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Abstract. In this paper we consider techniques to identify and remove redundant pred-
icates during predicate abstraction. We give three criteria for identifying redundancy. A
predicate is redundant if any of the following three holds (i) the predicate is equivalent to
a propositional function of other predicates. (ii) removing the predicate preserves safety
properties satisfied by the abstract model (iii) removing it preserves bisimulation equiv-
alence. We also show how to efficiently remove the redundant predicates once they are
identified. Experimental results are included to demonstrate the effectiveness of our meth-
ods.
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1 Introduction

Abstraction has been widely accepted as a viable way for reducing the complexity of systems
during temporal logic model checking [10]. Predicate abstraction [1–3, 11, 12, 14, 19, 21, 22]
has emerged as one of the most successful abstraction techniques. It has been used in both
software and hardware verification. In this paper, we give a technique to improve predicate
abstraction by eliminating redundant predicates. This technique can be applied in both soft-
ware and hardware verification. We give efficient verification algorithms for finite state systems
(hardware) and outline how our method can be used for infinite state systems (software).

In predicate abstraction, the number of predicates affects the overall performance. Since
each predicate corresponds to a boolean state variable in the abstract model, the number of
predicates directly determines the complexity of building and checking the abstract model.
Most predicate abstraction systems build an abstract model of the system to be verified. While
building the abstract model, the number of calls made to a theorem prover (or a SAT solver in
our case) can be exponential in the number of predicates. Consequently, it is desirable to use as
few predicates as possible. Existing techniques for choosing relevant predicates may use more
predicates than necessary to verify a given property. That is some of the predicates used can be
redundant (the precise definition of redundancy is given later).

Counterexample guided abstraction refinement (CEGAR) [7, 16, 20] is an example of a
commonly used abstraction technique. It works by introducing new predicates to eliminate
spurious counterexamples. The new predicates depend on certain abstract states in the spurious
abstract counterexample. Thus, different predicates are likely to be closely related when similar
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abstract counterexamples occur and this might lead to redundancy in the predicate set. These
similarities may result in the following two cases: (a) A predicate may be logically equivalent
to a propositional formula in terms of other predicates. (b) For the predicate � under considera-
tion, there exist two nontrivial propositional formulas� ��� and���� in terms of other predicates
such that ���� implies � and � implies ����. It is obvious that when case (a) happens, the pred-
icate is redundant. This predicate can be replaced by the equivalent formula and we thus obtain
a new abstract model. We call the original abstract model the current/original abstract model
and the new one the reduced abstract model. It is easy to show that the two models are bisimilar.
In the other case, a predicate � satisfying case (b) may not be redundant. More conditions on
the abstract model are needed to ensure that replacing � by � ��� or ���� will not affect the
results of model checking the abstract model. We have identified two redundancy conditions
for case (b), one that preserves safety properties (that is the original and the reduced abstract
models both satisfy the same safety properties) and one that preserves bisimulation equivalence
(that is the original and the reduced abstract models are bisimulation equivalent). different sit-
uations and there are cases where one works better than the other. Altogether there are three
different redundancy conditions. One useful feature of our redundancy conditions is that they
do not require exact computation, we can use approximations and still identify redundancy.

Removing a predicate involves constructing the abstract model using the reduced predicate
set. We give a simple method to construct the reduced abstract model from the original abstract
model in Section 4.

1.1 Related Work

The notion of redundancy has been explored in resolution theorem proving [5], where it is
called subsumption. Intuitively a clause is considered redundant if it is logically implied via
substitution by other clauses. Our conditions for redundancy are more complicated. Even if a
predicate is implied by other predicates, we still need to consider the abstract transition relation
in order to decide whether removing the predicate will affect the results of verifying a given
property.

The work that is closest to ours is the notion of strengthening in [1]. To build the abstract
model, the weakest precondition is converted to an expression over the set of predicates in the
abstraction. Thus strengthening is somewhat similar to the replacement function in this paper.
However, in [1], the result of the strengthening is over all the predicates, while the replacement
function used here is defined over a subset of the predicates. Finally, the two transformations
have different purposes. Strengthening is only used to build an abstract model; while our trans-
formation is used to remove redundant predicates and thus reduce the complexity of the abstract
model.

This paper removes unnecessary predicates introduced by counterexample guided refine-
ment. Recently, abstraction refinement with more than one counterexamples has been investi-
gated in [18, 13]. However, there is no guarantee for the elimination of redundant predicates by
considering multiple counterexamples in computing predicates alone. Thus, our techniques can
also be applied in that context.

Exploiting functional dependencies between state variables to reduce BDD size has been
investigated in [15]. In that approach, if a variable can be shown to be a function of other
variables, it can be eliminated during BDD based verification. Our approach is more general in
that it is possible to remove a predicate even if it is not equivalent to any function over other
predicates.



1.2 Outline of the Paper

In the next section we introduce predicate abstraction and other relevant theory. In Section 3 we
define the replacement function and show how to compute it. In the next section we show how
to construct the new abstract model after removing a redundant predicate. In Section 5, the sim-
plest form of redundancy, called equivalence induced redundancy, is presented. Section 6 and
Section 7 give redundancy conditions that preserve safety properties and bisimulation equiva-
lence respectively. The comparison between redundancies in the last two sections is illustrated
using examples in Section 8. We discuss how our algorithms can be applied to software verifi-
cation in Section 9. In Section 10, we describe our experiments. Section 11 concludes the paper
with some directions for future research.

2 Preliminaries

In this section we review the relevant theory of property preserving abstractions introduced by
Clarke, Grumberg and Long in [6] and Loiseaux et al. in [17]. Using this theory we describe
the predicate abstraction framework of Saidi and Shankar [22].

2.1 Notation

Let �� and �� be sets of states, and let � be a function mapping the powerset of � � to the
powerset of ��, i.e., � � ��� � ��� . The dual of the function � is defined to be

����� � ����,

where the overbar indicates complementation in the appropriate set of states.
Let � be a relation from �� to ��, and let � be a subset of ��, then the function ��� ������

gives the preimage of � under the relation �. Formally,

��� ������ � ��� � �� � ��� � �� ����	 �����

Similarly, let 
 be a subset of ��, then the function ���� ����
� gives the postimage of 
 under
the relation �. More formally,

���� ����
� � ��� � �� � ��� � 
� ����	 ����

If relation � is a total function on ��, then ������� is the same as ������ [17].
We will be reasoning about a concrete state machine and an abstraction of that machine. For

establishing a relationship between the set of concrete states �� and the set of abstract states ��

we will use the concept of a Galois connection.

Definition 1. Let ��� denotes the identity function on the powerset of S. A Galois connection
between ��� and ��� is a pair of monotonic functions ��	 ��, where � � ��� � ��� and
� � ��� � ��� , such that ���� � � Æ � and � Æ � � ���� .

The functions � and � are often called the abstraction function and the concretization func-
tion, respectively. The Galois connection that we will be using in this paper is described in the
following proposition.

Proposition 1. [17] Given a relation � � �� � ��, the pair ����� ���	 ���� ���� is a Galois con-
nection between ��� and ��� .

We denote this Galois connection by ���	 ���. Sometimes, we write ��	 �� when the relation �

is clear from the context.



2.2 Existential Abstraction

We model circuits and programs as transition systems. Given a set of atomic propositions, A,
let  � ��	 ��	 �	 �� be a transition system (refer to [9] for details).

Definition 2. Given two transition systems  � ��	 ��	 �	 �� and � � � ��	 ���	 ��	 ���, with
atomic propositions � and �� respectively, a relation � � � � ��, which is total on �, is a
simulation relation between  and � if and only if for all ��	 ��� � � the following conditions
hold:

– ����
� �� � ������

�
�

– For each state �� such that ��	 ��� � �, there exists a state ��� � �� with the property that
���	 ���� � �� and ���	 ���� � �.

We say that � simulates  through the simulation relation �, denoted by  	�
� , if for

every initial state �� in  there is an initial state ��� in � such that ���	 ���� � �. We say that
� is a bisimulation relation between  and � if  	�

� and � 	���  . If there is a
bisimulation relation between  and � then we say that  and � are bisimilar, and we
denote this by  
���

� .

Theorem 1. (Preservation of ACTL* [9])
Let  � ��	 ��	 �	 �� and � � � ��	 ���	 ��	 ��� be two transition systems, with � and �� as the
respective sets of atomic propositions and let � � � � �� be a relation such that  	�

� .
Then, for any ACTL* formula, � with atomic propositions in � � ��

� �� � implies  �� ��

In the above theorem, if � is a bisimulation relation, then for any CTL* formula � with atomic
propositions in � � ��, � �� � �  �� �.

