
A Framework For Compositional Verification of
Multi-Valued Systems Via Abstraction-Refinement ?

Yael Meller, Orna Grumberg, and Sharon Shoham

Computer Science Department, Technion, Haifa, Israel,
{ymeller,orna,sharonsh}@cs.technion.ac.il

Abstract. We present a framework for fully automated compositional verifi-
cation of µ-calculus specifications over multi-valued systems, based on multi-
valued abstraction and refinement.
Multi-valued models are widely used in many applications of model checking.
They enable a more precise modeling of systems by distinguishing several levels
of uncertainty and inconsistency. Successful verification tools such as STE (for
hardware) and YASM (for software) are based on multi-valued models.
Our compositional approach model checks individual components of a system.
Only if all individual checks return indefinite values, the parts of the components
which are responsible for these values, are composed and checked. Thus the con-
struction of the full system is avoided. If the latter check is still indefinite, then a
refinement is needed.
We formalize our framework based on bilattices, consisting of a truth lattice and
an information lattice. Formulas interpreted over a multi-valued model are eval-
uated w.r.t. to the truth lattice. On the other hand, refinement is now aimed at
increasing the information level of model details, thus also increasing the infor-
mation level of the model checking result. Based on the two lattices, we suggest
how multi-valued models should be composed, checked, and refined.

1 Introduction

Model checking [8] is a successful technique which is widely used for hardware and
software verification. It is limited, however, by its high memory requirement, referred to
as the state explosion problem. Two of the most successful approaches for fighting this
problem are abstraction and compositional verification. In [21] the two approaches are
joined in the context of 3-valued abstraction. There, each component Mi of a composed
system M is lifted into a 3-valued model Mi ↑ which forms an abstraction of M . Model
checking a formula ϕ on Mi ↑ can result in either a definite value true or false, or an
indefinite value. In the former case, it is guaranteed that the result is also the value of ϕ
on M . In the latter case, however, nothing can be deduced about the composed system.
If the checks of all individual components return indefinite values, then the parts of the
components which are responsible for these values are identified, composed, and model
checked. Thus, the construction of the full composed system is avoided. Finally, if the
latter check is still indefinite then a refinement is applied to each component separately.

In this work we present a framework generalizing the compositional approach in [21]
to general multi-valued models. Our interest in such a framework stems from the fact
? An extended version including full proofs is published as a technical report in [19]

that multi-valued modeling is widely used in many applications of model checking. It
is used to model concrete systems more precisely and to define abstract models.

Multi-valued models enable a more precise modeling of systems by distinguishing
several levels of uncertainty and inconsistency. For example, 3-valued models are used
to describe models with partial information [3]. 4-valued models can model disagree-
ment and their generalizations are used to handle inconsistent views of a system [10,
16]. Temporal logic query checking [6, 5] can also be reduced to multi-valued model
checking. Multi-valued models have been widely used for abstraction as well: 3-valued
(abstract) models allow proving truth as well as falsity of formulas for the concrete
models they represent [13]. The 6-valued models in [1] are tuned to better achieving
proofs of falsification. 4-valued models extend 3-valued abstractions by enabling to
capture inconsistencies in software [14] and hardware (in STE) [20]. Tools to provide
multi-valued verification such as YASM ([14]) and STE ([20]) were developed and suc-
cessfully applied to software and hardware verification.

Multi-valued models may still suffer from the state explosion problem. Thus, a com-
positional approach may enhance the verification of larger systems.

The first step we take in formalizing a compositional multi-valued framework is to
introduce bilattices [11]. A bilattice defines two lattices over a given set of elements:
the truth lattice and the information lattice, each accompanied with an order. Formu-
las interpreted over a multi-valued model are evaluated w.r.t. the truth lattice. On the
other hand, the relation of “more abstract” over models is based on the information
lattice: Roughly, a model M2 is more abstract than a model M1 if values of atomic
propositions and transitions in M2 are smaller or equal by the information order than
the corresponding values in M1. Consequently, the valuation of a formula in M2 will
be smaller or equal by the information order than its value in M1. In fact, since we
consider the full µ-calculus, a bidirectional correspondence between transitions of M1

and M2 is needed. To capture this, we define a mixed-simulation relation, based on the
information lattice, which turns out to be nontrivial.

Bilattices provide a natural way to identify lattice elements that are consistent,
meaning they represent some concrete elements of the bilattice (to be formalized later).
We can also identify definite elements. Those are elements that need not be refined.
For simplicity, in the rest of the paper we restrict the discussion to Consistent Partial
Distributive Bilattices (CPDB), which consist of exactly all the consistent elements.

Once we establish our setting by means of bilattices, we can fill in the rest of the
framework’s ingredients. First, we define the notion of composition of multi-valued
systems. Next, we use the model checking algorithm for multi-valued systems and the
alternation-free µ-calculus, suggested in [22]. We also show, in case the checks on in-
dividual components are indefinite, how to identify, compose, and check the parts of
the models that are needed for the evaluation of the checked formula. As we exemplify
later, the resulting composed system is often much smaller than the full composed sys-
tem. Finally, we develop a heuristics for finding a criterion for refinement, in case the
result of model checking the composed system is indefinite.

In the framework above we do not discuss the construction of multi-valued abstract
models. This is investigated for instance in [15], which presents a methodology for a
systematic construction of an abstract model for a given concrete one.

2

Other works deal with several aspects of multi-valued model checking, but none
investigate a compositional approach. Multi-valued symbolic model checking is de-
scribed in [7]. An alternative definition of (bi)simulation is suggested in [18]. However,
there, the relation returns a value, indicating how “close” the models are. Our mixed
simulation, on the other hand, returns either true or false, indicating whether one model
is an abstraction of the other. A relation similar to our mixed simulation is defined in [1].
Preservation of formulas via simulation is described there in terms of information or-
der. However, they handle a 6-valued framework, rather then a general multi-valued one.
Also, they suggest refinement only if the result is the smallest element in the informa-
tion order, ⊥. In contrast, we allow refinement for any indefinite value in the bilattice.
Bilattices are used also in [15]. However, they are not exploited there for refinement.

To summarize, the main contributions of this paper are:
– We present a framework for fully automated compositional verification of multi-

valued systems w.r.t. µ-calculus specifications. The framework is based on multi-
valued abstraction-refinement. To the best of our knowledge, this is the first com-
positional approach for multi-valued model checking.

– We apply our framework to the alternation-free µ-calculus model checking algo-
rithm. In particular, we develop an algorithm for refinement in this context.

– We formalize our framework based on bilattices. This allows to naturally define the
consistent and definite elements in the bilattice. It also provides a clear definition
of abstraction and refinement in the multi-valued context. It thus provides a better
understanding of the multi-valued framework.

– Based on the information order of a bilattice, we define a mixed simulation relation
over multi-valued models, preserving µ-calculus specifications.

2 Preliminaries
In this section we introduce the concepts of lattices, multi-valued Kripke models, µ-
calculus and multi-valued model checking graphs.

Definition 2.1. A lattice L= (L,≤) consists of a set L with a partial order ≤ over L,
where every finite subset B of L has a least upper bound, join, denoted tB, and a
greatest lower bound, meet, denoted uB, both in L. A lattice is distributive if t and u
distribute over each other.
Examples of lattices are shown in Fig. 1(a),(b),(c) and (e).

Definition 2.2. D= (L,≤,¬) is a De Morgan algebra if (L,≤) is a finite distributive
lattice, ¬ : L → L is a negation function s.t. ∀a, b: ¬¬a = a, a ≤ b ⇔ ¬b ≤ ¬a, and
De Morgan laws are satisfied.

All De Morgan algebras have a greatest (top) element, denoted true, and a least
(bottom) element, denoted false.

2.1 Multi-Valued Models and µ-calculus
Definition 2.3. A Multi-Valued Kripke model is a 6-tuple M = 〈L, AP, S, s0, R, Θ〉,
where L= (L,≤,¬) is a De Morgan algebra, AP is a set of atomic propositions, S

is a finite set of states, s0 is the initial state, R : S × S → L is a mapping of transitions
to values in L, and Θ : AP → (S → L) associates with each atomic proposition p, a
mapping from S to L, describing the truth value of p in each state.

3

Definition 2.4. Let AP be a set of atomic propositions and V ar a set of propositional
variables, s.t. p ∈ AP and Z ∈ V ar. The µ-calculus in negation normal form is defined
by: ϕ ::= p | ¬p | Z | ψ ∨ ψ′ | ψ ∧ ψ′ | ¤ψ | ♦ψ | µZ.ψ | νZ.ψ

Let Lµ denote the set of all formulas generated by the above grammar. Fixpoint quanti-
fiers µ and ν are variable binders. We write η for either µ or ν. We assume formulas are
well-named, i.e. no variable is bound more than once in any formula. Thus for a closed
formula ϕ ∈Lµ, every variable Z identifies a unique subformula fp(Z) = ηZ.ψ of ϕ.
The set Sub(ϕ) includes all subformulas of ϕ.

An environment V : V ar → (S → L) defines the meaning of free variables. For a
variable Z ∈ V ar and a mapping l : S → L, we write V[Z = l] for the environment
that agrees with V except that it maps Z to l.

The multi-valued semantics ‖ϕ‖M
V of a µ-calculus formula ϕ w.r.t. a multi-valued

Kripke model M and an environment V [4] is given as a mapping S → L, in which
each state s of M is mapped to a value in L describing the truth value of ϕ in s. In the
following, lfp, gfp stand for least and greatest fixpoints, respectively, which exist based
on [23]. ‖ϕ‖M

V is defined by:

‖p‖M
V = λs.Θ(p)(s) ‖¬p‖M

V = λs.¬Θ(p)(s)

‖ϕ1 ∨ ϕ2‖M
V = λs.‖ϕ1‖M

V ∨ ‖ϕ2‖M
V ‖ϕ1 ∧ ϕ2‖M

V = λs.‖ϕ1‖M
V ∧ ‖ϕ2‖M

V
‖♦ϕ‖M

V = λs.
W

s′∈S(R(s, s′) ∧ ‖ϕ‖M
V (s′)) ‖¤ϕ‖M

V = λs.
V

s′∈S(¬R(s, s′) ∨ ‖ϕ‖M
V (s′))

‖Z‖M
V = V(Z) ‖νZ.ϕ‖M

V = gfp(λg.‖ϕ‖M
V[Z=g]) ‖µZ.ϕ‖M

V = lfp(λg.‖ϕ‖M
V[Z=g])

For closed formulas we drop the environment, and refer to ‖ϕ‖M .

2.2 Multi-Valued Model-Checking Algorithm

A multi-valued model checking algorithm for a closed Lµ formula over a multi-valued
Kripke model is suggested in [22]. There, multi-valued games are introduced, and a
multi-valued model checking problem is translated into a problem of finding the value
of a multi-valued game. In this work, we only use the model checking graph (further
referred to as mc-graph) defined in [22], with its connections to the model checking
algorithm.

Let M be a multi-valued Kripke model over L= (L,≤,¬) and ϕ0 a closed Lµ for-
mula. The mc-graph is defined by G(M, ϕ0) = (n0, N, E), where N is a set of nodes,
E ⊆ N ×N is a set of edges in the graph and n0 ∈ N is the initial node. Nodes in the
mc-graph are elements of S × Sub(ϕ0), denoted t ` ψ, and n0 = s0 ` ϕ0. Nodes of
type s ` ϕ0 ∨ ϕ1 or s ` ♦ϕ are considered ∨-nodes, whereas nodes of type s ` ϕ0 ∧ ϕ1

or s ` ¤ϕ are ∧-nodes. Nodes of type s ` Z or s ` ηZ.ϕ can be either ∨-nodes or ∧-
nodes. The edges of the mc-graph are defined by the following rules.

s ` ϕ0 ∨ ϕ1

s ` ϕi
i ∈ {0, 1} s ` ηZ.ϕ

s ` Z

s ` ♦ϕ

t ` ϕ
R(s, t) 6= false

s ` ϕ0 ∧ ϕ1

s ` ϕi
i ∈ {0, 1} s ` Z

s ` ϕ
if fp(Z) = ηZ.ϕ

s ` ¤ϕ

t ` ϕ
R(s, t) 6= false

Every edge (n, n′) ∈ E corresponds to a rule where n, n′ are of the form of the
upper, respectively lower, part of the rule. If no rule is defined from some node n, then
there are no outgoing edges from n in the mc-graph. This happens in terminal nodes of

4

the form t ` p or t ` ¬p, or in terminal nodes of the form t ` ♦ϕ or t ` ¤ϕ where
there are no transitions from the state t in the Kripke model.

Each edge in E is associated with a value from L: edges that refer to a transition
of the model get the value of that transition. The rest get the value true. By abuse of
notation we use R(n, n′) to refer to the value of an edge (n, n′) ∈ E.

Definition 2.5. ([22]) Let n ∈ G be a terminal node, val(n) is defined as follows. val(t `
q) = Θ(q)(t), val(t ` ¬q) = ¬Θ(q)(t), val(t ` ♦ϕ) = false and val(t ` ¤ϕ) = true.

In [22] an algorithm for computing a value of nodes on a mc-graph is presented. The
algorithm handles the alternation-free fragment of Lµ, where no nesting of fixpoints is
allowed. Given a mc-graph G(M, ϕ0) = (n0, N,E) and a function val : N → L which
maps terminal nodes in G to values in L (Def. 2.5), the algorithm returns a mc-function
χ : N → L that maps each node to a value from L.

