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Abstract. One of the advantages of temporal-logic model-checking tools is their
ability to accompany a negative answer to a correctness query with a counterex-
ample to the satisfaction of the specification in the system. On the other hand,
when the answer to the correctness query is positive, most model-checking tools
provide no witness for the satisfaction of the specification. In the last few years
there has been growing awareness of the importance of suspecting the system or
the specification of containing an error also in cases where model checking suc-
ceeds. In particular, several works have recently focused on the detection of the
vacuous satisfaction of temporal logic specifications. For example, when verify-
ing a system with respect to the specification � � ����� � � ������ (“every
request is eventually followed by a grant”), we say that � is satisfied vacuously in
systems in which requests are never sent. Current works have focused on detect-
ing vacuity with respect to subformula occurrences. In this work we investigate
vacuity detection with respect to subformulas with multiple occurrences.
The generality of our framework requires us to re-examine the basic intuition un-
derlying the concept of vacuity, which until now has been defined as sensitivity
with respect to syntactic perturbation. We study sensitivity with respect to se-
mantic perturbation, which we model by universal propositional quantification.
We show that this yields a hierarchy of vacuity notions. We argue that the right
notion is that of vacuity defined with respect to traces. We then provide an algo-
rithm for vacuity detection and discuss pragmatic aspects.

1 Introduction

Temporal logics, which are modal logics geared towards the description of the temporal
ordering of events, have been adopted as a powerful tool for specifying and verifying
concurrent systems [Pnu77]. One of the most significant developments in this area is the
discovery of algorithmic methods for verifying temporal-logic properties of finite-state
systems [CE81,CES86,LP85,QS81,VW86]. This derives its significance both from the
fact that many synchronization and communication protocols can be modeled as finite-
state systems, as well as from the great ease of use of fully algorithmic methods. In
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temporal-logic model checking, we verify the correctness of a finite-state system with
respect to a desired behavior by checking whether a labeled state-transition graph that
models the system satisfies a temporal logic formula that specifies this behavior (for an
in-depth survey, see [CGP99]).

Beyond being fully-automatic, an additional attraction of model-checking tools is
their ability to accompany a negative answer to the correctness query with a counterex-
ample to the satisfaction of the specification in the system. Thus, together with a nega-
tive answer, the model checker returns some erroneous execution of the system. These
counterexamples are very important and can be essential in detecting subtle errors in
complex designs [CGMZ95]. On the other hand, when the answer to the correctness
query is positive, most model-checking tools provide no witness for the satisfaction of
the specification in the system. Since a positive answer means that the system is correct
with respect to the specification, this may, a priori, seem like a reasonable policy. In the
last few years, however, industrial practitioners have become increasingly aware of the
importance of checking the validity of a positive result of model checking. The main
justification for suspecting the validity of a positive result is the possibility of errors in
the modeling of the system or of the desired behavior, i.e., the specification.

Early work on “suspecting a positive answer” concerns the fact that temporal logic
formulas can suffer from antecedent failure [BB94]. For example, in verifying a sys-
tem with respect to the CTL specification � � ������ � �� ������ (“every request
is eventually followed by a grant”), one should distinguish between vacuous satisfac-
tion of �, which is immediate in systems in which requests are never sent, and non-
vacuous satisfaction, in systems where requests are sometimes sent. Evidently, vacuous
satisfaction suggests some unexpected properties of the system, namely the absence of
behaviors in which the antecedent of � is satisfied.

Several years of practical experience in formal verification have convinced the ver-
ification group at the IBM Haifa Research Laboratory that vacuity is a serious problem
[BBER97]. To quote from [BBER97]: “Our experience has shown that typically ���
of specifications pass vacuously during the first formal-verification runs of a new hard-
ware design, and that vacuous passes always point to a real problem in either the design
or its specification or environment.” The usefulness of vacuity analysis is also demon-
strated via several case studies in [PS02]. Often, it is possible to detect vacuity easily by
checking the system with respect to hand-written formulas that ensure the satisfaction
of the preconditions in the specification [BB94,PP95]. To the best of our knowledge,
this rather unsystematic approach is the prevailing one in the industry for dealing with
vacuous satisfaction. For example, the FormalCheck tool [Kur98] uses “sanity checks”,
which include a search for triggering conditions that are never enabled.

