Symbolic Trajectory Evaluation (STE):
 Automatic Refinement and Vacuity Detection

Orna Grumberg
Technion, Israel

Marktoberdort 2007

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

System Verification

Given a (hardware or software) system and a specification, does the system satisfy the specification? Not decidable!

We restrict the problem to a decidable one:

- Finite-state reactive systems
- Propositional temporal logics

Finite state systems

- hardware designs
- Communication protocols
- High level (abstract) description of non finite state systems

Properties in temporal logic

- mutual exclusion:
always $\neg\left(C s_{1} \wedge C S_{2}\right)$
- non starvation:
always (request \Rightarrow eventually grant)
- communication protocols:
(\neg get-message) until send-message

Model of a system

Kripke structure / transition system

Model of systems
 $$
M=\langle S, I, R, L\rangle
$$

- S - Set of states.
- $I \subseteq S$ - Initial states.
- $R \subseteq S \times S$ - Total transition relation.
- $L: S \rightarrow 2^{A P}$ - Labeling function.

AP - Set of atomic propositions
$\pi=s_{0} s_{1} s_{2} \ldots$ is a path in M from s iff $\mathbf{s}=\mathbf{s}_{0}$ and for every $i \geq 0$: $\left(\mathbf{s}_{\mathbf{i}}, \mathbf{s}_{\mathbf{i}+1}\right) \in \mathbf{R}$

Propositional temporal logic

AP - a set of atomic propositions
Temporal operators:

Path quantifiers: A for all path
E there exists a path

Model Checking

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns
yes, if the system has the property no + Counterexample, otherwise

Model Checking

- Emerging as an industrial standard tool for hardware design: Intel, IBM, Cadence, Synopsys,...
- Recently applied successfully also for software verification: NASA, Microsoft, ETH, CMU, ...

Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q) returns the set of successors of Q
$\operatorname{Image}(Q)=\left\{s^{\prime} \mid \exists s\left[R\left(s, s^{\prime}\right) \wedge Q(s)\right]\right\}$

Model checking AGp on M

- Starting from the initial states of M, iteratively compute the set of successors.
- At each iteration check whether it reached a state which satisfies \neg p.
- If so, declare a failure.
- Stop when no new states are found.
- Result: the set of reachable states.

Reachability + checking AG a

Reach $=$ New $=\mathbf{I}=\{1,2\}$

Return: $M \mid \neq A G a$

Failure: \quad New $\not \subset \mathbf{S}_{\mathbf{a}}$

Reachability + checking AG (avb)

Reach $=$ New $=\mathbf{I}=\{1,2\}$

Return: Reach, M I= $A G(a \vee b)$

Reach $=\{1,2,3,4,5,6\} \quad$ New $=$ emptyset

Main limitation:

The state explosion problem:
Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system

Symbolic model checking

A solution to the state explosion problem which uses Binary Decision Diagrams (BDDs)
to represent the model and sets of states.

- Can handle systems with hundreds of Boolean variables

Binary decision diagrams (BDDs)

- Data structure for representing Boolean functions
- Often concise in memory
- Canonical representation
- Most Boolean operations on BDDs can be done in polynomial time in the BDD size

BDDs in model checking

- Every set \boldsymbol{A} can be represented by its characteristic function $f_{A}(u)= \begin{cases}1 & \text { if } u \in A \\ 0 & \text { if } u \notin A\end{cases}$
- If the elements of A are encoded by sequences over $\{0,1\}^{n}$ then f_{A} is a Boolean function and can be represented by a BDD

Representing a model with BDDs

- Assume that states in model M are encoded by $\{0,1\}^{n}$ and described by Boolean variables $\mathbf{v}_{1} \ldots \mathbf{v}_{\mathrm{n}}$
- Reach, New can be represented by BDDs over $\mathbf{v}_{1} \ldots \mathbf{v}_{\mathrm{n}}$
- \mathbf{R} (a set of pairs of states (s, s^{\prime})) can be represented by a BDD over $v_{1} \ldots v_{n} v_{1}{ }^{\prime} \ldots v_{n}{ }^{\prime}$

