Symbolic Trajectory Evaluation (STE): Automatic Refinement and Vacuity Detection

Orna Grumberg Technion, Israel

Marktoberdort 2007

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

System Verification

Given a (hardware or software) system and a specification, does the system satisfy the specification? Not decidable!

We restrict the problem to a decidable one:

- Finite-state reactive systems
- Propositional temporal logics

Finite state systems

- hardware designs
- Communication protocols
- High level (abstract) description of non finite state systems

Properties in temporal logic

- mutual exclusion:
 always ¬(cs₁ ∧ cs₂)
- non starvation:
 always (request => eventually grant)
- communication protocols:
 (¬ get-message) until send-message

Model of a system Kripke structure / transition system

Model of systems M=<S, I, R, L>

- **S** Set of states.
- $\mathbf{I} \subseteq S$ Initial states.
- $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{S}$ **Total** transition relation.
- L: $S \rightarrow 2^{AP}$ Labeling function.
- AP Set of atomic propositions

 $\pi = s_0 s_1 s_2 \dots \text{ is a path in } M \text{ from } s \text{ iff}$ $s = s_0 \text{ and}$ $\text{for every } i \ge 0: (s_i, s_{i+1}) \in \mathbb{R}$

Propositional temporal logic

AP - a set of atomic propositions Temporal operators:

Model Checking

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns

yes, if the system has the property no + Counterexample, otherwise

Model Checking

- Emerging as an industrial standard tool for hardware design: Intel, IBM, Cadence, Synopsys,...
- Recently applied successfully also for software verification: NASA, Microsoft, ETH, CMU, ...

Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q) returns the set of successors of Q

 $Image(Q) = \{ s' \mid \exists s [R(s,s') \land Q(s)] \}$

Model checking AGp on M

- Starting from the initial states of M, iteratively compute the set of successors.
- At each iteration check whether it reached a state which satisfies ¬p.
 - If so, declare a failure.
- Stop when no new states are found.
 - Result: the set of reachable states.

Reachability + checking AG a

Reach = **New** = **I** = { 1, 2 }

Return: $M \neq AGa$

Failure: New $\not\subset$ S_a

Reachability + checking AG ($a \lor b$)

Reach = **New** = **I** = { 1, 2 }

Return: Reach, $M \models AG(a \lor b)$

Reach = {1, 2, 3, 4, 5, 6} **New** = **emptyset**

Main limitation:

The state explosion problem: Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system

Symbolic model checking

A solution to the state explosion problem which uses Binary Decision Diagrams (BDDs) to represent the model and sets of states.

Can handle systems with hundreds of Boolean variables

Binary decision diagrams (BDDs)

- Data structure for representing Boolean functions
- Often concise in memory
- · Canonical representation
- Most Boolean operations on BDDs can be done in polynomial time in the BDD size

BDDs in model checking

• Every set A can be represented by its characteristic function 1 if $u \in A$

$$f_A(u) = \begin{cases} 0 & \text{if } u \notin A \end{cases}$$

 If the elements of A are encoded by sequences over {0,1}ⁿ then f_A is a Boolean function and can be represented by a BDD

Representing a model with BDDs

- Assume that states in model M are encoded by {0,1}ⁿ and described by Boolean variables v₁...v_n
- Reach, New can be represented by BDDs over $v_1 \dots v_n$
- R (a set of pairs of states (s,s')) can be represented by a BDD over v₁...v_n v₁'...v_n'

Example: representing a model with BDDs

 $S = \{ s_1, s_2, s_3 \}$ R = { (s_1, s_2), (s_2, s_2), (s_3, s_1) }

State encoding: $s_1: v_1v_2=00 \quad s_2: v_1v_2=01 \quad s_3: v_1v_2=11$

For $A = \{s_1, s_2\}$ the Boolean formula representing A: $f_A(v_1, v_2) = (\neg v_1 \land \neg v_2) \lor (\neg v_1 \land v_2) = \neg v_1$

$$f_{R}(v_{1}, v_{2}, v'_{1}, v'_{2}) = (\neg v_{1} \land \neg v_{2} \land \neg v'_{1} \land v'_{2}) \lor (\neg v_{1} \land v_{2} \land \neg v'_{1} \land v'_{2}) \lor (\neg v_{1} \land v_{2} \land \neg v'_{1} \land v'_{2}) \lor (v_{1} \land v_{2} \land \neg v'_{1} \land \neg v'_{2})$$

 f_A and f_R can be represented by BDDs.