These observations led Beer et al. to develop a method for automatic testing of vacu-
ity [BBER97]. Vacuity is defined as follows: a formula� is satisfied in a system� vac-
uously if it is satisfied in� , but some subformula� of � does not affect � in� , which
means that � also satisfies � �� � ��� for all formulas � � (here, � �� � ��� denotes
the result of substituting � � for � in �). Beer et al. proposed testing vacuity by means of
witness formulas. Formally, we say that a formula �� is a witness formula for the speci-
fication � if a system � satisfies � non-vacuously iff � satisfies both � and � �. In the
example above, it is not hard to see that a system satisfies � non-vacuously iff it also



satisfies �� ��� . In general, however, the generation of witness formulas is not trivial,
especially when we are interested in other types of vacuity passes, which are more com-
plex than antecedent failure. While [BBER97] nicely set the basis for a methodology
for detecting vacuity in temporal-logic specifications, the particular method described
in [BBER97] is quite limited.

A general method for detection of vacuity for specifications in CTL � (and hence also
LTL, which was not handled by [BBER97]) was presented in [KV99,KV03]. The key
idea there is a general method for generating witness formulas. It is shown in [KV03]
that instead of replacing a subformula � by all subformulas � �, it suffices to replace it
by either ���� or ����� depending on whether� occurs in � with negative polarity (i.e.,
under an odd number of negations) or positive polarity (i.e., under an even number of
negations). Thus, vacuity checking amounts to model checking witness formulas with
respect to all (or some) of the subformulas of the specification �. It is important to
note that the method in [KV03] is for vacuity with respect to subformula occurrences.
The key feature of occurrences is that a subformula occurrence has a pure polarity
(exclusively negative or positive). In fact, it is shown in [KV03] that the method is not
applicable to subformulas with mixed polarity (both negative and positive occurrences).

Recent experience with industrial-strength property-specification languages such
as ForSpec [AFF�02] suggests that the restriction to subformula occurrences of pure
polarity is not negligible. ForSpec, which is a linear-time language, is significantly
richer syntactically (and semantically) than LTL. It has a rich set of arithmetical and
Boolean operators. As a result, even subformula occurrences may not have pure polar-
ity, e.g., in the formulas �� 	 (� denotes exclusive or). While we can rewrite �� 	 as
����	�� ���� 	�, it forces the user to think of every subformula occurrence of mixed
polarity as two distinct occurrences, which is rather unnatural. Also, a subformula may
occur in the specification multiple times, so it need not have a pure polarity even if
each occurrence has a pure polarity. For example, if the LTL formula ��� � �� holds
in a system � then we’d expect it to hold vacuously with respect to the subformula �
(which has a mixed polarity), though not necessarily with respect to either occurrence
of �, because both formulas ������ � �� and ��� � ������ may fail in � . (Surely,
the fact that ������ � ������ fails in � should not entail that ��� � �� holds in �
non-vacuously.) Our goal is to remove the restriction in [KV03] to subformula occur-
rences of pure polarity. To keep things simple, we stick to LTL and consider vacuity
with respect to subformulas, rather than with respect to subformula occurrences. We
comment on the extension of our framework to ForSpec at the end of the paper.

The generality of our framework requires us to re-examine the basic intuition un-
derlying the concept of vacuity, which is that a formula � is satisfied in a system �

vacuously if it is satisfied in � but some subformula � of � does not affect � in � . It
is less clear, however, what does “does not affect” mean. Intuitively, it means that we
can “perturb” � without affecting the truth of � in � . Both [BBER97] and [KV03]
consider only syntactic perturbation, but no justification is offered for this decision. We
argue that another notion to consider is that of semantic perturbation, where the truth
value of � in � is perturbed arbitrarily. The first part of the paper is an examination in
depth of this approach. We model arbitrary semantic perturbation by a universal quan-
tifier, which in turn is open to two interpretations (cf. [Kup95]). It turns out that we get



two notions of “does not affect” (and therefore also of vacuity), depending on whether
universal quantification is interpreted with respect to the system � or with respect to
its set of computations. We refer to these two semantics as “structure semantics” and
“trace semantics”. Interestingly, the original, syntactic, notion of perturbation falls be-
tween the two semantic notions.

We argue then that trace semantics is the preferred one for vacuity checking. Struc-
ture semantics is simply too weak, yielding vacuity too easily. Formula semantics is
more discriminating, but it is not robust, depending too much on the syntax of the
language. In addition, these two semantics yield notions of vacuity that are computa-
tionally intractable. In contrast, trace semantics is not only intuitive and robust, but it
can be checked easily by a model checker.

In the final part of the paper we address several pragmatic aspects of vacuity check-
ing. We first discuss whether vacuity should be checked with respect to subformulas or
subformula occurrences and argue that both checks are necessary. We then discuss how
the number of vacuity checks can be minimized. We also discuss how vacuity results
should be reported to the user. Finally, we describe our experience of implementing
vacuity checking in the context of a ForSpec-based model checker.

A version with full proofs can be downloaded from the authors’ homepages.

2 Preliminaries

LTL. Formulas of LTL are built from a set �
 of atomic propositions using the usual
Boolean operators and the temporal operators X (“next time”) and U (“until”). Given a
set AP , an LTL formula is:

� ����, �����, � for � � �
 .
� ��, � � �, ��, or ���, where � and � are LTL formulas.
We define satisfaction of LTL formulas with respect to computations of Kripke

structures. A Kripke structure is � � 	�

 �
 ��
 �
 �
 where �
 is the set of atomic
propositions, � is a set of states, �� is a set of initial states, � � � � � is a total tran-
sition relation, and � 	 �
 � �� assigns to each atomic proposition the set of states in
which it holds. A computation is a sequence of states � � ��
 ��
 � � � such that �� � ��
and forall � 
 � we have ���
 ����� � �. We denote the set of computations of � by
� ��� and the suffix �� 
 ����
 � � � of � by �� .

The semantics of LTL is defined with respect to computations and locations. We
denote �
�
 � �� � when the LTL formula � holds in the computation � at location
� 
 �. A computation � satisfies an LTL formula �, denoted � �� � if �
 � �� �. The
structure � satisfies �, denoted � �� � if for every computation � � � ��� we have
� �� �. For a full definition of the semantics of LTL we refer the reader to [Eme90].

An occurrence of formula � of � is of positive polarity in � if it is in the scope
of an even number of negations, and of negative polarity otherwise. The polarity of
a subformula is defined by the polarity of its occurrences as follows. Formula � is of
positive polarity if all occurrences of � in � are of positive polarity, of negative polarity
if all occurrences of � in � are of negative polarity, of pure polarity if it is either of
positive or negative polarity, and of mixed polarity otherwise.



Given a formula� and a subformula of pure polarity� we denote by� �� � �� the
formula obtained from � by replacing � by ���� (�����) if � is of negative (positive)
polarity.
UQLTL. The logic UQLTL augments LTL with universal quantification over proposi-
tional variables. Let � be a set of propositional variables. The syntax of UQLTL is as
follows. If� is an LTL formula over the set of atomic propositions�
�� , then ��� is
a UQLTL formula. E.g., ��� ��� �� is a legal UQLTL formula, while ��� ��� ��
is not. UQLTL is a subset of Quantified Propositional Temporal Logic [SVW85], where
the free variables are quantified universally. We use � to denote a propositional variable.
A closed formula is a formula with no free propositional variables.

We now define two semantics for UQLTL. In structure semantics a propositional
variable is bound to a subset of the states of the Kripke structure. In trace semantics a
propositional variable is bound to a subset of the locations on the trace.

Let � be a Kripke structure with a set of states �, let � � � ���, and let �
be a set of propositional variables. A structure assignment � 	 � � �� maps every
propositional variable � � � to a set of states in �. We use �� to denote the �th state
along �, and � to denote UQLTL formulas.

Definition 1 (Structure Semantics). The relation ��� is defined inductively as follows:

– �
�
 �
 � ��� � iff �� � ����.
– �
�
 �
 � ��� ��� iff �
�
 �
 ���� ��� ��� � for every �� � �.
– For other formulas, �
�
 �
 � ��� is defined as in LTL.

We now define the trace semantics for UQLTL. Let � be a set of propositional
variables. A trace assignment � 	 � � �� maps a propositional variable � � � to a
set of natural numbers (points on a path).

Definition 2 (Trace Semantics). The relation ��� is defined inductively as follows:

– �
�
 �
 � ��� � iff � � ����.
– �
�
 �
 � ��� ��� iff �
�
 �
 ���� � �� ��� � for every � � � 	.
– For other formulas, �
�
 �
 � ��� is defined as in LTL.

A closed UQLTL formula � is structure satisfied at point � of trace � � � ���,
denoted �
�
 � ��� �, iff �
�
 �
 � ��� � for some � (choice is not relevant since �
is closed). A closed UQLTL formula � is structure satisfied in structure � , denoted
� ��� �, iff �
�
 � ��� � for every trace � � � ���. Trace satisfaction is defined
similarly for a trace and for structure, and is denoted by �� �.

Trace semantics is stronger than structure semantics in the following sense.

Theorem 1. Given a structure� and a UQLTL formula�,� ��� � implies� ��� �.
The reverse implication does not hold.

The proof resembles the proofs in [Kup95] for the dual logic EQCTL. Kupferman
shows that a structure might not satisfy a formula, while its computation tree does. In-
deed, a trace assignment can assign a variable different values when the computation
visits the same state of � . We observe that for LTL formulas both semantics are iden-
tical. That is, if � is an LTL formula, then � ��� � iff � ��� �. We use �� to denote
the satisfaction of LTL formulas, rather than ��� or ���.



3 Alternative Definitions of Vacuity

Let � be a subformula of �. We give three definitions of when � does not affect �,
and compare them. We refer to the definition of [BBER97] as formula vacuity. We give
two new definitions, trace vacuity and structure vacuity, according to trace and formula
semantics. We are only interested in the cases where � is satisfied in the structure.

Intuitively, � does not affect � in � if we can perturb � without affecting the truth
of � in � . In previous work, syntactic perturbation was allowed. Using UQLTL we
formalize the concept of semantic perturbation. Instead of changing � syntactically, we
directly change the set of points in a structure or on a trace in which it holds.

Definition 3. Let � be a formula satisfied in � and let � be a subformula of �.

– � does not affect� � in� iff for every LTL formula �, � �� � �� � �� [BBER97].
– � does not affect� � in � iff � ��� ��� �� � ��.
– � does not affect� � in � iff � ��� ��� �� � ��.

We say that � affects� � in � iff it is not the case that � does not affect� � in M.
We say that � is formula vacuous in � , if there exists a subformula � such that � does
not affect� �. We define affects�, affects�, structure vacuity and trace vacuity similarly.
Notice that we do not restrict a subformula to occur once and it can be of mixed polarity.

The three semantics form a hierarchy. Structure semantics is the weakest and trace
semantics the strongest. Formally, for an LTL formula � we have the following.

Lemma 1. – If � does not affect� � in � , then � does not affect� � in � as well.
– If � does not affect� � in � , then � does not affect� � in � as well.
– The reverse implications do not hold.

Which is the most appropriate definition for practical applications? We show that
structure and formula vacuity are sensitive to changes in the design that do not relate to
the formula. Consider the formula� � �� �� and models�� and�� in Figure 1. In
�� we add a proposition 	 whose behavior is independent of �’s behavior. We would not
like formulas that relate to � to change their truth value or their vacuity. Both� � and its
extension�� satisfy� and� relates only to �. While � does not affect� � in��, it does
affect� � in �� (and similarly for affects�). Indeed, the formula � ��� 	� � 	 � �	

does not hold in ��. Note that in both models � affects� �.

p p,!qp,q

M1 M2

qp

M3

Fig. 1. Changes in the design and dependance on syntax.

Formula vacuity is also sensitive to the specification language. That is, a formula
passing vacuously might pass unvacuously once the specification language is extended.



Consider the Kripke structure �� in Figure 1 and the formula � � �	 � ��	.
For the single trace � � � ����, it holds that �� � ��. Thus, every (future) LTL
formula is either true along every suffix of � �, or is false along every such suffix. Hence,
subformula 	 does not affect� �. We get an opposite result if the specification language
is LTL with ��� [LPZ85]. Formally, for � in LTL, �
�
 � �� ������ iff � � �
and �
�
 �� 
 �� �. Clearly, for every model � we have �
�
 � ��� ������. In the
example,�� ��� �

�
	 � ������

�
since��
 �
 � �� ������ iff � � 
, thus 	 affects��.

To summarize, trace vacuity is preferable since it is not sensitive to changes in the
design (unlike structure and formula vacuity) and it is independent of the specification
language (unlike formula vacuity). In addition as we show in Section 4, trace vacuity is
the only notion of vacuity for which an efficient decision procedure is known to exist.

We claim that if subformulas are restricted to pure polarity, all the definitions of
vacuity coincide. In such a case the algorithm proposed in [KV03], to replace the sub-
formula � by � is adequate for vacuity detection according to all three definitions.

Theorem 2. If � is of pure polarity in � then the following are equivalent.

1. �
�
 � �� � �� � ��
2. �
�
 � ��� ��� �� � ��
3. for every formula � we have �
�
 � �� � �� � ��
4. �
�
 � ��� ��� �� � ��

4 Algorithm and Complexity

We give now algorithms for checking vacuity according to the different definitions. We
show that the algorithm of [KV03], which replaces a subformula by either ���� or
����� (according to its polarity), cannot be applied to subformulas of mixed polarity.
We then study structure and trace vacuity. Decision of formula vacuity remains open.

We show that the algorithm of [KV03] cannot be applied to subformulas of mixed
polarity. Consider the Kripke structure �� in Figure 1 and the formula � � � � ��.
Clearly, �� ���� ��� ��� �� (with the structure assignment ���� including only the
initial state), �� ��� � ��� 	�, and �� ���� ��� ��� �� (with the trace assignment
���� � ���). Hence, � affects � according to all three definitions. On the other hand,
� �� � ��� ������ and � �� � ��� �����. We conclude that the algorithm of
[KV03] cannot be applied to subformulas of mixed polarity.

We now solve trace vacuity. For a formula � and a model � � 	�

 �
 ��
 �
 �

where � �� �, we check whether � affects� � in � by model checking the UQLTL
formula �� � ��� �� � �� on � . Subformula � does not affect� � iff � �� ��.
The algorithm in Figure 2 detects if � affects� � in � . The structure � � guesses at
every step the right assignment for the propositional variable �. Choosing a path in � �

determines the trace assignment of �. Formally, we have the following.

Theorem 3. [VW94] Given a structure � and an LTL formula �, we can model check
� over � in time linear in the size of � and exponential in � and in space polyloga-
rithmic in the size of � and quadratic in the length of �.



�� Compute the polarity of � in �.
�� If � is of pure polarity, model check � �� ��� � ��.
�� Otherwise, construct � � � ��� � �	�
 � 	 ��
 �� 	 ��
 ��
 

, where for every
��
 �� � �� and ��
 �� � � we have ��� 	��
 �� 	��� � �� iff ���
 ��� � �.

	� Model check � � �� ��� � 	�.

Fig. 2. Algorithm for Checking if � Affects� �

Corollary 1. Given a structure � and an LTL formula � such that � �� �, we can
decide whether subformula � affects� � in time linear in the size of � and exponential
in � and in space polylogarithmic in the size of � and quadratic in the length of �.

Recall that in symbolic model checking, the modified structure � � is not twice the
size of � but rather includes just one additional variable. In order to check whether �
is trace vacuous we have to check whether there exists a subformula � of � such that �
does not affect� �. Given a set of subformulas ���
 � � � 
 �	� we can check whether one
of these subformulas does not affect� � by iterating the above algorithm � times. The
number of subformulas of � is proportional to the size of �.

Theorem 4. Given a structure � and an LTL formula � such that � �� �. We can
check whether � is trace vacuous in � in time ����� � �
 ���� where �
 ��� is the
complexity of model checking � over � .