Algorithm 2.6 (mc-algorithm [22]). G is partitioned to Maximal Strongly Connected
Components (MSCCs) and a (total) order on them is determined, reflected by their
numbers: Q1,...,Qk. The order fulfills the rule that if i < j then there are no edges from
Qi to Qj . The components are handled by increasing values of i. Consider a single Qi.
Each node n ∈ Qi is associated with a value χ(n) as follows. For a terminal node n,
χ(n) = val(n). For a ∨-node n we set χ(n) to be

∨{R(n, n′) ∧ χ(n′)|R(n, n′) 6=
false}. Similarly, if n is a ∧-node then χ(n) =

∧{¬R(n, n′) ∨ χ(n′)|R(n, n′) 6=
false}. If Qi is a non-trivial MSCC then it contains exactly one fixpoint variable Z. In
this case, first label the nodes in Qi with temporary values, temp(n), that are updated
iteratively. For nodes of the form n = s ` Z, initialize temp(n) to true if Z is of type
ν, or to false if Z is of type µ (the rest remain uninitialized). Then apply the previous
rules for ∨,∧-nodes until the temporary values do not change anymore. Finally, set
χ(n) = temp(n) for every node n in Qi. Return χ as the mc-function.

In [22], the connection between χ and the model checking problem is proved, by
showing that χ(n0) = ‖ϕ0‖M (s0). In the context of this work we will be interested
also in the internal nodes of G. We therefore generalize the correspondence between χ
and the multi-valued semantics to all nodes in G.

For ψ ∈ Sub(ϕ0), ψ∗ denotes the result of replacing every free occurrence of Z ∈
V ar in ψ by fp(Z). Note that ψ∗ is a closed formula, and if ψ is closed then ψ∗ = ψ.

Theorem 2.7. Let G(M, ϕ0) be a mc-graph, s.t. ϕ0 is an alternation-free closed Lµ

formula. Let χ be the mc-function returned by the mc-algorithm, then for every s `
ψ ∈ N , χ(s ` ψ) = ‖ψ∗‖M (s).

3 Bilattices and Partial Bilattices

In this section we introduce bilattices, consider several of their attributes, and define the
notion of partial bilattices.

Definition 3.1. [11] A distributive bilattice is a structure B=(B,≤i,≤t,¬) s.t.: (1)
Bi=(B,≤i) is a lattice, Bt=(B,≤t,¬) is a De Morgan algebra; (2) meet(⊗), join(⊕)
of Bi, and meet(∧), join(∨) of Bt are monotone w.r.t. both ≤i and≤t; (3) all meets and
joins distribute over each other; and (4) negation (¬) is ≤i monotone.

5

The bilattices considered in this work are distributive, thus the use of the term bi-
lattice refers to distributive bilattice. In our context, the relation ≤t is an order on the
“degree of truth”. The bottom in this order is denoted by false and the top by true.
The relation ≤i is an order on the “degree of information”. Thus, if x ≤i y, y gives us
at least as much information as x (and possibly more). The bottom in the information
order is denoted by ⊥ and the top by >.

Theorem 3.2. [11] LetD= (D,≤,¬) be a De Morgan algebra, and B(D) be a structure
(D ×D,≤i,≤t,¬) s.t. (1) 〈a, b〉 ≤i 〈c, d〉 , a ≤ c and b ≤ d; (2) 〈a, b〉 ≤t 〈c, d〉 , a ≤ c

and d ≤ b; and (3) ¬〈a, b〉 , 〈b, a〉. Then, B(D) is a distributive bilattice. Furthermore,
every distributive bilattice is isomorphic to B(D) for some De Morgan algebra D.

Intuitively, for a De Morgan algebra D, an element 〈x, y〉 of B(D) is interpreted as a
value whose “degree of truth” is x and “degree of falsity” is y. If we viewD as a concrete
truth domain, B(D) can be viewed as its abstract truth domain. Given an element c ∈ D,
〈x, y〉 ∈ D ×D approximates c if x is no more true than c, and y is no more false than c.
Thus, 〈c,¬c〉 is the best approximation of c, and 〈x, y〉 approximates c if 〈x, y〉 ≤i 〈c,¬c〉.
We say that 〈x, y〉 ∈ D ×D is consistent if 〈x, y〉 ≤i 〈c,¬c〉 for some c ∈ D. Thus 〈x, y〉
is consistent iff y ≤ ¬x (defined similarly in [15]). We say that 〈x, y〉 ∈ D ×D is definite
if 〈c,¬c〉 ≤i 〈x, y〉 for some c ∈ D. Thus 〈x, y〉 is definite iff y ≥ ¬x. If 〈x, y〉 ∈ D ×D

is definite and consistent, then 〈x, y〉 = 〈c,¬c〉 for some c ∈ D.

Example 3.3. Fig. 1(a),(b) present an example of the distributive bilattice for the 4-
valued Belnap structure ([2]). This bilattice is isomorphic to the bilattice B(D) created
from the 2-valued De Morgan algebra D= ({T, F},≤,¬), where F ≤ T , ¬T = F .
Thus, t , 〈T, F 〉, f , 〈F, T 〉, > , 〈T, T 〉 and ⊥ , 〈F, F 〉. t, f are best approxima-
tions of T , resp. F . >, representing maximal degree of truth and falsity, is inconsistent.
t,f and > are definite elements. ⊥ is indefinite.

When referring to a bilattice B, we sometimes implicitly refer to the structure B(D)

isomorphic to B (which exists by Thm. 3.2). In particular, we use ‘≤’ to denote the
order on the elements in the De Morgan algebra D of B(D).

Definition 3.4. P= (B,≤) is a partial lattice if it is a lattice, except that join is not
always defined. A partial distributive bilattice is a structure P= (B,≤i,≤t,¬) defined
similarly to a distributive bilattice (Def. 3.1), except that Pi= (B,≤i) is a partial lattice,
and requirements (2) and (3) hold for join of Pi only if it is defined.

Definition 3.5. Let B(D)= 〈D ×D,≤i,≤t,¬〉 be a bilattice, and let P ⊆ D ×D be the
set of all consistent elements in B(D). Then P(B)= 〈P,≤i,≤t,¬〉 is the consistent struc-
ture induced by B(D), where ≤t, ≤i and ¬ in P(B) are as in B(D), restricted to P .

Theorem 3.6. Let B(D)= 〈D ×D,≤i,≤t,¬〉 be a bilattice, and letP(B)= 〈P,≤i,≤t,¬〉
be the consistent structure induced by it, then P(B) is a partial distributive bilattice.

We refer to consistent structures, which, by Thm. 3.6, are also partial distributive
bilattices, as consistent partial distributive bilattices (CPDB). Note that in CPDBs we
do not have>. ⊥, true and false always exist. Note further that for CPDBs, the set of
maximal elements w.r.t. ≤i is exactly the set of definite elements, all of the form 〈c,¬c〉
for some c ∈ D.

6

Theorem 3.7. Let B= 〈B,≤i,≤t ¬〉 be either a distributive bilattice or a CPDB, and
let a, b ∈ B be definite values. Then a ∧ b, a ∨ b and ¬a are definite as well.

Example 3.8. Examples of CPDBs appear in Fig. 1. The CPDB induced by the bilattice
of the Belnap structure is described in Fig. 1(a) and (b), as the un-boxed elements,
which are all the consistent elements. This CPDB is isomorphic to the standard 3-valued
structure, where ? , ⊥, T , t and F , f . The structure 3×3 is defined by the CPDB
in Fig. 1(e) and (f). This CPDB is isomorphic to the CPDB induced by the bilattice
B(D) created from the 2-views De Morgan algebra D= ({T, F} × {T, F},≤,¬), where
≤ and ¬ are defined bitwise. That is, for a1a2, b1b2 ∈{T, F} × {T, F}, a1a2 ≤ b1b2

iff a1 ≤ b1 and a2 ≤ b2. Also, ¬a1a2 , ¬a1¬a2. The 3×3 structure represents two
different views, which may be contradictory (e.g. TF). However, such elements should
not be confused with inconsistent elements in B(D) such as 〈TT, TT 〉.
The consistent elements of B(D) are mapped into pairs over {T,F,?} in the 3×3 structure.
E.g., 〈TF, FF 〉 is represented by T? and 〈TT, FF 〉 is represented by TT. The resulting
structure contains both representations of the elements of the concrete 2-views domain
(e.g. TT), and their approximations (e.g. T?).

Multi-valued Kripke models as well as the semantics of Lµ formulas and mc-graphs
are defined over a De Morgan algebra L. These definitions can easily be extended to a
multi-valued structure, which is either a distributive bilattice or a CPDB. Thus, we have
both information and truth lattices. In this case, the lattice L used in the multi-valued
semantics is the truth lattice. For simplicity, in the rest of this work we use CPDBs.

t

f
(a)

ft

(b)

T

T

M

F

F

(c)

T M F

FT

(d)

TT

T? ?T

TF ?? FT

?F F?

FF

(e)

FF

?F F? T?

TF FT TT

?T

??

(f)

Fig. 1. Truth (a) and information (b) orders of 4-valued Belnap structure; Truth (c) and informa-
tion (d) orders of 6-valued structure; Truth (e) and information (f) orders of 3×3 structure; Boxed
nodes are inconsistent

4 Mixed Simulation and Refinement of Multi-Valued Models
In this section we define a mixed simulation relation between two multi-valued Kripke
models M1 and M2, and present a refinement algorithm based on the multi-valued
model checking algorithm. We first define a relation between two multi-valued Kripke
models, both defined over the same CPDB B, which guarantees preservation of Lµ

formulas w.r.t the multi-valued semantics. The relation is defined by means of the in-
formation order. Intuitively, it identifies the fact that M2 contains less information than
M1. Thus, M2 is an abstraction of M1.

Definition 4.1. Let Mi = 〈B, AP, Si, s
i
0, Ri, Θi〉 for i ∈ {1, 2} be multi-valued Kripke

models. H ⊆ S1 × S2 is a mixed simulation from M1 to M2 if (s1, s2) ∈ H implies:
1. ∀p ∈ AP : Θ2(p)(s2) ≤i Θ1(p)(s1).
2. ∀t1 ∈ S1 s.t. R1(s1, t1) 6= false ∃t2 ∈ S2 s.t. (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).
3. ∀t2 ∈ S2 s.t. R2(s2, t2) 6≤i false ∃t1 ∈ S1 s.t. (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).
If exists a mixed simulation H s.t. (s1

0, s
2
0) ∈ H, then M2 abstracts M1, denoted M1 ¹ M2.

7

Note that requirements (2) and (3) are not symmetrical. By requirement (2), every
transition in M1 has a representation in M2, whereas by requirement (3), only transi-
tions in M2 s.t. R2(s2, t2) 6≤i false have a representation in M1. These requirements
are similar to the requirements of mixed simulation in the 3-valued case ([12, 9]). There,
every may transition in M1 has a representation in M2, and every must transition in M2

has a representation in M1. In the multi-valued case transitions which are may and not
must are transitions s.t. R(s, t) ≤i false.

Theorem 4.2. Let H ⊆ S1 × S2 be a mixed simulation relation from M1 to M2, and let
ϕ be a closed Lµ formula. Then for every (s1, s2) ∈ H, ‖ϕ‖M2(s2) ≤i ‖ϕ‖M1(s1).

The mixed simulation relation can be used to describe the relation between a con-
crete model, Mc, and its abstraction, MA: Mc ¹ MA, where Mc is defined over D and
MA is defined over P(B(D)). This is because Mc can be interpreted as a model over
P(B(D)), where the values are all definite (by Thm. 3.7 the semantics is maintained).

Given an abstract model, the information order enables us to capture the notion of
a model checking result being “not good enough”, namely, a result that needs to be
refined. This is a result that does not give us the most information possible. That is, it is
indefinite.

Let Mc be a concrete model over D, and let MA be an abstract model for it over
P(B(D)), i.e. Mc ¹ MA, s.t. MA should be refined. Our refinement consists of two parts.
First, we choose a criterion for model refinement. Then, based on the criterion, the
model is refined by either increasing the information level of some transition or of
an atomic proposition in some state, or by splitting states. These refinement steps are
similar to the refinement steps in [17]. The refinement is applied directly on the mc-
graph. In fact, it suffices to refine the indefinite subgraph, where the mc-graph is pruned
in definite nodes.

In the rest of the section we study choosing a criterion for model refinement. For
a mc-function χ : N → L, given that χ(n0) is indefinite, our goal in the refinement is
to find and eliminate at least one of the reasons of the indefinite result. The criterion
for the refinement is obtained from a failure node. This is a node n = s ` ϕ ∈ N s.t. (1)
χ(n) is indefinite; (2) χ(n) affects χ(n0); and (3) χ(n) can be changed by increasing the
information level of either an atomic proposition in s or some transition from s.
(3) means that n itself is responsible for introducing (some) uncertainty. (1) and (2)
require that this uncertainty is relevant to χ(n0).

We adapt the mc-algorithm (Algo. 2.6) to remember for each node whose value is
indefinite a failure node and a failure reason. The failure node and reason of n0 will be
used for refining the model. For a terminal node n, if χ(n) is indefinite, the failure node
and reason attached to it are the node itself. To handle nonterminal nodes, we define
an auxiliary function f : N → L that keeps for each node n ∈ N its most updated value
in the algorithm: If χ(n) is already defined, then f(n) = χ(n). Otherwise, if temp(n) is
defined, then f(n) = temp(n).

Let n be a node for which f(n) has been updated last. If f(n) is definite, then no
failure node and reason are attached to it. If f(n) is indefinite, do the following:
1. If n is a ∨-node, find node n′ with R(n, n′) 6= false, for which the following hold:

(a) ∀n′′ ∈ N where n′ 6= n′′ and R(n, n′′) 6= false, (R(n, n′′)∧f(n′′)) ≤t (R(n, n′)∧
f(n′)) or (R(n, n′′) ∧ f(n′′)) and (R(n, n′) ∧ f(n′)) are uncomparable.