Example: representing a model with BDDs

$S=\left\{s_{1}, s_{2}, s_{3}\right\}$
$R=\left\{\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{1}\right)\right\}$
State encoding:
$s_{1}: v_{1} v_{2}=00 \quad s_{2}: v_{1} v_{2}=01 \quad s_{3}: v_{1} v_{2}=11$

For $A=\left\{s_{1}, s_{2}\right\}$ the Boolean formula representing A :
$f_{A}\left(v_{1}, v_{2}\right)=\left(\neg v_{1} \wedge \neg v_{2}\right) \vee\left(\neg v_{1} \wedge v_{2}\right)=\neg v_{1}$
$f_{R}\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)=$
$\left(\neg v_{1} \wedge \neg v_{2} \wedge \neg v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \vee$
$\left(\neg v_{1} \wedge v_{2} \wedge \neg v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \vee$
$\left(v_{1} \wedge v_{2} \wedge \neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime}\right)$
f_{A} and f_{R} can be represented by RDs.

BDD for $f(a, b, c)=(a \wedge b) \vee c$

SAT-based model checking

Another solution to the state explosion problem

- Translates the model and the specification to a propositional formula
- Uses efficient tools for solving the satisfiability problem

Since the satisfiability problem is NPcomplete, SAT solvers are based on heuristics.

SAT solvers

- Using heuristics, SAT tools can solve very large problems fast
- They can handle systems with thousands variables

Bounded model checking

Most commonly used SAT-based model checking
For checking AGp:

- Unwind the model for k levels, i.e., construct all computation of length k
- If a state satisfying $\neg p$ is encountered, then produce a counter example

The method is suitable for falsification, not verification

SAT-based model checking

- Can also handle general temporal logic specifications
- Can be used for verification by using methods such as induction and interpolation.

Bounded model checking in detail

- Construct a formula $f_{M, k}$ describing all possible computations of M of length k
- Construct a formula $f_{p, k}$ expressing that $\varphi=E F \neg p$ holds within k computation steps
- Check whether $f=f_{M, k} \wedge f_{\varphi, k}$ is satisfiable

If f is satisfiable then $M \mid \neq A G p$
The satisfying assignment is a counterexample

Example - shift register

Shift register of 3 bits: $\langle x, y, z\rangle$
Transition relation:
$R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)=x^{\prime}=y \wedge y^{\prime}=z \wedge z^{\prime}=1$

error
Initial condition:
$I(x, y, z)=x=0 \vee y=0 \vee z=0$

Specification: $A G(x=0 \vee y=0 \vee z=0)$

Propositional formula for $k=2$

$$
\begin{aligned}
f_{M}= & \left(x_{0}=0 \vee y_{0}=0 \vee z_{0}=0\right) \wedge \\
& \left(x_{1}=y_{0} \wedge y_{1}=z_{0} \wedge z_{1}=1\right) \wedge \\
& \left(x_{2}=y_{1} \wedge y_{2}=z_{1} \wedge z_{2}=1\right) \\
f_{\varphi}= & V_{i=0, \ldots 2}\left(x_{i}=1 \wedge y_{i}=1 \wedge z_{i}=1\right)
\end{aligned}
$$

Satisfying assignment: 101011111
This is a counter example!

A remark

In order to describe a computation of length k by a propositional formula we need k copies of the state variables.
With BDDs we use only two copies of current and next states.

Abstraction-Refinement

A successful approach to deal with the state explosion problem in model checking
Concrete model Abstract model

Abstraction-refinement (cont.)