Unlike trace vacuity, there does not exist an efficient algorithm for structure vacuity.
We claim that deciding does not affect� is co-NP-complete in the structure. Notice, that
co-NP-complete in the structure is much worse than PSPACE-complete in the formula.
Indeed, the size of the formula is negligible when compared to the size of the model.
Co-NP-completeness of structure vacuity renders it completely impractical.

Lemma 2 (Deciding does not affect�). For � in LTL, a subformula � of � and a
structure � , the problem of deciding whether � does not affect� � in � is co-NP-
complete with respect to the structure � .

The complexity of deciding affects� is unclear. For subformulas of pure polarity (or
occurrences of subformulas) the algorithm of [KV03] is correct. We have found neither
a lower bound nor an upper bound for deciding affects � in the case of mixed polarity.

5 Pragmatic Aspects

Display of Results. When applying vacuity detection in an industrial setting there are
two options. We can either give the user a simple yes/no answer, or we can accompany a
positive answer (vacuity) with a witness formula. Where � does not affect � we supply
� �� � �� (or � �� � �� where � is of pure polarity) as our witness to the vacuity of
�. When we replace a subformula by a constant, we propagate the constants upwards 4.

4 I.e. if in subformula � � �� 
 �� we replace �� by �����, then � becomes ����� and we
continue propagating this value above �.



active 
� en 
�in � rdy active 
� � rdy out 
� active �

bsy active 
� � bsy out 
� active�
active inactive 
� rdy active 
� bsy active �

two consecutive 
� ���reset 
 active inactive � � ��active inactive��
two consecutive�active inactive� � �� 
���� reset 
 active inactive��

two consecutive�en� � �� 
� �� reset 
 active inactive� � ���� rdy out 
� bsy active ��

Fig. 3. Vacuous pass

Previous works suggested that the users of vacuity detection are interested in simple
yes / no answers. That is, whether the property is vacuous or not. Suppose that � does
not affect�. It follows that if� � is a subformula of� then� � does not affect� as well. In
order to get a yes / no answer only the minimal subformulas (atomic propositions) of �
have to be checked [BBER97,KV03]. When the goal is to give the user feedback on the
source of detected vacuity, it is often more useful to check non-minimal subformulas.

Consider for example the formula two consecutive in Figure 3. This is an example of
a formula that passed vacuously in one of our designs. The reason for the vacuous pass
is that one of the signals in active inactive was set to ����� by a wrong environmental
assumption. The formula two consecutive �active inactive� � �� is the witness to the
fact that the second occurrence of active inactive does not affect two consecutive. From
this witness it is straightforward to understand what is wrong with the formula. The
formula two consecutive �en� � �� is the witness associated with the occurrence of the
proposition en under the second occurrence of rdy active (after constant propagation).
Clearly, this report is much less legible. Thus, it is preferable to check vacuity of non-
minimal subformulas and subformula occurrences.

If we consider the formula as represented by a tree (rather than DAG – directed
acyclic graph) then the number of leaves (propositions) is proportional to the number
of nodes (subformulas). We apply our algorithm from top to bottom. We check whether
the maximal subformulas affect the formula. If a subformula does not affect, there is
no need to continue checking below it. If a subformula does affect, we continue and
check its subformulas. In the worst case, when all the subformulas affect the formula,
the number of model checker runs in order to give the most intuitive counter example is
double the size of the minimal set (number of propositions). The yes / no view vs. the
intuitive witness view offer a clear tradeoff between minimal number of model checker
runs (in the worst case) and giving the user the most helpful information. We believe
that the user should be given the most comprehensive witness. In our implementation
we check whether all subformulas and occurrences of subformulas affect the formula.
Occurrences vs. Subformulas. We introduced an algorithm that determines if a sub-
formula with multiple occurrences affects a formula. We now give examples in which
checking a subformula is more intuitive, and examples in which checking an occurrence
is more intuitive. We conclude that a vacuity detection algorithm has to check both.

The following example demonstrates why it is reasonable to check if a subformula
affects a formula. Let � � ��� � ��. Intuitively, � does not affect �, since every



expression (or variable) implies itself. Indeed, according to all the definitions � does
not affect �, regardless of the model. However, every occurrence of � may affect �.
Indeed, both �� � � ��� � �� and ��� � � ��� � �� may fail (here, �� denotes the
�th occurrence of �).

The following example demonstrates why it is reasonable to check if an occurrence
affects a formula. Let � � � � ��	 � ��. Assume 	 is always ����� in model � .
Clearly, the second occurrence of � does not affect � in � . However, the subformula �
does affect� in� . Every assignment that gives � the value ����� at time �would falsify
the formula � ��� ��. Recall the formula two consecutive in Figure 3. The vacuous
pass in this case is only with respect to occurrences and not to subformulas.

We believe that a thorough vacuity-detection algorithm should detect both subfor-
mulas and occurrences that do not affect the examined formula. It is up to the user to
decide which vacuity alerts to ignore.
Minimizing the number of checks. We choose to check whether all subformulas and
all occurrences of subformulas affect the formula. Applying this policy in practice may
result in many runs of the model checker and may be impractical. We now show how
to reduce the number of subformulas and occurrences for which we check vacuity by
analyzing the structure of the formula syntactically.

As mentioned, once we know that � does not affect �, there is no point in checking
subformulas of �. If � affects � we have to check also the subformulas of �. We show
that in some cases for �� a subformula of � we have � � affects � iff � affects �. In
these cases there is no need to check direct subformulas of � also when � affects �.

Suppose the formula � is satisfied in � . Consider an occurrence �� of the sub-
formula � � �� � �� of �. We show that if �� is of positive polarity then �� affects
� iff �� affects � for � � 

 �. As mentioned, �� does not affect � implies �� does
not affect � for � � 

 �. Suppose �� affects �. Then � ��� � ��� � ������. However,
� ��� � ������ � � ��� � ������. It follows that � ��� � ��� � ������ and that ��

affects �. In the case that �� is of negative (or mixed) polarity the above argument is
incorrect. Consider the formula � � ���� � ��� and a model where �� never holds. It
is straightforward to see that �� � �� affects � while �� does not affect �.

It follows that we can analyze � syntactically and identify occurrences � � such that
�� affects � iff the subformulas of �� affect �. In these cases, it is sufficient to model
check ��� ��� � ��. Below the immediate subformulas of �� we have to continue with
the same analysis. For example, if � � ��� ����� ��� ���� is of positive polarity and
� affects � we can ignore �������, �������, ��, and ��. We do have to check �� and
��. In Table 1 we list the operators under which we can apply such elimination. In the
polarity column we list the polarities under which the elimination scheme applies to the
operator. In the operands column we list the operands that we do not have to check. We
stress that below the immediate operands we have to continue applying the analysis.

The analysis that leads to the above table is quite simple. Using a richer set of
operators one must use similar reasoning to extend the table. We distinguish between
pure and mixed polarity. The above table is true for occurrences. Mixed polarity is only
introduced when the specification language includes operators with no polarity (e.g.�,
�). In order to apply a similar elimination to subformulas with multiple occurrences
one has to take into account the polarities of all occurrences and the operator under



Operator Polarity Operands


 + all
� - all
� pure / mixed all

Operator Polarity Operands

� pure / mixed all
� pure second
� pure all
� pure all

Table 1. Operators for which checks can be avoided

which every occurrence appears. However, suppose that the subformula � � ��� �
 ���
occurs more than once but �� and �� occur only under �. In this case, once we check
whether � affects �, the elimination scheme can be applied to �� and ��.
Implementation and Methodology. We implemented the above algorithms in one of
Intel’s formal verification environments. We use the language ForSpec [AFF�02] with
the BDD-based model checker Forecast [FKZ�00] and the SAT-based bounded model
checker Thunder [CFF�01]. The users can decide whether they want thorough vacuity
detection or just to specify which subformulas / occurrences to check. In the case of
thorough vacuity detection, for every subformula and every occurrence (according to
the elimination scheme above) we create one witness formula. The vacuity algorithm
amounts to model checking each of the witnesses. Both model checkers are equipped
with a mechanism that allows model checking of many properties simultaneously.

The current methodology of using vacuity is applying thorough vacuity on every
specification. The users prove that the property holds in the model; then, vacuity of
the formula is checked. If applying thorough vacuity is not possible (due to capacity
problems), the users try to identify the important subformulas and check these subfor-
mulas manually. In our experience, vacuity checks proved to be effective mostly when
the pruning and assumptions used in order to enable model checking removed some
important part of the model, thus rendering the specification vacuously true. In many
examples vacuity checking pointed out to such problems. We also have cases where
vacuity pointed out redundant parts in the specification.

In Table 2 we include some experimental results. We used real-life examples from
processor designs. We include these results in order to give the flavor of the performance
of vacuity checking. Each line in the table corresponds to one property. Some proper-
ties are the conjunction of a few assertions. In such a case, every assertion is checked
separately (both in model checking and vacuity detection). For each property we report
on 4 different experiments. The first column specifies the number of witness formulas
sent to the model checker for vacuity detection. The number in parentheses indicates the
number of non-affecting subformulas / occurrences. The block titled Forecast reports on
three experiments. The column titled MC reports on the results of model checking the
property itself. The column titled Vacuity reports on the results of model checking all
the witness formulas for all the assertions. Finally, the column titled Combined reports
on the results of model checking all the witnesses with all the assertions. In each col-
umn we specify the time (in seconds) and space (BDD nodes) required by Forecast. The
symbol � indicates that Forcast timed out. Recall that in vacuity detection we hope that
all the witness formulas do not pass in the model. As bounded model checking is espe-



cially adequate for falsification, we prove the correctness of the property using Forecast
and falsify the witness formulas using Thunder. Witness formulas that Thunder was un-
able to falsify can be checked manually using Forecast. The last column reports on the
results of model checking all the witness formulas for all the assertions using Thunder.
We write the time (in seconds) required by Thunder, and � in case that Thunder did not
terminate in 8 hours. In the case that Thunder did not terminate we report (in brackets)
the bound up to which the formulas were checked 5. We ran the examples on a Intel(R)
PentiumTM 4 2.2GHz processor running Linux with 2GByte memory. Notice that some
of these examples pass vacuously.

Property � Checks Forecast Thunder
MC Vacuity Combined

Time Nodes Time Nodes Time Nodes
check internal sig 5(1) 1936 3910K 2051 2679K 3185 5858K 2.28(0)

lsd indication 17(5) 1699 2150K 2265 2566K 1986 3483K !(5)[40]
directive 4(0) 611 1120K 16132 4945K 7355 8943K 25(0)

forbidden start 2(0) 532 549K 1859 4064K 2422 4274K 22(0)
nested start 22 (13) 737 1294K 11017 6153K 10942 6153K !(18)[70]
pilot session 129(?6) 5429 3895K 67126! 25366K 66157! 20586K !(16)[60]

new code 31(1) 1265 2455K 1765 2853K 3097 3932 !(1)[50]
Table 2. Experimental results

6 Summary and Future Work

We investigated vacuity detection with respect to subformulas with multiple occur-
rences. We re-examined the basic intuition underlying the concept of vacuity, which
until now has been defined as sensitivity with respect to syntactic perturbation. We
studied sensitivity with respect to semantic perturbation, which we modeled by uni-
versal propositional quantification. We showed that this yields a hierarchy of vacuity
notions. We argued that the right notion is that of vacuity defined with respect to traces,
described an algorithm for vacuity detection, and discussed pragmatic aspects.

We were motivated by the need to extend vacuity detection to industrial-strength
property-specification languages such as ForSpec [AFF�02]. ForSpec is significantly
richer syntactically and semantically than LTL. Our vacuity-detection algorithm for
subformulas of mixed polarity can handle ForSpec’s rich set of arithmetical and Boolean
operators. ForSpec’s semantic richness is the result of its regular layer, which includes
regular events and formulas constructed from regular events. The extension of vacuity
detection to ForSpec’s regular layer will be described in a future paper.

5 Note that in the case of lsd indication and new code the partial answer is in fact the final
answer, as can be seen from the run of Forecast

6 For this property, we do not know the number of non affecting subformulas / occurrences.
There are 16 non affecting subformulas / occurrences up to bound 60.
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