8

(b) R(n, n′) ∧ f(n′) is indefinite.
Intuitively, for some n′, if requirement (a) holds then R(n, n′) ∧ f(n′) is maximal,
and thus affects f(n). Requirement (b) ensures that it is possible to refine R(n, n′)
or f(n′). For the given node n and a chosen node n′ satisfying (a),(b) define a failure
node and reason for n as follows:

i If f(n′) is definite or R(n, n′) �t f(n′), then n is the failure node, and the edge
(n, n′) is the failure reason.

ii If R(n, n′) is definite or f(n′) �t R(n, n′), then the failure node and reason of
n are those of n′.

iii Otherwise, arbitrarily choose either n as a failure node and the edge as a failure
reason, or the failure node and reason of n′ as the failure node and reason of n.

2. The case where n is a ∧-node is dual, where instead of searching for a maximal
R(n, n′) ∧ f(n′), we now try to find a minimal ¬R(n, n′) ∨ f(n′).

Definite values are closed under ¬, ∧ and ∨ (Thm. 3.7), thus if a node is given
an indefinite value, this indefinite value results from an indefinite value of either a
son n′ of n, or an edge from n. For example, consider case 1(i). If f(n′) is definite,
then R(n, n′) is necessarily indefinite (Thm. 3.7). Similarly, if R(n, n′) �t f(n′), then
R(n, n′) ∧ f(n′) = R(n, n′), which again, means that R(n, n′) is indefinite. Either way,
R(n, n′) can be refined and is therefore a failure reason. The correctness of the failure
search is formalized by the following lemma.

Lemma 4.3. For every node n, if f(n) is given an indefinite value, then there exists n′

s.t. R(n, n′) 6= false, which satisfies requirements (a),(b). Furthermore, f(n′) is already
defined at that time. In addition, if the updating of failure node and reason of n is based
on n′, then n′ also has a failure node and reason.

A failure node and reason for n is updated every time f(n) is updated. Thus, when
the mc-algorithm terminates, for every n, if χ(n) is indefinite, then the failure node
and reason for n is based on χ. Altogether there are two cases in which we consider the
node itself as a failure node. The first case is when the node is a terminal node whose
value is indefinite, for which the failure reason is clear. The second case is when the
node has an indefinite edge to n′ which is the failure reason. In this case n is the failure
node since refining the value of the edge may change the value of n. The failure reason
translates to an atomic proposition with an indefinite value in the first case, and to an
indefinite transition in the second case. Note that the algorithm is heuristic in the sense
that it does not guarantee that all possible refinements of the failure node and reason
will increase the information level of the result. It greedily searches for a failure node
and reason which is most likely to increase the result w.r.t. the information order.
Example 4.4. Consider the mc-graph in Fig. 3(b). For the node n0 marked (s2, t2) ` ♦o

there are three possible failure nodes and reasons. The first is n0 itself being the failure
node and the edge to node n3 marked (s3, t2) ` o being the reason. The second is node
n1 marked (s2, t2) ` o being the failure node and reason, and the third is node n0 itself
and the edge to n1 being the reason.

Recall that refinement is done by either increasing the information level of some
transition or atomic proposition, or by splitting states. The information lattice of the

9

underlying multi-valued structure is finite. Thus, if the underlying concrete model is
finite, then there is a finite number of refinement steps possible. We conclude:

Lemma 4.5. If Mc is finite then in a finite number of refinement steps the model check-
ing result will be the same as the one in the underlying concrete model, Mc.

5 Partial Model Checking and Subgraphs
In this section we investigate properties of the mc-algorithm (Algo. 2.6). In particular,
we present sufficient conditions under which a subgraph of a mc-graph can be valuated
“correctly” (to be formally defined later) without considering the full mc-graph. In the
rest of the section, G denotes a multi-valued mc-graph over B= (L,≤i,≤t,¬).

Definition 5.1. Let G be a mc-graph and let f : N → L be a function. For a non-
terminal node n ∈ G, and two nodes n′, n′′ sons of n, n′ covers n′′ under f w.r.t n,
if one of the following holds:

– n is a ∧-node and: (1) (¬R(n, n′) ∨ f(n′)) ≤t (¬R(n, n′′) ∨ f(n′′)); and (2) ∀v′, v′′
∈ L : if f(n′) ≤i v′ and f(n′′) ≤i v′′ then (¬R(n, n′) ∨ v′) ≤t (¬R(n, n′′) ∨ v′′).

– n is a ∨-node and: (1) (R(n, n′′) ∧ f(n′′)) ≤t (R(n, n′) ∧ f(n′)); and (2) ∀v′, v′′ ∈
L : if f(n′) ≤i v′ and f(n′′) ≤i v′′ then (R(n, n′′) ∧ v′′) ≤t (R(n, n′) ∧ v′).

Intuitively, a son n′ covers a son n′′ in the sense that if f defines the value of the sons,
then it suffices to take into account n′ (and ignore n′′) in order to determine the value of
the node n. In our setting, f will sometimes only provide a lower bound w.r.t. ≤i on the
value of the nodes. However, the second requirement ensures that the covering holds
for every f ′ ≥i f as well. Note that the notion of covering defines a partial order on the
nodes of the mc-graph. As a result, for every covered node n′′ there exists a covering
node n′ s.t. n′ is non-covered.

Example 5.2. Consider the mc-graph in Fig. 3(b). Assume the underlying structure
is the 3× 3 structure (Fig. 1(e), (f)). The values of the edges are R(n0, n1) =?T and
R(n0, n2) =??. Let f(n1) =?T and f(n2) = F?. We show that n2 is covered by n1

under f . Clearly, requirement (1) holds (F?∧?? ≤t?T∧?T). For requirement (2), we
need to show that ∀v1, v2 ∈ L : if f(n1) ≤i v2 and f(n2) ≤i v2 then (R(n0, n2) ∧ v2) ≤t

(R(n0, n1)∧v1). Specifically, we need to show that ∀v1 ∈ {?T, TT, FT}, ∀v2 ∈ {F?, FF,

FT}: v2∧?? ≤t v1∧?T , which obviously holds.

In the example, the value given to n0 based on all its sons is the same as if the son
n2 had not been considered. We will next exploit this property.

Definition 5.3. Let G be a mc-graph and χ its mc-function. A subgraph G′ of G is
closed if every node n in G′ is either terminal in G′, or G′ contains all non-covered
sons of n under χ and corresponding edges.

Let G be a mc-graph, χ its mc-function, and χI : N → L a partial mc-function. χI

is correct w.r.t. χ if for every n ∈ G, if χI(n) is defined, then χI(n) = χ(n).

Theorem 5.4. Let G be a mc-graph and χ its mc-function. Consider a closed subgraph
G′ of G with a partial mc-function χI which is correct w.r.t. χ and defined over (at
least) all terminal nodes in G′. Then applying the mc-algorithm on G′ with χI as an
initial valuation (replacing val) results in a mc-function χ′ of G′ s.t. for every n in G′,
χ′(n) = χ(n).

