
Model Checking and Abstraction

EDMUND M� CLARKE

Carnegie Mellon University

ORNA GRUMBERG

The Technion

and

DAVID E� LONG

AT�T Bell Laboratories

We describe a method for using abstraction to reduce the complexity of temporal logic model
checking� Using techniques similar to those involved in abstract interpretation� we construct an
abstract model of a program without ever examining the corresponding unabstracted model� We
show how this abstract model can be used to verify properties of the original program� We have
implemented a system based on these techniques� and we demonstrate their practicality using a
number of examples� including a program representing a pipelined ALU circuit with over ������

states�

Categories and SubjectDescriptors� F���� �Logics andMeanings of Programs	� Specifyingand
Verifying and Reasoning about Programs
Mechanical veri�cation� B��� �Register�Transfer�
Level Implementation	� Design Aids
Veri�cation

General terms� Veri�cation
Additional Key Words and Phrases� Temporal logic� model checking� abstract interpretation�
binary decision diagrams �BDDs�

�� INTRODUCTION

Complicated �nite state programs arise in many applications of computing� partic�
ularly in the design of hardware controllers and communication protocols� When
the number of states is large� it may be very di�cult to determine if such a pro�
gram is correct� Temporal logic model checking ��	
�	 �	 ��	 ��� is a method for
automatically deciding if a �nite state program satis�es its speci�cation� A model

Author�s addresses� E� M� Clarke� School of Computer Science� Carnegie Mellon University� Pitts�
burgh� PA ����� O� Grumberg� Department of Computer Science� The Technion� Haifa� Israel
����� D� E� Long� AT�T Bell Laboratories� ��� Mountain Ave�� Murray Hill� NJ ������
This research was sponsored in part by the Avionics Laboratory� Wright Research and Devel�
opment Center� Aeronautical Systems Division �AFSC�� U�S� Air Force� Wright�Patterson AFB�
Ohio ���������� under Contract F���������C������ ARPA Order No� ���� and in part by the
National Science Foundation under Contract No� CCR������� and in part by the U�S��Israeli
Binational Science Foundation� The views and conclusions contained in this document are those
of the authors should not be interpreted as representing the o�cial policies� either expressed or
implied� of the National Science Foundation or the U�S� Government�
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage� the ACM copyright notice and the title
of the publication and its date appear� and notice is given that copying is by permission of the
Association for Computing Machinery� To copy otherwise� or to republish� requires a fee and�or
speci�c permission�
c� ���� ACM ��������������������� ������

� �

checking algorithm for the propositional branching time temporal logic CTL was
presented at the
�� POPL conference ��� The algorithm was linear both in the
size of the transition system �or model� determined by the program and in the
length of its speci�cation� In the paper� it was used to verify a simple version of
the alternating bit protocol with �� states�
In the eleven years that have passed since that paper was published� the size of

the programs that can be veri�ed by this means has increased dramatically� By
developing special programming languages for describing transition systems� it be�
came possible to check examples with several thousand states� This was su�cient
to �nd subtle errors in a number of nontrivial� although relatively small� protocols
and circuit designs ���� Use of binary decision diagrams �BDDs� ��� led to an even
greater increase in size� Representing transition relations implicitly using BDDs
made it possible to verify examples that would have required
��� states with the
original version of the algorithm ���� Re�nements of the BDD�based techniques ���
have pushed the state count up over
���� states� In this paper� we show that
by combining model checking with abstraction� we are able to handle even larger
systems� In one example� we are able to verify a pipelined ALU circuit with �� reg�
isters� each �� bits wide� and more than
����� reachable states�
Our paper consists of three main parts� In the �rst� we propose a method for

obtaining abstract models of a program� In the second� we show how these abstract
models can be used to verify properties of the program� Finally� we suggest a
number of useful abstractions and illustrate them via a series of examples�
We model programs as transition systems in which the states are n�tuples of

values� Each component of a state represents the value of some variable� If the ith
component ranges over the set Di� then the set of all program states isD��� � ��Dn�
Abstractions will be formed by giving surjections h�� � � � � hn which map each Di

onto a set bDi of abstract values� The surjection h � �h�� � � � � hn� then maps each
program state to a corresponding abstract state� This mapping may be applied in
a natural way to the initial states and the transitions of the program� The result
is a transition system which we refer to as the minimal abstraction of the original
program� If it is possible to construct this abstraction� we can use it to verify
properties of the program� However� if the state space of the transition system is
very large� this may not be feasible� Even if it is possible to represent the system
using BDD�based methods� the computational complexity of building the minimal
abstraction may still be very high� To circumvent these problems� we show how to
derive an approximation to the minimal abstraction� The approximation may be
constructed directly from the text of the program without �rst building the original
transition system� We show how this can be accomplished by symbolic execution
of the program over the abstract state space�
This symbolic execution is exactly the same idea as is used in abstract interpre�

tation as pioneered by the Cousots �
��
��� In the Cousots� work� the spaces of
concrete and abstract data values are complete lattices �or more generally� complete
partial orders�� The relation between levels is given by a Galois connection ��� ���
� maps concrete values to abstract values� and � maps back� The mapping h above
is the analog of � and its inverse would correspond to �� In abstract interpretation�
given ��� �� and a programming language semantics� we derive an abstract seman�
tics for the language� Our symbolic execution corresponds to evaluating a program
under this abstract semantics� The e�ect of the evaluation is to produce directly

� �

an abstract representation of the program�s behavior� The di�erences between
our work and most of the work on abstract interpretation are summarized below�
These di�erences arise mainly from the di�ering applications of the work� Most ab�
stract interpretations are designed to collect information about the static semantics
of a program �typically for use by an optimizing compiler�� The static semantics
gives information about all of the possible program states at a given program point�
Hence it is useful for answering questions about live variables� available expressions�
etc� Further� since compilers must deal with very large programs� the emphasis is
often on trading accuracy for speed in the analysis� In contrast� we are interested in
the dynamic behavior of the program �the transitions between states�� and proving
the correctness of a system generally requires a precise analysis� Because of these
strict requirements� we cannot handle very large programs�

�
� In our work� producing an abstract model of the system is only the �rst step
in the veri�cation process� Afterwards� we use state space searches to check
temporal properties�

��� In abstract interpretation� the abstractions are usually de�ned with a particu�
lar type of analysis in mind and then �xed� Hence� constructing the abstract
version of the language semantics can be done once� and with manual assis�
tance� In veri�cation� the user often needs to de�ne new abstractions �on the
�y�� This need arises because of the delicate balance between keeping enough
information to have the veri�cation go through� and throwing out enough to
keep the time and space requirements reasonable� Having to produce a new
abstract semantics by hand for each new abstraction would be extremely te�
dious� As a result� our tools must do this automatically� However� to ensure
decidability� we have to restrict ourselves to �nite data domains�

��� Because of the need to be precise� we always view expressions as evaluating �at
the abstract level� to some set of possible abstract values� �This set could be
mapped back to a set of possible concrete values�� In abstract interpretation�
this would correspond to working over a powerdomain ����� However� in the
abstract model that we construct� states are simply assignments of single ab�
stract values to the program variables� This corresponds more to a �at domain�
Because we always use this same type of interpretation� we can eliminate many
of the technical details that would otherwise be necessary to translate back and
forth between the di�erent types of domains�

Recently� Bensalem et al� ��� have considered abstractions as Galois connections
between sets of states of two processes� They then consider the relationship between
abstract�level and concrete�level satisfaction of logical properties expressed in a
�xpoint calculus� Their notation is close to that used in the abstract interpretation
literature� while ours is most similar to that in earlier work on using abstraction
for �nite�state veri�cation �e�g�� ������
The speci�cation language that we use is a propositional temporal logic called

CTL� �
��� This logic combines both branching time operators and linear time
operators and is very expressive� Formulas are formed using the standard operators
of linear temporal logic and two path quanti�ers� � and �� The formula ���� is true
at a state whenever � holds on all computation paths starting at the state� The
formula ���� is true whenever � holds for some computation path� The atomic state
formulas in the logic are used to specify that a program variable has a particular

� �

abstract value� Because of this� formulas of the logic may be interpreted with
respect to either the original transition system or its abstraction� Our goal is to
check the truth value of a formula in the abstract system� and conclude that it
has the same truth value in the original system� We prove that our approach is
conservative if we restrict to a subset of the logic called �CTL� ���� in which only
the � path quanti�er is allowed� That is� if a formula is true in the abstract system�
we can conclude that the formula is also true in the original system� However� if a
formula is false in the abstract system� it may or may not be false in the original
system� In addition� we note that if the equivalence relations induced by the hi are
congruences with respect to the operations used in the program� then the method
is exact for full CTL�� That is� a formula is true in the abstract system if and only
if it is true in the original system�
We suggest several di�erent abstractions that are useful for reasoning about pro�

grams� These abstractions include

�
� congruence modulo an integer� for dealing with arithmetic operations	

��� single bit abstractions� for dealing with bitwise logical operations	

��� product abstractions� for combining abstractions such as the above	 and

��� symbolic abstractions� This is a powerful type of abstraction that allows us to
verify an entire class of formulas simultaneously�

We demonstrate the practicality of our methods by considering a number of ex�
amples� some of which are too complex to be handled by the BDD�based methods
alone� These examples include a
� bit by
� bit hardware multiplier and a pipelined
ALU circuit with over ���� state variables�
Numerous other authors have considered the problem of reducing the complexity

of veri�cation by using equivalences� preorders� etc� For example� Graf and Stef�
fen ��
� describe a method for generating a reduced version of the global state space
given a description of how the system is structured and speci�cations of how the
components interact� Clarke� Long and McMillan �
�� describe a related attempt�
Grumberg and Long ���� and Shurek and Grumberg ���� propose frameworks for
compositional veri�cation based on �CTL�� Dill �
�� has developed a trace theory
for compositional design of asynchronous circuits� These methods are mainly useful
for abstracting away details of the control part of a system�
There has been relatively little work on applyingmodel checking to systems which

manipulate data in a nontrivial way� Wolper ���� demonstrates how to do model
checking for programs which are data independent� This class of programs� however�
is fairly small� Our approach makes it possible to handle programs which have some
data dependent behavior� More recently� BDD�based model checking techniques ��	

�� have been used to handle circuits with data paths� These methods� while much
more powerful than explicit state enumeration� are still unable to deal with some
systems of realistic complexity� Some examples in section �� for instance� could not
be handled directly with these approaches� Our method works well in conjunction
with these techniques� however�
Of the work on using abstraction to verify �nite state systems� the approach de�

scribed by Kurshan ���� is most closely related to ours� This approach has been au�
tomated in the COSPAN system ����� The basic notion of correctness is ��language
containment� The user may give abstract models of the system and speci�cation

� �

in order to reduce the complexity of the test for containment� To ensure sound�
ness� the user speci�es homomorphisms between the actual and abstract processes�
These homomorphisms are checked automatically� Our work di�ers from Kurshan�s
in several important respects�

�
� Our speci�cations are given in the temporal logic CTL� which can express both
branching time and linear time properties� Moreover� we are able to identify
precisely a large class of temporal formulas for which our veri�cation methodol�
ogy is sound� Not all properties are preserved in going from the reduced system
to the original� so this is quite important�

��� Our abstractions correspond to language homomorphisms induced by boolean
algebra homomorphisms in Kurshan�s work� We show how to derive automat�
ically an approximation to the abstracted state machine� This approximation
is constructed directly from the program� so that it is unnecessary to examine
the state space of the unabstracted machine� There is no need to check for a
homomorphism between the abstract and unabstracted systems�

��� The particular abstraction mappings that we use also appear to be new� We
demonstrate that these abstractions are powerful enough and that the corre�
sponding approximations are accurate enough to allow us to verify interesting
properties of complex systems�

Our paper is organized as follows� the next section is a brief introduction to BDDs
and symbolic model checking� This is followed by a discussion of transition systems
and the notion of abstraction that we use� Section � discusses constructing an
approximate abstract transition system directly from a program� It also discusses
the conditions required for exactness� Section � is the heart of our paper	 we relate
the theory developed in the previous sections to the temporal logic that we use for
speci�cations� In particular� we prove that our method is conservative in the case
of �CTL� formulas� We also note that if the approximation is exact� then all CTL�
formulas are preserved� Section � describes a programming language that can be
used for specifying �nite�state systems� and describes the veri�cation of several
systems via a variety of abstractions� The paper concludes with a discussion of
some directions for future research�

�� BINARY DECISION DIAGRAMS

Binary decision diagrams �BDDs� are a canonical form representation for boolean
formulas described by Bryant ���� They are often substantially more compact than
traditional normal forms such as conjunctive normal form and disjunctive normal
form� and they can be manipulated very e�ciently� Hence� they have become
widely used for a variety of CAD applications� including symbolic simulation ����
veri�cation of combinational logic ����� and veri�cation of sequential circuits ��	

�	 ���� A BDD is similar to a binary decision tree� except that its structure is a
directed acyclic graph rather than a tree� and there is a strict total order placed on
the occurrence of variables as one traverses the graph from root to leaf� Consider�
for example� the BDD of �gure
� It represents the formula �a � b� � �c � d�� using
the variable ordering a � b � c � d� Given an assignment of boolean values to the
variables a� b� c and d� one can decide whether the assignment makes the formula
true by traversing the graph beginning at the root and branching at each node
based on the value assigned to the variable that labels the node� For example� the

� �

d

a

c

b

0 1

1

0

0

1

0

0 1

1

Fig� �� A BDD representing �a� b� � �c � d�

valuation f a �
� b � �� c �
� d �
 g leads to a leaf node labeled
� hence the
formula is true for this assignment�

Bryant showed that given a variable ordering� there is a canonical BDD for every
formula� The size of the BDD depends critically on the variable ordering� Bryant
gives algorithms of linear complexity for computing the BDD representations of
�f and f � g given the BDDs for formulas f and g� Quanti�cation over boolean
variables and substitution of a variable by a formula are also straightforward using
this representation�

Another way to view BDDs is as deterministic �nite automata �DFAs� �

�� The
initial state of the automata is the root of the BDD� and the only accepting state is
the terminal
� From this viewpoint� the BDD operations correspond to standard
constructions such as language intersection and union for DFAs� The canonical form
property of BDDs corresponds to the uniqueness of the minimal DFA accepting a
given language�

Given a �nite state program� let V be its set of boolean state variables� We
identify a boolean formula over V with the set of valuations which make the formula
true� A valuation of the variables corresponds in a natural way to a state of the
program	 hence the formula may be thought of as representing a set of program
states� The BDD for the formula is in practice a concise representation for this set
of states� In addition to representing sets of states of a program� we must represent
the transitions that the program can make� To do this� we use a second set of
variables V �� A valuation for the variables in V and V � can be viewed as designating
a pair of states of the program� Such a pair can be viewed as corresponding to a
transition between the states of the pair� Thus� we can represent sets of transitions
using BDDs in much the same way as we represent sets of states� Many veri�cation
algorithms such as temporal logic model checking and state machine comparison
can make e�ective use of this representation ��	
�	 ����

� �

�� TRANSITION SYSTEMS AND ABSTRACTIONS

We consider programs with a �nite set of variables v�� v�� � � � � vn� If each variable vi
ranges over a �non�empty� set Di of possible values� then the set of all possible
program states is D� �D� � � � � � Dn� which we denote by D� We represent the
possible behaviors of the program with a set of transitions between states� This
notion is formalized in the following de�nition�

De�nition
� A transition system over D is a triple M � hS� I�Ri where

�
� S � D is a set of states	

��� I � S is a set of initial states	 and

��� R � S � S is a transition relation�

Abstractions will be formed by letting the program variables range over �non�

empty� sets bDi of abstract values� We will give mappings to specify the corre�
spondence between unabstracted and abstracted values� Formally� we let h�� h��
� � � � hn be surjections� with hi�Di 	 bDi for each i� These mappings induce a
surjection h�D	 bD de�ned by

h
�
�d�� � � � � dn�

�
�
�
h��d��� � � � � hn�dn�

�
�

Alternatively� the relation between unabstracted and abstracted values can be spec�
i�ed by a set of equivalence relations� In particular� each hi corresponds to the
equivalence relation
i � Di �Di de�ned by

di
i ei if and only if hi�di� � hi�ei��

The mapping h induces an equivalence relation
 � D � D in the same manner�
We also note that

�d�� � � � � dn�
 �e�� � � � � en� if and only if d�
� e� � � � � � dn
n en�

We will sometimes specify abstractions by mappings and sometimes specify them
by equivalence relations�
Let M be a transition system over D and let h be a surjection from D to bD�

We now de�ne what it means for a transition system over the abstract set of statesbD to be an abstract version of M � The intuition is that a state bs of the abstract
system will represent all those states s of M for which h�s� � bs� The abstract
state bs must be able to simulate each such s� so if s can transition to s�� then we
will require that bs be able to transition to bs� � h�s��� Similarly� if M could start
in state s� we require that the abstract system be able to start in bs� Formally� we
have the following de�nition�

De�nition �� Let cM be a transition system over bD� We say that cM approximates
M �denoted M vh

cM � when�

�
� �d �h�d� � bd � I�d�� implies bI�bd��
��� �d��d� �h�d�� � bd� � h�d�� � bd� �R�d�� d��� implies bR� bd�� bd���
There is a natural abstract transition system having only those initial states

and transitions required by the above de�nition� We call this �minimal� transition
system cMmin�

De�nition �� cMmin is the transition system over bD given by�

� �

�
� bImin�bd� if and only if �d �h�d� � bd � I�d���
��� bRmin� bd�� bd�� if and only if �d��d� �h�d�� � bd� � h�d�� � bd� �R�d�� d����

Obviously M vh
cMmin� Further� for any other transition system cM over bD� we

see that M vh
cM if and only if bI � bImin and bR � bRmin� Thus� cMmin is the most

accurate approximation to M that is consistent with h�
As we will show in section �� an abstract transition system such as cMmin may

be used to deduce properties of M �� Moreover� using an abstract transition system
instead of M may greatly reduce the complexity of automatically verifying these
properties� Unfortunately� it is often expensive or impossible to construct cMmin

directly because we must have a representation of M to do the abstraction� We
may not be able to obtain such a representation if D is in�nite or simply too large
for our system to handle� In BDD�based systems� even if we are able to produce
BDDs representing I and R� computing BDDs representing bImin and bRmin requires
a number of relational products �essentially� one for each hi when computing the

BDD for bImin and two for each hi when computing the BDD for bRmin�� In practice�
we have found that evaluating these relational products is often impossible� In
the next section� we discuss a method for circumventing these problems� This
method is based on the fact that we usually have an implicit representation of
M as a program in a �nite�state language� We will show how to compute an
approximation to M directly from the program text� Hence� it is never necessary
to construct BDDs representing I and R� In addition� we demonstrate empirically
that the approximation is generally accurate enough to allow us to verify interesting
properties of the program� Note that in the abstract interpretation literature� it
is generally the approximation that is highlighted� while cMmin is often implicit�
However� from a conceptual point of view� we would like to produce an abstraction
that is as close as possible to cMmin�

�� PRODUCING ABSTRACT MODELS

In this section� we consider the problem of deriving an approximate abstract model
of M directly from a �nite�state program describing M � The actual process will be
described in subsection ���� However� we would like this discussion to be relatively
independent of the particular �nite�state language used� To accomplish this� we
are going to argue that a program in a �nite�state language can be transformed
into relational expressions I and R that can be evaluated to obtain the initial
states I and the transition relation R of the transition systemM represented by the
program� These relational expressions are simply formulas in �rst�order predicate
logic that will built up from a set of primitive relations for the basic operators and
constants in the language� Then in subsection ���� we will show how to manipulate I
and R to obtain the approximation to M � There will typically be types associated
with the variables and relation arguments in the relational expressions that we
write� but for notational simplicity� we will leave these implicit�

�The reader may be concerned about eliminating deadlocks by adding new initial states and
transitions� This is discussed in section ��

� �

��� Semantics of �nite	state programs

In this subsection� we consider how I and R can be derived� Since this is not the
main concern of the paper� we will just consider an example program ��gure ���
This program computes the parity p of the variable b by repeatedly computing the
exclusive�or of p and the low�order �rightmost� bit of b �lsb�b�� and then shifting b
to the right by one bit �b�
�� �The parity of a number is � if the number of one
bits in its binary representation is even� and
 if this number is odd�� Since we are
interested in verifying the temporal behavior of programs� we must know the points
where the state of the variables can be observed� We will call these points control
points� and in the example� the control points are those lines labeled with ��
� and ��
During the computation of this program� we will observe a transition from control
point � to control point
 �during which p is set to ��� some transitions from

back to
 �going around the while loop�� a transition from
 to � �when b � ���
and �nally an in�nite sequence of transitions from � to � when the program is in a
terminal state� �We add loops at terminal states since our speci�cation logic only
describes in�nite behaviors�� Contrast this with the input�output style semantics
of the program� where we would just be interested in the relationship between the
variables at points � and �� Looking at the state transitions between control points
is also the basis of program veri�cation techniques such as the inductive assertion
method �
��

�� p �� �
�� while b �� �

p �� p� lsb�b�
b �� b� �

endwhile

�� end

Fig� � A simple example program

The transition relation speci�ed by this program is obtained by looking at the
sequences of statements between consecutive control points� First� consider the
transition between control points � and
� During this transition� p should be set
to �� To distinguish the values of the variables at the start of the transition �at
control point �� from the values at the end of the transition �at
�� we will decorate
the latter with primes� Thus� p will denote the value of the variable p at point ��
and p� will denote the value of the variable p at point
� We will use a variable PC
��Program Counter�� to denote the control point� Then the transition from point �
to point
 can be expressed by�

PC � � � p� � � � b� � b �PC� �
�

This says that PC starts at � and ends at
� the value of p at the end point is ��
and the value of b does not change during the transition�
The transition from point
 to point � does not involve any changes in the vari�

ables� but it does require a test to see that b � �� Thus� we get the relation�

PC �
 � b � � � p� � p � b� � b � PC� � ��

	
 �

The b � � acts as a guard to eliminate the transition when the condition does
not hold� An expression for the transition relation of the whole program can be
derived by simply taking the disjunction of the expressions for the point�to�point
transitions� For this program� we get the following expression �the �rst two lines
are just the point to point relations derived above��

�PC � � � p� � �� b� � b � PC� �
� �

�PC �
 � b � � � p� � p � b� � b � PC� � �� �

�PC �
 � b � � � p� � p� lsb�b� � b� � b�
 �PC� �
� �

�PC � � � p� � p � b� � b �PC� � ���

Note that in this program� the loop is broken by a control point �point
�� For
simplicity� we will assume that this is always the case� However� since we will
only be working over �nite domains� it is not strictly necessary� That is� we could
allow unbroken loops between control points and then check that such loops always
terminated�
The above expression is written assuming that we have operators in the logic

for all of the operators in the language� that we can use language constants as
constants in the logic� etc� To eliminate these� we could instead rewrite the above
expression in terms of primitive relations for the operators and constants� Consider�
for example� the clause p� � p� lsb�b�� This involves two operations� selecting the
low�order bit of b� and then computing the exclusive�or of the result with p� We
now assume that we have primitive relations Plsb and P� for these operators� The
former is a two�argument relation� and the latter is a three�argument relation� the
last argument in each case will be the result produced by the operator� The clause
p� � p� lsb�b� can now be expressed as follows�

�t �Plsb�b� t�� P��p� t� p
����

�Note that we needed to introduce a �temporary� variable t to hold the interme�
diate result�� In a similar way� we could rewrite the rest of the transition relation
expression to obtain a relational expression built entirely from primitive relations�
This would be the relational expression R� A relational expression I describing the
initial conditions on p� b� and PC could be derived in a similar way�
In general� the derivation of I and R is based on a relational semantics for the

�nite�state language� essentially� we write down the meaning of the program under
the semantics� A relational semantics is usually very natural for languages intended
to specify transition systems since their purpose is to describe the transition relation
of the system� We will not give the relational semantics for any particular language
in this paper	 our goal above is just to motivate the claim that we can take a �nite�
state program and produce relational expressions representing the initial states and
transitions of the transition system described by the program�

��� Computing approximations

In the previous subsection� we argued that the initial states and transition relation
of a transition system M could be represented by formulas I and R� Similar for�
mulas bImin and bRmin can be obtained representing cMmin� Since actually evaluatingbImin and bRmin can be computationally complex� we now show how to obtain for�
mulas bIapp and bRapp describing an approximation cMapp to M � Throughout this

� 		

subsection and the next� we assume that �� �� and �� are relational expressions
built up from the primitive relations representing the operations in the program�
For simplicity� we assume that all of the variables x�� x�� � � � � range over the same
domain D� We also use a set cx�� cx�� � � � � of variables ranging over the abstract
domain bD� with bxi representing the abstract value of xi� We will also assume that
there is only one abstraction function h mapping elements of D to elements of bD�
�Note that we are abusing notation a bit� since D� bD and h are also used to denote
the �product� concrete and abstract state spaces and the mapping between these
state spaces��

Recall that building cMmin requires evaluating two relational products� both in�
volving existential quanti�cation over the elements of D� For conciseness� we will
denote this kind of existential abstraction using an operator ���� If � depends on
the free variables x�� � � � � xm� then we de�ne

����cx�� � � � � cxm� � �x� � � ��xm �h�x�� �cx� � � � � � h�xm� � cxm � ��x�� � � � � xm���

Note that the free variables of ��� are the abstract versions of x�� � � � � xm� Based

on the de�nition of cMmin� we observe that if I and R are the formulas representing
I and R� then bImin � �I� and bRmin � �R� are formulas representing bImin and bRmin�
Ideally� we would like to evaluate �I� and �R� directly� However� applying ��� to

complex formulas can be computationally expensive� Thus� we will now de�ne a
transformation T on formulas �� The idea of T is to simplify the formulas to which
��� is applied� We assume that � is given in negation normal form� i�e�� negations
are applied only to primitive relations�

�
� If P is a primitive relation� then T �P �x�� � � � � xm�� � �P ��cx�� � � � � cxm� and
T ��P �x�� � � � � xm�� � ��P ��cx�� � � � � cxm��

��� T ��� � ��� � T ���� � T �����

��� T ��� � ��� � T ���� � T �����

��� T ��x�� � �bx T ����
��� T ��x�� � �bx T ����
In other words� T applies the operation ��� only at the innermost level� Since these
inner formulas are relatively simple� they can be evaluated easily� We can now
produce the transition system cMapp by evaluating the formulas T �I� and T �R��

However� to be able to use cMapp for veri�cation purposes� we must ensure that we
have not omitted any behaviors of the abstract system� That is� we must check that
every transition of cMmin is also a transition of cMapp� and that every initial state

of cMmin is also an initial state of cMapp� To do this� we examine the relationship
between ��� and T ����

Theorem �� ��� implies T ���� In particular� �I� implies T �I� and �R� implies
T �R�� �The converse does not hold in general� in cases � and 	 above� T pushes
existential quanti�cations over conjunctions� leading to inequivalent formulas�

Proof� We apply induction on the structure of the formula ��

�
� If � � P �x�� � � � � xm� or � � �P �x�� � � � � xm� where P is a primitive relation
then ��� � T ��� and the lemma holds�

	� �

��� Let ��x�� � � � � xm� � �� � ��� ��� and �� should be assumed to have the
same parameter lists as �� but for conciseness� we omit them�� Then� ��� � ���
is identical to the formula

�x� � � ��xm �
�
i

h�xi� � bxi � �� � ����

This formula implies

�x� � � ��xm �
�
i

h�xi� � bxi � ��� � �x� � � ��xm �
�
i

h�xi� � bxi � ����

which is exactly ���� � ����� Now T ��� � ��� � T ���� � T ����� and by the
induction hypothesis we have ���� implies T ���� and ���� implies T ����� Hence
����� ���� implies T ���� � T ����� and so ��� � ��� implies T ��� � ����

��� The case where � � �� � �� is similar to the previous case� �Note though
that pushing the abstraction over a disjunction does not cause us to lose any
information��

��� Let ��x�� � � � � xm� � �x��� Then ��x��� is

�x� � � ��xm �
�
i

h�xi� � bxi � �x���x� x�� � � � � xm���
We can assume without loss of generality that the bound variable x is di�erent
from the xi and bxi� so the above formula is equivalent to

�x� � � ��xm�x �
�
i

h�xi� � bxi � ���x� x�� � � � � xm���

This implies

�x�x� � � ��xm �
�
i

h�xi� � bxi � ���x� x�� � � � � xm���

Since h is a surjection� for every abstract element in bD� there is some element
of D that maps onto it� Hence the above formula implies

�bx�x��x� � � ��xm �h�x� � bx ��
i

h�xi� � bxi � ���x� x�� � � � � xm����

This is exactly �bx ����� Now by the induction hypothesis� ���� implies T �����
and so �bx ���� implies �bx T ����� This latter formula is equal to T ��x����

��� The case where � � �x�� is similar to the previous case� �Although as
with disjunction� we do not lose information by pushing an abstraction over an
existential quanti�cation��

The above idea of �pushing the abstractions inwards� is the same idea that is
used in abstract interpretation �
�	
�	 �
	 ���� In abstract interpretation� when
de�ning the abstract semantics induced by an abstraction� the meaning of part of
the program �say an expression� in the programming language is given in terms of
a composition of abstract versions of the operators in the language� Our abstract
primitive relations correspond exactly to these abstract operators� Note that in gen�
eral though� we will be producing these abstract primitive relations automatically
based on the user�supplied abstraction mappings�

� 	�

To be able to use cMapp for veri�cation purposes� we want to know that the

relation vh holds between M and cMapp� Then we will show in section � that every

formula that is true for cMapp is also true for M �

Theorem �� Let cMapp be the transition system obtained by evaluating T �I� and

T �R�� Then M vh
cMapp�

Proof� We know M vh
cMmin� By the previous theorem� bImin � bIapp andbRmin � bRapp� We also have bSmin � bSapp� By the de�nition of vh� these facts

trivially implyM vh
cMapp�

��� Exact approximations

Above� we demonstrated that M vh
cMmin and M vh

cMapp� These results will be
used to show that our veri�cation methodology is conservative� In this subsection�
we make a note of some additional properties that su�ce to make the method exact�
By �exact�� we mean that a property will be true at the concrete level if and only
if it is true at the abstract level� Thus� the concrete and abstract models exhibit
identical behavior in an appropriate sense� In our experience� requiring an exact
approximation to M generally allows very little simpli�cation� and hence exact
approximations are not very useful for reducing the complexity of veri�cation� For
this reason� we will omit most of the details and proofs in this subsection� Recall
that each hi induces an equivalence relation
i on Di�

De�nition �� Let P �x�� � � � � xm� be a relation with xj ranging over Dij � The
equivalence relations
ij are a congruence with respect to P if

�d� � � ��dm�e� � � ��em �
�
j

dj
ij ej 	 �P �d�� � � � � dm�� P �e�� � � � � em����

If the
i are congruences with respect to the primitive relations� then cMapp is an

exact approximation of M � This can be shown in two steps� �rst� cMmin � cMapp�

and second� cMmin is an exact approximation of M � As in the previous subsection�
we will simplify notation by assuming that all variables range over the same domain
D� that there is one abstract domain bD� and that there is one abstraction mapping
h with corresponding equivalence relation
�

Lemma �� If
 is a congruence with respect to the primitive relations then ����
T ����

Theorem �� If
 is a congruence with respect to the primitive relations� thencMmin � cMapp�

Now we make precise what it means for one transition system to exactly ap�
proximate another one� Recall that cM approximates M when initial states and
transitions in M have corresponding initial states and transitions in cM � For exact
approximation� we must have a type of converse as well� if bs is an initial state of cM �
then all of the states s of M that map to bs should be initial as well �and similarly
for transitions��

De�nition �� Let cM be a transition system over bD� We say that cM exactly
approximates M �denoted M �h

cM � when M vh
cM and�

	� �

�
� bI�bd� implies �d �h�d� � bd	 I�d���

��� bR� bd�� bd�� implies �d��d� �h�d�� � bd� � h�d�� � bd� 	 R�d�� d����

Theorem �� If
 is a congruence with respect to the primitive relations� then
M �h

cMmin �and hence M �h
cMapp
�

� TEMPORAL LOGIC

The logics that we will use for specifying properties will be subsets of the logic
CTL�� CTL� is a powerful temporal logic that can express both branching time
and linear time properties� For convenience when de�ning subsets of the logic� we
will assume that all formulas are given in negation normal form� That is� negations
only appear in atomic state formulas�

De�nition �� The logic CTL� �
�� is the set of state formulas given by the fol�
lowing inductive de�nition�

�
� true and false are atomic state formulas� If vi is a program variable and
di � Di� then vi � di and vi � di are atomic state formulas� Atomic state
formulas are used to describe the values of variables in a state�

��� If � and 	 are state formulas� then � � 	 and � � 	 are state formulas�

��� If � is a path formula� then ���� and ���� are state formulas� These state
formulas express that all paths �execution sequences� or some path starting at
a state satisfy the property given by ��

��� If � is a state formula� then � is also a path formula� In this case� � describes
a property of the �rst state on the path�

��� If � and 	 are path formulas� then so are � � 	 and � � 	�

��� If � and 	 are path formulas� then so are the following�

�a� X�� A path satis�es X� ��next time ��� when � holds starting at the
second state on the path�

�b� �U	� A path satis�es �U	 ��� until 	�� when 	 is true starting at some
point on the path� and � holds up until that point�

�c� �V	� The V operator is slightly unusual	 it is the dual ofU� �V	 is read
as �� releases 	�� and means that the formula 	 is true initially� and that
	 must remain true until �and including� the �rst point where � becomes
true� There is no obligation that � ever become true� �V 	 also holds if
	 remains true forever�

We also use the following abbreviations� F� ��� holds at some point in the future
on the path�� andG� ��� holds globally on the path��� where � is a path formula�
denote �trueU�� and �falseV �� respectively� When specifying abstract transition

systems� the atomic state formulas will take the form bvi � bdi instead of vi � di�

CTL is a restricted subset of CTL� in which the � and � path quanti�ers may
only precede a restricted set of path formulas� More precisely� CTL is the logic
obtained by eliminating rules � through � above and adding the following rule�

��� If � and 	 are state formulas� then �X�� �X�� ���U	�� ���U	�� ���V 	��
and ���V 	� are state formulas�

� 	�

CTL is of interest because there is a very e�cient model checking algorithm for
it �
��� �CTL� and �CTL ���	 ��	 ��� are restricted subsets of CTL� and CTL
respectively in which the only path quanti�er allowed is �� These two logics are
su�cient to express many of the properties that arise when verifying programs� As
we will see� these logics will also be used when the conditions needed for exactness
do not hold�
We now de�ne the semantics of CTL� for a concrete transition system M over