Let  � ��	 ��	 �	 �� be a concrete transition system over a set of atomic propositions A.
Let �� be a set of abstract states and � � � � �� be a total function on S. Further, let � and L
be such that for any �� � ��, all states in ��� ������� have the same labeling over a subset �� of
�. Then an abstract transition system � � � ��	 ���	 ��	 ��� over �� which simulates  can be
constructed as follows:

��� � ���� ������� � ��� �����  ���	 ��� (1)
�����	 ���� � �� ��� ���	 ���  ����	 ����  ���	 ��� (2)

for each �� � ��	 ������ �
�

������������

����� � ��� (3)

Proposition 2. For  and � in the above construction  	�
�

In the above construction �� is defined in terms of the abstract current state �� and the abstract
next state ���. This construction is from [6], and it is also implicit in the paper by Loiseaux et
al. [17]. This kind of abstraction is called existential abstraction. The set of initial states in the
abstract system are those states of �� that are related to the initial states of  . Note that for any
two states s and �� related under � the property ���� � �� � ������ holds.



2.3 Predicate Abstraction

Predicate abstraction can be viewed as a special case of existential abstraction. In predicate
abstraction a set of predicates ���	 � � � 	 ���, including those in the property to be verified,
are identified from the concrete program. These predicates are defined on the variables of the
concrete system. They also serve as the atomic propositions that label the states in the concrete
and abstract transition systems. That is, the set of atomic propositions is � � ���	 ��	 ��	 ���.
A state in the concrete system will be labeled with all the predicates it satisfies. The abstract
state space has a boolean variable 
	 corresponding to each predicate �	 . So each abstract state
is a valuation of these � boolean variables. An abstract state will be labeled with predicate � 	 if
the corresponding bit 
	 is 1 in that state. The predicates are also used to define a total function
� between the concrete and abstract state spaces. A concrete state � will be related to an abstract
state �� through � if and only if the truth value of each predicate on � equals the value of the
corresponding boolean variable in the abstract state ��. Formally,

���	 ��� �
�

��	��

�	���� 
	���� (4)

Note that � is a total function because each �	 can have one and only one value on a given
concrete state and so the abstract state corresponding to the concrete state is unique. Based on
Section 2.1, the pair of functions ���� ��� and ���� ��� generated from relation � forms a Galois
connection. We will denote this Galois connection by ��	 ��. Note that since � is a total function,
���� ��� � ��� ���. Using this � and the construction given in the previous subsection, we can
build an abstract model which simulates the concrete model. In [22] the abstract transition
relation �� is defined as

�
� �� � �� � � ��	 � �������	 � ��  �� �� �� � �� �� ���� (5)

where �� is an arbitrary conjunction of the literals of the current state variables
�
�	 
�	 � � � 	 
�� and �� � is an arbitrary disjunction of literals of the next state variables
�
�

�	 

�
�	 � � � 	 


�
��. It can be shown that (5) is equivalent to (2).

3 The Replacement Function

Our goal is to eliminate 
� from the abstract model � without sacrificing accuracy. For this
purpose, we define an under-approximation, �
 �
��, for 
� in terms of the other variables.
More precisely, let M be a concrete transition system, ���	 ��	 ��	 ��� be a set of predicates
defined on the states of  , and let � be a total function defined by equation (4). Also, let �
be the corresponding abstract transition system over � � �
�	 
�	 ��	 
��. The support of an
abstract set of states ��� includes 
� if and only if

��� � �������
� � 	� � ��� �� ���
� � 
� � ����

Consider the boolean variable 
� and the set � � � ��
��. Let � denote either 
� or �
�. The
replacement function for�, denoted by�
 ���, is defined as the largest set of consistent abstract
states (we call an abstract state consistent if its concretization is not empty) whose support is
included in � and whose concretization is a subset of ����. The implications ���
 �
��� �
��
�� and ���
 ��
���� ���
�� follow from this definition. Figure 1 shows the relationship
between the concretization of a predicate 
 �, �
 �
��, and ��
 ��
��.