10

6 Compositional Model Checking
In this section we define the composition of two models, and describe an algorithm for
model checking the composed system, without fully constructing it.

In compositional model checking the goal is to verify a formula ϕ on a composed
system M1||M2. In our setting M1 and M2 are multi-valued Kripke models defined over
the same CPDB B= (L,≤i,≤t,¬). The models synchronize on the joint labelling of the
states. In the following, for i ∈ {1, 2} we assume that every (abstract) model Mi has an
underlying concrete model Mc

i s.t. Mc
i ¹ Mi. Let Mi = 〈B, APi, Si, s

i
0, Ri, Θi〉, we use

i to denote the remaining index in {1, 2} \ {i}.

Definition 6.1. Let s1 ∈ S1, s2 ∈ S2 be states in M1 and M2 resp. Then, s1, s2 are
weakly composable if for every p ∈ AP1 ∩AP2 : Θ1(p)(s1)⊕Θ2(p)(s2) is defined.

Note that ⊕ might be undefined since B is a CPDB (Def. 3.5). Intuitively, if ⊕ is
defined, then the composition of the states is consistent on all atomic propositions.

Definition 6.2. States s1 ∈ S1, s2 ∈ S2 are composable if they are weakly composable,
and for every p ∈ AP1 ∩AP2 : Θ1(p)(s1) and Θ2(p)(s2) are definite.

In fact, since the definite values in CPDB are highest in the information order, if s1

and s2 are composable, then for every p ∈ AP1 ∩AP2, Θ1(p)(s1) = Θ2(p)(s2).
We say that M1 and M2 are composable if their initial states are composable.

Definition 6.3. Let M1 and M2 be composable models. Their composition, denoted
M1||M2, is the multi-valued Kripke model M = 〈B, AP, S, s0, R, Θ〉, where AP = AP1∪
AP2, s0 = (s1

0, s
2
0), S = {(s1, s2) ∈ S1 × S2|s1, s2 are weakly composable}. For each

(s1, s2), (t1, t2) ∈ S: If t1, t2 are composable, R((s1, s2), (t1, t2)) = R1(s1, t1)∧R2(s2, t2).
Otherwise, if t1, t2 are weakly composable, R((s1, s2), (t1, t2)) = R1(s1, t1)∧R2(s2, t2)∧
⊥. For each (s1, s2) ∈ S and p ∈ AP : if p ∈ AP1 ∩AP2 then Θ(p)(s1, s2) = Θ1(p)(s1)⊕
Θ2(p)(s2), if p ∈ APi \APī then Θ(p)(s1, s2) = Θi(p)(si).

The definition of the states in the composed model enables composition of states that
are weakly composable but not composable. Such states do not exist in a composed
concrete model (since the values of all atomic propositions in a concrete model are
maximal w.r.t. ≤i). However, they might exist when considering a composed abstract
model. Unlike composable states, the weakly composable states in a composed abstract
model might not have any corresponding state in the underlying concrete model. This is
because in the concrete model, where the information level of some atomic propositions
increases, the states might disagree on some p in their joint labelling.

Even though we are enabling weakly composable states which might not exist in the
underlying concrete model, we want the abstract composed model to be an abstraction
of the concrete composed model (i.e., we want to maintain a mixed simulation relation
between these models). This is done with the definition of R. In the case where the target
states are composable, the definition of R is immediate. If the target states are weakly
composable but not composable, then we want to take into account the possibility that
the transition does not exist. Defining its value to be ⊥ achieves this goal. However,
we can in fact guarantee more than that (in terms of the information order) by taking

11

the meet w.r.t. ≤t with ⊥. This ensures that the value of the composed transition is no
“more true” than ⊥, but may be “more false” than ⊥ and thus more informative. More
precisely, consider the CPDB P(B(D)) isomorphic to B, where D= (D,≤,¬) is a De
Morgan algebra. Then⊥ is defined as 〈d⊥, d⊥〉 ∈ D ×D where for every a ∈ D.d⊥ ≤ a.
Thus, for every 〈a, b〉 ∈ D ×D, 〈a, b〉 ∧ ⊥=〈d⊥, b〉, which means that the falsity level of
〈a, b〉 is preserved, whereas the truth level is minimal.

Allowing weakly composable states gives freedom to the user when abstracting each
of the models, as all atomic propositions can be abstracted. In contrast, in [21], where
composition of 3-valued models is discussed, joint labelling cannot be abstracted, thus
all composable states in the abstract model represent composable states in the concrete
model. There is a tradeoff presented with this freedom. On the one hand, the user can
define a very coarse abstraction in each of the separate models. On the other hand, the
abstract composed model might now include more states that do not represent any state
in the concrete model.

From now on we fix AP to be AP1 ∪AP2.
Next, we define lifting of models for the purpose of compositional verification. The

idea is to view each model Mi as an abstraction of M1||M2.

Definition 6.4. The lifted model of Mi = 〈 B, APi, Si, s
i
0, Ri, Θi〉 is Mi ↑= 〈 B, AP, Si, s

i
0,

Ri ↑, Θi ↑〉 where: for every si, ti ∈ Si: Ri ↑ (si, ti) = Ri(si, ti) ∧ ⊥. For every si ∈ Si,
p ∈ AP : if p ∈ APi then Θi ↑ (p)(si) = Θi(p)(si). If p ∈ AP \APi then Θi ↑ (p)(si) = ⊥.

The value of each literal over AP \APi in each state of Mi ↑ is minimal w.r.t. the≤i

order (⊥). Indeed, its value in M will be determined by Mi. In addition, each transition
of Mi is also uncertain, in the sense that it cannot be “more true” than⊥. This is because
in the composition it might be removed if a matching transition does not exist in Mi.

Theorem 6.5. For every i ∈ {1, 2}, M1||M2 ¹ Mi ↑. The mixed simulation relation H ⊆
S × Si is given by {((s1, s2), si)|(s1, s2) ∈ S}.

Since each Mi ↑ abstracts M1||M2, we are able to first consider each component sep-
arately: Theorem 4.2 ensures that for every closed Lµ formula ϕ, ‖ϕ‖Mi↑ ≤i ‖ϕ‖M1||M2 .
In particular, ‖ϕ‖M1↑⊕‖ϕ‖M2↑ is defined, and a definite result on one of the components
suffices to determine a definite value on M1||M2. Note that a definite value on M1||M2

can be achieved even if both ‖ϕ‖Mi↑ are indefinite, but ‖ϕ‖M1↑ ⊕ ‖ϕ‖M2↑ is definite.
A more typical case is when the valuation of ϕ on both M1 ↑ and M2 ↑ is indefinite.

This reflects the fact that ϕ depends on both components and on their synchronization.
Typically, such a result requires some refinement of the abstract model. Considering
the composition of the two components is a refinement of the lifted models. Still, having
considered each component separately can guide us into focusing on the places where
we indeed need to consider the composition of the components.