SAT-based model checking

Another solution to the state explosion problem

- Translates the model and the specification to a propositional formula
- Uses efficient tools for solving the satisfiability problem

Since the satisfiability problem is NPcomplete, SAT solvers are based on heuristics.

SAT solvers

- Using heuristics, SAT tools can solve very large problems fast
- They can handle systems with thousands variables

Bounded model checking

Most commonly used SAT-based model checking

For checking AGp:

- Unwind the model for k levels, i.e., construct all computation of length k
- If a state satisfying ¬p is encountered, then produce a counter example

The method is suitable for **falsification**, not verification

SAT-based model checking

- Can also handle general temporal logic specifications
- Can be used for verification by using methods such as induction and interpolation.

Bounded model checking in detail

- Construct a formula $f_{M,k}$ describing all possible computations of M of length k
- Construct a formula $f_{\phi,k}$ expressing that ϕ =EF \neg p holds within k computation steps
- Check whether f = $f_{M,k} \wedge f_{\phi,k}$ is satisfiable

If f is satisfiable then $M \models AGp$ The satisfying assignment is a counterexample

Example - shift register

Shift register of 3 bits: $\langle x, y, z \rangle$ **Transition relation:** $R(x,y,z,x',y',z') = x'=y \land y'=z \land z'=1$ $|____|$ error

Initial condition: $I(x,y,z) = x=0 \lor y=0 \lor z=0$

Specification: AG ($x=0 \lor y=0 \lor z=0$)

Propositional formula for k=2

$$f_{M} = (x_{0}=0 \lor y_{0}=0 \lor z_{0}=0) \land (x_{1}=y_{0} \land y_{1}=z_{0} \land z_{1}=1) \land (x_{2}=y_{1} \land y_{2}=z_{1} \land z_{2}=1)$$

$$f_{\phi} = V_{i=0,..2} (x_i = 1 \land y_i = 1 \land z_i = 1)$$

Satisfying assignment: 101 011 111 This is a counter example!

A remark

In order to describe a computation of length k by a propositional formula we need k copies of the state variables.With BDDs we use only two copies of current and next states.

Abstraction-Refinement

A successful approach to deal with the state explosion problem in model checking

Abstraction-refinement (cont.)

 M_A - abstract model M_C - concrete model

- 2-valued abstraction $M_A \models \phi \implies M_c \models \phi$ $M_A \not \neq \phi \implies M_C$?
- 3-valued abstraction $M_A \models \phi \Rightarrow M_c \models \phi$ $M_A \not \neq \phi \Rightarrow M_c \not \neq \phi$ $M_A ? \Rightarrow M_c ?$

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE
Symbolic Trajectory Evaluation (STE)

A powerful technique for hardware model checking that can handle

- much larger hardware designs
- relatively simple specification language

Widely used in industry, e.g., Intel, Freescale

STE is given

- A circuit M
- A specification $A \Rightarrow C$, where
 - Antecedent A imposes constraints on M
 - Consequent C imposes requirements on M

A and C are formulas in a restricted temporal logic (called TEL)

STE

- Works on the gate-level representation of the circuit
- Combines symbolic simulation and abstraction

Current STE

- Automatically constructs an abstract model for M, based on A (M×A)
- Checks whether $M \times A \models C$ Return:
 - Pass: $M \vDash A \Rightarrow C$
 - Fail + counterexample
 - Undecided: refinement is needed This is a form of 3-valued abstraction
- Manually refines A (and thus also $M \times A$)

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

Modeling a circuit

- A Circuit **M** is described as a graph whose nodes **n** are inputs, gates, and latches
- We refer to node n at different times t

In fact, we look at an unwinding of the circuit for **k** times

• **k** is determined by $\mathbf{A} \Rightarrow \mathbf{C}$

Modeling a circuit (cont.)