We now show how to compute�
 �
��. Consider the abstract state space �� given by tuples
of the form �
�	 
�	 ��	 
��. Not all the abstract states have corresponding concrete states. We



�����������
��������� ��

Fig. 1. Relationship between the concretization of ��, ������, and ��� �����

consider only the set of consistent abstract states, �, that are related to some concrete states by
the relation (4) in Section 2.3. Formally, if S is the set of concrete states, �� 	 �
 � � � �� is the
set of predicates and � is the simulation relation as in Section 2.3, then

� � ���� ����true� � ��� � �� � ��
�

��	��

�	��� � 
	������

For hardware verification, all the concrete state variables have finite domain. The set � can
be efficiently computed using OBDDs [4] through a series of conjunction and quantification
operations. However, a general theorem prover is needed for infinite state systems. We define
� ���

to be the set of reduced abstract states obtained by taking all the states in � that have the
bit 
� equal to 1 and dropping the bit 
 �. Similarly �����

is obtained by taking all those states
in � with bit 
� equal to 0 and dropping the bit 
 �. The following theorem shows that the set
�����

������
� is a candidate for �
 �
��.

Theorem 2. Let � � �
�	 
�	 � � � 	 
�� be the boolean variables. Let � � � � �
��, and let
�� � � ���

�� ����
be a set of abstract states. Then ����� � ��
�� and �� is the largest set

of consistent abstract states that does not have bit 
� in its support. Likewise, if �� � � ����

�����
, then ����� � ���
�� and �� is the largest set of consistent abstract states that does

not have bit 
� in its support.

Replacement function is used extensively in the later sections. The correctness of our algo-
rithms only depend on the property that ���
 �
���� ��
��. The nice advantage of this is we
can use any � that satisfies ���� � ��
�� instead of using �
 �
�� � ��, which is difficult
to compute when there are many predicates. Instead we use the following approximation: we
first partition predicates into clusters as in Section 5, then compute the set of consistent abstract
states and replacement function for each cluster separately. We use these easy to compute ap-
proximations to identify and remove redundant predicates. This does not affect the correctness
(i.e., every identified predicate is indeed redundant), but some redundant predicates may fail to
be identified.

4 Removing Redundant Predicates

Removal of a predicate involves constructing a new abstract transition system from the old
abstract transition system. The state space of the new abstract transition system is the set of all
possible valuations of the boolean variables corresponding to the new predicate set. The new
predicate set has one less predicate than the old predicate set. Let � � be the redundant predicate
that is to be removed. If the old state space is given by k-tuples �
�	 
�	 ���	 
��, then the



new state space is given by (k-1)-tuples �
�	 � � � 	 
���	 
�	�	 � � � 	 
��. Suppose the original
abstract model is � � � ��	 ���	 ��	 ���. We now describe how to construct the new abstract
model, � � ���	 ���	 ��	 ��� (r for “reduced”), from � if we decide to drop the predicate
��. The relation �� between the concrete state space and the reduced state space is

����	 ��� �
�

��	���	 �
�

�	��� � 
	�����

The construction of the new state space is straightforward: we just drop the boolean variable

�. The labeling �� is as described in Section 2.3: a reduced abstract state �� is labeled with a
predicate �	 if and only if the corresponding bit 
	 is 1 in that state. The new transition relation
�� is obtained from the original abstract transition relation �� by the following equation

�����	 �
�
�� � ���	 �

�
�� ������ 	 ���	 ��

�
�	 �

�
��� (6)

where ���	 ��� stands for the state (in the original abstract model) obtained by inserting � � into
�� as the i-th bit. Thus two reduced abstract states are related if there are two related states in
the original abstract model that are “extensions” of these reduced abstract states. The reduced
initial set of states can be similarly constructed using existential quantification as follows

������� � ���� �������	 ���� (7)

Lemma 1. The transition relation of the reduced abstract model defined by equation (6) is
the same as the one built directly from the concrete model using equation (2) and � � over the
reduced set of predicates.

Thus, �� constructed using equation (6) is equivalent to the one constructed directly from the
concrete model using equation (2).

5 Equivalence Induced Redundancy

In this section, we present the simplest form of redundancy, called equivalence induced redun-
dancy. More specifically, a predicate �� is redundant if there exist two propositional formulas in
terms of other predicates that are logically equivalent to � � and ��� respectively. The reduced
abstract model can be built by replacing 
 � and �
� using the equivalent formulas. It is easy
to see that the resulting reduced abstract model is bisimilar to the original model. We present
a method, based on replacement function, to determine if a predicate � � can be expressed in
terms of the other predicates. The following theorem shows that under some conditions the
concretization of the replacement functions for 
 � and �
� are logically equivalent to �� and
���.