D�

De�nition �� A path in M is an in�nite sequence of states
 � s�s�s� � � � such
that for every i � N � R�si� si����

The notation
n will denote the su�x of
 which begins at sn� If
 � s�s� � � � is
a sequence of states from D� we denote the sequence h�s��h�s�� � � � by h�
��

De�nition �� Satisfaction of a state formula � by a state s �s j� �� and of a path
formula 	 by a path
 �
 j� 	� is de�ned inductively as follows�

�
� s j� true� and s j� false� If s � �e�� � � � � en�� then s j� vi � di if and only if
ei � di� s j� vi � di if and only if it is not the case that s j� vi � di�

��� s j� � �	 if and only if s j� � and s j� 	� s j� �� 	 if and only if s j� � or
s j� 	�

��� s j� ���� if and only if for every path
 starting at s�
 j� �� s j� ���� if
and only if there exists a path
 starting at s such that
 j� ��

���
 j� �� where � is a state formula� if and only if the �rst state of
 satis�es
the state formula�

���
 j� � � 	 if and only if
 j� � and
 j� 	�
 j� � � 	 if and only if
 j� �

or
 j� 	�

��� �a�
 j� X� if and only if
� j� ��
�b�
 j� �U 	 if and only if there exists n � N such that
n j� 	 and for all

i � n�
i j� ��
�c�
 j� �V	 if and only if for all n � N � if
i j� � for all i � n� then
n j� 	�

The notation M j� � indicates that every initial state of M satis�es the formula ��

In the case of an abstract transition system cM � we de�ne satisfaction in exactly
the same way except that the atomic formula bvi � bdi is true at state � be�� � � � �cen� if
and only if bei � bdi�
We now de�ne a translation C between formulas describing the abstract transitioncM and formulas describing M � Our goal is to be able to check a formula � on cM

and infer that the corresponding formula C��� holds for M � Suppose that � is a

simple atomic formula bvi � bdi� When this formula holds� it conceptually means
that hi applied to the value of vi gives bdi� The only thing that we can infer at the
concrete level is that vi � di for some di satisfying hi�di� � bdi� Hence� C should

map the formula bvi � bdi to �
f vi � di j hi�di� � bdi g�

i�e�� the disjunction of all atomic formulas vi � di for which di maps to bdi� For
more complex formulas� the mapping is de�ned recursively�

	� �

De�nition � C is the mapping from formulas describing cM to formulas describing
M that is de�ned as follows�

�
� C�true� � true� C�false� � false�

C�bvi � bdi� is Wf vi � di j hi�di� � bdi g�
C�bvi � bdi� � �C�bvi � bdi��

��� If � and 	 are state formulas� then C�� � 	� � C��� � C�	� and C�� � 	� �
C��� � C�	��

��� If � is a path formula� then C������ � ��C���� and C������ � ��C�����

��� If � is a path formula that is also a state formula� then C��� is given by the
above rules�

��� If � and 	 are path formulas� then C�� � 	� � C��� � C�	� and C�� � 	� �
C��� � C�	��

��� If � and 	 are path formulas� then
�a� C�X�� � X C����
�b� C��U 	� � C���U C�	��
�c� C��V 	� � C���V C�	��

We now turn to the main theorems� For the remainder of the section� M and cM
will be transition systems over D and bD respectively� First� we have a straightfor�
ward lemma that says that paths in the concrete system M can be lifted to the
abstract level�

Lemma �� Assume M vh
cM � If
 is a path in M � then h�
� is a path in cM �

Using this observation� we prove the main preservation theorem� formulas that
hold at the abstract level also hold for the concrete system�

Theorem �� Assume M vh
cM � Then�

��
 for all �CTL� state formulas � describing cM and every state s of M � h�s� j�
� implies s j� C��� and

��
 for all �CTL� path formulas � describing cM and every path
 in M � h�
� j�
� implies
 j� C����

Proof� The proof proceeds by induction on the structure of the formula� Let
s � �e�� � � � � en� and h�s� � � be�� � � � �cen��

�
� If � � true or � � false� the result is trivial� If � � �bvi � bdi�� then h�s� j� �

if and only if bei � bdi� Obviously s j� vi � ei� Since we have hi�ei� � bdi� we
can infer that s satis�es �

f vi � di j hi�di� � bdi g�
But this is just C�bvi � bdi�� and so s j� C�bvi � bdi�� The case for � � �bvi � bdi�
is similar�

��� h�s� j� � � 	 implies h�s� j� � and h�s� j� 	� The induction hypothesis
implies s j� C��� and s j� C�	�� so s j� C�� �	�� The case for ��	 is similar�

��� Assume h�s� j� ����� s j� C������ if for every path
 from s�
 j� C����

By the previous lemma� h�
� is a path in cM from h�s�� Since h�s� j� �����
h�
� j� �� Then the induction hypothesis implies
 j� C����

� 	�

��� Assume � is a state formula and h�
� j� �� If the initial state of
 is s�
then the initial state of h�
� is h�s�� This implies h�s� j� �� and then by the
induction hypothesis� s j� C���� Hence
 j� C����

��� The cases for the conjunction and disjunction of path formulas are similar
to case ��

��� �a� h�
� j� X� implies �h�
��� j� �� Now �h�
��� � h�
��� and so the
induction hypothesis implies
� j� C���� Thus
 j� X C���� and so
 j�
C�X���

�b� If h�
� j� �U	� then there exists n � N such that �h�
��n j� 	 and for all
i � n� �h�
��i j� �� This implies h�
n� j� 	 and h�
i� j� � for all i � n�
Using the inductive hypothesis� we �nd
 j� C��U 	��

�c� The case when h�
� j� �V 	 is similar to the previous two cases�

Corollary �� Assume M vh
cM � and let � be a �CTL� formula describing cM �

Then cM j� � implies M j� C����

Note that this result only talks about preserving the truth of formulas that de�
scribe behavior that should hold on all paths from a state� Sinc the abstraction
process adds extra behaviors to the model� properties describing the existence of
a path may not be preserved in the same manner� Thus� verifying something
like absence of deadlock at the abstract level requires proving a stronger progress
property��

In the case where cM exactly approximates M � we also have the converse result�
satisfaction at the concrete level implies satisfaction at the abstract level� We omit
the proofs here� First� we note that paths at the abstract level and at the concrete
level exactly coincide�

Lemma �� Assume M �h
cM � and let
 be an in�nite sequence of states from S

�the set of states of M
� Then
 is a path in M if and only if h�
� is a path in cM �

Then we have the analog of theorem �� except now going both ways�

Theorem �� Assume M �h
cM then

��
 for all CTL� state formulas � describing cM and every state s ofM � h�s� j� �

if and only if s j� C��� and

��
 for all CTL� path formulas � describing cM and every path
 in M � h�
� j� �

if and only if
 j� C����

Corollary �� Assume M �h
cM � and let � be a CTL� formula describing cM �

Then M j� C��� if and only if cM j� ��

�� EXAMPLES

In this section� we discuss some abstractions which have proved useful in practice�
Each is illustrated with a small example� All of the programs for the examples
are given in a simple �nite�state language which we now describe� Our veri�cation
system consists of a compiler for this language� plus a BDD�based model checker�
Both the compiler and the model checker are written in LISP� except for the BDD
routines� which are written in C�

�It is the opinion of one of the authors that this is what you really want to do anyway� Said
author prefers systems that will do something useful to those that might���

	� �

��� A simple language

The language that we will be using is a procedural language designed for specifying
reactive programs� The main features of this language are�

�
� It contains a variety of structured programming constructs� such aswhile loops�
Non�recursive procedures are also available�

��� It is �nite state� The user must specify a �xed number of bits for each input
and output in a program�

��� The model of computation is a synchronous one� At the start of each time step�
inputs to the program are obtained from the environment� All computation in
a program is viewed as instantaneous �i�e�� occurring in zero time�� There is
one special statement� wait� which is used to indicate the passage of time�
When a wait statement is encountered� any changes to the program�s outputs
become visible to the environment� and a new time step is initiated� Thus�
computation proceeds as follows� obtain inputs� compute �in zero time� until a
wait is encountered� make output changes visible� obtain new inputs� etc� The
wait statements indicate the control points in the program�

Aside from the wait statement� most of the language features used in the examples
in this paper are self�explanatory�
A program in the language may be compiled into a Moore machine for veri��

cation or for implementation in hardware� Here� we are only concerned with the
�rst of these� Since the Moore machine for a program may have a large number
of states �even after abstraction�� it is important not to generate an explicit�state
representation of this machine� Instead� our compiler directly produces a descrip�
tion of the Moore machine in the form of a BDD� This is then used as the input to
the BDD�based model checking program�
When a program is compiled� the user may also specify abstractions for some

of the inputs or outputs� By using the techniques described previously� the com�
piler can directly generate an �approximate� abstract Moore machine� There are
a number of abstractions built into the compiler� some of which are described in
the following subsections� In addition� the user may de�ne new abstractions by
supplying procedures to build the BDDs representing them� Abstract versions of
the primitive relations are computed automatically by the compiler�
Figure � is a small example program� a settable countdown timer� written in the

language� The timer has two inputs� set and start� which are one and eight bits
wide respectively� There are also two outputs� count� which is eight bits wide and
is initially zero	 and alarm� which is one bit and initially one� At each time step�
the operation of the counter is as follows� If set is one� then the counter is set to
the value of start� Otherwise� if the counter is not zero� it is decremented� The
alarm output is set to one when count is zero� and to zero if count is nonzero�

��� The model checker

The model checker is essentially a propositional CTL model checker �as described
by Burch et al� ����� extended with a notion of types� While state components need
not be only boolean� but they are restricted to �nite domains� The model checker
knows about all of the types allowed by the compiler� Integers are handled via
two�s�complement representation� When we write temporal logic formulas in this

� 	�

input set � �
input start � �
output count � � �� �
output alarm � � �� �

loop

if set � �
count �� start

else if count � �
count �� count � �

endif

if count � �
alarm �� �

else

alarm �� �
endif

wait

endloop

Fig� �� An example program

section� we will often write them so as to maximize readability� However� they do
not necessarily represent the input format accepted by the model checker� We do
this especially with abstracted variables� For example� if x is a variable that is
abstracted by�

h�x� �

�
�� if x is even	

� if x is odd�

then we will generally write something like even�x� in a formula rather than bx � ��
We emphasize however that all of the properties can be expressed concisely at the
abstract level when using the abstractions being considered�

��� Congruence modulo an integer

For verifying programs involving arithmetic operations� a useful abstraction is con�
gruence modulo a speci�ed integer m�

h�i� � i modm�

This abstraction is motivated by the following properties of arithmetic modulo m��
�i modm� � �j modm�

�
modm � i� j �mod m��

�i modm� � �j modm�
�
modm � i� j �mod m��

�i modm��j modm�
�
modm � ij �mod m�

In other words� we can determine the value modulo m of an expression involving
addition� subtraction and multiplication by working with the values modulo m of
the subexpressions��

�It may not be immediately clear how complex representing a relationship like i � � �mod �� is�
so we brie�y describe this BDD here� Suppose i is k � � bits wide� If the high order �kth� bit
of i is �� then the low k bits must represent a number which is also equivalent to � �modulo ���

�
 �

The abstraction may also be used to verify more complex relationships by apply�
ing the following result from elementary number theory�

Theorem Chinese remainder theorem� Let m�� m�� � � � � mn be positive in�
tegers which are pairwise relatively prime� De�ne m � m�m� � � �mn� and let b� i��
i�� � � � � in be integers� Then there is a unique integer i such that

b � i � b�m and i � ij �mod mj� for
 � j � n�

Suppose that we are able to verify that at a certain point in the execution of a
program� the value of the nonnegative integer variable x is equal to ij modulo mj

for each of the relatively prime integers m�� m�� � � � � mn� Further� suppose that
the value of x is constrained to be less than m�m� � � �mn� Then using the above
result� we can conclude that the value of x at that point in the program is uniquely
determined�
We illustrate this abstraction using a
� bit by
� bit unsigned multiplier �see

�gure ��� The program has inputs req� in
 and in�� The last two inputs provide the
factors to operate on� and the �rst is a request signal which starts the multiplication�
Some number of time units later� the output ack will be set to true� At that point�
either output gives the
� bit result of the multiplication� or over�ow is one if the
multiplication over�owed� The multiplier then waits for req to become zero before
starting another cycle� The multiplication itself is done with a series of shift�and�
add steps� At each step� the low�order bit �bit �� of the �rst factor is examined	
if it is one� then the second factor is added to the accumulating result� The �rst
factor is then shifted right and the result is shifted left in preparation for the next
step��

The speci�cation we used for the multiplier was a series of formulas of the fol�
lowing form��

�G
�
waiting � req � �in
 modm � i� � �in� modm � j�

	 ���ackU ack � �over�ow � �output modm � ij modm���
�

Here� i and j range from � through m�
 �hence we have to check O�m�� formulas��
and waiting is an atomic proposition which is true when execution is at the program
statement labeled
� The input in� and the outputs factor� and output were all
abstracted modulo m� The output factor
 was not abstracted� since its entire
bit pattern is used to control when factor� is added to output� We performed

Otherwise� then the low order k bits must represent a number that is equivalent to ��k �modulo
��� Both of these relationships have the same form as the original one� but they involve a number
with only k bits� Further� there are only � modulo values that we will ever have to consider�
By continuing to decompose the relationships in this way� we see that the BDD will have O�mk�
nodes� We also note that this is independent of the BDD variable order�
�One feature of the language which the program uses is the ability to extend an operand to a
speci�ed number of bits� For example� x� � extends x to be � bits wide by adding leading � bits�
This facility is used to extend output and factor when adding and shifting so that over�ow can
be detected� The statement �over�ow� output� �� �output� ��� � factor sets output to the �� bit
sum of output and factor and over�ow to the carry from this sum� Also� x�� is x shifted left by
one bit� Right shifts are indicated using �� The break statement is used to exit the innermost
loop�
�This speci�cation admits the possibility that the multiplier always signals an over�ow� We will
verify that this is not the case using a di�erent abstraction �see subsection �����

� �	

input in� � �	
input in� � �	
input req � �
output factor� � �	 �� �
output factor� � �	 �� �
output output � �	 �� �
output over
ow � � �� �
output ack � � �� �

procedure waitfor�e�
while �e

wait

endwhile

endproc

loop

�� waitfor�req�
factor� �� in�
factor� �� in�
output �� �
over
ow �� �
wait

loop

if �factor� � �� � �over
ow � ��
break

endif

if lsb�factor�� � �
�over
ow� output� �� �output� ��� � factor�

endif

factor� �� factor�� �
wait

if �factor� � �� � �over
ow � ��
break

endif

�over
ow� factor�� �� �factor�� ���� �
wait

endloop

ack �� �
wait

waitfor��req�
ack �� �

endloop

Fig� �� A �� bit multiplier

�� �

the veri�cation for m � �� �� �

 and ��� These numbers are relatively prime�
and their product�

������ is su�cient to cover all ��� possible values of output�
The entire veri�cation required slightly less than �� minutes of CPU time on a
Sun �� We also note that because the BDDs needed to represent multiplication
grow exponentially with the size of the multiplier� it would not have been feasible
to verify the multiplier directly� Further� even checking the above formulas on the
unabstracted multiplier proved to be impractical�

��� Representation by logarithm

When only the order of magnitude of a quantity is important� it is sometimes useful
to represent the quantity by �a �xed precision approximation of� its logarithm� For
example� suppose i � �� De�ne

lg i � dlog��i �
�e�

i�e�� lg i is � if i is �� and for i � �� lg i is the smallest number of bits needed to
write i in binary� We take h�i� � lg i�
As an illustration of this abstraction� consider again the multiplier of �gure ��

Recall that a programwhich always indicated an over�ow would satisfy our previous
speci�cation� We note that if lg i � lg j �
�� then lg ij �
�� and hence the
multiplication of i and j should not over�ow� Conversely� if lg i � lg j �
�� then
lg ij �
�� and the multiplication of i and j will over�ow� When lg i� lg j �
�� we
cannot say whether over�ow should occur� These observations lead us to strengthen
our speci�cation to include the following two formulas�

�G
�
waiting� req � �lg in
 � lg in� �
��	 ���ackU ack � �over�ow�

�
�G
�
waiting� req � �lg in
 � lg in� �
��	 ���ackU ack � over�ow�

�
We represented all the
� bit variables in the program by their logarithms� Compil�
ing the program with this abstraction and checking the above properties required
less than a minute of CPU time�

��
 Single bit and product abstractions

For programs involving bitwise logical operations� the following abstraction is often
useful�

h�i� � the jth bit of i�

where j is some �xed number�
If h� and h� are abstraction mappings� then

h�i� �
�
h��i�� h��i�

�
also de�nes abstraction mapping� Using this abstraction� it may be possible to
verify properties that it is not possible to verify with either h� or h� alone�

As an example of using these types of abstractions� consider the program shown
in �gure �� This program reads an initial
� bit input and computes the parity of
it� The output done is set to one when the computation is complete	 at that point�
parity has the result� Let i be true if the parity of i is odd� One desired property
of the program is the following�

�
� The value assigned to b has the same parity as that of in	 and

� ��

input in � �	
output parity � � �� �
output b � �	 �� �
output done � � �� �

b �� in

wait

while b �� �
parity �� parity � lsb�b�
b �� b� �
wait

endwhile

done �� �

Fig� �� A parity computation program

input a � �
output b � � �� �

loop

b �� a

wait

endloop

Fig� �� A simple program

��� b� parity is invariant from that point onwards�

We can express the above with the following formula�

�in � �X
�
�b � �G��b� parity�

�
� in � �X

�
b � �G�b � parity�

�
To verify this property� we used a combined abstraction for in and b� Namely� we
grouped the possible values for these variables both by the value of their low�order
bit and by their parity� The veri�cation required only a few seconds�

��� Symbolic abstractions

The use of a BDD�based compiler together with model checker makes it possible to
use abstractions which depend on symbolic values� This idea can greatly increase
the power of a particular type of abstraction� As a simple example� consider the
program in �gure ��
We wish to show that the next state value of b is always equal to the current

state value of a� We can express this property for a �xed value� say ��� using the
formula�

�G�a � ��	 �X b � ����

If we wanted to verify just this property� we could use the following abstraction for
a and b

h�i� �

�
�� if i � ��	

� otherwise�

�� �

When we apply this abstraction and compile the program� we obtain the transi�
tion relation bR�ba�ba��bb�bb�� de�ned by bb� � ba� Here� the primes denote next�state
variables� and all of the variables range over f��
g� Now to check that our pro�
gram works correctly for the value ��� we would check the following formula at the
abstract level�

�G�ba � �	 �Xbb � ���

The formula would of course turn out to be satis�ed� Obviously though� we do not
want to have to repeat this process for each possible data value�
Suppose now that we were to modify our abstraction function as follows�

hc�i� �

�
�� if i � c	

� otherwise�

We have introduced a new symbolic parameter that our abstraction depends on�
Imagine compiling the program with this abstraction	 we should get a relationbRc�ba�ba��bb�bb�� c� that is parameterized by c� Fixing c � �� will give the relation bR
that we encountered above� If we could run the model checking algorithm on our
parameterized relation� we would obtain a parameterized state set representing the
states for which our formula is true� Now our speci�cation

�G�ba � �	 �Xbb � ��

is essentially saying

�G�a � c	 �X b � c��

If the formula turns out to be true for all values of c� we will have proved the desired
speci�cation� The observation now is that by introducing � extra BDD variables
to encode the possible choices for c� we can in fact�

�
� represent hc with a BDD �the user will supply just hc�	

��� compile with hc to get a BDD representing bRc�ba�ba��bb�bb�� c� �the compiler han�
dles this step automatically�	

��� perform the model checking to obtain a BDD representing the parameterized
state set �the model checker does this automatically	 it simply views c as an
additional state component that never changes�	 and

��� if necessary� choose a speci�c c and generate a counterexample �also done by
the model checker��

Further note that� in this case� the program behaves identically regardless of the
value of c� so when we compile it� the BDD for bRc will be independent of the extra
variables that we introduced� As a result� doing the model checking will be no more
complex than in the case when we were just verifying

�G�a � ��	 �X b � ����

In general� we have found that sharing in the BDDs makes it possible to perform
e�ciently the abstraction� compilation� and model checking� We call abstractions
such as hc �symbolic abstractions�	 below� we give some more complex examples
that make use of these abstractions�

� ��

Consider a simple partitioning�

hc�i� �

�
�� if i � c	

� if i � c�

We might try to use such an abstraction when the program we are trying to verify
involves comparisons� If two numbers are not equivalent according to this abstrac�
tion� we can �nd the truth value of a comparison between them� As an example of
using this abstraction� consider the program of �gure �� This program represents
a cell in a linear sorting array� There is one cell for each integer to be sorted� and
the cells are numbered consecutively from right to left� In the array� each cell�s
left and leftsorted inputs are connected to its left neighbor�s y and sorted outputs�
and each cell�s right input is connected to its right neighbor�s x output� The values
to be sorted are the values of the x outputs� The sort proceeds in cycles� During
each cycle� exactly half the cells �either all the odd numbered cells or all the even
numbered cells� will have their comparing output equal to one� These cells compare
their own x output with that of their right neighbor� The smaller of these values
is placed in y� In addition� if the values were swapped� the cell�s sorted output is
set to zero� During the next clock period� the right neighbor�s x and sorted values
are copied from the �rst cell�s y and sorted outputs� When the rightmost cell�s
sorted output becomes one� the sort is complete� In this example� we consider an
array for sorting eight numbers��

The properties which we veri�ed are�

�
� for every c� eventually the values of the x outputs are such that all numbers
which are less than c come before all numbers which are greater than or equal
to c� and this condition holds invariantly from that point on	 and

��� for every c� the number of the x outputs which are less than c is invariant except
when elements are being swapped�

The �rst property implies that the array is eventually sorted� The second one
implies that the �nal values of the x outputs form a permutation of the initial
values�
We performed the veri�cation by abstracting all the
� bit variables in the pro�

gram as described above� The temporal formulas corresponding to the two proper�
ties are

�F �G
�
�x� � c � x� � c� � � � � � �x	 � c � x
 � c�

�
and �P

i���xi � c� � n
�
	 �G

��P

i���xi � c� � n

�
� �stable

�
�

Here� xi is the value of the variable x in the ith cell of the array� The summation
notation denotes the number of formulas xi � c which are true� and stable is
an atomic proposition which is true when every cell is executing the statement
labeled
�	 Verifying these properties required just under �ve minutes of CPU

�In this program� x and y may have any initial values� The comparing output is set to zero or
one depending on the cell�s position in the array� The left and right ends of the sorting array are
dummy cells for which x is �� � � and � respectively� The left cell�s sorted output is also �xed
at ��
�We also veri�ed the property �G�Fstable to check that the cells maintain lockstep�

�� �

input left � �	
input leftsorted � �
output sorted � � �� �
output comparing � � �� � or �
output swap � � �� �
output x � �	
output y � �	
input right � �	

loop

if comparing � �
swap �� �x � right�
wait

if swap � �
y �� x
x �� right
sorted �� �

else

y �� right
endif

wait

else

wait

wait

x �� left
sorted �� leftsorted

endif

comparing �� �comparing
�� wait

endloop

Fig� �� A sorting cell program

� ��

time� In addition� checking these properties on the unabstracted program was not
feasible due to space limitations�
We also used symbolic abstractions to verify a simple pipeline circuit� This

circuit is shown in �gure � and is described in detail elsewhere ��	 ��� It performs
three�address arithmetic and logical operations on operands stored in a register �le�

Control

Register file

A
L

U

Pipe registers

In
st

ru
ct

io
n

re
gi

st
er

O
p2

Read ports Write port

Bypass circuitry

O
p1

Fig� �� Pipeline circuit block diagram

We used two independent abstractions to perform the veri�cation� First� the
register addresses were abstracted so that each address was either one of three
symbolic constants �ra� rb or rc� or some other value� This abstraction made it
possible to collapse the entire register �le down to only three registers� one for each
constant� The second abstraction involved the individual registers in the system� In
order to verify an operation� say addition� we create symbolic constants ca and cb
and allow each register to be either ca� cb� ca � cb or some other value� As part of
the speci�cation� we veri�ed that the circuit�s addition operation works correctly�
This property is expressed by the temporal formula

�G
�
�srcaddr
 � ra� � �srcaddr� � rb� � �destaddr � rc� � �stall

	 �X �X��regra � ca� � �regrb � cb�	 �X�regrc � ca � cb��
�
�

This formula states that if the source address registers are ra and rb� the destination
address register is rc� and the pipeline is not stalled� then the values in registers
ra and rb two cycles from now will sum to the value in register rc three cycles from
now� The reason for using the values of registers ra and rb two cycles in the future
is to account for the latency in the pipeline�
The largest pipeline example we tried had �� registers in the register �le and each

register was �� bits wide� This circuit has more than ����� state bits and over
�����

�� �

reachable states� The veri�cation required slightly less than six and one half hours
of CPU time� In addition the veri�cation times scale linearly in both the number of
registers and the width of the registers� For comparison� the largest circuit veri�ed
by Burch et al� ��� had � registers� each �� bits� and the veri�cation required about
four and one half hours of CPU time on a Sun �� In addition the veri�cation times
there were growing quadratically in the register width and cubicly in the number
of registers� We also note that the complexity of verifying systems like this can
be further reduced using a technique that we call symbolic compositions� Symbolic
compositions have the same �avor as symbolic abstractions� but are designed to take
advantage of the compositional veri�cation properties of �CTL� ����� By combining
symbolic compositions with symbolic abstractions� we were able to verify the system
with �� registers� each �� bits� in less than �� minutes of CPU time on a Sun �����
and with veri�cation times that scale polylogarithmically in the number of registers
and linearly in the width of registers� We discuss these techniques in more detail
elsewhere �����

�� CONCLUSION

We have described a simple but powerful method for using abstraction to simplify
the problem of model checking� There are two parts to this method� First� we have
shown how to extract abstract �nite state machines directly from �nite state pro�
grams� using techniques similar to those involved in abstract interpretation� The
process guarantees that the actual state machine for the program is a re�nement
of the extracted state machine� Second� we have examined when satisfaction of a
formula by an abstract machine implies satisfaction by the actual machine� For for�
mulas given in the logic �CTL�� this is always the case� We have also implemented
a symbolic veri�cation system based on these ideas and used it to verify a number
of nontrivial examples� In the process of doing these examples� we have found a
number of useful abstractions� Our work on generating abstract systems could be
used with other veri�cation methodologies� such as testing language containment�
There are a number of possible directions for future work� One problem with

using our current approach with logics like CTL�� which can express the existence of
a path� is in ensuring the strict exactness conditions� By using a more complex �nite
state model such as AND�OR graphs� it should be possible to extend the techniques
and obtain a conservative model checking algorithm for such logics� We also wish to
explore thoroughly the problem of generating abstractions for in�nite state systems�
The important step in doing this is determining abstract versions of the primitive
relations� Some of the techniques and results from automated theorem proving�
term rewriting� abstract interpretation� and algebraic speci�cation of abstract data
types should prove useful for this problem� Similar techniques would be useful for
studying the �ow of data in a system� Data items might be represented as terms in
the Herbrand universe and functional transformations on the data would correspond
to building new terms from the input terms� Given an equivalence relation of �nite
index on terms� we would derive abstract primitive relations for the operations and
use these to produce an abstract version of the system�

References

�
� ACM�IEEE� Proceedings of the ��th Design Automation Conference� IEEE
Computer Society Press� June

�

� ��

��� D� L� Beatty� R� E� Bryant� and C��J� Seger� Formal hardware veri�cation by
symbolic ternary trajectory evaluation� In DAC
 �
�� pages �� ����

��� S� Bensalem� A� Bouajjani� C� Loiseaux� and J� Sifakis� Property preserving
simulations� In G� V� Bochmann and D� K� Probst� editors� Proceedings
of the Fourth Workshop on Computer�Aided Veri�cation� volume ��� of
Lecture Notes in Computer Science� pages ��� ���� Springer�Verlag� July

��

��� M� C� Browne� E� M� Clarke� D� L� Dill� and B� Mishra� Automatic veri��
cation of sequential circuits using temporal logic� IEEE Transactions on
Computers� C����
���
���
���� December
���

��� R� E� Bryant� Graph�based algorithms for boolean function manipulation�
IEEE Transactions on Computers� C���������� �
� August
���

��� J� R� Burch� E� M� Clarke� and D� E� Long� Representing circuits more e��
ciently in symbolic model checking� In DAC
 �
�� pages ��� ����

��� J� R� Burch� E� M� Clarke� K� L� McMillan� and D� L� Dill� Sequential circuit
veri�cation using symbolic model checking� In Proceedings of the ��th De�
sign Automation Conference� pages �� �
� IEEE Computer Society Press�
June
��

��� E� M� Clarke and E� A� Emerson� Synthesis of synchronization skeletons for
branching time temporal logic� In Logic of Programs� Workshop� Yorktown
Heights� NY� May ����� volume
�
 of Lecture Notes in Computer Science�
Springer�Verlag�
�
�

�� E� M� Clarke� E� A� Emerson� and A� P� Sistla� Automatic veri�cation of �nite�
state concurrent systems using temporal logic speci�cations� In Proceedings
of the Tenth Annual ACM Symposium on Principles of Programming Lan�
guages� January
���

�
�� E� M� Clarke� E� A� Emerson� and A� P� Sistla� Automatic veri�cation of �nite�
state concurrent systems using temporal logic speci�cations� ACM Trans�
actions on Programming Languages and Systems� �������� ����
���

�

� E� M� Clarke and S� Kimura� A parallel algorithm for constructing binary
decision diagrams� In Proceedings of the ���� IEEE International Confer�
ence on Computer Design� pages ��� ���� IEEE Computer Society Press�
October
��

�
�� E� M� Clarke� D� E� Long� and K� L� McMillan� Compositional model checking�
In Proceedings of the Fourth Annual Symposium on Logic in Computer
Science� pages ��� ���� IEEE Computer Society Press� June
��

�
�� R� Cleaveland� Tableau�based model checking in the propositional mu�calculus�
Acta Informatica� ��������� ����
��

�
�� O� Coudert and J� C� Madre� A uni�ed framework for the formal veri�cation
of sequential circuits� In ICCAD� �����

�
�� P� Cousot and R� Cousot� Abstract interpretation� A uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints�
In Proceedings of the Fourth Annual ACM Symposium on Principles of
Programming Languages� January
���

�
�� P� Cousot and R� Cousot� Systematic design of program analysis frameworks�

�
 �

In Proceedings of the Sixth Annual ACM Symposium on Principles of Pro�
gramming Languages� January
��

�
�� J� W� de Bakker� W��P� de Roever� and G� Rozenberg� editors� Proceedings of
the REX Workshop on Stepwise Re�nement of Distributed Systems� Mod�
els� Formalisms� Correctness� volume ��� of Lecture Notes in Computer
Science� Springer�Verlag� May
��

�
�� D� L� Dill� Trace Theory for Automatic Hierarchical Veri�cation of Speed�
Independent Circuits� ACM Distinguished Dissertations� MIT Press�
��

�
� R� W� Floyd� Assigning meanings to programs� In J� T� Schwartz� editor� Pro�
ceedings of the Symposium on Applied Mathematics �� �Mathematical As�
pects of Computer Science
� American Mathematical Society�
���

���� M� Fujita� H� Fujisawa� and N� Kawato� Evaluation and improvements of
boolean comparison method based on binary decision diagrams� In Pro�
ceedings of the ���� International Conference on Computer�Aided Design�
pages � �� IEEE Computer Society Press� November
���

��
� S� Graf and B� Ste�en� Compositional minimization of �nite state processes�
In Kurshan and Clarke �����

���� O� Grumberg and D� E� Long� Model checking and modular veri�cation� In
J� C� M� Baeten and J� F� Groote� editors� Proceedings of CONCUR ����
�nd International Conference on Concurrency Theory� volume ��� of Lec�
ture Notes in Computer Science� pages ��� ���� Springer�Verlag� August

�

���� C� A� Gunter and D� S� Scott� Semantic domains� In J� van Leeuwen� edi�
tor� Handbook of Theoretical Computer Science� volume B� pages ��� ����
Elsevier�
��

���� Z� Har�El and R� P� Kurshan� The COSPAN user�s guide� Technical Report

�

���
����
TM� AT!T Bell Laboratories� Murray Hill� NJ�
���

���� IEEE�ACM� Proceedings of the ���� International Conference on Computer�
Aided Design� IEEE Computer Society Press� November
��

���� B� Josko� Verifying the correctness of AADL�modules using model checking�
In de Bakker et al� �
��� pages ��� ����

���� R� P� Kurshan� Analysis of discrete event coordination� In de Bakker et al� �
���
pages �
� ����

���� R� P� Kurshan and E� M� Clarke� editors� Proceedings of the ���� Workshop
on Computer�Aided Veri�cation� Springer�Verlag� June
��

��� O� Lichtenstein and A� Pnueli� Checking that �nite state concurrent programs
satisfy their linear speci�cation� In Proceedings of the Twelfth Annual ACM
Symposium on Principles of Programming Languages� January
���

���� D� E� Long�Model Checking� Abstraction� and Compositional Veri�cation� PhD
thesis� Carnegie Mellon University�
��

��
� A� Mycroft� Abstract Interpretation and Optimizing Transformations for Ap�
plicative Programs� PhD thesis� University of Edinburgh�
�
�

���� F� Nielson� A denotational framework for data �ow analysis� Acta Informatica�

����� ����
���

� �	

���� J�P� Quielle and J� Sifakis� Speci�cation and veri�cation of concurrent sys�
tems in CESAR� In Proceedings of the Fifth International Symposium in
Programming�
�
�

���� G� Shurek and O� Grumberg� The modular framework of computer�aided ver�
i�cation� Motivation� solutions and evaluation criteria� In Kurshan and
Clarke ����� pages �
� ����

���� A� P� Sistla and E�M� Clarke� Complexity of propositional temporal logics�
Journal of the ACM� ��������� ��� July
���

���� H� Touati� H� Savoj� B� Lin� R� K� Brayton� and A� Sangiovanni�Vincentelli�
Implicit state enumeration of �nite state machines using BDD�s� In IC�
CAD� ����� pages
��
���

���� P� Wolper� Expressing interesting properties of programs in propositional tem�
poral logic� In Proceedings of the Thirteenth Annual ACM Symposium on
Principles of Programming Languages� January
���

I don�t know the received dates�

