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Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
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System Verification
Given a (hardware or software) system 
and a specification,
does the system satisfy the specification?

Not decidable!

We restrict the problem to a decidable one:
• Finite-state reactive systems
• Propositional temporal logics
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Finite state systems

• hardware designs
• Communication protocols
• High level (abstract) description of 

non finite state systems
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Properties in temporal logic

• mutual exclusion:   
always ¬( cs1 ∧ cs2)

• non starvation:  
always (request ⇒ eventually grant)

• communication protocols:  
(¬ get-message) until send-message
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Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb
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M=<S, I, R, L>

• S - Set of states.       
• I ⊆ S - Initial states.
• R ⊆ S x S   - Total transition relation.
• L: S→ 2AP - Labeling function.
AP – Set of atomic propositions

Model of systems
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π=s0s1s2... is a path in M from s iff
s = s0 and  
for every i≥0: (si,si+1)∈R
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Propositional temporal logic

AP – a set of atomic propositions
Temporal operators:
Gp
Fp
Xp
pUq
Path quantifiers: A for all path

E there exists a path
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Model Checking

An efficient procedure that receives:
A finite-state model describing a system
A temporal logic formula describing a 
property

It returns 
yes, if the system has the property
no + Counterexample, otherwise 
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Model Checking

Emerging as an industrial standard 
tool for hardware design: Intel, IBM, 
Cadence, Synopsys,…

Recently applied successfully also for 
software verification: NASA, 
Microsoft, ETH, CMU, …
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Model checking 

A basic operation: Image computation

Given a set of states Q, Image(Q) 
returns the set of successors of Q

Image(Q) = { s’ | ∃s [ R(s,s’) ∧Q(s)]}
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Model checking AGp on M

• Starting from the initial states of M, 
iteratively compute the set of 
successors.

• At each iteration check whether it 
reached a state which satisfies ¬p.
– If so, declare a failure.

• Stop when no new states are found.
– Result: the set of reachable states.
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Reachability + checking AG a

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7

8



15

Return: M |≠ AG a

a,b a

ab,c

c

a,c a,bb

Failure:     New ⊄ Sa

1 2

3 4

5
6 7
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Reachability + checking AG (a∨b)

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7
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Return:  Reach,  M |= AG (a∨b)

a,b a

ab,c

c

a,c a,bb

Reach = {1, 2, 3, 4, 5, 6}      New =  emptyset

1 2

3 4

5
6 7

8
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Main limitation:

The state explosion problem:
Model checking is efficient in time but 

suffers from high space requirements:

The number of states in the system model 
grows exponentially with 
the number of variables
the number of components in the system
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Symbolic model checking

A solution to the state explosion problem which
uses Binary Decision Diagrams  ( BDDs )
to represent the model and sets of  states. 

• Can handle systems with hundreds of Boolean 
variables
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Binary decision diagrams 
(BDDs)

• Data structure for representing 
Boolean functions

• Often concise in memory
• Canonical representation
• Most Boolean operations on BDDs can 

be done in polynomial time in the BDD 
size
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BDDs in model checking

• Every set A can be represented by its 
characteristic function

1 if u∈A
fA(u) =       0 if u ∉ A

• If the elements of A are encoded by 
sequences over {0,1}n then fA is a Boolean
function and can be represented by a BDD
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Representing a model with BDDs
• Assume that states in model M are 

encoded by {0,1}n and described by 
Boolean variables  v1...vn

• Reach, New can be represented  by BDDs
over v1...vn

• R (a set of pairs of states (s,s’) ) 
can be represented by a BDD over 
v1...vn v1’...vn’
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Example:  representing a model 
with BDDs

S = { s1, s2, s3 }
R = { (s1,s2), (s2,s2), (s3,s1) }

State encoding:
s1:  v1v2=00    s2:  v1v2=01   s3:  v1v2=11

For A = {s1, s2} the Boolean formula 
representing A:

fA(v1,v2) = (¬v1 ∧ ¬v2) ∨ (¬v1 ∧v2)  =  ¬v1
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fR(v1, v2, v’1, v’2 ) =
(¬v1 ∧ ¬v2 ∧ ¬v’1 ∧v’2)  ∨
(¬v1 ∧ v2 ∧ ¬v’1 ∧v’2) ∨
(v1 ∧ v2 ∧ ¬v’1 ∧ ¬v’2 )

fA and fR can be represented by BDDs.
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SAT-based model checking
Another solution to the state explosion problem

• Translates the model and the 
specification to a propositional formula

• Uses efficient tools for solving the 
satisfiability problem 

Since the satisfiability problem is NP-
complete, SAT solvers are based on 
heuristics.
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SAT solvers

• Using heuristics, SAT tools can solve 
very large problems fast

• They can handle systems with 
thousands variables
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Bounded model checking
Most commonly used SAT-based model checking

For checking AGp:
• Unwind the model for k levels, i.e., 

construct all computation of length k
• If a state satisfying ¬p is encountered, 

then produce a counter example

The method is suitable for falsification, not 
verification
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SAT-based model checking

• Can also handle general temporal logic
specifications 

• Can be used for verification by using 
methods such as induction and 
interpolation.
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Bounded model checking in detail

• Construct a formula fM,k describing all possible 
computations of M of length k

• Construct a formula fϕ,k expressing that  
ϕ=EF¬p holds within k computation steps

• Check whether  f = fM,k ∧ fϕ,k is satisfiable

If f is satisfiable then  M |≠ AGp
The satisfying assignment is a counterexample
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Example – shift register
Shift register of 3 bits:   <x, y, z>
Transition relation:
R(x,y,z,x’,y’,z’) =    x’=y  ∧ y’=z   ∧ z’=1

|____|
error

Initial condition:
I(x,y,z) =  x=0 ∨ y=0 ∨ z=0

Specification: AG ( x=0 ∨ y=0 ∨ z=0)
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Propositional formula for k=2

fM = (x0=0 ∨ y0=0 ∨ z0=0) ∧
(x1=y0 ∧ y1=z0 ∧ z1=1) ∧
(x2=y1 ∧ y2=z1 ∧ z2=1)

fϕ = Vi=0,..2 (xi=1 ∧ yi=1 ∧ zi=1)

Satisfying assignment: 101  011  111
This is a counter example!
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A remark

In order to describe a computation of 
length k by a propositional formula we 
need k copies of the state variables.

With BDDs we use only two copies of 
current and next states.
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Abstraction-Refinement

Reconstruct

Refine

Concrete model

Abstract Verify

Abstract model pass

fail

Refined model

A successful approach to deal with the state 
explosion problem in model checking
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Abstraction-refinement (cont.)

MA - abstract model    MC - concrete model
• 2-valued abstraction

MA |= ϕ ⇒ Mc |=  ϕ
MA |≠ ϕ ⇒ MC  ?

• 3-valued abstraction
MA |= ϕ ⇒ Mc |=  ϕ
MA |≠ ϕ ⇒ Mc |≠ ϕ
MA ? ⇒ Mc ?
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Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE
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Symbolic Trajectory Evaluation
(STE)

A powerful technique for hardware model 
checking that can handle

• much larger hardware designs 
• relatively simple specification language

Widely used in industry, e.g., Intel, Freescale
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STE is given

• A circuit M
• A specification A ⇒ C, where

– Antecedent A imposes constraints on M
– Consequent C imposes requirements on M

A and C are formulas in a restricted 
temporal logic (called TEL)
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STE
• Works on the gate-level representation 

of the circuit
• Combines symbolic simulation and 

abstraction
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Current STE
• Automatically constructs an abstract 

model for M, based on A (M×A)
• Checks whether M×A ² C 

Return:
– Pass: M ² A ⇒ C
– Fail + counterexample
– Undecided: refinement is needed
This is a form of 3-valued abstraction

• Manually refines A (and thus also M×A)
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Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE
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Modeling a circuit

• A Circuit M is described as a graph whose 
nodes n are inputs, gates, and latches

• We refer to node n at different times t

In fact, we look at an unwinding of the circuit 
for k times

• k is determined by A ⇒ C
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Modeling a circuit (cont.)

• The value of an input node at time t is 
nondeterministic: 0 or 1

• The value of a gate node at time t depends 
on the values of its source nodes at time t

• The value of a latch node at time t depends 
on the values of its source nodes at time t 
and t-1
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1

1

Time=0

1

0

0
0

0

Time=1

Example: a circuit

in1

in2
n1 n2

n3

0 0
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Simulation Based Verification

• Assigns values to the inputs of the model
over time (as in the example) 

• Compares the output values to the expected 
ones according to the specification

• Main drawback: the model is verified only for 
those specific combinations of inputs that 
were tested
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Symbolic Simulation
• Assigns the inputs of the model with 

Symbolic Variables over {0,1}

• Checks all possible combinations of inputs 
at once

• Main drawback: representations of such 
Boolean expressions (e.g. by BDDs) are 
exponential in the number of inputs

x
y x ∧ y
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STE solution

• Adds an “unknown’’ value X, in 
addition to 0, 1, and symbolic 
variables

• Needs also an “over-constrained”
value ⊥
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4-valued lattice
To describe values of nodes, STE uses:

0,1, X, and ⊥
• (n,t) has value X when the value of n 

at time t is unknown
• (n,t) has value ⊥ when the value of n 

at time t is over-constrained

0

X

⊥
1 0 b x    1 b x    ⊥ b 0    ⊥ b 1
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Operations on lattice elements

• Meet: a 6 b is the greatest lower 
bound of a and b

X61=1  X60=0  061=⊥ …

• Join: a 7 b is the least upper bound

0

X

⊥
1
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Lattice Semantics

• X is used to obtain abstraction

• ⊥ is used to denote a contradiction
between a circuit behavior and the 
constraints imposed by the antecedent A

• Note: the values of concrete circuit node 
are only 0 and 1.
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Quaternary operations

• X ∨ 1 = 1    X ∨ 0 = X    X ∨ X = X
• X ∧ 1 = X    X ∧ 0 = 0    X ∧ X = X

• ¬X = X

• Any Boolean expression containing ⊥
has the value ⊥
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Symbolic execution

• STE combines abstraction with symbolic 
simulation to represent multiple executions 
at once

• Given a set of symbolic variables V, the 
nodes of the circuit are mapped to 
symbolic expressions over V∪{0,1,X,⊥}
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v2?1:X
Time=0Time=1

1
0

n3n2n1in2in1Time

Example: symbolic abstract execution

in1

in2
n1 n2

n3

v1 X v1?1:X X X

X         v2 v2?1:X     v1?1:X

v1

X

v1?1:X X X
X

v2

v1 ∧ v2?1:X

v1∧v2?1:X
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The difference between X and v∈V

• X ∧ ¬X = X
• v ∧ ¬v = false

• Different occurrences of X do not 
necessarily represent the same value 
(“unknow”)

• All occurrences of  v represent the same 
value
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• Each line is a symbolic state
• Trajectory: sequence of states, 

compatible with the behavior of the 
circuit

1
0

n3n2n1in2in1Time
v1 X v1?1:X X X

X         v2 v2?1:X     v1?1:X v1∧v2?1:X
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Implementation issues

• The value of each node (n,t) is a 
function from V to {0,1, X, ⊥ }

• BDD representation – Dual rail
Two Boolean functions:
fn,t

1 : V → { 0,1 }
fn,t

0 : V → { 0,1 }
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Dual rail

For a specific assignment to V
• fn,t

1(V) ∧ ¬fn,t
0(V) represents 1 for (n,t)

( fn,t
1 , fn,t

0 )       (n,t)
(1,0)              1
(0,1)              0
(0,0)              X
(1,1)              ⊥
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STE / model checking

• STE holds local view of the system:
for each (n,t) separately

• Model checking holds global view:
A state – values of all nodes at time t
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Trajectory Evaluation Logic (TEL)

Defined recursively over V, where
p is a Boolean expression over V
n is a node
f, f1, f2 are TEL formulas
N is the next-time operator

(n is p)            (p → f)

(f1∧f2)             (N f)



60

Example: TEL formula

f = (in1 is v1) ∧
N (in2 is v2) ∧ N2 (v1∧v2 → (n3 is 0))
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Semantics of TEL formulas

TEL formulas are interpreted over
• Symbolic execution σ over V, and
• assignment φ : V → {0,1}

• [φ,σ ² f ] ∈ {1, 0, X, ⊥ }

Note:  (φ,σ) represents an (abstract) execution,
i.e., a series of expressions, each over {0,1,X,⊥}
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v1∧v2?1:Xv1?1:Xv2?1:XV2X1
XXv1?1:XXV10
n3n2n1in2in1Time

The same φ is applied to f and to σ
f = N (v1∧v2→ (n3 is 1))

Example: TEL semantics

For every φ,  [φ,σ ² f ] = 1
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v1∧v2?1:Xv1?1:Xv2?1:XV2X1
XXv1?1:XXV10

n3n2n1in2in1Time

f = N (n3 is  (v1∧v2?1:0))

Example: TEL semantics

For  φ(v1∧v2)=0,  [φ,σ ² f ] = X
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TEL Semantics

• For every TEL formula f,
[φ,σ ² f] = ⊥  iff ∃i,n: φ(σ) (i)(n) = ⊥

A sequence that contains ⊥ does not satisfy 
any formula
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TEL  semantics (cont.)
(σ does not contains ⊥)

Note: φ(p) ∈ {0,1}

• [φ,σ ² (n is p)] = 1  iff φ(σ)(0)(n) = φ(p)

• [φ,σ ² (n is p)] = 0  iff
φ(σ)(0)(n) ∈ {0,1} and φ(σ)(0)(n) ≠ φ(p)

• [φ,σ ² (n is p)] = X  iff φ(σ)(0)(n) = X
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TEL  semantics (cont.)

• [φ,σ ² (f1∧f2) ] = [φ,σ ² f1] ∧ [φ,σ ² f2]

• [φ,σ ² (p → f) ] = φ(¬p) ∨ [φ,σ ² f]

• [φ,σ ² (N f) ]  =  [ φ,σ1 ² f ]
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TEL  semantics (cont.)

[σ ² f ] = 0 iff for some φ, [φ,σ ² f]=0

[σ ² f ] = X iff for all φ, [φ,σ ² f] ≠ 0 and
for some φ, [φ,σ ² f]=X
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TEL  semantics (cont.)

[σ ² f ] = 1 iff for all φ, [φ,σ ² f] ∉ {0,X}
and for some φ, [φ,σ ² f]=1

[σ ² f ] = ⊥ iff for all φ, [φ,σ ² f]= ⊥
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Back to STE…

Recall that our goal is to check whether
M ² A ⇒ C

where A imposes constraints on M and 
C imposes requirements
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M×A: Abstraction of M derived by A

The defining trajectory of M and A, denoted 
M×A, is defined as follows:

• M×A is a symbolic execution of M that 
satisfies A

• For every symbolic execution σ of M 
[σ ² A]=1   ↔ σ b M×A

n3,t

σ
M×A

n4,tn2,tn1,t
1         X       0      X

1/⊥                  0/⊥
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M×A (cont.)

• [Seger&Bryant] show that every circuit M and 
TEL formula f has such M×f



72

M×A (cont.)

• M×A is the abstraction of all executions of M 
that satisfy A and therefore should also 
satisfy C

• If M×A satisfies C then all executions that 
satisfy A also satisfy C
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Checking    M ² A⇒C   with STE

• Compute the defining trajectory M×A of M
and A

• Compute the truth value of [M×A ² C]
– [M×A ² C] = 1 → Pass
– [M×A ² C] = 0 → Fail
– [M×A ² C] = X → Undecided

• The size of M×A (as described with BDDs) 
is proportional to A, not to M !
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1
0

n3n2n1in2in1Time

Example: M×A
A =(in1 is v1) ∧ N (in2 is v2)      C = N (n3 is 1)

in1

in2
n1 n2

n3

v1

X

v1 X

v1?1:X X
X

v1?1:X X X
X         v2

v2

X

v2?1:X     v1?1:X

v2?1:X

v1∧v2?1:X

v1∧v2?1:X
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Undecided results

A = (in1 is v1) ∧ N (in2 is v2)
C =  N (n3 is 1)

In  M×A the value of (n3,1) is  v1∧v2?1:X
C requires (n3,1) to be 1

For  φ(v1∧v2)=0,  [φ, M×A ² C ] = X

When v1∧v2 is 0, STE results in “undecided” for 
(n3,1) and thus refinement of A is needed
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Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE
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Our Automatic Refinement 
Methodology

• Choose for refinement a set Iref of inputs
at specific times that do not appear in A

• For each (n,t) ∈ Iref ,  vn,t is a fresh
variable, not in V

• The refined antecedent is:

Anew = A ∧ Λ(n,t)∈Iref Nt(n is vn,t)
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Refinement (cont.)

