
A Work-Efficient Distributed Algorithm for
Reachability Analysis

Orna Grumberg, Tamir Heyman, Assaf Schuster

Computer Science Department, Technion, Haifa, Israel

Abstract. This work presents a novel distributed, symbolic algorithm for reach-
ability analysis that can effectively exploit, “as needed”, a large number of ma-
chines working in parallel. The novelty of the algorithm is in its dynamic allo-
cation and reallocation of processes to tasks and in its mechanism for recovery,
from local state explosion. As a result, the algorithm is work-efficient: it utilizes
only those resources that are actually needed. In addition, its high adaptability
makes it suitable for exploiting the resources of very large and heterogeneous
distributed, non-dedicated environments. Thus, it has the potential of verifying
very large systems.
We implemented our algorithm in a tool called Division. Our preliminary experi-
mental results show that the algorithm is indeed work-efficient. Although that the
goal of this research is to check larger models, the results also indicate the poten-
tial to obtain high speedups, because communication overhead is very small.

1 Introduction

Reachability analysis is a central component of model checking. The verification of
most temporal safety properties can be reduced to reachability analysis [3]. It is also an
important preliminary stage for increasing the efficiency of symbolic model checking.

A significant amount of work is invested in increasing the capacity of model check-
ing. Current model checking tools can verify systems with hundreds of variables using
BDD-based methods [6, 14] and falsify systems with thousands of variables using SAT-
based methods [4]. A recent comparison [1] shows that each of the BDD-based and the
SAT-based methods is superior to the other for certain types of problems. Nevertheless,
it is generally agreed that the capability of model checking tools should be extended.

Typically, BDD-based model checking tools suffer from high space requirements
while SAT-based tools suffer from high time requirements. The goal of this work is to
overcome the space problem of BDD-based model checkers. A promising approach is to
exploit the accumulative computation power and memory of a number of machines that
work in parallel. Many environments can provide a large number of machines whose
collective memory exceeds the memory size of any single machine.

Several solutions employing parallel computation have been suggested for dealing
with the large memory requirements. Several papers suggest replacing the BDD with a
parallelized data structure [19, 15]. In [18], an explicit model checker that does not use
symbolic methods is parallelized. Other papers suggest reducing the space requirements
by partitioning the work to several tasks [8, 17, 16, 7]. Although these methods might,
in principle, be parallelized, they have not been. Rather, they use a single computer

to sequentially handle one task at a time, while the other tasks are kept in an external
memory.

The work that most resembles this one is distributed symbolic (BDD-based) reach-
ability analysis, suggested in [13]. It is based on an initial partitioning of the state space
among all processes in the network and on a continuous load balancing that keeps the
workload among the processes relatively balanced.

The success of this approach strongly depends on an effective slicing procedure.
Slicing is said to be effective if it avoids duplication and if it results in evenly split,
smaller BDDs. Duplication is the amount of sharing in a BDD structure that is lost due
to partitioning. The notion of duplication and its implications are discussed in detail
in [13] and will not be addressed in this paper. Finding such an effective slicing is a
nontrivial problem [8, 17, 16, 13].

In [13], each process iteratively applies image computation to its set of new states
N , exchanging non-owned states with other processes, and collecting owned states in
its set of reachable states R. Load balance is available at the end of each iteration. It
balances the sizes of the sets of reachable states in the different processes.

This algorithm has several drawbacks. First, it immediately splits to as many slices
as the number of processes in the network and does not release them until it termi-
nates. Thus, it occupies all processes in the network all the time, regardless of actual
need. Second, slicing is often inefficient because it partitions a relatively small BDD
into many small slices. The more processes in the system, the less efficient the slic-
ing is, which renders the algorithm non-scalable. Third, it does not provide a means
to overcome the memory overflow that occurs during an image computation or an ex-
change operation. It is well known that intermediate results of image computation may
be orders of magnitude larger than its initial and resulting BDDs. Similarly, during an
exchange operation the memory of a process may overflow as a result of the BDDs it
receives. Unfortunately, even when there are under-utilized processes, there is no way
to recover from such overflows since load balancing is available only at the end of itera-
tions. Finally, balancing is applied only to the sets R. However, the size of intermediate
results in image computation depends onN and is often much larger thanR. Thus, load
balancing does not handle the dominant factors of memory overflow.