Theorem 3. For a predicate ��, if ����
�����

� �, then ���
 �
��� 
 �� and ���
 ��
�� 

���.

Equivalence induced redundancy occurs often because of a heuristic we use in predicate ab-
straction. For hardware verification, the predicates we consider are all propositional formulas
over concrete state variables with finite domains. It is well known that the number of proposi-
tional formulas over � boolean variables is ��

�

. Therefore, it is possible that the abstract model
is much bigger than the concrete model. So we use a heuristic to avoid this problem. Given a
predicate, which is a propositional formula, the concrete state variables that this formula de-
pends on are called the supporting variables of the predicate. We partition the predicates into



clusters. Two predicates go into the same cluster if they share many supporting variables. Let �
be a cluster. If the number of predicates in � is greater than the number of supporting variables
(non-boolean variables are expanded to bits that are required to encode their domains) in � then
we will use the supporting variables instead of the predicates to build the abstract model. So,
all the original predicates in the cluster � become redundant. In this way, the overall size of
the abstract model will be bounded by the size of the concrete model. Since software system
may have unbounded state variables, this technique can not be used in general for software
verification.

6 Redundant Predicates for Safety Properties

A predicate in a given set of predicates is redundant for a set of properties in � if the abstract
transition system constructed without using this predicate satisfies the same set of properties as
the original abstract transition system (constructed using all the predicates). In this section we
deal with safety properties of the form �� �, where � is a boolean formula without temporal
operators. Note that any safety property can be rewritten into the above form through tableau
construction with no fairness constraints [9].

Let �� be a set of states defined by a set of boolean variables � � �
�	 
�	 ��	 
�� as before,
and � � � � �
��. Let �� � ���	 �� �� ��� denote the projection of the set �� on � . For any state
�� � ��, �
���� �
������ is a set of states defined as follows:

– If �
 �
������, then �
���� �
������ � ����	 
���
– If �
 ��
������, then �
���� �
������ � ����	 	���
– If ��
 �
������  ��
 ��
������, �
���� �
������ � ����	 	�	 ���	 
���

We say that a set of consistent abstract states �� is oblivious to 
� if and only if

��� � ��� ���
 �
������  ��
 ��
������� � ����
� � 	� � ��  ���
� � 
� � ���

where ���
� � 	� is a state that agrees with �� on all bits except possibly the bit 
�, which is
fixed to 0. ���
� � 
� is similar. Intuitively, if neither �
 �
������ nor �
 ��
������� holds, the
values of variables 
�	 � � � 	 
���	 
�	�	 � � � 	 
� can not determine the value of 
�. In order for
�� to be oblivious, it must contain states with both possible values of 
 �.

A transition relation �� � ��� �� is called oblivious to 
�, if for any state �� � ��, ���� � �������
is oblivious to 
�. More formally, �� is oblivious to 
� if and only if

���	 ���� ��
 �
�����
��  ��
 ��
�����

���

� �����	 ����
� � 
��� �����	 ����
� � 	���� (8)

In order to test whether a transition relation �� is oblivious to 
� or not, we take the negation of
(8) and formulate it as a SAT instance by converting it into a CNF formula. If the CNF formula
is satisfiable then we conclude that �� is not oblivious otherwise it is. The negation of (8) is the
following

���	 ���� ��
 �
�����
��  ��
 ��
�����

�� 

� �����	 ����
� � 
�� � �� ������	 ����
� � 	���� (9)



Theorem 4. Given an abstract transition system � � � ��	 ���	 ��	 ��� which corresponds to a
set of predicates � , and a safety property � � �� �, where � is a propositional formula with-
out temporal operators. Also assume that predicate 
� is one of the predicates in � but not one
of the predicates in � . If ��� and �� are oblivious to 
�, then the abstract transition system cor-
responding to the reduced set of predicates � � � ��
�� satisfies � if and only if � satisfies it.

7 Redundant Predicates for Bisimulation Equivalence

In the previous section, the reduced abstract model  � was such that it satisfies a safety prop-
erty, if and only if � satisfies it. We can strengthen this result so that � is bisimulation
equivalent to � by imposing slightly different conditions on ��.

Let � � �� � �� be a relation defined such that two states �� � �� and �� � �� are related
under � if and only if �� � �
���� �
������, where �
���� �
������ is as defined previously. We
intend to make � a bisimulation relation between � and �. From the construction of �, it
is easy to see that � 	 �. In order for � to simulate �, we must make sure that for any
�� � �		 
�, if ���	 ��� is a consistent abstract state, then ���	 ��� can simulate ��. If only one of
���	 	� and ���	 
� is a consistent state, from (6), it is easy to see that any successor state of ��
corresponds to a successor of the single consistent state. In order to handle the case when both
���	 	� and ���	 
� are consistent, we have the following condition on ��: for any state �� � ��

��
 �
������  ��
 ��
������� ������ ������
� � 	�	 ���� � ������
� � 
�	 ����� (10)

This condition says that if the value of 
� cannot be determined by the values of the other
boolean variables, i.e., both ���
� � 	� and ���
� � 
� are consistent, then �� does not distin-
guish between different values of the bit 
 �. If �
 �
������ is true then we know that ���
� � 	�
is inconsistent. If �
 ��
������ is true then we know that ���
� � 
� is inconsistent. In case that
both of these are false (which is the condition on the left hand side of (10)), then we require
that the successors of the states ���
� � 	�	 ���
� � 
� be the same. Similar to Section 6, to test
whether �� satisfies condition (10) or not, we test the satisfiability of its negation.

���	 ���� ��
 �
������  ��
 ��
������ 

� ������
� � 	�	 ����� �� �������
� � 
�	 ����� (11)

Theorem 5. If condition (10) holds, then � is a bisimulation relation between � and �

It is interesting to note that the conditions for preserving safety properties and bisimulation
equivalence are different and do not subsume each other.

8 Difference in the Bisimulation and �� � conditions

We have seen two redundancy conditions, one for preserving �� � properties and the other
for preserving ���� properties. In this section, we give examples of transition relation which
satisfy one of the conditions and violates the other. This demonstrates that the conditions (8)
and (10) are not comparable.



8.1 A transition relation that satisfies the Bisimulation condition

We first present an abstract transition relation that satisfies the Bisimulation condition, (10),
but does not satisfy the obliviousness condition required for preserving �� � properties. The
abstract transition system is:

��� 
� � 
�
�  
�

�

��� 
� � 
�
�  
�

�

��� 
� � 
�
�

Suppose we are trying to remove 
�. Assume that �
 �
�� � �
� and �
 ��
�� � �
�.
The condition for bisimulation, (9), then is
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� � ���
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�
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If 
�  
� is false then the condition is true. If 
�  
� is true then we need to check the
validity of
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�
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Now from (b) 
 �
� is true if 
� is true and from (c) 
 �

� is true if 
� is true. So the problem
now reduces to validity of

��
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�
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�
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�
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�
��  �
� � 
�

���

which is trivially true. So �� satisfies the bisimulation condition. Now we show that it does
not satisfy the condition for �� � preservation. Condition for �� � preservation in this case
would be
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which is equivalent to
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This expression is not true for 
 �
� � 
�

� � 
�
� � 
� � 
 and 
� � 
� � 	. So

we have shown a transition relation �� that satisfies the bisimulation condition but not the�� �

preservation condition.

8.2 A transition relation that satisfies the�� � condition

The transition relation is


� � �
�
�


� � 
�
�  
�




� � 
�
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�
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We assume that �
 �
�� � �
� and �
 ��
�� � �
�. The �� � preservation condition
(after some simplification) is
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If 
�
�  
�

� is false then the above expression is true. In 
 �
�  
�

� is true, then we can
prove the following:
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�
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���. We only need to prove �
� im-
plies �
� � 
�

��, which is trivially true.
– ��
� � �
�
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�
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���. We just need to show that if 
 �

�
�
�

is true and �
� � �
�
�� is true then �
�. This is clear since 
�

� is true implies �
�
� is

not true. And �
� � ���� � can be true only if �
� is true.

Hence the�� � preservation condition is satisfied. The bisimulation condition for this example
(after some simplification) is:
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This expression is not true for 
� � 
� � 
�
� � 
 and 
�

 � 
�
� � 
�

� � 	.
Hence we have shown two transition relations such that they satisfy only one of the two

preservation conditions. From this we can conclude that the two preservation conditions are not
related to each other.