Anew has the property that:

M ² A ⇒ C   ⇔ M ² Anew ⇒ C

Here we refer to the value of A⇒C / Anew⇒C
over the concrete behaviors of M 
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Goal:
Add a small number of constraints to A,
keeping M×A relatively small, while
eliminating as many undecided results as
possible

Remark: Eliminating only some of the
undecided results may still reveal “fail”.
For “pass”, all of them need to be eliminated 
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Choose a refinement goal

We choose one refinement goal (root,tt)
• A node that appears in the consequent C
• Truth value is X
• Has minimal t and depends on minimal 

number of inputs

We will examine at once all executions in 
which (root,tt) is undecided
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Choosing Iref for (root,tt)

Naïve (syntactic) solution:
Choose all (n,t) from which (root,tt) is 

reachable in the unwound graph of the 
circuit

Will guarantee elimination of all undecided 
results for (root,tt) 
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X
X

X
X

X

1
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Better (semantic) solution
• Identify those (n,t) that for some 
assignment are on a path to (root,tt) 
along which all nodes are X

• Iref is the subset of the above, 
where n is an input

• Will still guarantee elimination of all 
undecided results for (root,tt) 
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Heuristics for smaller Iref

Choose a subset of Iref based on
circuit topology and functionality, such as:

• Prefer inputs that influence (root,tt) along 
several paths

• Give priority to control nodes over data 
nodes

• And more 
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Experimental Results for 
Automatic Refinement

We implemented our automatic refinement within 
the Intel’s STE tool Forte.

We ran it on two nontrivial different circuits:
• Intel’s Content Addressable Memory (CAM)

– 1152 latches, 83 inputs and 5064 gates
• IBM’s Calculator design

– 2781 latches, 157 inputs and 56960 gates

We limited the number of added constraints at each 
refinement iteration to 1 
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Some more implementation issues

• Recall that the value of each node (n,t) is a 
function from V to {0,1, X, ⊥ }

• BDD representation – Dual rail
Two Boolean functions:
fn,t

1 : V → { 0,1 }
fn,t

0 : V → { 0,1 
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Dual rail

( fn,t
1 , fn,t

0 )       (n,t)
(1,0)              1
(0,1)              0
(0,0)              X
(1,1)              ⊥
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Notation:

• ( fn,t
1 , fn,t

0 ) represents (n,t) in MxA

• ( gn,t
1 , gn,t

0 ) represents (n,t) in C
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Symbolic counterexample

V(n,t)∈C [ ( gn,t
1 ∧ ¬fn,t

1 ∧ fn,t
0 ) ∨

( gn,t
0 ∧ fn,t

1 ∧ ¬fn,t
0  ) ]

Note: C is never ⊥

• Represents all assignments to V in which for 
some node (n,t),  MxA and C do not agree on 
0/1

• User needs to correct either the circuit or 
the specification
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Symbolic incomplete trace

V(n,t)∈C [ ( gn,t
1 ∨ gn,t

0 ) ∧
( ¬fn,t

1 ∧ ¬fn,t
0  ) ]

• Represents all assignments to V in which for 
some node (n,t),  C imposes some 
requirement (0 or 1) but MxA is X

• Automatic/manual refinement is needed
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Semantic Iref can be computed in a 
similar manner

X
X

X
X

X

1
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How do we get ⊥ in STE ?

in1

in2
n1

n2in3

n3 n6

A = in1 is 0 ∧ in2 is u ∧ in3 is 0 ∧ n3 is 1

n4

Antecedent failure

n5

0

0

u
u

¬u

0 6 1= ⊥
⊥

⊥

0
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Antecedent failure is the case in which, 
for some assignment, MxA contains ⊥

• Can only occur when the antecedent imposes a 
constraint on internal node

• Reflects contradiction between
– Antecedent constraints
– Circuit execution

• In our work, such assignments are ignored during 
verification
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Agenda

• Model checking
• Symbolic Trajectory Evaluation
• Basic Concepts
• Automatic Refinement for STE
• Vacuity in STE
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Vacuity in model checking