In this paper we suggest a new algorithm which overcomes the drawbacks of the
previous one. The algorithm uses two types of processes: coordinators and workers.
Each worker can be either active or free. The algorithm works iteratively. It is initialized
with one active worker that runs a symbolic reachability algorithm, starting from the
set of initial states. During its run, workers are allocated and freed, as needed. At any
iteration, each of the active workers applies image computation and then sends those
states it does not own to their owners. Therefore, we will refer to these as a worker’s
non-owned states.

Since memory overflow is likely to occur during the image computation and the
exchange operation, our algorithm is designed to overcome these problems. For image
computation we use a new BDD operation that resembles ordinary image computation,
except that it stops if the intermediate results create memory overflow. In this case,
the BDD representing the intermediate results is partitioned into k slices. One slice is
left with the overflowed worker and the others are distributed to k � � free colleagues.

k is called the splitting degree. It is a parameter of the new algorithm and is usually
small (often k � �). Since the BDD is huge, the slicing is very effective. Once the
BDD is split, each worker resumes the computation of (its part of) the image from the
point at which it stopped. However, each worker now works on a smaller BDD. If state
explosion occurs during the exchange procedure, then R � N is split for sharing with
k � � free colleagues. Exchanging of non-owned states then proceeds according to the
new ownership.

The new algorithm enables the slicing procedure to split according to R, N , or in-
termediate results, depending on what caused the memory overflow. Since the chosen
BDDs are large, slicing is always very effective. Furthermore, slicing affects the perfor-
mance of the new algorithm much less than it affects the one from [13] because, in the
case of a high work load at one of the co-workers, the new algorithm can simply split
again. These features provide the new algorithm with strength and flexibility, and allow
to reduce the slicing complexity.

It may also happen that the memory requirement of a worker decreased below a
certain threshold (the size of a BDD decrease even if it represents a larger set of states).
In that case, several workers with small memory requirements are combined and all but
one become free.

It is important to note that splitting occurs only “as needed”, when a worker actually
has a memory overflow. Thus the algorithm is work-efficient: it exploits to the maximum
the resources of the active workers before allocating additional ones. This efficiency
allows, for a given network, computing reachability of (i.e., verifying) larger systems.
Moreover, our algorithm can effectively exploit any network size. Thus, the larger the
available network, the larger the systems that can be verified.

We have implemented our algorithm in Division, a generic platform for the study of
distributed symbolic model checking [12]. Division requires a model checker as an ex-
ternal module. We used NuSMV [10] for this purpose: a re-implementation of McMil-
lan’s SMV [14].

Unfortunately, using NuSMV implied that we could not directly compare the re-
sults of [13] to the results of this work. The experiments in [13] were conducted using
the high-performance RuleBase [2] model checker that was not available to us in this
work. The two tools are not comparable as many of the RuleBase optimizations are not
implemented in NuSMV.

Our parallel testbed included 25 dual process PC machines. The nodes communi-
cated via a fast Ethernet connection. We conducted our experiments using four of the
largest circuits from the ISCAS89 and addendum’93 benchmarks.

With our distributed algorithm, we can compute larger models than we can com-
pute with a single machine using the same model checker. In all the examples the new
algorithm using the less sophisticated model checker (NuSMV) would be sufficient to
compute the same models and reach the same BFS step as in [13].

The rest of the paper is organized as follows. In Section 2 we detail the algorithm
that the workers follow. Section 3 describes the operation of the coordinator processes.
Section 4 explains the enhanced slicing employed when overflow occurs during image
computation. Preliminary experimental results are given in Section 5. We summarize
our conclusions and expectations in Section 6.