M_{A}-abstract model $\quad M_{C}$-concrete model

- 2-valued abstraction

$$
\begin{aligned}
& M_{A}\left|=\varphi \Rightarrow M_{C}\right|=\varphi \\
& M_{A} \mid \neq \varphi \Rightarrow M_{C} ?
\end{aligned}
$$

- 3-valued abstraction

$$
\begin{aligned}
& M_{A}\left|=\varphi \Rightarrow M_{c}\right|=\varphi \\
& M_{A}\left|\neq \varphi \Rightarrow M_{c}\right| \neq \varphi \\
& M_{A} ? \Rightarrow M_{c} ?
\end{aligned}
$$

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

Symbolic Trajectory Evaluation (STE)

A powerful technique for hardware model checking that can handle

- much larger hardware designs
- relatively simple specification language

Widely used in industry, e.g., Intel, Freescale

STE is given

- A circuit M
- A specification $A \Rightarrow C$, where
- Antecedent A imposes constraints on M
- Consequent C imposes requirements on M
A and C are formulas in a restricted temporal logic (called TEL)

STE

- Works on the gate-level representation of the circuit
- Combines symbolic simulation and abstraction

Current STE

- Automatically constructs an abstract model for M, based on $A(M \times A)$
- Checks whether $M \times A \vDash C$ Return:
- Pass: $M \vDash A \Rightarrow C$
- Fail + counterexample
- Undecided: refinement is needed

This is a form of 3 -valued abstraction

- Manually refines A (and thus also $M \times A$)

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

Modeling a circuit

- A Circuit M is described as a graph whose nodes n are inputs, gates, and latches
- We refer to node n at different times t

In fact, we look at an unwinding of the circuit for k times

- k is determined by $A \Rightarrow C$

Modeling a circuit (cont.)

- The value of an input node at time t is nondeterministic: 0 or 1
- The value of a gate node at time t depends on the values of its source nodes at time t
- The value of a latch node at time t depends on the values of its source nodes at time t and t -1

Example: a circuit

Tilime=(1)

Simulation Based Verification

- Assigns values to the inputs of the model over time (as in the example)
- Compares the output values to the expected ones according to the specification
- Main drawback: the model is verified only for those specific combinations of inputs that were tested

Symbolic Simulation

- Assigns the inputs of the model with Symbolic Variables over $\{0,1\}$

- Checks all possible combinations of inputs at once
- Main drawback: representations of such Boolean expressions (e.g. by BDDs) are exponential in the number of inputs

STE solution

- Adds an "unknown" value X, in addition to 0,1, and symbolic variables
- Needs also an "over-constrained" value \perp

4-valued lattice

To describe values of nodes, STE uses:
$0,1, X$, and \perp

- (n, t) has value X when the value of n at time t is unknown
- (n, t) has value \perp when the value of n at time \dagger is over-constrained

Operations on lattice elements

- Meet: $\mathrm{a} \sqcap \mathrm{b}$ is the greatest lower bound of a and b

X $\sqcap 1=1$ X $\sqcap 0=0$ 0 $\sqcap 1=\perp \ldots$

- Join: $a \sqcup b$ is the least upper bound

Lattice Semantics

- X is used to obtain abstraction
- \perp is used to denote a contradiction between a circuit behavior and the constraints imposed by the antecedent A
- Note: the values of concrete circuit node are only 0 and 1 .

Quaternary operations

- $x \vee 1=1 \quad x \vee 0=x \quad x \vee x=x$
- $X \wedge 1=X \quad X \wedge 0=0 \quad X \wedge X=X$
- $\neg \mathrm{X}=\mathrm{X}$
- Any Boolean expression containing \perp has the value \perp

Symbolic execution

- STE combines abstraction with symbolic simulation to represent multiple executions at once
- Given a set of symbolic variables V, the nodes of the circuit are mapped to symbolic expressions over $\mathcal{V} \cup\{0,1, X, \perp\}$

Example: symbolic abstract execution

Time=(1)

Time	$i n_{1}$	$i n_{2}$	n_{1}	n_{2}	n_{3}
0	v_{1}	X	$\mathrm{v}_{1} ? 1: \mathrm{X}$	X	X
1	X	v_{2}	$\mathrm{v}_{2} ? 1: \mathrm{X}$	$\mathrm{v}_{1} ? 1: \mathrm{X}$	$\mathrm{v}_{1} \wedge \mathrm{v}_{2} ? 1: \mathrm{X}$

The difference between X and $v \in V$

- $X \wedge \neg X=X$
- $v \wedge \neg v=$ false
- Different occurrences of X do no \dagger necessarily represent the same value ("unknow")
- All occurrences of v represent the same value
- Each line is a symbolic state
- Trajectory: sequence of states, compatible with the behavior of the circuit