- The value of an **input** node at time t is nondeterministic: 0 or 1
- The value of a gate node at time t depends on the values of its source nodes at time t
- The value of a latch node at time t depends on the values of its source nodes at time t and t-1

Example: a circuit

Time=0

Simulation Based Verification

- Assigns values to the inputs of the model over time (as in the example)
- Compares the output values to the expected ones according to the specification
- Main drawback: the model is verified only for those specific combinations of inputs that were tested

Symbolic Simulation

 Assigns the inputs of the model with Symbolic Variables over {0,1}

- Checks all possible combinations of inputs at once
- Main drawback: representations of such Boolean expressions (e.g. by BDDs) are exponential in the number of inputs

STE solution

- Adds an "unknown" value X, in addition to 0, 1, and symbolic variables
- Needs also an "over-constrained" value \bot

4-valued lattice

To describe values of nodes, STE uses: 0,1, X, and \bot

- (n,t) has value X when the value of n at time t is unknown
- (n,t) has value ⊥ when the value of n at time t is over-constrained

Operations on lattice elements

 Meet: a
 b is the greatest lower bound of a and b

X⊓1=1 X⊓0=0 0⊓1=⊥ ...

• Join: $a \sqcup b$ is the least upper bound

Lattice Semantics

- X is used to obtain abstraction
- \perp is used to denote a **contradiction** between a circuit behavior and the constraints imposed by the antecedent A
- Note: the values of concrete circuit node are only 0 and 1.

Quaternary operations

- $\cdot X \lor 1 = 1 \qquad X \lor 0 = X \qquad X \lor X = X$
- $\cdot X \wedge 1 = X \qquad X \wedge 0 = 0 \qquad X \wedge X = X$
- $\cdot \quad \neg \mathsf{X} = \mathsf{X}$
- Any Boolean expression containing \bot has the value \bot

Symbolic execution

- STE combines abstraction with symbolic simulation to represent multiple executions at once
- Given a set of symbolic variables V, the nodes of the circuit are mapped to symbolic expressions over V∪{0,1,X,⊥}

Example: symbolic abstract execution Time=0

Time	in ₁	in ₂	n ₁	n ₂	n ₃
0	v ₁	X	v ₁ ?1:X	X	X
1	X	v ₂	v ₂ ?1:X	v ₁ ?1:X	v ₁ ∧v ₂ ?1:X

The difference between X and $v\!\in\!V$

- X ^ ¬X = X
- $\mathbf{v} \wedge \neg \mathbf{v} = \mathbf{false}$
- Different occurrences of X do not necessarily represent the same value ("unknow")
- All occurrences of v represent the same value

- Each line is a symbolic state
- Trajectory: sequence of states, compatible with the behavior of the circuit

Time	in ₁	in ₂	n ₁	n ₂	n ₃
0	v ₁	X	v ₁ ?1:X	X	X
1	X	v ₂	v ₂ ?1:X	v ₁ ?1:X	v ₁ ^v ₂ ?1:X

Implementation issues

- The value of each node (n,t) is a function from V to {0,1, X, ⊥ }
- BDD representation Dual rail
 Two Boolean functions:

 $f_{n,t}^{1}: V \rightarrow \{0,1\}$ $f_{n,t}^{0}: V \rightarrow \{0,1\}$

Dual rail

For a specific assignment to V

- $f_{n,t}^{1}(V) \wedge \neg f_{n,t}^{0}(V)$ represents 1 for (n,t)
- $\begin{array}{cccc} (f_{n,t}^{1}, f_{n,t}^{0}) & (n,t) \\ (1,0) & 1 \\ (0,1) & 0 \\ (0,0) & X \\ (1,1) & \bot \end{array}$

STE / model checking

- STE holds local view of the system: for each (n,t) separately
- Model checking holds global view:
 A state values of all nodes at time t