We use the mc-graphs of M1 ↑ and M2 ↑ for building a subgraph for M1||M2, and
by that avoid building the full composed model. The mc-graphs of the two components
present all the information gained from model checking each component. To resolve
the indefinite result, we first try to compose the parts of the mc-graphs which might be
needed to determine the value of the formula.

12

Definition 6.6. For every i ∈ {1, 2} let Gi = (n0
i , Ni, Ei) be the mc-graph of Mi ↑, with

χi its mc-function. χf : N1 ×N2 → L is defined by χf (n1, n2) = χ1(n1)⊕ χ2(n2). Ef :

(N1 × N2) × (N1 × N2) → L is defined as follows. Let n′i = (s′i ` ϕ′) ∈ Ni, then
Ef ((n1, n2), (n′1, n

′
2)) = R1(s1, s

′
1)∧R2(s2, s

′
2) if s′1 and s′2 are composable, and Ef ((n1,

n2), (n
′
1, n

′
2)) = R1(s1, s

′
1) ∧ R2(s2, s

′
2) ∧ ⊥ if s′1 and s′2 are weakly composable but not

composable.

Let G = (n0, N, E) be a mc-graph and let f : N → L and e : N ×N → L be two func-
tions. For a non-terminal node n in G, and two nodes n′ and n′′ which are sons of n, we
abuse the notion of covering (Def. 5.1) and say that n′ covers n′′ under f and e w.r.t. n,
if n′ covers n′′ under f w.r.t. n when e replaces the transition relation R.

Definition 6.7. (Product Graph) For every i ∈ {1, 2} let Gi = (n0
i , Ni, Ei) be the mc-

graph of Mi ↑, with an initial node n0
i = (s0

i ` ϕ) ∈ Ni. Also let χi be the mc-function of
Gi. The product graph of G1 and G2, denoted G‖ = (n0

‖, N‖, E‖), is defined as the least
graph that obeys the following:

– n0
‖ = (s0

1, s
0
2) ` ϕ is the initial node in G‖.

– Let n1 = s1 ` ψ, n2 = s2 ` ψ be s.t. (n1, n2) ∈ N‖, and χf (n1, n2) is indefinite. Then
for every n′1 = (s′1 ` ψ′) ∈ N1 and n′2 = (s′2 ` ψ′) ∈ N2, if the following holds:
(1) s′1, s′2 are weakly composable; (2) E1(n1, n

′
1) 6= false and E2(n2, n

′
2) 6= false;

and (3) (n′1, n
′
2) is not covered under χf and Ef w.r.t. (n1, n2).

Then: (a) (n′1, n
′
2) ∈ N‖; and (b) E‖((n1, n2), (n

′
1, n

′
2)) = Ef ((n1, n2), (n

′
1, n

′
2)).

Lemma 6.8. Let G‖ be the product graph defined above. ∀n ∈ N‖, χf (n) is defined.

Note that the value of the edges in G‖ is identical to their value in the composed
model. This is because the product graph already refers to the complete system M1||M2.
In contrast, the values of the edges in the mc-graphs of each component are all smaller
or equal by truth order than ⊥.

The product graph is constructed by a top-down traversal on the mc-graphs of the
two models, where, starting from the initial node, nodes that share the same formu-
las and whose states are weakly composable, will be considered. Whenever two non-
terminal nodes n1, n2 are composed, if χf (n1, n2) is indefinite, then the outgoing edges
are computed as the product of their outgoing edges, restricted to weakly composable
nodes. In particular, this means that if a node in one mc-graph has no matching node in
the other, then it will be omitted from the product graph. After computing all legal sons
based on the outgoing edges, the nodes which are covered under χf will be removed,
leaving as outgoing edges and nodes only nodes which are not covered under χf . In
addition, when a terminal node of one mc-graph is composed with a non-terminal node
of the other, the resulting node is a terminal node in G‖. Note that we compute χf and
Ef only by need. In fact, when constructing G‖ it suffices to consider the indefinite
subgraphs G?

1 and G?
2 of G1 and G2 resp. (pruned in definite nodes). This is because

whenever a definite node is composed with another node (definite or not), χf of the
resulting node is definite, which makes it a terminal node.

We accompany G‖ with an initial mc-function, χI , for its terminal nodes, based on
the mc-functions of the two mc-graphs. We use the following observation:
Let n = (s1, s2) ` ψ be a terminal node in G‖. Then at least one of the following holds.

13

Either (a) at least one of s1 ` ψ and s2 ` ψ is a terminal node in its mc-graph; Or (b)
χf (s1 ` ψ, s2 ` ψ) is definite; Or (c) both s1 ` ψ and s2 ` ψ are non-terminal but no
outgoing edges were left in their composition.

Definition 6.9. The initial mc-function χI of G‖ is defined as follows. Let n = (s1, s2) `
ψ ∈ N‖ be a terminal node. If it fulfills case (a) or (b), then χI(n) = χ1(s1 ` ψ)⊕χ2(s2 `
ψ). If it fulfills case (c), then χI(n) = true if n is a ∧-node, and χI(n) = false if n is a
∨-node. χI is undefined for the rest of the nodes.

Theorem 6.10. The resulting product graph G‖ is a closed subgraph of G, the mc-
graph over M1||M2 with a mc-function χ. In addition, χI is defined over all the terminal
nodes of G‖, and is correct w.r.t. χ.

M ::2

r=FF
o=TT

?? 0t

 2t

 3t

 1t

r=FF
i=FF

TT

r=T?
i=TT

TT

M ::1
 0s

 2s 1s
i=TF

r=FT

 3s

?TT? TT

?T

TT

??

??

??

r=?T

TT

o=F?

r=TT

o=?T

r=FT

o=FF

F?

F?

F?TT

?T
??

r=TT

i=TF

TT ?T ?T

Fig. 2. Components M1 and M2

Theorems 5.4 and 6.10
imply that applying the mc-
algorithm on G‖ with χI re-
sults in a correct mc-function
χ w.r.t. G‖. Thus, χ(n0

‖) is the
value of the model checking
of ϕ in M1||M2. As a result,
to model check ϕ on M1||M2

it remains to model check G‖.
Note that the full graph for
M1||M2 is not constructed.

If the model checking re-
sult is indefinite (which is only possible if M1||M2 is abstract), then refinement is
performed on each component separately, as described in the following steps, which
summarize our compositional algorithm for checking an alternation-free Lµ formula ϕ
on M1||M2.
Step 1: Model check each Mi ↑ separately (for i ∈ {1, 2}):

1. Construct the mc-graph Gi for ϕ and Mi ↑.
2. Apply multi-valued model checking on Gi. Let χi be the resulting mc-function.

If χ1(n
0
1) or χ2(n

0
2) is definite, return the corresp. model checking result for M1||M2.

Step 2: Consider the composition M1||M2:
1. Construct the product graph G‖ of the mc-graphs G?

