that A j� �� and
hence does not justify the conclusion that C j� ��� in spite of the fact that �� is
�an abbreviation of� a L� formula� However� it may be possible to resolve such a
negative answer for � by checking the negation ��� If true is returned� then we
know that A j� �� and hence C j� ��� i�e� C �j� �� As �� contains the dual�� op�
erators of those in �� its satisfaction by the mixed Kripke structure A may depend
on di�erent paths � in particular� it may not hold either� So� whether this �trick�
to resolve negative answers is successful� depends on how the dual abstractions �in
the sense of free vs� constrained� are chosen� We do not further investigate this
point here� the interested reader is referred to Kelb et al� �������

The same idea of constructing an abstract model by abstract interpretation of
program operations� although based on a di�erent theoretical framework �Loiseaux

��Recall that �� is the abbreviation of a L� formula in negation�normal form�
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�� � think� odd�n� 	
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�b�

Fig� 	� The dining mathematicians �a�
 expressed as an action system �b��

et al� ����� Loiseaux ���
� �see Section � for a comparison�� is applied to a �real�
life� example in Graf ����
�� Graf shows in that paper how a distributed cache
memory� which is in principle an in
nite state system because request queues are
unbounded� can be veri
ed by providing a 
nite abstract domain and corresponding
abstract operations�
Although the model checking procedure itself is an automated process� it is not

obvious how the choice of an appropriate abstract domain with corresponding ab�
stract operations� as well as the proofs that these operations satisfy the conditions
of De
nition �� ��� can be performed in an automated fashion� So far we have as�
sumed that the abstract domain is provided by the user of the method� an example
of this may be found in Graf ����
�� In Loiseaux ����
�� the process is automated�
but this is only possible because the concrete domain is required to be 
nite� The
proofs for the abstract operators may form a di�cult step in the method� In Kelb
et al� ������� approximations to the transition relation of StateCharts �Harel �����
are used to verify ��calculus properties of a production cell �Damm et al� ����� in
a compositional fashion� In Dams et al� ������ and Dams et al� ����
�� a method
is developed that aims at full automation of these steps� However� it is potentially
more expensive than to evaluate properties over the concrete domain�

�� EXAMPLE

In this section we illustrate the theory on a small example� Consider the system
consisting of two concurrent processes depicted in Figure ��a�� which is a parallel
variant of the Collatz �n � � program� We chose this example because it is small
but nevertheless displays a non�trivial interplay between data and control� The
properties that we will verify concern certain control aspects that depend on the
values that the integer variable n takes under the various operations that are per�
formed on it� Because the state space is in
nite� data�abstraction will be necessary
in order to verify aspects of the control��ow� It serves as an illustration of the fact
that abstraction techniques bring into reach the model checking of systems that
cannot be veri
ed through the standard approach�

The program may be viewed as a protocol controlling the mutually exclusive
access to a common resource of two concurrent processes� modelling the behaviour
of two mathematicians� numbered  and �� They both cycle through an in
nite
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sequence of �think� and �eat� states� The right to enjoy a meal in strict solitude
is regulated by having them inspect the value of n before eating� letting the one go
ahead only if n has an odd value� and the other only if n is even� Upon exit from the
dining room� each mathematician has its own procedure for assigning a new value
to n� Transitions can only be taken when the enabling conditions are satis
ed� e�g��
mathematician � can only leave the dining room if n is divisible by �� An execution
is a maximal sequence of �arbitrarily� interleaved steps of both processes that starts
in a state where both mathematicians are in their thinking state� and n is set to
some arbitrary positive integer value� We want to verify mutual exclusion and
the absence of individual starvation along every execution� In order to formalise
this� we 
rst express the program as an action system��� see Figure ��b�� As data
and control are treated uniformly in such systems� we introduce variables �� and
��� both ranging over fthink� eatg� to encode the e�ect of �being in a location�
thinki or eati� The state space � of this program is the set fthink� eatg�� INnf g
of values that the vector h��� ��� ni of program variables may assume� The initial
states are I � fhthink� think� ni j n � IN nf gg� The transitions are de
ned as
in De
nition �� ��� using the standard interpretations of the tests �� even� odd
and operations ��� �� and �� �the latter three are considered as operations on one
argument� i�e� functional binary relations� where �� is assumed to be de
ned for
even numbers only��
The properties to be veri
ed are expressed in L� as follows�

�x������ � eat � �� � eat� ��x� ����

�x���� � eat� ��y���� � eat � ��true ��y��� ��x� ��	�

�x���� � eat� ��y���� � eat � ��true ��y��� ��x� ����

Formula ���� says that the property ���� � eat � �� � eat� holds in every state
along every execution� ��	� expresses that whenever a state is reached in which
�� � eat holds� then along every continuation� there must eventually be a state in
which �� � eat� ���� says the same with �� and �� reversed� The 
rst formula is
in �L�� while the other two are in neither fragment of L�� However� we will see
later in this section that the program is deadlock free� so that by Lemma ������ the
�true conjuncts may be dropped from the formulae� The resulting formulae are
contained in �L�� so that we can verify them via a free abstraction�

The abstract domain is de
ned by providing abstractions of the components that
comprise the concrete domain� We choose to leave the components fthink� eatg the
same� Formally� this means that we take an abstract domain containing elements
think and eat whose concretisations are fthinkg and featg respectively� To abstract
IN nf g� we choose an abstract domain in which n may take the values e and o�
describing the even and odd positive integers respectively� i�e� ��e� � f�� 
� 	� � � �g
and ��o� � f�� �� � � � �g� To both abstract domains� we add a top element �� The
set �� of abstract states is thus de
ned as follows�

�� � fthink� eat��g� � fe� o��g

��We use the more operational notion of assignment� ��� rather than the primed variables of
De�nition ����	�
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Free� �e� e� �e� o� �e��� �o� e� �o�o� �o��� ��� e� ��� o� �����

��F true false false false true false true true false

�	F false true false true false false true true false

��F true true false false false false true true false

�a�

Free� e o �

evenF true false true

oddF false true true

�b�

Constr�� �o� ���� �o� e� �o� o� �o���

��C false false true false

�	C false true false false

��C false false false false

�c�

Constr�� ��� e o �

evenC true true false false

oddC false false true false

�d�

Constr�� think eat �

� thinkC true false false

� eatC false true false

�e�

Fig� �� Free abstract interpretations of operations �a� and some of the tests �b�� Constrained
abstract interpretations of some operations �c� and tests �d and e��

Its top element is h�����i� while the approximation relation � is the obvious
extension of the orderings on each of the three components� It is easily veri
ed
that the concretisation function thus de
ned determines a Galois insertion from
�P������ to ������� The valuations of the propositions �� � eat and �� � eat
over the abstract states� given by De
nition ������ are as expected� For the abstract
initial states we have� according to De
nition ������

�I � fhthink� think� ei� hthink� think� oig

Having chosen an abstract domain� we also have to provide abstract interpreta�
tions� over this domain� of the operations that appear in the program� along the
lines of De
nition �� ��� Tables �a� and �b� in Figure � give the de
nitions of the free
abstract interpretations of some of the transformations and tests on the abstract
domain fe� o��g� The operations ��� �� and �� are considered single symbols� The
tables have to be interpreted as indicated by the following examples� The entry
true in Table �b�� row evenF � column e� indicates that evenF �e� holds� i�e� �cf�
De
nition �� ��� �n��
e� even�n�� The entry false in Table �a�� row ��F � column

�e� e�� means that ��F �e� e� is false� i�e� for any minimal Y such that �������e�� Y ��
we have 	�Y � �� e �see De
nitions �� �� and ��
���� From these diagrams we see
for example that ��F is not functional �Table �a�� row ��F � 
rst two columns� as
well as the columns for ��� e� and ��� o��� illustrating that a function may become
a relation when abstracted� The abstract interpretation of the composed operation
� � ���� � that occurs as a transformation in the program� is now obtained by com�
position of the abstract interpretations of the constituents� The tables �c�#�e� are
explained below�

Now we can abstractly interpret the program over this abstract domain� using the
interpretations given in the tables� Such an abstract execution yields the abstract

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����



��� � Dennis Dams et al�

Fig� �� The free abstract model�

think�
ei

hthink�
think�
oi

oi
think�
heat�

hthink
eat�
ei

hthink�

model of Figure �� In this model� only those states are shown that are reachable
along the computed free transition relation� We see that in no reachable state
the property �� � eat � �� � eat holds� Hence we have established property �����
Furthermore� every path from the state where �� � eat� reaches �� � eat within �
steps� so we have also veri
ed property ��	��

However� the abstraction does not allow veri
cation of the other non�starvation
property� ����� a counterexample in the abstract model is the path cycling in
nitely
between hthink� think� ei and hthink� eat� ei� It turns out that the negation of prop�
erty ���� can also not be established via the constrained transition relation� So�
only re
nement of the abstract domain may bring the answer� In this case� the
abstract states where n � e would have to be unraveled into in
nitely many states
representing the cases where n is divisible by 
� by �� by �	� � � � � Hence� with our
methodology� it is impossible to verify property ���� through a 
nite abstraction�

Nevertheless� an interesting question is how the re
nement of an abstract model�
in order to decide indeterminate results� can be computed� Ongoing work� which
concentrates on including fairness constraints in the abstract models� has meanwhile
yielded results that enable the veri
cation of property ���� via a 
nite abstraction�

It is easy to check that for each condition ci of the action system in Figure � �b�
and each abstract state a of the system of Figure �� either ci evaluates to true in all
concrete states in a�s concretisation� or it evaluates to false in all those states� This
implies by Lemma ����� that �the reachable part of� the computed free abstraction
coincides with �the reachable part of� the optimal free abstraction as de
ned by
De
nition ������

In order to illustrate the use of the constrained abstraction� we consider a small
extension to the program� we add a third concurrent process that can �restart� the
system by setting n to value �  � This may only be done when both mathematicians
are thinking� otherwise there may be executions possible that violate the mutual
exclusion property� To this e�ect� the following 
fth action is added to the program�

�� � think� �� � think �� n �� �  

We want to check whether along every possible execution path� in every state there
is a possible continuation that will eventually reach a �restart� state� Writing
restart for �� � think � �� � think � n � �  � this property is expressed in L� by�

�x���y��restart ��y� ��x� ����

We extend the abstract domain for n by the value ���� where ������ � f�  g�
Formula ���� not being in �L� or �L�� we need a mixed abstraction� The tables
�c�#�e� in Figure � provide some of the entries that will be needed in an abstract
execution of the program� The other tables from Figure � have to be extended in
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think�
hthink�

hthink� hthink� hthink�
think� think�

think�

think�

hthink� hthink�

�i

ei

���i ���i

oi

� restart

oi ei

eat�

eat�

heat�

Fig� �� The mixed abstract model for the modi�ed program�

order to take into account the new abstract value ���� Being straightforward� these
extensions are left to the reader�
The resulting abstraction is depicted in Figure 
� Solid arrows denote free transi�

tions� dashed arrows represent constrained transitions� Not all reachable states are
shown� The complete model would include � more states� which are only reachable
via free transitions starting from hthink� think��i� However� as the formula to be
checked does not depend on these� they have been omitted� On the other hand�
the presence of the state hthink� think��i� though not reachable via free transitions
alone� is essential in proving the property� Note that it is not in general the case that

�R
C � �R

F � as is illustrated by the arrow from hthink� eat� ei to hthink� think��i�
Property ���� is veri
ed on this model� interpreting the � modalities along the

free transitions� and the �s along the constrained transitions� It can easily be seen
that ���� holds� hence� we have established its validity in the concrete program�
Also� we can see from this abstraction that the program is deadlock free� as it
satis
es the formula �x���true��x� which expresses that there exists a successor
in every reachable state�

In order to check optimality of transitions in the model of Figure 
� we verify
the preconditions of Lemmata ����� and ����� for its states� Earlier� we checked the
precondition of Lemma ����� for those states that already occur in the free model of
Figure �� The concretisations of the states hthink� think� ���i and hthink� eat� ���i are
singletons� from which it directly follows that also for these states� the precondition
of Lemma ����� is satis
ed� whence their outgoing free transitions are optimal� For
hthink� think��i� the precondition of Lemma ����� does not hold� Indeed� the free
transitions starting from this state that are not shown in the 
gure� are not optimal�
Those optimal free edges would lead back to hthink� eat� ei and to heat� think� oi�
Next� we check the constrained transitions� As condition ��� of Lemma ����� is

the same as in Lemma ������ it remains to check condition ���� The only states
that have two di�erent �constrained� successors �corresponding to the bi and bj
in Lemma ������ are hthink� think� ei� hthink� think� oi and hthink� think� ���i� The
successors of hthink� think� ei are hthink� eat� ei and hthink� think� ���i� The states in

�� �corresponding to the b in Lemma ������ that �partly� overlap both of these
are hthink��� ���i and all states that are ��greater than it� Because hthink��� ���i
completely overlaps a successor of hthink� think� ei� namely hthink� think� ���i �bk
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hthink�
think�
�i

hthink�
think�
ei

hthink�
think�
oi

hthink�
eat�
ei

heat�
think�
oi

Fig� �� An approximation to the free abstraction�

in Lemma ������� all states that are ��greater than hthink��� ���i also overlap
this successor� In a similar way� condition ��� of Lemma ����� can be shown to
hold for hthink� think� oi and for hthink� think� ���i too� The conclusion is that only
the constrained transition that starts in the state hthink� think��i may be non�
optimal��� as condition ��� did not hold�

As an example of the computation of approximations by choosing non�optimal
abstract interpretations ti of operations in the program� consider the dining math�
ematicians without the �restart� extension� Take the same free abstract inter�
pretations as before for all operations except ��� for which we take the following
approximation� ��F �o��� � true while ��F �o� e� � ��F �o� o� � false� This is easily
checked to satisfy De
nition ������ We get the free abstraction of Figure �� from
which still various properties may be deduced� such as the fact that at least one
mathematician will keep engaged in a cycle of thinking and eating�

	� STRONG PRESERVATION

In Section ���� we have identi
ed conditions under which computed abstract mod�
els are optimal in the standard sense of Abstract Interpretation� This notion of
optimality concerns the quality of the abstract interpretation used to compute an
abstraction� �I�P �� relative to the �ideal� abstraction 	�I�P ��� In particular� it is
optimality with respect to a given abstract domain ���

A di�erent notion of quality is the aptness of the abstract domain itself for the set
of properties to be checked� In other words� given an abstract domain� how often
will we get indeterminate answers as in the case of property ���� in Section 	$
In posing this question� we enter in fact the area of speci
c applications of the
framework presented so far� the answer to the question depends very much on
the speci
c set of properties to be checked and on the programming language that
is analysed� Nevertheless� we present a few general results that characterise the
preservation quality of abstract domains� We say that a set of properties is strongly
preserved when for every property� it is satis
ed in the abstract model if and only
if it is satis
ed in the concrete model�

According to a well�known result in modal logic �van Benthem et al� ���
�� two
image�
nite transition systems satisfy the same closed L� formulae if and only if
they are bisimilar� In our case this implies the following�

�
In fact� it is optimal� as is easily seen� This indicates that Lemma ����� only gives a su�cient
condition�

ACM Transactions on Programming Languages and Systems� Vol� �� No� �� �� �����



Abstract Interpretation of Reactive Systems � ��


Lemma ������ Consider C � ��� I� R� and A
 � ���� �I� �R
F � �R

C� and let
�� and ��

� be the reachable states of C and A
 resp� If the relation 
 � �� � ��
�

de�ned by 
�c� a� � 	�c� � a is a bisimulation from C to A
 and both 
 and 
��

are consistent�	� then every closed formula in L� is strongly preserved�

Proof� Using induction on the structure of L� formula� Note that 
 is total by
totality of 	�

It is not di�cult to see that a su�cient condition for this in terms of �� is that the
partitioning f��a� j a � atoms����g of � �where atoms���� � f	�fcg� j c � �g� is
at least as 
ne as the partitioning induced by the coarsest bisimulation on ��

Reversely� assuming that C and A
 have image�
nite transition relations� if every
closed formula in L� is strongly preserved� then there exists a consistent bisimula�
tion from C to A
� although this need not be the relation that is induced by the
Galois insertion�
In search for a strongly preserving abstract domain� the following may also be

useful�

Lemma ������ Let 
 be as in Lemma ��
��� A is an abstraction that is 
�
bisimilar to C if and only if �R

F � �R
C�

The price for strong preservation of full L� is that the attainable reduction of the
concrete model is bounded by its quotient under bisimulation equivalence� However�
it may well be the case that we can identify a subset of L� in which all the properties
of interest can be expressed� Such a subset induces a coarser equivalence on the
concrete states� in general� In Dams et al� ������ and Dams et al� ����
�� we develop
algorithms that can be used to reduce the system with respect to the equivalences
induced by �CTL� and by a single �CTL formula�

�� RELATED WORK

Property�preserving abstractions of reactive systems have been the topic of inten�
sive research lately� Most of these e�orts are based on the notion of simulation �see
De
nition ��
���� Homomorphisms �see e�g� Ginzburg ���	���� used in automata
theory to construct language preserving reductions of automata� can be viewed as
a precursor of this� Adapted to our notion of transition system� h � � � �� is a
homomorphism i� c � I implies h�c� � �I and R�c� d� implies �R�h�c�� h�d��� where