Trajectory Evaluation Logic (TEL)

Defined recursively over V, where p is a Boolean expression over V n is a node f, f_1 , f_2 are TEL formulas N is the next-time operator

 $\begin{array}{ll} (n \mbox{ is } p) & (p \rightarrow f) \\ (f_1 \wedge f_2) & (N \mbox{ f}) \end{array}$

Example: TEL formula

f = (in1 is v_1) \land N (in₂ is v_2) \land N² ($v_1 \land v_2 \rightarrow$ (n3 is 0))

Semantics of TEL formulas

TEL formulas are interpreted over

- Symbolic execution σ over V, and
- assignment $\phi: V \rightarrow \{0, 1\}$
- [$\phi, \sigma \models f$] \in {1, 0, X, \perp }

Note: (ϕ, σ) represents an (abstract) execution, i.e., a series of expressions, each over {0,1,X, \perp }

Example: TEL semantics

The same ϕ is applied to f and to σ f = N ($v_1 \land v_2 \rightarrow (n_3 \text{ is } 1)$)

Time	in ₁	in ₂	n ₁	n ₂	n ₃
0	v ₁	X	v ₁ ?1:X	X	×
1	X	V ₂	v ₂ ?1:X	v ₁ ?1:X	v ₁ ∧ v ₂ ?1:X

For every ϕ , $[\phi, \sigma \models f] = 1$

Example: TEL semantics

 $f = N (n_3 is (v_1 \land v_2?1:0))$

Time	in ₁	in ₂	n ₁	n ₂	n ₃
0	v ₁	X	v ₁ ?1:X	X	X
1	X	V ₂	v ₂ ?1:X	v ₁ ?1:X	v ₁ ∧ v ₂ ?1:X

For $\phi(v_1 \land v_2)=0$, $[\phi, \sigma \models f] = X$

TEL Semantics

• For every TEL formula f, $[\phi, \sigma \models f] = \bot$ iff $\exists i, n: \phi(\sigma)(i)(n) = \bot$

A sequence that contains \perp does not satisfy any formula

TEL semantics (cont.)
 (σ does not contains ⊥)
Note: φ(p) ∈ {0,1}

- $[\phi, \sigma \vDash (n \text{ is } p)] = 1 \text{ iff } \phi(\sigma)(0)(n) = \phi(p)$
- $[\phi, \sigma \vDash (n \text{ is } p)] = 0$ iff $\phi(\sigma)(0)(n) \in \{0, 1\} \text{ and } \phi(\sigma)(0)(n) \neq \phi(p)$
- $[\phi, \sigma \models (n \text{ is } p)] = X \text{ iff } \phi(\sigma)(0)(n) = X$

TEL semantics (cont.)

- $[\phi, \sigma \vDash (f_1 \land f_2)] = [\phi, \sigma \vDash f_1] \land [\phi, \sigma \vDash f_2]$
- [$\phi, \sigma \models (p \rightarrow f)$] = $\phi(\neg p) \lor [\phi, \sigma \models f]$
- $[\phi, \sigma \models (N f)] = [\phi, \sigma^1 \models f]$

TEL semantics (cont.)

 $[\sigma \models f] = 0$ iff for some ϕ , $[\phi, \sigma \models f] = 0$

 $[\sigma \vDash f] = X \text{ iff for all } \phi, [\phi, \sigma \vDash f] \neq 0 \text{ and}$ for some ϕ , $[\phi, \sigma \vDash f] = X$

TEL semantics (cont.)

$[\sigma \vDash f] = 1 \text{ iff for all } \phi, [\phi, \sigma \vDash f] \notin \{0, X\}$ and for some $\phi, [\phi, \sigma \vDash f] = 1$

 $[\sigma \models f] = \bot$ iff for all ϕ , $[\phi, \sigma \models f] = \bot$

Back to STE ...