Time	$i n_{1}$	$i n_{2}$	n_{1}	n_{2}	n_{3}
0	v_{1}	X	$\mathrm{v}_{1} ? 1: \mathrm{X}$	X	X
1	X	v_{2}	$\mathrm{v}_{2} ? 1: \mathrm{X}$	$\mathrm{v}_{1} ? 1: \mathrm{X}$	$\mathrm{v}_{1} \wedge \mathrm{v}_{2} ? 1: \mathrm{X}$

Implementation issues

- The value of each node (n, t) is a function from V to $\{0,1, X, \perp\}$
- BDD representation - Dual rail

Two Boolean functions:

$$
\begin{aligned}
& f_{n, 1}{ }^{1}: V \rightarrow\{0,1\} \\
& f_{n, 1}{ }^{0}: V \rightarrow\{0,1\}
\end{aligned}
$$

Dual rail

For a specific assignment to V

- $f_{n, t}{ }^{1}(V) \wedge \neg f_{n, t}{ }^{0}(V)$ represents 1 for (n, t)
$\left(f_{n, 1}{ }^{1}, f_{n, t}{ }^{0}\right)$
(n, t)
$(1,0)$
1
$(0,1)$
0
$(0,0)$
X
$(1,1)$
\perp

STE / model checking

- STE holds local view of the system: for each (n, t) separately
- Model checking holds global view: A state - values of all nodes at time \dagger

Trajectory Evaluation Logic (TEL)

Defined recursively over V, where
p is a Boolean expression over V
n is a node
f, f_{1}, f_{2} are TEL formulas
N is the next-time operator
(n is p)
$(p \rightarrow f)$
$\left(f_{1} \wedge f_{2}\right)$
(N f)

Example: TEL formula

$f=\left(\operatorname{in} 1\right.$ is $\left.v_{1}\right) \wedge$
$N\left(\mathrm{in}_{2}\right.$ is $\left.\mathrm{v}_{2}\right) \wedge \mathrm{N}^{2}\left(\mathrm{v}_{1} \wedge \mathrm{v}_{2} \rightarrow(\mathrm{n} 3\right.$ is 0$\left.)\right)$

Semantics of TEL formulas

TEL formulas are interpreted over

- Symbolic execution σ over V, and
- assignment $\phi: V \rightarrow\{0,1\}$
- $[\phi, \sigma \vDash \mathrm{f}] \in\{1,0, \mathrm{X}, \perp\}$

Note: (ϕ, σ) represents an (abstract) execution, i.e., a series of expressions, each over $\{0,1, X, \perp\}$

Example: TEL semantics

The same ϕ is applied to f and to σ
$f=N\left(v_{1} \wedge v_{2} \rightarrow\left(n_{3}\right.\right.$ is 1$\left.)\right)$

Time	$i n_{1}$	$i n_{2}$	n_{1}	n_{2}	n_{3}
0	v_{1}	X	$\mathrm{v}_{1} ? 1: \mathrm{X}$	X	X
1	X	v_{2}	$\mathrm{v}_{2} ? 1: \mathrm{X}$	$\mathrm{v}_{1} ? 1: \mathrm{X}$	$\mathrm{v}_{1} \wedge \mathrm{v}_{2} ? 1: \mathrm{X}$

For every $\phi,[\phi, \sigma \vDash f]=1$

Example: TEL semantics

$$
f=N\left(n_{3} \text { is }\left(v_{1} \wedge v_{2} ? 1: 0\right)\right)
$$

Time	in_{1}	in	n_{1}	n_{2}	n_{3}
0	v_{1}	X	$\mathrm{v}_{1} ? 1: \mathrm{X}$	X	X
1	X	v_{2}	$\mathrm{v}_{2} ? 1: \mathrm{X}$	$\mathrm{v}_{1} ? 1: \mathrm{X}$	$\mathrm{v}_{1} \wedge \mathrm{v}_{2} ? 1: \mathrm{X}$