2 The Worker Algorithm

Our distributed algorithm uses a set of window functions [8, 17] to partition the state
space among all workers in the network. Each worker owns the states in one of the
window functions and computes the reachable states in this window.

Figure 1 presents a high-level view of the workers algorithm. Essentially, the algo-
rithm performs a reachability task. The algorithm starts with only one worker that owns
the entire state space, while the rest of the workers are free. If a worker runs out of
memory (memory overflow), it distributes parts of its work among a few free workers.

The worker repeatedly computes images and sends its non-owned states to their
owners until termination is detected (namely, a fixed-point is reached). While iterat-
ing, if the workload of the worker becomes too small, it participates in a collect small
procedure.

There are two points at which a worker may run out of memory (memory overflow):
during the image computation and during the exchange of non-owned states. Upon
memory overflow, the worker splits the states it owns into two parts: one that will be
processed at the current worker and another to be processed at another worker. As a
result, the states belonging to the new worker become non-owned and are sent out to
the new worker.

function reach task��
� Loop until termination��
� Image�� if overflow� split and use new workers
� Exchange�� if overflow� split and use new workers

� Collect small��
	 return owned states

Fig. 1. High–level pseudo–code for a worker

Let us describe the algorithm for the workers in greater detail, as shown in Figure 2.
The reachability task includes a set of reachable states R and a set of reachable states
that are not yet developed, N . For brevity, we omit in this section the worker subscript
id from Rid and Nid, as well as the window function wid. The set R is included in a
window function w. The sets R and N , as well as the window function w, may change
during the algorithm’s execution.

In the Image procedure, the worker computes the set of states that can be reached
in one step from N and stores the result in a new N . However, if during image compu-
tation the memory overflows, the worker splits w and updates R and N accordingly, as
described below.

In the Exchange procedure the worker uses w to define the part of the state space
it “owns”. It sends out the non-owned states (N n w) to their owners and receives its
owned states that were found by other workers.

Finally, if only a small amount of work remains, the worker joins the Collect small
procedure. The collect small procedure adds up the tasks of several workers, each of
which has only a small amount of work. This is done by joining together the parts of

the state space owned by those workers and assigning the unified ownership to one of
them. The others become “free” (w � �) and return to the pool of free workers.

function reach task(R�w�N� method) procedure Image(R�w�N)
if method � �exchange�� N
 boundedImage�N� Max�Failed�

goto Exchange loop�R� w�N� While�Failed�

Loop forever Split�R� w�N� �Image���
Image�R� w�N� N
 boundedImage�N� Max� Failed�
Exchange�R� w�N�

if �termination��� return R procedure Exchange loop(R�w�N)
N
N n R loop until � done � received from ex coor
R
R � N �pclg� wclg�
receive from ex coor
Collect small�R� w�N� send �N � wclg� to pclg
if�w � �� �N ��
receive from pclg

send �to pool� id� to ex coor overflow
 N � is too large
return to pool send �overflow� to pclg

send ��status�
receive from pclg� to ex coor

procedure Exchange(R�w�N) if �overflow� Split�R� w�N� �Exchange���
�fwig�
receive from ex coor else

send �fpig� to ex coor N
N � N �

Exchange loop�R� w�N� send ��done��� to ex coor

procedure Collect Small(R�w�N) procedure Split(R�w�N� method)
While�j N j � j R j� Min� �fp� � � � pkg�
receive from pool mgr

send ��j N j� j R j�� to small coor if�method � �exchange��

�action�
receive from small coor fW �

ig
fNw�

ig
Slice�R � N� k�
if acction �� End � return else
if action �� Non owner� pclg � if�j R j big enough

send �R�w�N� to pclg fW �

ig
Slice�R� k�
R
w
N
� else

��release���
receive from ex coor fW �

ig
�� i � � � � � k W �

�

w

return fNw�

ig
Slice�N� k�
if action �� Owner� pclg � �i � � � � � k�

�R��w��N ��
receive from pclg send �R �W �

i � w �W �

i �N � Nw�

i� method� to pi
R
R � R� �w
w � w��N
N � N � R
R �W �

�
�w
w �W �

�
�N
N � Nw�

�

send �w� pid� pclg� to ex coor send �fi � ���k j w �W �

ig� to ex coor

Fig. 2. Pseudo–code for a worker in the distributed reachability computation

In the Image procedure, the image is computed using a new BDD operation,
The Image procedure is using a new BDD operation, boundedImage(N�Max�Failed).
This operation is different from traditional image computation in that it stops the local
computation in case of a memory overflow (i.e., the number of BDD nodes exceeds
Max). Upon overflow, the Image procedure calls the Split procedure, which reparti-
tions the ownership of the worker and updates R�w�N accordingly.

In the Exchange procedure, the worker first requests and receives from the ex coor

process the up-to-date list of window functions owned by the other workers. The worker
then sends the ex coor the list of workers to whom it wishes to send non-owned states.
Then, in the Exchange loop procedure, the ex coor schedules the worker for state ex-
change with other workers.

In the Exchange loop procedure the worker is scheduled by the ex coor to ex-
change non-owned states with colleagues that either found states owned by the worker
or own states that were found by the worker. The worker continues to receive exchange
commands from the ex coor until it gets a � done � command when there are no

more pending exchanges. If the worker’s memory overflows during the exchange pro-
cedure and the worker fails to receive more owned states, it notifies the ex coor and
calls the Split procedure to reduce its ownership.

If the worker in the Collect Small procedure has enough work, it exits immedi-
ately. Otherwise, the worker notifies the small coor about the sizes of its N and R

sets. In reply, it receives one of three commands and proceeds accordingly: � End �

commands it to exit the Collect Small; � Non owner� pclg � commands it to deliver
its ownership and owned states to a colleague worker pclg, waits for the ex coor to
acknowledge the update of its window functions (performed by pclg), and then return
to the pool; � Owner� pclg � commands it to take over the ownership and states of
another worker pclg and report the new ownership to the ex coor.

The Split procedure starts by requesting from the pool mgr k � � new workers
(which, together with the overflowed worker, makes it a k-way split). If Split is called
from Exchange, then the window function w of the overflowed worker is split into k

new window functions fW �
ig, such that fW �

i �Rg have approximately the same sizes.
If Split is called from Image, then two sets of k new window functions are computed,
as follows. If R is big enough, then, as in the previous case, a set of window func-
tions fW �

ig is computed such that the sizes of fW �
i �Rg are approximately the same.

Otherwise, if R is too small, one of the workers gets all of w while the others remain
empty. In any case, the ith new window function W �

i determines, for the ith worker,
its new window wi. In addition, w is split again into another set of window functions
fNw�

ig, this time making fNw�
i�Ng equal in size. After the new window functions are

computed, the overflowed worker sends the corresponding states to its new colleagues.
The reason for computing two different partitions when Image overflows is that

fNw�
ig attempts to balance the current image computation, while fW �

ig attempts to
balance the memory requirement in the full reachability process. In section 4 we further
discuss the optimization of the partitioning process.

In the case that R is ”too small” or even empty, the new colleagues are simply
helping the overflowed worker with a single image computation. Once the image is
computed, all states produced by the helpers are non-owned and will be sent to other
workers that own them. From our experience, this case is not uncommon; it occurs when
the peak memory requirement during image computation is much larger than R.

As mentioned in the introduction, an important advantage of our algorithm over
previous works is that it calls the Slice function only when the memory overflows, and
with k much smaller than the total number of workers. This makes slicing much more
effective in producing even splits of the input sets of states.

We remark that the Slice procedure itself is no different from the slicing mecha-
nisms described in [13]. Thus, in this paper, we use it as a black box and focus on the
distributed algorithm itself.