Recall that our goal is to check whether $M \models A \Rightarrow C$

where A imposes constraints on M and C imposes requirements

M×A: Abstraction of M derived by A

- The defining trajectory of M and A, denoted $M \times A$, is defined as follows:
- M×A is a symbolic execution of M that satisfies A
- For every symbolic execution σ of M [$\sigma \models A$]=1 $\leftrightarrow \sigma \sqsubseteq M \times A$

	n ₁ ,†	n ₂ ,†	n ₃ ,†	n ₄ ,†
M×A	1	X	0	X
σ	1/⊥		0/⊥	

M×A (cont.)

• [Seger&Bryant] show that every circuit M and TEL formula f has such M $\times f$

M×A (cont.)

- M×A is the abstraction of all executions of M that satisfy A and therefore should also satisfy C
- If M×A satisfies C then all executions that satisfy A also satisfy C
Checking $M \vDash A \Rightarrow C$ with STE

- Compute the defining trajectory M×A of M and A
- Compute the truth value of $[M \times A \models C]$
 - $[M \times A \models C] = 1 \rightarrow Pass$
 - $[M \times A \models C] = 0 \rightarrow Fail$
 - $[M \times A \models C] = X \rightarrow Undecided$
- The size of M×A (as described with BDDs) is proportional to A, not to M !

Example: $M \times A$ **A** =(in₁ is v₁) \wedge N (in₂ is v₂) **C** = N (n₃ is 1)

Time	in ₁	in ₂	n ₁	n ₂	n ₃
0	v ₁	X	v ₁ ?1:X	X	X
1	×	v ₂	v ₂ ?1:X	v ₁ ?1:X	v ₁ ∧v ₂ ?1:X

Undecided results

- $A = (in_1 is v1) \land N (in_2 is v2)$ $C = N (n_3 is 1)$
- In M×A the value of $(n_3, 1)$ is $v_1 \land v_2?1:X$ C requires $(n_3, 1)$ to be 1

For $\phi(v1 \land v2)=0$, $[\phi, M \times A \models C] = X$

When $v_1 \wedge v_2$ is 0, STE results in "undecided" for $(n_3, 1)$ and thus refinement of A is needed

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

Our Automatic Refinement Methodology

- Choose for refinement a set Iref of inputs at specific times that do not appear in A
- For each $(n,t) \in \text{Iref}$, $v_{n,t}$ is a fresh variable, not in V
- The refined antecedent is:

 $A_{\text{new}} = A \land \Lambda_{(n,t) \in \text{Iref}} N^{\dagger}(n \text{ is } v_{n,t})$

Refinement (cont.)

 A_{new} has the property that: $M \vDash A \Rightarrow C \iff M \vDash A_{new} \Rightarrow C$

Here we refer to the value of $A \Rightarrow C / A_{new} \Rightarrow C$ over the concrete behaviors of M

Goal:

Add a small number of constraints to A, keeping M×A relatively small, while eliminating as many undecided results as possible

Remark: Eliminating only some of the undecided results may still reveal "fail". For "pass", all of them need to be eliminated

Choose a refinement goal

We choose one refinement goal (root, tt)

- A node that appears in the consequent C
- Truth value is X
- Has minimal t and depends on minimal number of inputs

We will examine at once all executions in which (root,tt) is undecided

Choosing Iref for (root, tt)

Naïve (syntactic) solution:

Choose all (n,t) from which (root,tt) is reachable in the unwound graph of the circuit

Will guarantee elimination of all undecided results for (root,tt)

Better (semantic) solution

- Identify those (n,t) that for some assignment are on a path to (root,tt) along which all nodes are X
- Iref is the subset of the above, where n is an input
- Will still guarantee elimination of all undecided results for (root,tt)

Heuristics for smaller Iref

Choose a subset of Iref based on circuit topology and functionality, such as:

- Prefer inputs that influence (root,tt) along several paths
- Give priority to control nodes over data nodes
- And more

Experimental Results for Automatic Refinement

We implemented our automatic refinement within the Intel's STE tool Forte.