9 Removing Redundancy for Software Verification

In this section, we will show how our redundancy removal algorithms can be applied to soft-
ware (or infinite state systems) verification. Performance of our redundancy removal algorithms
depend on efficient computation of the replacement functions�
 �
�� (�
 ��
��) is important.
Recall that, we first calculate the set of consistent abstract states �, and then use ����

and �����

to define the replacement function. For software verification, predicates may be formulas in-
volving unbounded state variables. Instead of using BDDs to compute � as in Section 3, we
use a theorem prover to compute � � ��true� as in traditional predicate abstraction [1, 21, 22].
Computing ��true� could involve many calls to a theorem prover [22]. However, the correct-
ness of our overall algorithm does not depend on the precise calculation of the set of consistent
abstract states. Any approximation, � , of�
 �
�� satisfying ����� ��
�� would be sufficient.
So the existing techniques for approximating � can be applied [1].

Except for the replacement function, all the other computations, required in our algorithms
to identify and remove redundancy, are performed on the original abstract model. It is usually
the case that the abstract model is finite state. Therefore, the algorithms in the previous sections
can be easily applied. The boolean programs in the SLAM project [1, 2], which have infinite
control, are an exception. Extending our algorithms to them is left for future work.

10 Experimental Results

We have implemented our abstraction refinement framework on top of NuSMV model checker
and the zChaff SAT solver [23]. The method to compute predicates for all the experiments is
based on the deadend and bad states separation algorithm presented in [8].



We present the results for hardware verification in Table 1. We have 6 safety properties to
verify for a programmable FIR filter (PFIR) which is a component of a system-on-chip design.
For all the properties shown in the first column of Table 1, we have performed cone-of-influence
reduction before the verification. The resulting number of registers and gates is shown in the
second and third columns. Most properties are true, except for scr1 and prop5. The lengths
of the counterexamples are shown in the fourth column. All these properties are difficult to
verify for the state-of-art BDD-based model checker, Cadence SMV. Except for the two false
properties, Cadence SMV can not verify any of them in 24 hours. The verification time for scr1
is �� seconds, and for prop5 is �
� seconds, which are worse than our results.

We compare the systems we built with and without the redundancy removal techniques de-
scribed in this paper. In Table 1, the fifth to seventh columns are the results obtained without
our techniques; while the last four columns are the results obtained with the techniques en-
abled. We compare the time (in seconds), the number of refinement iterations, and the number
of predicates in the final abstraction. The last column is the number of redundant predicates our
method is able to identify. In all cases, our new method outperforms the old one in the amount
of time used, sometimes over an order of magnitude improvement is achieved. With the new
method, the number of refinement iterations is usually smaller. We can usually identify a sig-
nificant number of predicates as redundant. As a result, the number of predicates in the final
abstraction is usually small.

circuit # regs # gates ctrex Old New
length time iters pred time iters pred red

scr1 243 2295 16 637.5 103 40 386.4 67 34 23
prop5 250 2342 17 2262.0 131 48 756.2 101 44 26
prop8 244 2304 true 288.5 68 35 159.8 40 25 20
prop9 244 2304 true 2448.7 146 46 202.7 43 27 25
prop10 244 2304 true 6229.3 161 55 178.2 50 25 23
prop12 247 2317 true 707.0 111 45 591.2 80 38 26

Table 1. Comparison without and with redundancy removal

11 Conclusion and Future Work

We have presented new algorithms for the identification and removal of redundant predicates.
These algorithms enable us to identify three conditions for redundancy removal: equivalence
induced redundancy, redundancy that preserves safety properties and redundancy that preserves
bisimulation equivalence. Once a redundant predicate has been identified, a reduced abstract
model can be efficiently computed without referring to the concrete model. Experimental results
demonstrate the usefulness of our algorithms.

An interesting extension of the work presented in this paper is to identify redundant sets
of predicates. That is, instead of identifying redundant predicates one at a time, sets of redun-
dant predicates are identified together. In this setting the redundancy criteria may have to be
different. The presented algorithms work for both hardware and software verification provided
that the abstract model is finite state. The SLAM project uses boolean programs as the abstract
model, which might have infinite control. It will be interesting to investigate how to extend our
algorithm to handle boolean programs.
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