3 The Coordinators

The ex coor coordinator holds the current set of window functions and coordinates the
exchange of non-owned states between workers. In order to hold a consistent view of

the current set of window functions, the ex coor is notified immediately on every split
or merge of windows. It takes the following actions on incoming event notifications:

– When a worker requests an exchange it first registers at the ex coor. The ex coor

replies with the up-to-date set of window functions and receives in return the set of
colleagues the worker wants to communicate with.

– When a worker splits, the ex coor updates the set of window functions. If the
splitting worker is already registered for exchange states, the ex coor notifies all
the workers that have asked to send it states that they should send the states to the
new set of workers, according to the new set of window functions.

– When workers perform Collect Small and join their ownerships, the ex coor up-
dates the set of window functions. If there are workers registered for exchanging
states with the joining workers, the ex coor redirects them to the new owner. When
the ex coor complete to update the set of window functions it sends � release �

command to the worker that become non-owner.
– When a worker completes the exchange of non-owned states with another worker,

the coordinator marks it as available for another round of exchange states.
– When a worker asks to re-launch an exchange because the colleague overflowed

and had to split while they were interacting, the ex coor adds this request to the
list of exchange requests.

The small coor coordinator collaborates with ex coor to prevent deadlocks and
to collect as many under-utilized workers as possible. The small coor receives reg-
istration requests from workers that completed the exchange phase and are left with a
very low load (very small R � N). The first registrant is blocked until more of them
arrive. When there are several registrants the small coor instructs them to merge.

The pool mgr coordinator keeps track of free workers. During initialization, the
pool mgr marks all but one worker as free. When a worker invokes the Split procedure,
it sends a request to the pool mgr for k � � free workers (where k is the splitting
degree). The pool mgr replies with a list of k � � worker ids and removes them from
the free list. Throughout the algorithm, when a worker becomes free, i.e., when its
ownership becomes empty, it returns to the pool mgr and is added to the free list for
later assignments.

If at the time free workers are requested from the pool mgr, the free list happens
to be empty or is shorter than k� �, the pool mgr announces a “worker overflow” and
stops the execution globally.

4 Optimizing the Splitting in Image Computation Overflow

Our algorithm is based on the assumption that in case of a memory overflow during
image computation, splitting the window of the overflowing worker enables the com-
pletion of the computation using more workers. The current splitting method strives to
effectively slice the set N on which the image is computed (see [13]). However, since
the computation is symbolic, reducing the size of the subsets does not guarantee a cor-
responding reduction in the image size. Furthermore, it guarantees even less for the size
of the intermediate results that commonly dictate the peak memory requirement during

the image computation. Our experience shows that even when the size of the parts is the
same, the size of the peaks may differ greatly. Thus, while one of the slices may have
no problem in completing the image computation, another may overflow again.

Another problem with the current splitting method is the time penalty for memory
overflow. When the image computation overflows and the set N is split, the work that
was invested in the current image step is lost, and the work is repeated all over again.
In fact, in the case of several subsequent memory overflows, the work is repeated again
and again. Notice that the ratio between the peak memory requirement in the image
computation and the set N is commonly two or three orders of magnitude. Thus, mem-
ory overflow commonly occurs when a big part of the image computation has already
been done locally, and all this work must be repeated. Since the image computation
takes most of the time in our distributed algorithm, the repeated work slows down the
algorithm substantially.

The solution to the above two problems is simply to split the intermediate results
and not the set N . After the splitting, the parts of the intermediate results are distributed
among the new workers, so computing the image for each of them continues from the
point of the overflow. In this way there is no time penalty for overflow except for the
splittingcomputation (which is of somewhat higher complexity than before). Of course,
communicating the intermediate results requires a much higher bandwidth. However,
network bandwidth and communication delay turn out to be minor factors as compared
with the time spent in the image computation, even with our standard fast Ethernet.

In terms of memory requirements this solution has two advantages. First, splitting
is applied on a much larger set, which makes it a lot easier to split effectively. Second,
splitting is applied much closer to the peak, which makes it more efficient in reducing
the peak memory requirements of the resulting parts.