For $\phi\left(v_{1} \wedge v_{2}\right)=0, \quad[\phi, \sigma \vDash f]=X$

TEL Semantics

- For every TEL formula f, $[\phi, \sigma \vDash f]=\perp$ iff $\exists i, n: \phi(\sigma)(i)(n)=\perp$

A sequence that contains \perp does not satisfy any formula

TEL semantics (cont.) (σ does not contains \perp)

Note: $\phi(p) \in\{0,1\}$

- $[\phi, \sigma \vDash(n$ is $p)]=1$ iff $\phi(\sigma)(0)(n)=\phi(p)$
- $[\phi, \sigma \vDash(\mathrm{n}$ is p$)]=0$ iff $\phi(\sigma)(0)(n) \in\{0,1\}$ and $\phi(\sigma)(0)(n) \neq \phi(p)$
- $[\phi, \sigma \vDash(n$ is $p)]=X$ iff $\phi(\sigma)(0)(n)=X$

TEL semantics (cont.)

$\cdot\left[\phi, \sigma \vDash\left(f_{1} \wedge f_{2}\right)\right]=\left[\phi, \sigma \vDash f_{1}\right] \wedge\left[\phi, \sigma \vDash f_{2}\right]$

- $[\phi, \sigma \vDash(p \rightarrow f)]=\phi(\neg p) \vee[\phi, \sigma \vDash f]$
- $[\phi, \sigma \vDash(\mathrm{N} f)]=\left[\phi, \sigma^{1} \vDash \mathrm{f}\right]$

TEL semantics (cont.)

$$
\begin{aligned}
& {[\sigma \vDash f]=0 \text { iff for some } \phi,[\phi, \sigma \vDash f]=0} \\
& {[\sigma \vDash f]=X \text { iff for all } \phi,[\phi, \sigma \vDash f] \neq 0 \text { and }} \\
& \text { for some } \phi,[\phi, \sigma \vDash f]=X
\end{aligned}
$$

TEL semantics (cont.)

$$
[\sigma \vDash f]=1 \text { iff for all } \phi,[\phi, \sigma \vDash f] \notin\{0, X\}
$$ and for some $\phi,[\phi, \sigma \vDash f]=1$

$$
[\sigma \vDash f]=\perp \text { iff for all } \phi,[\phi, \sigma \vDash f]=\perp
$$

Back to STE...

Recall that our goal is to check whether

$$
M \vDash A \Rightarrow C
$$

where A imposes constraints on M and C imposes requirements

$M \times A$: Abstraction of M derived by A

The defining trajectory of M and A, denoted $M \times A$, is defined as follows:

- $M \times A$ is a symbolic execution of M that satisfies A
- For every symbolic execution σ of M $[\sigma \vDash A]=1 \leftrightarrow \sigma \sqsubseteq M \times A$

	n_{1}, t	n_{2}, t	n_{3}, t	n_{4}, t
$M \times A$	1	\times	0	\times
σ	$1 / \perp$		$0 / \perp$	

$M \times A$ (cont.)

- [Seger\&Bryant] show that every circuit M and TEL formula f has such $M \times f$

$M \times A$ (cont.)

- $M \times A$ is the abstraction of all executions of M that satisfy A and therefore should also satisfy C
- If $M \times A$ satisfies C then all executions that satisfy A also satisfy C

Checking $M \vDash A \Rightarrow C$ with STE

- Compute the defining trajectory $M \times A$ of M and A
- Compute the truth value of $[M \times A \vDash C]$
- $[M \times A \vDash C]=1 \rightarrow$ Pass
- $[M \times A \vDash C]=0 \rightarrow$ Fail
- $[M \times A \vDash C]=X \rightarrow$ Undecided
- The size of $M \times A$ (as described with BDDs) is proportional to A, not to M !