We ran it on two nontrivial different circuits:

- Intel's Content Addressable Memory (CAM)
 - 1152 latches, 83 inputs and 5064 gates
- IBM's Calculator design
 - 2781 latches, 157 inputs and 56960 gates

We limited the number of added constraints at each refinement iteration to 1

Some more implementation issues

- Recall that the value of each node (n,t) is a function from V to $\{0,1, X, \bot\}$
- BDD representation Dual rail
 Two Boolean functions:

$$f_{n,t}^{1}: V \rightarrow \{0,1\}$$
$$f_{n,t}^{0}: V \rightarrow \{0,1\}$$

Dual rail $(f_{n,t}^{1}, f_{n,t}^{0})$ (n,t) (1,0) 1 (0,1) 0 (0,0) X (1,1) \bot

Notation:

- ($f_{n,t}^{1}$, $f_{n,t}^{0}$) represents (n,t) in MxA
- ($g_{n,t}^{1}$, $g_{n,t}^{0}$) represents (n,t) in C

Symbolic counterexample

$$V_{(n,t)\in C} \begin{bmatrix} (g_{n,t}^{1} \land \neg f_{n,t}^{1} \land f_{n,t}^{0}) \lor \\ (g_{n,t}^{0} \land f_{n,t}^{1} \land \neg f_{n,t}^{0}) \end{bmatrix}$$

Note: C is never \perp

- Represents all assignments to V in which for some node (n,t), MxA and C do not agree on 0/1
- User needs to correct either the circuit or the specification

Symbolic incomplete trace

$$V_{(n,t)\in C} \begin{bmatrix} (g_{n,t}^{1} \vee g_{n,t}^{0}) \land \\ (\neg f_{n,t}^{1} \wedge \neg f_{n,t}^{0}) \end{bmatrix}$$

- Represents all assignments to V in which for some node (n,t), C imposes some requirement (0 or 1) but MxA is X
- Automatic/manual refinement is needed

Semantic I_{ref} can be computed in a similar manner

91

How do we get \perp in STE ?

 $A = in_1 is 0 \land in_2 is u \land in_3 is 0 \land n_3 is 1$

Antecedent failure

Antecedent failure is the case in which, for some assignment, MxA contains \perp

- Can only occur when the antecedent imposes a constraint on internal node
- Reflects contradiction between
 - Antecedent constraints
 - Circuit execution
- In our work, such assignments are ignored during verification

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

Vacuity in model checking

Example: $M \models AG (request \rightarrow F granted)$

holds vacuously if

- request is always false or
- granted is always true

Vacuous Results

 $A = in_1 is 0 \land in_3 is v \land n_3 is 1$ $C = N(n_6 is 1)$

Counterexample for v=0. Spurious?

Vacuous Results - Refined

 $A = in_1 is 0 \land in_2 is u \land in_3 is 0 \land n_3 is 1$

The counterexample is spurious!

The Vacuity Problem

Given an STE assertion $A \Rightarrow C$, an assignment ϕ to V and a circuit M:

• $A \Rightarrow C$ is vacuous in M under ϕ if

- there is no concrete execution of M that satisfies $\phi(A)$

OR

- C under ϕ imposes no requirements.

For example, if $C=(v_1-v(n \text{ is } v_2))$ then for assignments in which $v_1=0$, C imposes no requirement

The Vacuity Problem (cont.)

- $A \Rightarrow C$ fails vacuously in M if
 - $[M \times A \models C] = 0$ AND
 - for all assignments ϕ so that $[\phi, M \times A \models C] = 0, A \Rightarrow C$ is vacuous in M under ϕ

The Vacuity Problem (cont.)

- $A \Rightarrow C$ passes vacuously in M if - $[M \times A \models C] = 1$
 - AND
 - for all assignments ϕ so that $[\phi \ ,M \times A \vDash C] = 1, \ A \Rightarrow C \text{ is vacuous in } M$ under ϕ

Observation

- Vacuity can only occur when A contains constraints on internal nodes (gates, latches)
- Antecedent failure is an explicit vacuity.
 Our goal is to reveal hidden vacuity.