The optimized algorithm uses a partitioned transition relation. The full transition
relation is a conjunction of all partitions:

T �V� V �� � T��V� V
�� � T��V� V

�� � � � �� Tn�V� V
���

and an image computation thus becomes

S��V �� � �V �S�V � � T��V� V
�� � T��V� V

�� � � � �� Tn�V� V
����

The technique for image computation suggested by Burch et al. [5] is to iteratively
conjunct-in the partitions, and to quantify-out variables as soon as further steps do not
depend on them. The order in which Ti�V� V �� are conjuncted is very important to the
efficiency of this technique [11]. For the sake of simplicity, let us assume the order is
given such that T� is the first to conjunct, then T�, untilTn. Let Di be the set of variables
on which Ti�V� V �� depend. Let Ei � Di �

Sn

m�i��Dm. A symbolic step is carried
out iteratively as follows:

S��V� V
�� � �E��T��V� V

�� � S�V ��

S��V� V
�� � �E��T��V� V

�� � S��V� V
���

...

S��V �� � �En�Tn�V� V
�� � Sn���V� V

����

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

Number of Processes in each BFS step

k = 2
k = 3
k = 4
k = 8

(a) with no optimization

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

Number of Processes in each BFS step

k = 2
k = 3
k = 4
k = 8

(b) optimized

Fig. 3. Number of workers required in each BFS step of s1269. Overflow is declared for
worker memory utilization exceeding �M BDD nodes.

If overflow occurs during step � � j � n, we look for a set of window functions
w� � � �wk such that

Wk

i��wi � �. The ith worker will get Sj�V� V �� �wi. We can now
rewrite the j 	 � step as follows:

Sj���V� V
�� � �Ej���

k�

i��

Tj���V� V
�� � Sj�V� V

�� �wi��

Since the existential quantification is distributive over disjunction, the above expres-
sion is equal to:

Sj���V� V
�� �

k�

i��

�Ej���Tj���V� V
�� � Sj�V� V

�� �wi��

Therefore, the disjunction of the j 	 �th steps assigned to each worker is equal to the
step done without splitting.

The algorithm uses a new BDD operation:BoundInc�S�V� V ��� fTi�V� V ��g�Max�,
where S�V� V �� is the function from which the image computation continues, fTi�V� V ��g
is the set of partitions that were not yet used, andMax is the threshold for overflow dur-
ing image computation. In the beginning of the algorithm, S�V� V �� is the set of states
whose image is to be computed in this step, and fTi�V� V ��g are all the partitions. If
the algorithm overflows, BoundInc returns in S�V� V �� the last intermediate result com-
puted prior to the overflow, and in fTi�V� V ��g the rest of the partitions that have not
been used. If the algorithm completes the image computation, S�V� V �� equals the next
set of states, and an empty list of partitions is returned.

Figure 3 illustrates the benefit of using the optimized algorithm for the circuit s1269.
Figure 3(a) provides the number of workers required in each step for various splitting
degrees. For instance, for splitting degree k � �, six workers are needed in order to
complete Step 3. Figure 3(b) shows that this step requires only four workers when

using the optimization described in this section. In all other steps and splitting degrees
the number of workers required by the optimized algorithm was always less than or
equal to the non-optimized version.

5 Experimental Results

Our parallel testbed included 25 PC machines, each consisting of dual 1.7GHz Pentium
4 processors with 1GB memory. The communication between the nodes consisted of a
fast Ethernet. We conducted our experiments using four of the largest circuits from the
ISCAS89 benchmarks. The characteristics of the circuits are given in Figure 4.