Example:
M |= AG (request → F granted )

holds vacuously if
• request is always false or 
• granted is always true
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Vacuous Results

in1

in2
n1

n2in3

n3 n6

A = in1 is 0 ∧ in3 is v ∧ n3 is 1
C = N(n6 is 1)

n4

Counterexample for v=0. Spurious?

n5

0

v

X

X
X61=1

1
v

v v?1:X
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Vacuous Results - Refined

in1

in2
n1

n2in3

n3 n6

A = in1 is 0 ∧ in2 is u ∧ in3 is 0 ∧ n3 is 1

n4

The counterexample is spurious!

n5

0

0

u
u

¬u

0 6 1= ⊥
⊥

⊥

0
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The Vacuity Problem
Given an STE assertion A ⇒ C, an assignment φ to V 

and a circuit M:

• A ⇒ C is vacuous in M under φ if 

– there is no concrete execution of M that 
satisfies φ(A) 

OR
– C under φ imposes no requirements. 
For example, if C=(v1->(n is v2)) then for 

assignments in which v1=0, C imposes no 
requirement
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The Vacuity Problem (cont.)

• A ⇒ C fails vacuously in M if 
– [M×A ² C] = 0
AND

– for all assignments φ so that 
[φ ,M×A ² C] = 0,  A ⇒ C is vacuous in M

under φ
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The Vacuity Problem (cont.)

• A ⇒ C passes vacuously in M if 
– [M×A ² C] = 1
AND
– for all assignments φ so that 

[φ ,M×A ² C] = 1, A ⇒ C is vacuous in M 
under φ
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Observation

• Vacuity can only occur when A contains 
constraints on internal nodes (gates, 
latches)

• Antecedent failure is an explicit vacuity. 
Our goal is to reveal hidden vacuity.
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Detecting (non-)vacuity

Given a circuit M, an STE assertion 
A⇒C and an STE result (either fail or 
pass), our purpose is to find an 
assignment φ to V and an execution of 
M that satisfies all the constraints in 
φ(A)
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Detecting (non-)vacuity

In Addition:
• In case of pass, φ should also impose 

requirements in C

• In case of fail, the execution should 
constitute a counterexample
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Detecting (non-)vacuity

We developed two different algorithms 
for detecting vacuity / non-vacuity:

• An algorithm that uses BMC and runs 
on the concrete circuit.

• An algorithm that uses STE and 
automatic refinement.
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Detecting (non-)vacuity using BMC

1. Transform A into an LTL formula
2. Encode M and A as a BMC formula
3. In case of fail STE result, add the 

counterexample as a constraint to the 
BMC formula

4. In case of pass STE result, add 
constraints to enforce at least one 
requirement in C

5. Return “vacuous” if and only if the 
resulting formula is unsatisfiable
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Detecting (non-)vacuity using BMC

Main drawback: no abstraction is used

We would like to detect vacuity while 
utilizing STE abstraction
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Detecting (non-)vacuity using STE
• Ain ⇒ Aout is a new STE assertion, where

– Ain includes all constraints on inputs in 
A, and 

– Aout includes the constraints on internal
nodes in A

• Run STE on Ain ⇒ Aout . Let Φ denote the 
set of assignments to V for which 
[M×Ain ² Aout]=1
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Detecting (non-)vacuity using STE
(cont.)

1. In case [M×A ² C]=1: If there is an 
assignment in Φ that imposes a 
requirement in C, return “pass non 
vacuously”

2. In case [M×A ² C]=0: If there exists 
φ∈Φ and φ’ so that [φ’,M×A ² C]=0 and 
(φ.φ’ is satisfiable) , return “fail non 
vacuously”



109

Detecting (non-)vacuity using STE
(cont.)

3. If there is no φ so that 
[φ, M×Ain ²Aout]=X, return “vacuous”

4. Refine Ain ⇒ Aout and return to step 2
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Summary

What makes STE successful?

The combination of: 
• Symbolic simulation
• Abstraction
• Local (dual rail) BDD implementation
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Conclusion and future work

Generalized STE (GSTE) extends STE by providing a 
specification language which is as expressive as  ω-
regular languages.

Other directions: 
• automatic refinement for GSTE (FMCAD’07)
• Vacuity definition and detection for GSTE
• SAT-based STE (ATVA 2007)
• New specification language for GSTE (FMCAD’07)
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THE END