Detecting (non-)vacuity

Given a circuit M, an STE assertion $A \Rightarrow C$ and an STE result (either fail or pass), our purpose is to find an assignment ϕ to V and an execution of M that satisfies all the constraints in $\phi(A)$

Detecting (non-)vacuity

In Addition:

- In case of **fail**, the execution should constitute a counterexample

Detecting (non-)vacuity

- We developed two different algorithms for detecting vacuity / non-vacuity:
- An algorithm that uses BMC and runs on the concrete circuit.
- An algorithm that uses STE and automatic refinement.

Detecting (non-)vacuity using BMC

- 1. Transform A into an LTL formula
- 2. Encode M and A as a BMC formula
- 3. In case of fail STE result, add the counterexample as a constraint to the BMC formula
- 4. In case of pass STE result, add constraints to enforce at least one requirement in C
- 5. Return "vacuous" if and only if the resulting formula is unsatisfiable

Detecting (non-)vacuity using BMC

Main drawback: no abstraction is used

We would like to detect vacuity while utilizing STE abstraction

Detecting (non-)vacuity using STE

- $A^{in} \Rightarrow A^{out}$ is a new STE assertion, where
 - Aⁱⁿ includes all constraints on inputs in A, and
 - A^{out} includes the constraints on internal nodes in A
- Run STE on $A^{in} \Rightarrow A^{out}$. Let Φ denote the set of assignments to V for which $[M \times A^{in} \models A^{out}]=1$

Detecting (non-)vacuity using STE (cont.)

- In case [M×A ⊨ C]=1: If there is an assignment in Φ that imposes a requirement in C, return "pass non vacuously"
- 2. In case $[M \times A \models C]=0$: If there exists $\phi \in \Phi$ and ϕ' so that $[\phi', M \times A \models C]=0$ and $(\phi \land \phi' \text{ is satisfiable})$, return "fail non vacuously"
Detecting (non-)vacuity using STE (cont.)

- 3. If there is no ϕ so that $[\phi, M \times A^{in} \models A^{out}] = X$, return "vacuous"
- 4. Refine $A^{in} \Rightarrow A^{out}$ and return to step 2

Summary

What makes STE successful?

The combination of:

- Symbolic simulation
- Abstraction
- Local (dual rail) BDD implementation

Conclusion and future work

Generalized STE (GSTE) extends STE by providing a specification language which is as expressive as ω -regular languages.

Other directions:

- automatic refinement for GSTE (FMCAD'07)
- Vacuity definition and detection for GSTE
- SAT-based STE (ATVA 2007)
- New specification language for GSTE (FMCAD'07)

References

Model Checking

Model checking
E. Clarke, O. Grumberg, D. Peled, MIT Press, 1999.

Abstraction-refinement in model checking

 Counterexample-guided abstraction refinement for symbolic model checking
E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, JACM 50(5): 752-794 (2003)

Vacuity in model checking

• Efficient detection of vacuity in temporal model checking I. Beer, S. Ben-David, C. Eisner, Y. Rodeh, Formal Methods in System Design, 18, 2001.

References

STE

 Formal verification by symbolic evaluation of partiallyordered trajectories
C-J. Seger and R. Bryant, Formal Methods in System Design, 6(2), 1995.

FORTE

- An industrially effective environment for formal hardware verification
 - C-J Seger, R. Jones, J. O'Leary, T. Melham, M. Aagaard, C. Barrett, D. Syme, IEEE transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(9), 2005
- FORTE http://www.intel.com/software/products/opensource/tools1 /verification

References

Refinement in STE

- Automatic refinement and vacuity detection for symbolic trajectory evaluation
 - R. Tzoref and O. Grumberg, CAV'06
 - R. Tzoref, Master thesis, Technion, Haifa, 2006
- SAT-based assistance in abstraction refinement for symbolic trajectory evaluation
 - J-W. Roorda and K. Claessen, CAV'06

GSTE

• Introduction to generalized symbolic trajectory evaluation J. Yang and C-J. Seger, IEEE transactions on very large scale integrated systems, 11(3), 2003.

THE END