Circuit #vars peak fixed point
size step time steps

prolog 117 2.6M 5 2,431 9
s1269 55 16M 5 5,053 10
s3330 172 16M� Ov(3) - Ov(3)
s1423 88 16M� Ov(13) - Ov(13)

Fig. 4. Benchmark suite characteristics. The peak is the maximal memory requirement
at any point during an image step. Fixed point is the number of image steps and the time
(seconds) it takes to get to the fixed point. Ov(m) denotes memory overflow at step m.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

k = 2
k = 4
k = 8

k = 16
k = 32

(a) prolog Max � 1M nodes allo-
cated

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

W-overflow
k = 2

k = 32

(b) S3330 Max � 7M nodes allo-
cated

Fig. 5. Number of workers in each BFS step. Overflow is declared for worker memory
utilization exceeding Max BDD nodes. W-overflow halts the computation when more
than 60 workers are required.

5.1 Number of Workers for Reachability Analysis

Since the memory required by each worker is bounded by a given threshold, we only
care about the number of active workers at each iteration. Figures 5(a), 5(b), 6 and 3
give the number of workers required at any step of the analysis, and the threshold that
was used. The figures prove that using a lower splitting degree is more work efficient,
namely, the computation can be carried using fewer resources with a lower splitting
degree. This is explained by the fact that when the splitting degree is high, new workers
may join in even when the computation can do without them: the computation proceeds
with workers that may be under-utilized (but not sufficiently so to be collected by the
Collect Small process).

In steps �� ��
 in Figure 5(a) only one worker is needed. In step �, this worker
needs help in order to complete the image computation. Dividing the work into two
is sufficient, but when the splitting degree is higher we occupy more workers without
actually needing them. In steps � and the image computation requires less memory
and the size of the sets R and N requires less workers. Indeed the number of workers
decreases as a result of the Collect Small procedure.

Figure 5(b) shows that the distributed system can complete the reachability analysis,
whereas a single machine overflows.

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16

Nu
mb

er
of

wo
rki

ng
 pr

oc
es

se
s

BFS steps

W-overflow

W-overflow

W-overflow

W-overflow
W-overflow

k = 2
k = 4
k = 8

k = 16
k = 32

Fig. 6. Number of workers in each BFS step of s1423. Overflow is declared for worker
memory utilization exceeding �M BDD nodes. W-overflow is where more than 60 work-
ers required.

5.2 Timing and Communication

We have performed some initial studies regarding the timing and breakdown of running
our distributed system. The results show several very clear findings and trends that we
now briefly discuss.

First, communication overhead is minor. Our experiments show that the time to
reach local overflow is much higher than the time required to dump the contents of

memory into the network. Although this finding should be re-evaluated when our sys-
tem is further optimized (see below), it seems strong enough to sustain. If the system
scales up to include more workers, the communication time might grow as a result of
more non-owned states that are found. Nevertheless, we expect the computation time
to remain dominant because the communication volume for every worker at any split
or exchange operation is bounded by the size of the RAM of that worker. We remark
that technology trends predict much faster commodity networks (even when compared
to the larger expected RAMs) very soon.

Second, splitting is a major element in the computation. It can count up to dozens of
percentage points of the computation time, and these numbers grow rapidly when the
system scales up. Others have previously addressed the splitting complexity [9]; we
intend to speed up the splitting module in our future work.

Third, the fact that the reachability computation is synchronized in a step-by-step
fashion has a major impact on the computation time. The problem is that at the end
of a step all computing workers wait for the slowest one, who may be slicing and re-
slicing several times during the step (remember that slicing is slow!). However, despite
its synchronized operation, the new algorithm is very flexible. We believe that it can
become the basis for a truly non-synchronized variant.

One interesting phenomena that was not masked by the inefficiencies above is a
tradeoff between being work efficient and obtaining speedups. While the best hard-
ware utilization is achieved with splitting degree of 2, the fastest computation times
are obtained using somewhat higher splitting degrees (e.g., k � � for Prolog). Thus,
a splitting degree higher that 2 may become instrumental in cases that the speedup is
more important than RAM utilization.

6 Conclusions and Expectations

This paper presents a new distributed algorithm for symbolic reachability analysis that
improves significantly on previous works. Its adaptability to any network size and its
high utilization of network resources make it suitable for solving very large verification
problems.