Example: $M \times A$

$$
A=\left(i n_{1} \text { is } v_{1}\right) \wedge N\left(i n_{2} \text { is } v_{2}\right) \quad C=N\left(n_{3} \text { is } 1\right)
$$

Time	$i n_{1}$	$i n_{2}$	n_{1}	n_{2}	n_{3}
0	v_{1}	X	$\mathrm{v}_{1} ? 1: \mathrm{X}$	X	X
1	X	v_{2}	$\mathrm{v}_{2} ? 1: \mathrm{X}$	$\mathrm{v}_{1} ? 1: \mathrm{X}$	$\mathrm{v}_{1} \wedge \mathrm{v}_{2} ? 1: \mathrm{X}$

Undecided results

$A=\left(i n_{1}\right.$ is $\left.v 1\right) \wedge N\left(i n_{2}\right.$ is $\left.v 2\right)$
$C=N\left(n_{3}\right.$ is 1$)$
In $M \times A$ the value of $\left(n_{3}, 1\right)$ is $v_{1} \wedge v_{2}$? $1: X$
C requires $\left(n_{3}, 1\right)$ to be 1
For $\phi(v 1 \wedge v 2)=0, \quad[\phi, M \times A \vDash C]=X$

When $v_{1} \wedge v_{2}$ is 0 , STE results in "undecided" for $\left(n_{3}, 1\right)$ and thus refinement of A is needed

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

Our Automatic Refinement Methodology

- Choose for refinement a set Iref of inputs at specific times that do not appear in A
- For each $(n, t) \in \operatorname{Iref}, \mathbf{v}_{\mathrm{n}, \mathrm{t}}$ is a fresh variable, not in V
- The refined antecedent is:

$$
A_{\text {new }}=A \wedge \Lambda_{(n, t) \in \operatorname{Iref}} N^{\dagger}\left(n \text { is } v_{n, t}\right)
$$

Refinement (cont.)

$A_{\text {new }}$ has the property that:

$$
M \vDash A \Rightarrow C \quad \Leftrightarrow \quad M \vDash A_{\text {new }} \Rightarrow C
$$

Here we refer to the value of $A \Rightarrow C / A_{\text {new }} \Rightarrow C$ over the concrete behaviors of M

Goal:

Add a small number of constraints to A, keeping $M \times A$ relatively small, while eliminating as many undecided results as possible

Remark: Eliminating only some of the undecided results may still reveal "fail".
For "pass", all of them need to be eliminated

Choose a refinement goal

We choose one refinement goal (root,tt)

- A node that appears in the consequent C
- Truth value is X
- Has minimal t and depends on minimal number of inputs

We will examine at once all executions in which (root,tt) is undecided

Choosing Iref for (root,tt)

Naïve (syntactic) solution:
Choose all (n, t) from which (root,tt) is reachable in the unwound graph of the circuit

Will guarantee elimination of all undecided results for (root,tt)

Better (semantic) solution

- Identify those (n, t) that for some assignment are on a path to (root,tt) along which all nodes are X
- Iref is the subset of the above, where n is an input
- Will still guarantee elimination of all undecided results for (root,tt)

Heuristics for smaller Iref

Choose a subset of Iref based on circuit topology and functionality, such as:

- Prefer inputs that influence (root,tt) along several paths
- Give priority to control nodes over data nodes
- And more

Experimental Results for Automatic Refinement

We implemented our automatic refinement within the Intel's STE tool Forte.

We ran it on two nontrivial different circuits:

- Intel's Content Addressable Memory (CAM)
- 1152 latches, 83 inputs and 5064 gates
- IBM's Calculator design
- 2781 latches, 157 inputs and 56960 gates

We limited the number of added constraints at each refinement iteration to 1

Some more implementation issues

- Recall that the value of each node (n, t) is a function from V to $\{0,1, X, \perp\}$
- BDD representation - Dual rail

Two Boolean functions:

$$
\begin{aligned}
& f_{n, t}{ }^{1}: V \rightarrow\{0,1\} \\
& f_{n, t} 0: V \rightarrow\{0,1
\end{aligned}
$$

Dual rail

$\left(f_{n, t^{1}}, f_{n, t^{0}}\right)$
(n, t)
$(1,0)$
$(0,1)$
1
$(0,0)$
X
$(1,1)$
\perp

Notation:

- $\left(f_{n, t}{ }^{1}, f_{n, t}{ }^{0}\right)$ represents (n, t) in $M \times A$
- $\left(g_{n, t}{ }^{1}, g_{n, t}{ }^{0}\right)$ represents (n, t) in C

Symbolic counterexample

$$
\begin{aligned}
V_{(n, t) \in C}[& \left(g_{n, t}{ }^{1} \wedge \neg f_{n, t}^{1} \wedge f_{n, t}{ }^{0}\right) \vee \\
& \left.\left(g_{n, t}{ }^{0} \wedge f_{n, t}^{1} \wedge \neg f_{n, t} 0\right)\right]
\end{aligned}
$$

Note: C is never \perp

- Represents all assignments to V in which for some node (n, t), $M \times A$ and C do not agree on 0/1
- User needs to correct either the circuit or the specification

Symbolic incomplete trace

$$
\begin{aligned}
v_{(n, t) \in c} & {\left[\left(g_{n, t^{1}} \vee g_{n, t} 0^{0}\right) \wedge\right.} \\
& \left.\left(f_{n, t^{1}}{ }^{1} \wedge \neg f_{n, t}{ }^{\circ}\right)\right]
\end{aligned}
$$

- Represents all assignments to V in which for some node (n, t), C imposes some requirement (0 or 1) but $M \times A$ is X
- Automatic/manual refinement is needed

Semantic $I_{\text {ref }}$ can be computed in a similar manner

How do we get \perp in STE?

$A=i n_{1}$ is $0 \wedge i n_{2}$ is $u \wedge i n_{3}$ is $0 \wedge n_{3}$ is 1

Antecedent failure

Antecedent failure is the case in which, for some assignment, $M \times A$ contains \perp

- Can only occur when the antecedent imposes a constraint on internal node
- Reflects contradiction between
- Antecedent constraints
- Circuit execution
- In our work, such assignments are ignored during verification

Agenda

- Model checking
- Symbolic Trajectory Evaluation
- Basic Concepts
- Automatic Refinement for STE
- Vacuity in STE

Vacuity in model checking

Example:
MI=AG(request \rightarrow F granted)
holds vacuously if

- request is always false or
- granted is always true

Vacuous Results

$A=\mathrm{in}_{1}$ is $0 \wedge \mathrm{in}_{3}$ is $\vee \wedge \boldsymbol{n}_{\mathbf{3}}$ is $\mathbf{1}$
$C=N\left(n_{6}\right.$ is 1$)$

Counterexample for $v=0$. Spurious?

Vacuous Results - Refined

$A=i n_{1}$ is $0 \wedge i n_{2}$ is $u \wedge i n_{3}$ is $0 \wedge n_{3}$ is 1

The counterexample is spurious!

The Vacuity Problem

Given an STE assertion $A \Rightarrow C$, an assignment ϕ to V and a circuit M :

- $A \Rightarrow C$ is vacuous in M under ϕ if
- there is no concrete execution of M that satisfies $\phi(A)$
OR
- C under ϕ imposes no requirements.

For example, if $C=\left(v_{1} \rightarrow\left(n\right.\right.$ is $\left.\left.v_{2}\right)\right)$ then for assignments in which $v_{1}=0, C$ imposes no requirement

The Vacuity Problem (cont.)

- $A \Rightarrow C$ fails vacuously in M if
$-[M \times A \vDash C]=0$ AND
- for all assignments ϕ so that
$[\phi, M \times A \vDash C]=0, A \Rightarrow C$ is vacuous in M under ϕ

The Vacuity Problem (cont.)

- $A \Rightarrow C$ passes vacuously in M if
$-[M \times A \vDash C]=1$ AND
- for all assignments ϕ so that
$[\phi, M \times A \vDash C]=1, A \Rightarrow C$ is vacuous in M under ϕ

Observation

- Vacuity can only occur when A contains constraints on internal nodes (gates, latches)
- Antecedent failure is an explicit vacuity. Our goal is to reveal hidden vacuity.