�I is the set of initial abstract states and �R the abstract transition relation� In
Milner ������� Milner introduced the term simulation to denote a homomorphism
between deterministic systems� Since then� it has been re�adapted to nondetermin�
istic transition systems and has become popular in the areas of program re
nement
and veri
cation� Sifakis ������� Sifakis ������ and Hennessy and Milner ���� � are
some early papers on this topic� Dill ������ and Kurshan ���� � focus on trace
�linear time� semantics and universal safety and liveness properties� Some of the

rst papers that consider the �strong� preservation of full CTL� and L� are Clarke
et al� ������ and Bensalem et al� �������
Following Kurshan ���� �� Clarke et al� ������ de
nes the relation between the

concrete and abstract model by means of a homomorphism h� which induces an

��See De�nition ������
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equivalence relation � on the concrete states� de
ned by c � d � h�c� � h�d��
The abstract states are then representations of the equivalence classes of �� It is
shown that universal properties �expressed in �CTL�� are preserved from the ab�
stract to the concrete model� Preservation of full CTL� is shown to hold when h
is exact� which boils down to requiring the concrete and abstract Kripke structures
to be bisimilar� Consequently� CTL� is strongly preserved in that case� thus only
allowing for relatively small reductions in the size of model� A notion of approxima�
tion between abstract systems is given based on the subset ordering on transition
relations� As a result� an abstraction that is based on an exact h cannot be approx�
imated� except by itself� Our approach to de
ning approximations in Section 
 is
a generalisation of this � see Lemma ����� and the remark below it� Furthermore�
our notion of abstract Kripke structure does allow proper approximations in the
context of weak preservation of the full logic� in this case L�� Clarke et al� ������
also explains the construction of abstract models and approximations thereof� by
abstract interpretation of elementary operations �called abstract compilation�� and
illustrates this with a number of examples� A journal version appeared as Clarke
et al� ����
�� Long ������ also contains these results� presented in a slightly more
general setting�
Bensalem et al� ������ presents similar ideas in a more general setting by consid�

ering simulation relations to connect the concrete and abstract transition systems�
Preservation of both �L� and �L� is dealt with in the setting of weak preserva�
tion� It is shown that if there exists a simulation from C to A that is total on ��
then properties expressed in �L� are preserved from A to C� while properties in
�L� are preserved from C to A� Again� preservation of the full ��calculus is only
shown for abstractions that are bisimilar to C� The construction of abstract models�
which is only brie�y touched upon in Bensalem et al� ������� is worked out further
in the journal version� Loiseaux et al� ������� where it is shown in addition how
the abstraction of a concurrent system can be constructed compositionally from
the abstractions of the individual components� In Loiseaux ����
�� this theory is
not only worked out in full detail� but the implementation of a tool based on it is
described and analysed too� A closely related paper is Graf and Loiseaux �������
The approach is similar to that taken in Section �� although the results deviate
because the underlying frameworks are slightly di�erent�
Loiseaux et al� ������ also uses Galois connections to relate concrete and abstract

states spaces� but in a di�erent way than we do� It is shown that in their case�
this is equivalent to using simulation relations� However� being between P��� and
P����� these connections do not impose structure on the set �� of abstract states�
In particular� no approximation ordering � to relate the precision of abstract states
is de
ned� As a result� that approach is more general� but fails to capture the notion
of optimality� both on the level of states and on the level of complete transition sys�
tems� On the other hand� our approach is a proper instance of the simulation�based
framework� and does distinguish between optimal abstractions of transition systems
�as captured by the abstraction function 	M � and approximations �expressed by
the relation � on abstract transition systems� see De
nition 
� ���� This is further
discussed in Section ��� below�

Kelb ������ also discusses the preservation of universal and existential ��calculus
properties within the framework of Abstract Interpretation� As in Bensalem et al�
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������� the relation between abstract and concrete systems is de
ned through sim�
ulations cast in the form of Galois connections� The interpretation of a ��calculus
formula� which is a set of states� is approximated from below and above� By com�
bining these dual approximate interpretations� using one for the ��operator and
the other for the �� weak preservation of arbitrary ��calculus formulae is obtained�
This technique is similar to the mixed abstractions presented in this paper� A strong
point of Kelb�s thesis is the integration of these theoretical results with symbolic
�BDD�based� representations� Indeed� Kelb ������ proceeds by decribing practical
experiments on the symbolic veri
cation of StateChart programs� including part of
the material from Kelb et al� �������
Cleaveland et al� ����
� is based on an early version� Dams et al� ������� of this

paper� and independently develops the idea of mixing both free and constrained
abstractions in a single abstract system to attain preservation of full CTL�� More
recently� Cleaveland et al� ������ focusses on the issue of optimality� An approxima�
tion ordering �h �relative to a homomorphism h� on abstract transition systems is
de
ned and shown to coincide with the CTL��property ordering� i�e� T� �h T� �T�
is an approximation of T�� if and only if any CTL��property satis
ed by T� is sat�
is
ed by T� as well� Cleaveland et al� ������ de
nes an abstraction function �cf� our
	M � that maps transition systems to ��h�optimal��
 abstractions� Our approach
in Section 
 is similar� but it should be noted that the framework of Cleaveland
et al� ������� being based on functional homomorphisms h� is less general than ours�
Cleaveland and Riely ����
� presents a framework for the abstract interpretation