1 and G?
2.

2. Apply multi-valued model checking on G‖ (with the initial mc-function).
If χ‖(n

0
‖) is definite, return the corresp. model checking result for M1||M2.

Step 3: Refine: Consider the failure node and reason returned by model checking G‖
(where χ‖(n

0
‖) is indefinite). If it is p for some p ∈ APi, then refine G?

i ;
Else let it be a transition ((s1, s2), (s

′
1, s

′
2)). Then:

1. If s′1, s′2 are weakly composable but not composable, refine both G?
1 and G?

2

according to AP1 ∩AP2.
2. If Ri(si, s

′
i) ≤t Rī(sī, s

′̄
i), refine the transition Ri(si, s

′
i) in G?

i .
3. If Ri(si, s

′
i) and Rī(sī, s

′̄
i) are uncomparable, refine the subgraph(s) in which

the transition is indefinite.
Go to Step 1(2) with the refined indefinite subgraphs.

14

Theorem 6.11. For finite components, the compositional algorithm is guaranteed to
terminate with a definite answer.

Example 6.12. An example for the algorithm is given in Fig. 2,3. The two (abstract)
components are described in Fig. 2. The underlying multi-valued structure is the 3×3
structure (described in Fig. 1(e), (f)). The atomic proposition o is local to M1, i is local
to M2, and r is a joint atomic proposition that M1 and M2 synchronize on. We wish
to verify the property ¤(¬i ∨ ♦o). The mc-graph of the lifted model M1 ↑ is described
in Fig. 3(a). The mc-graph of M2 ↑ can be created similarly. Note that the edges of the
mc-graph get a different value than their value in the model, as this is a mc-graph of the
lifted model, thus we can no longer guarantee the existence of these edges. The model
checking on each of the models does not result in a definite answer, and we need to
consider their composition. The parts that are actually composed are marked with solid
lines in Fig. 3(a). The product graph and its model checking is shown in Fig. 3(b), where
the edges get their actual value. The nodes which are covered are marked with dashed
lines. These nodes are created and removed on-the-fly, since they are covered. The
actual nodes that compose the product graph are marked with solid lines. The property
is still not verified in the composed model, thus a refinement is needed. Note that the
product graph considers only a small part of the compound system, as it takes advantage
of the information from model checking the separate components.

o 0s 0s 1s 1s 2s 2s

 0s 1s 2s 3s

 0s i o 1s i o 2s i o

 0s (i o)G ::1

?? ?? ????

F?
????F?

F?

??
F???

FTTT ?? F? ??FT

i o i i o

o o o o

TT TT TT TT TT TT

TT

??

FT ?T

?? ??

?T G ::||

,)(2s 2t 1s 1t,)(0s 0t(,)

 0s 0t(,)

,)(2s 2t

,)(3s 3t,)(3s 2t

,)(2s 2t

,)(2t 2s on 1 :: ,)(2s 3t o::n 2 3n ::

?T

?T

TTTT

???????T

??

FT

(i o)

FT

i o
?T

i o

i
?T

o o

i o
TT

??

T? ?F

o::n 0

?T F?

(a) (b)

Fig. 3. (a) mc-graph of M1 ↑; (b) the product graph. Dashed nodes are covered. Solid lines mark
actual product graph.

7 Discussion
This paper describes a framework for multi-valued model checking of Lµ formulas w.r.t.
systems composed of several components. The framework is described as follows.

– Lift each individual component Mi into a component Mi ↑ s.t. M1||M2 ¹ Mi ↑.
– Model check each of the lifted models separately. If the result is definite, then this

also holds for the full system.
– Construct the product graph of the individual mc-graphs; model check it correctly.
– If the result on the product graph is definite, then this result holds for the full system.

Otherwise, refine the components as needed.

We showed how our framework can be implemented for model checking of CPDBs,
and alternation-free Lµ formulas. We applied a specific model checking and reason
finding algorithm (Algo. 2.6, Sec. 4), but these can be replaced by other algorithms.

15

Our framework is suitable for full Lµ, provided that the model checking and reason
finding algorithm can handle the full Lµ. Examples of such algorithms for a 3-valued
structure can be found in [13]. Indeed, in [21] a compositional framework such as ours,
but with the 3-valued semantics, has been presented for the full Lµ.

Our framework can also be used for logics other than the µ-calculus. For example,
the full-PML logic, which extends the modal operators with past operators, AY and
EY , is used in [1], along with a 6-valued structure (described in Fig. 1(c),(d)). The
structure is a CPDB, but since they use a logic with significantly different semantics,
specific adaptations in some of the framework stages should be done.

References

1. T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. In CAV’05.
2. N.D Belnap. A useful four-valued logic. In Modern uses of multiple valued logics. 1977.
3. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal

logics. In CAV’99.
4. G. Bruns and P. Godefroid. Model checking with multi-valued logics. In ICALP’04.
5. G. Bruns and P. Godefroid. Temporal logic query checking. In LICS’01.
6. W. Chan. Temporal-logic queries. In CAV, volume 1855 of LNCS, pages 450–463, 2000.
7. M. Chechik, B. Devereux, S.M. Easterbrook, and A. Gurfinkel. Multi-valued symbolic

model-checking. ACM Transactions on Software Engineering and Methodology, 12, 2003.
8. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, 1999.
9. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM

Trans. Program. Lang. Syst., 19(2), 1997.
10. S.M. Easterbrook and M. Chechik. A framework for multi-valued reasoning over inconsis-

tent viewpoints. In ICSE’01.
11. M. Fitting. Bilattices are nice things. In Self-Reference, 2002.
12. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.

In CAV’02.
13. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not losing is better than win-

ning: Abstraction and refinement for the full µ-calculus. Information and Computation,
205(8), 2007.

14. A. Gurfinkel and M. Chechik. Why waste a perfectly good abstraction? In TACAS’06.
15. A. Gurfinkel, O. Wei, and M. Chechik. Systematic construction of abstractions for model-

checking. In VMCAI’06.
16. M. Huth and S. Pradhan. Lifting assertion and consistency checkers from single to multiple

viewpoints. TR 2002/11, Dept. of Computing, Imperial College, London, 2002.
17. H. Jain, D. Kroening, N. Sharygina, and E.M. Clarke. Word level predicate abstraction and

refinement for verifying RTL Verilog. In DAC’05.
18. O. Kupferman and Y. Lustig. Latticed simulation relations and games. In ATVA’07.
19. Y. Meller, O. Grumberg, and S. Shoham. A framework for compositional verification of

multi-valued systems via abstraction-refinement. TR CS-2009-14, Dept. of Computer Sci-
ence, Technion – Israel Institute of Technology, 2009.

20. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods in System Design, 6(2), 1995.

21. S. Shoham and O. Grumberg. Compositional verification and 3-valued abstractions join
forces. In SAS’07.

22. S. Shoham and O. Grumberg. Multi-valued model checking games. In ATVA’05.
23. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.Math, 5, 1955.

16