The experimental environment that is used to evaluate our new algorithm currently
consists of NuSMV and the newly introduced Division system. Division is a new plat-
form for distributed symbolic model checking research, featuring a high-level generic
interface to “external” model checkers. Eventually, we intend to release Division source
code through the Division web-site [12].

At the point that the final version of this paper is due, Division is in the final stages
of interfacing with Intel’s high-performance model checker – Forest. We thus expect
our results to improve substantially and to become more accurate in the near future. We
refer the interested reader to the Division web-site for up-to-date result reports and for
the full and final version of this paper.

References

1. N. Amla, R. Kurshan, K. McMillan, and Medel R. K. Experimental Analysis of Different
Techniques for Bounded Model Checking. In Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03), LNCS, Warsaw, Poland, 2003.

2. I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An Industry-Oriented Formal
Verification Tool. In 33rd Design Automation Conf., pages 655–660, 1996.

3. I. Beer, S. Ben-David, and A. Landver. On-the-Fly Model Checking of RCTL Formulas. In
Proc. of the 10th Int. Conf. on Computer Aided Verification, LNCS 818, 1998.

4. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking Without BDDs.
In Tools and Algorithms for the Construction and Analysis of Systems, � th Int. Conference,
TACAS’99, LNCS 1579, 1999.

5. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P. B. Denyer, editors, Proc. of the 1991 Int. Conference
on Very Large Scale Integration, August 1991.

6. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: ���� states and beyond. Information and Computation, 98(2):142–171, June 1992.

7. G. Cabodi. Meta-BDDs: A Decomposed Representation for Layered Symbolic Manipulation
of Boolean Functions. In Proc. of the 13th Int. Conf. on Computer Aided Verification, 2001.

8. G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis of Large FSM. In
Proc. of the IEEE Int. Conf. on Computer Aided Design, pages 354–360. IEEE Computer
Society Press, June 1996.

9. G. Cabodi, P. Camurati, and S. Quer. Improving the Efficient of BDD-Bsaed Operators by
Means of Partitioning. IEEE Transactions on Computer-Aided Design, May 1999.

10. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic Model
Verifier. In N. Halbwachs and D. Peled, editors, Proc. of the 7th Int. Conf. on Computer-
Aided Verification (CAV’99), LNCS 1633, pages 495–499, Trento, Italy, 1999.

11. D. Geist and I. Beer. Efficient Model Checking by Automated Ordering of Transition Rela-
tion Partitions. In Proc. of the Sixth Int. Conf. on Computer Aided Verification, LNCS 818,
pages 299–310, 1994.

12. O. Grumberg, A. Heyman, T. Heyman, and A. Schuster. Division System:
A General Platform for Distributed Symbolic Model Checking Research, 2003.
http://www.cs.technion.ac.il/Labs/dsl/projects/division web/division.htm.

13. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in Parallel Reach-
ability Analysis of Very Large Circuits. Formal Methods in System Design, 21(2):317–338,
November 2002.

14. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic Publishers, 1993.

15. K. Milvang-Jensen and A. J. Hu. BDDNOW: A Parallel BDD Package. In Second Int.
Conference on Formal methods in Computer-Aided Design (FMCAD ’98), LNCS, Palo Alto,
California, USA, November 1998.

16. A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli. Reachability
Analysis Using Partitioned-ROBDDs. In Proc. of the IEEE Int. Conf. on Computer Aided
Design, pages 388–393. IEEE Computer Society Press, June 1997.

17. A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-ROBDDs. In
Proc. of the IEEE Int. Conf. on Computer Aided Design, pages 547–554. IEEE Computer
Society Press, June 1996.

18. Ulrich Stern and David L. Dill. Parallelizing the Murphy Verifier. In Proc. of the 9th Int.
Conf. on Computer Aided Verification, LNCS 1254, pages 256–267, 1997.

19. T. Stornetta and F. Brewer. Implementation of an Efficient Parallel BDD Package. In 33rd
Design Automation Conf. IEEE Computer Society Press, 1996.