of processes that pass values� Application of Abstract Interpretation to verify
properties of CCS is described in De Francesco et al� �������
While developed independently� and from a di�erent perspective� Abstract Krip�

ke structures bear some resemblance to the modal transition systems of Larsen and
Thomsen ������� which also combine two types of transition relations ��may� and
�must��transitions� in one system� Modal transition systems have been developed
in the area of speci
cation� Must�transitions specify what is required while may�
transitions specify what is admissible� In Larsen and Thomsen ������� a notion of
re
nement is de
ned such that the must�transitions in the speci
cation simulate
those in the re
ned system� while the may�transitions in the re
ned system simu�
late those in the speci
cation� This is similar to our de
nition of approximation
between Abstract Kripke structures �De
nition 
� ���� On the other hand� in modal
transition systems� the must�relation is required to be a subset of the may�relation�
Also� there is no notion of approximation ordering between states�
A recent paper� Kelb et al� ������� reports on an application of abstract�interpre�

tation techniques to the veri
cation of properties of a production cell�

��� Comparing the simulation�based and Galois�insertion approaches

Above� we have discussed several related papers in which the relation between the
concrete and the abstract systems is de
ned in terms of simulation relations� much
in the same way as we have de
ned the approximation relation � among abstract
systems in Section 
� Our de
nition of abstraction� in terms of Galois insertions� is
a special case of this� In this subsection� we compare these alternative approaches

��In Cleaveland et al� 
	����� a di�erent notation is used for this�
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in some more depth�

The conditions under which L� is preserved from a mixed transition system
A� � ���� I�� F �� C�� to the concrete system C � ��� I� R� may be formulated entirely
in terms of simulations as follows� There should exist a relation 
 � � � �� such
that�

��� 
 is consistent�

��� R 
�simulates F ��

��� C� 
���simulates R�

�
� For every c � I there exists a � I� such that 
�c� a��

Such a simulation�based approach� as we call it� is a generalisation of our approach
using Galois insertions� as expressed by the following lemma�

Lemma 	����� Let A� � ���� I�� F �� C�� such that A� � 	M�C�� Then there is a
relation 
 � �� �� such that the conditions �����	� above are satis�ed�

Proof� By De
nition 
� ���A� � 	M �C� implies that �� is equal to the set �� of
abstract states that is connected to the concrete states via �	� �� and on which the
valuation �k	kLit of literals has been de
ned� Consider the underlying description
relation 
� � � � �� de
ned by 
��c� a� � c � ��a�� Furthermore� let 
 be
the mixed simulation from 	M �C� to A� that exists by De
nition 
� ��� satisfying
points ��� through �
� from that de
nition� We show that 
 de
ned as 
�
 satis
es
the conditions ���#�
� above�

��� Suppose that 
�c� a� and a j� p� By de
nition of 
 we can choose a� � ��
such that 
��c� a�� and 
�a�� a�� By condition ��� in De
nition 
� ��� a� j� p� i�e�
a� � �kpkLit� 
��c� a�� implies that 	�c� � a�� so� by Lemma ������ 	�c� j� p� By
De
nition ����� and the fact that ��	�c�� � fcg� it follows that c � kpkLit�

��� % ��� For the optimal abstraction 	M �C�� it is easily shown that R 
��simu�

lates �R
F and �R

C 
����simulates R� From the fact that A� � 	M�C� it follows by
De
nition 
� �� that �R

F 
�simulatesF � and C� 
���simulates �R
C � By transitivity

of simulation it now follows that R 
�simulates F � and C� 
���simulates R�

�
� Let c � I� Then by De
nition ����� of abstract initial states� 	�c� � �I �the
initial states of 	M�C��� From point �
� in De
nition 
� �� of A� � 	M�C� it now
follows that there exists a � I� with 
�	�c�� a�� Because we have 
��c� 	�c��� it
follows that 
�c� a��

Conversely� if for a mixed system A� � ���� I�� F �� C��� there exists a relation 
 � ��
�� such that conditions ���#�
� above hold� then it need not be the case that A� �

	M �C�� although every concretisation function � induces a relation 
 satisfying
conditions ���#�
� �see the proof above�� an arbitrary 
 does not necessarily induce
the concretisation function of a Galois insertion� So why use Galois insertions when
the simulation�based approach is more general$ We see two main advantages of our
framework�
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C A

a

�

b� b�

R

c� c�

d� d�

Fig� �� Finding simulations in both ways�

Useful constrained abstractions� First� in order to de
ne useful abstractions that
preserve existential properties� where with useful we mean that a fair amount of
existential properties indeed hold in the abstract system� the abstract states need to
be partially ordered anyway� We illustrate this by an example� Consider Figure 	�
c�� c�� d� and d� are concrete states while a� b� and b� are abstract� The relation

� indicated by dashed arrows� gives the relation between concrete and abstract
states� so one could say that c� is described by a� or that c� is in the concretisation
of a �although a Galois insertion does not necessarily exist�� In order for universal
properties to be preserved from a to its concretisation� R has to 
�simulate the
abstract transition relation� This implies that there have to be abstract transitions
from a to both b� and to b�� It is not hard to see that as long as 
 is total on
the concrete states� it is always possible to 
nd a total abstract transition relation
F such that R 
�simulates F � In order for existential properties to be preserved�
the abstract transition relation C should 
���simulate R� For the situation of
Figure 	� no C�transition from a is possible under this requirement� This shows
that an abstract domain that is suitable for de
ning useful abstractions preserving
universal properties is not necessarily also suitable for de
ning useful abstractions
that preserve existential properties� In the case of this example� if we want to also
have an outgoing C�transition from a� we need to extend the abstract domain with
a state that describes �at least� both d� and d�� In general� in order to de
ne useful
abstractions preserving existential properties� the abstract domain should contain
states describing subsets of concrete states of various sizes� In particular� if it should
always be possible for C to be total� the abstract domain should in particular have
a �top� element describing all concrete states� The abstract state hthink� think��i
in Figure 
 is a good example of this� Without it� property ���� �page ��
� could
not have been veri
ed�

Optimal abstractions vs� approximations� Second� the mere requirement that a
simulation must exist in order for preservation to hold has the drawback that it
leaves too much freedom in the choice of �good� abstractions� The Galois�insertion
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c

�

R

d

d�

C A

b�

b�

�

�R

a

Fig� �� Abstraction with states of comparable precision�

framework in which we developed our results may be seen as a successful attempt to
try and quantify the notion of precision of abstractions by distinguishing between
the notions of �optimal� abstraction and approximation� This point is discussed in
the following comparison of our work with that of Loiseaux et al� �������

We focus on free abstractions� Given the concrete transition system C � ��� I� R�
and a set �� of abstract states that is related to the concrete states by a �description
relation� 
 � � � �� �total on ��� the requirement 
��R � �R


�� �R simulates

�R�� viewed as an inequality over �R� has many solutions� From the point of
view of property preservation� the ��minimal solutions are interesting� However�
even such minimal solutions may have comparable quality� as illustrated by the
example in Figure �� where the problem is to choose an �R�successor of a such that

��R � �R


�� is satis
ed� The ��minimal solutions are obtained by taking either
b� or b� as successor �but not both�� However� choosing b� will generally give better
property preservation� as it describes fewer concrete states�
However� instead of exploring this freedom in order to re
ne their notion of

quality of abstract transition relations� Loiseaux et al� propose a condition under
which all minimal solutions are bisimilar to each other� This condition is



��
 � 
� ����

Expressed in words� it says that if two concrete states share a description �abstract
state�� then they share all descriptions� For example� in Figure � also the states
d� and b� would have to be related by 
� It is easy to see that the generality of
simulations over Galois insertions� namely the possibility to have several optimal
but mutually incomparable abstractions of a set of concrete states� is eliminated by
this condition� In fact� requirement ���� implies that it is useless to have a 
 that
is not functional� This is expressed in the following lemma �which can be found
in Loiseaux et al� �������� It implies that whenever 
�c� a� and 
�c� a�� �a �� a��
for some c � i�e� 
 is not functional � then a and a� are bisimilar� If the goal of
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abstraction is to produce abstract systems with a minimal number of states��� then
one of a and a� should be removed from A in this case�

Lemma 	����� If 
 is total on �� �R is a ��minimal relation such that R 
�
simulates �R� and 

��
 � 
� then 

�� is a bisimulation on A�

Proof� We have to show that 

�� and �

����� are simulations on A� Be�
cause �

����� � 

��� it su�ces to show that 

�� is a simulation� i�e� �by
De
nition ��
���� that �

�����

�R � �R�


������ i�e�� 
��
 �R � �R 
��
 �&��

Because any minimal solution �R satis
es �R � 
��R
 �see Loiseaux et al� ��������
�&� is equivalent to 
��

��R
 � 
��R

��
� Because 

��
 � 
 and therefore
also 
��

�� � 
��� this is equivalent to 
��R
 � 
��R
� which is true�

So� in order to be able to distinguish optimal abstractions from approximations�
Loiseaux et al� ������ makes assumption ����� which renders their framework less
general than the Galois�insertion approach� because� under the reasonable assump�
tion that the abstract system does not contain bisimilar states� it forces 
 to be
functional�
Consider Figure � again� In our framework� the simulation relation 
 induces the

following Galois insertion on sets of states� for any a � ��� ��a� � fc j 
�c� a�g and
for any C � �� 	�C� �

V
fa j ��a� � Cg� where

V
denotes the meet operation

corresponding to the ordering � de
ned by a � a� � ��a� � ��a��� Taking �R to
be �R

F as speci
ed by De
nition ������ point ���� yields b� as the only successor of
a� as desired�

�� CONCLUSIONS

The results of this paper may be seen from two points of view� From the position
of Abstract Interpretation� we have presented a generalisation of the framework�
extending it to the analysis of reactive properties� This generalisation consists
in allowing the next�state relation of a non�deterministic transition system to be
abstracted to a relation� and not to a function as is common practice� This allows
the analysis� via the abstraction� of not only universal properties � expressing that
something holds along all possible executions �� but also existential properties �
expressing the existence of paths satisfying some property� Furthermore� both
safety as well as liveness properties are preserved� We have proven that the truth
of every property expressible in L� is preserved from abstract to concrete model�
As is common in Abstract Interpretation� the attained reduction depends solely
on the choice of the abstraction function� thus allowing better reductions than is
the case with minimisation based on bisimulation� This was possible by considering
abstract transition systems having two di�erent transition relations� each preserving
a separate fragment of L�� The use of a Galois insertion to relate concrete and
abstract states allowed the de
nition of both types of transitions over the same set
of abstract states� resulting in the preservation of full L�� The price to be paid is
that there exist formulae � and increasingly many when the abstraction becomes

	�In general� the goal is to have minimal representations of the system� When states are not
represented explicitly� but by BDDs for example� the size of the representationmay actually shrink
as the number of states grows� In such cases� it may indeed be useful to have some �redundant�
states around�
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coarser � that do not hold in the abstraction� and neither do their negations�
In case of persistence on strong preservation �i�e� preservation of both truth and
falsehood of formulae�� which renders the abstract model bisimilar to the concrete
model� we have shown the implications for the form that the abstract domain takes�

From the viewpoint of property�preserving characteristics of simulation relations�
we have managed to de
ne a notion of precision that allows us to �separate the
wheat from the cha��� An abstraction function 	M speci
es the optimal abstract
model for a given concrete system� while an approximation order � distinguishes
the relative precision between abstract models� The embedding of the property�
preservation results for simulation in the framework of Abstract Interpretation
opens up the possibility of constructing abstract models directly from the text of a
program� thereby avoiding the intermediate construction of the full concrete model�
This construction is possible by associating non�standard� abstract interpretations
with the operators in a programming language� which allows their evaluation over
descriptions of data� To this purpose� we chose a simple programming language and
de
ned abstract interpretations of its tests and operations� Conditions were given
under which the free and constrained abstract transition relations thus computed
coincide with the optimal relations as speci
ed by 	� Furthermore� a notion of
approximation on the level of operations was given by which the user may simplify
the task without loosing the preservation results� Such approximations can accel�
erate the computation of abstract models� be it at the risk of obtaining a model
that does not contain enough information in order to verify the property� It was
illustrated by an example that these techniques can be applied to verify properties
of systems with an in
nite state space�

Further work� As pointed out in Section 	� the construction of abstract models
that strongly preserve a given property of interest may require re
nement of the
abstract domain� The framework of Abstract Interpretation� being based on a given
abstract domain� does not o�er a methodological approach to such re
nement� A
trial�and�error approach would bene
t much from the development of heuristics
that are speci
c to the domain of application� while also a set of powerful diagnostic
tools in addition to the model checker are invaluable in that case�
In the light of the quest for fully automated veri
cation methods� we are cur�

rently investigating the use of partition re�nement algorithms for the construction
of strongly preserving models� see Dams ����	�� Other� rather preliminary ideas
point in the direction of using theorem provers and algebraic manipulation tools�
Although the problem is undecidable in general� there may well be interesting sub�
classes that can be decided e�ciently�
In a recent paper� Kelb et al� ������� we apply the ideas developed in this paper

and in Kelb ����
� to verify ��calculus properties of a production cell �Damm et al�
����� in a compositional fashion�
Interesting extensions of the framework that we plan to investigate are fairness

and action labelling�
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