Detecting (non-)vacuity

Given a circuit M, an STE assertion $A \Rightarrow C$ and an STE result (either fail or pass), our purpose is to find an assignment ϕ to V and an execution of M that satisfies all the constraints in $\phi(A)$

Detecting (non-)vacuity

In Addition:

- In case of pass, ϕ should also impose requirements in C
- In case of fail, the execution should constitute a counterexample

Detecting (non-)vacuity

We developed two different algorithms for detecting vacuity / non-vacuity:

- An algorithm that uses BMC and runs on the concrete circuit.
- An algorithm that uses STE and automatic refinement.

Detecting (non-)vacuity using BMC

1. Transform A into an LTL formula
2. Encode M and A as a BMC formula
3. In case of fail STE result, add the counterexample as a constraint to the BMC formula
4. In case of pass STE result, add constraints to enforce at least one requirement in C
5. Return "vacuous" if and only if the resulting formula is unsatisfiable

Detecting (non-)vacuity using BMC

Main drawback: no abstraction is used

We would like to detect vacuity while utilizing STE abstraction

Detecting (non-)vacuity using STE

- $A^{\text {in }} \Rightarrow A^{\text {out }}$ is a new STE assertion, where
- Ain includes all constraints on inputs in A, and
- Aout includes the constraints on internal nodes in A
- Run STE on $A^{\text {in }} \Rightarrow A^{\text {out }}$. Let Φ denote the set of assignments to V for which
[$\left.M \times A^{\text {in }} \vDash A^{\text {out }}\right]=1$

Detecting (non-)vacuity using STE (cont.)

1. In case $[M \times \boldsymbol{A} \vDash C]=1$: If there is an assignment in Φ that imposes a requirement in C, return "pass non vacuously"
2. In case $[\mathbf{M} \times \mathbf{A} \vDash C]=0$: If there exists $\phi \in \Phi$ and ϕ^{\prime} so that $\left[\phi^{\prime}, M \times A \vDash C\right]=0$ and ($\phi \wedge \phi^{\prime}$ is satisfiable), return "fail non vacuously"

Detecting (non-)vacuity using STE (cont.)

3. If there is no ϕ so that
$\left[\phi, M \times A^{\text {in }}=A^{\text {out }}\right]=X$, return "vacuous"
4. Refine $A^{\text {in }} \Rightarrow A^{\text {out }}$ and return to step 2

Summary

What makes STE successful?

The combination of:

- Symbolic simulation
- Abstraction
- Local (dual rail) BDD implementation

Conclusion and future work

Generalized STE (GSTE) extends STE by providing a specification language which is as expressive as ω regular languages.

Other directions:

- automatic refinement for GSTE (FMCAD'07)
- Vacuity definition and detection for GSTE
- SAT-based STE (ATVA 2007)
- New specification language for GSTE (FMCAD'07)

References

Model Checking

- Model checking
E. Clarke, O. Grumberg, D. Peled, MIT Press, 1999.

Abstraction-refinement in model checking

- Counterexample-guided abstraction refinement for symbolic model checking
E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, JACM 50(5): 752-794 (2003)

Vacuity in model checking

- Efficient detection of vacuity in temporal model checking I. Beer, S. Ben-David, C. Eisner, Y. Rodeh, Formal Methods in System Design, 18, 2001.

References

STE

- Formal verification by symbolic evaluation of partiallyordered trajectories
C-J. Seger and R. Bryant, Formal Methods in System Design, 6(2), 1995.

FORTE

- An industrially effective environment for formal hardware verification
C-J Seger, R. Jones, J. O'Leary, T. Melham, M. Aagaard, C. Barrett, D. Syme, IEEE transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(9), 2005
- FORTE
http://www.intel.com/software/products/opensource/tools1 /verification

References

Refinement in STE

- Automatic refinement and vacuity detection for symbolic trajectory evaluation
- R. Tzoref and O. Grumberg, CAV'06
- R. Tzoref, Master thesis, Technion, Haifa, 2006
- SAT-based assistance in abstraction refinement for symbolic trajectory evaluation
J-W. Roorda and K. Claessen, CAV'06

GSTE

- Introduction to generalized symbolic trajectory evaluation J. Yang and C-J. Seger, IEEE transactions on very large scale integrated systems, 11(3), 2003.

THE END

