
Let s�t be an initial state of T ���� Since UnImplementedStartState is empty�
there must be an initial state s�i of M such that �s�i� s�t� � ReachSIM � Thus�
�s�t� s�i� � ReachSIM���
Now let �st� si� � ReachSIM��� Since �si� st� � ReachSIM � Lt�st� � Li�si��
Let �st� s�t� � Rt� Since UnimplementedState is empty� there must be a state s�i �
Si such that �s�i� s

�

t� � ReachSIM � Since UnImplementedTransition is empty
we get �si� s�i� � Ri� Thus� s�i is a successor of si and �s�t� s

�

i� � ReachSIM���
We conclude that ReachSIM�� is a simulation preorder and therefore T ��� �
M � �

Note that� since ReachSIM and ReachSIM�� are both simulation preorders�
ReachSIM is actually a bisimulation relation�

C Derivation of the compose formulas

Following is the algebraic derivation that enables the use of the compose and
compose odd operations described in Section ��

� Derivation of SIMj �
SIMj���vi�vt� ��
�v�

i
	Ri�vi�v

�

i
�� �v�

t
	Rt�vt�v

�

t
� � SIMj �v

�

i
�v�

t
�

 � SIMj �vi�vt� �

�v�

i
	�Ri�vi�v

�

i
� � �v�

t
	Rt�vt�v

�

t
� � SIMj �v

�

i
�v�

t
�

 � SIMj �vi�vt� �

��v�

i
	Ri�vi�v

�

i
� � ��v�

t
	Rt�vt�v

�

t
� � SIMj �v

�

i
�v�

t
�

 � SIMj �vi�vt� �

�compose odd�Ri�vi�v�

i
���compose odd�Rt�vt�v�

t
�� SIMj �v�

i
�v�

t
����SIMj �vi�vt�

� Derivation of ReachSIMj �
fj���vt�v�

i
� ��

�vi�ReachSIMj �vi�vt��Ri�vi�v�

i
�� � compose�ReachSIMj �vi�vt�� Ri�vi�v�

i
��

gj���v
�

i
�v�

t
� ��

�vt�fj���vt�v�

i
� �Rt�vt�v�

t
�� � compose�fj���vt�v�

i
�� Rt�vt�v�

t
��

gj���vi�vt� �� gj���v�

i
�v�

t
�

ReachSIMj���vi�vt� �� �gj���vi�vt� � SIM �vi�vt�� �ReachSIMj �vi�vt�

� Derivation of ManyToOne�
ManyToOne�vt� ��
�v��v��ReachSIM �v��vt� �ReachSIM �v��vt� � �v� 	� v��� �
�v��ReachSIM �v� �vt� � �v���v� 	� v�� �ReachSIM �v� �vt��� �
�v��ReachSIM �v� �vt� � compose��v� 	� v��� ReachSIM �v��vt���

� Derivation of UnimplementedTransition�
f�v�

i
�vt� ��

�vi��Ri�vi�v�

i
��ReachSIM �vi�vt�� � compose��Ri�vi�v�

i
�� ReachSIM �vi�vt��

g�vt�v�

t
� ��

�v�

i
�f�v�

i
�vt��ReachSIM �v�

i
�v�

t
�� � compose�f�v�

i
�vt�� ReachSIM �v�

i
�v�

t
��

UnimplementedTransition�vt �v
�

t
� �� g�vt�v

�

t
� �Rt�vt�v

�

t
�



�� T� A� Henzinger� O� Kupferman� and S� K� Rajamani� Fair simulation� In Proc� of
the �th Conference on Concurrency Theory �CONCUR����� volume ���� of LNCS�
Warsaw� July �����

	� Hoskote� Kam� Ho� and Zhao� Coverage estimation for symbolic model checking� In
proceedings of the �	rd Design Automation Conference �DAC����� IEEE Computer
Society Press� June �����


� Z� Manna and A� Pnueli� Temporal veri
cations of Reactive Systems � Safety�
Springer�Verlag� ���	�

�� K� L� McMillan� The SMV System DRAFT� Carnegie Mellon University� Pitts�
burgh� PA� �����

�� K� L� McMillan� Symbolic Model Checking� Kluwer Academic Press� Norwell� MA�
�����

�� R� Milner� An algebraic de
nition of simulation between programs� In In pro�
ceedings of the �nd International Joint Conference on Arti
cial Intelligence� pages
�������� September �����

��� T� Filkorn� A method for symbolic veri
cation of synchronous circuits� In D� Bor�
rione and R� Waxman� editors� Proceedings of The Tenth International Symposium
on Computer Hardware Description Languages and their Applications� IFIP WG
����� pages �����	�� Marseille� April ����� North�Holland�

��� Elaine J� Weyuker and Bingchiang Jeng� Analyzing partition testing strategies�
IEEE Transactions on Software Engineering� ������ July �����

A Proof of Lemma �

Lemma � ReachSIM is a simulation preorder from M to M ��

Proof� Clearly� for initial states� �s�� s��� � SIM if and only if �s�� s��� � ReachSIM �
Thus� for every initial state of M there is a ReachSIM �related initial state of
M �� Let �s� s�� � ReachSIM � First we note that since ReachSIM 
 SIM �
�s� s�� � SIM and therefore L�s� � L��s���

Now let �s� s�� � R� Then there is s�� such that �s�� s��� � R� and �s�� s
�

�� �
SIM � Since �s� s�� � ReachSIM � there are corresponding paths � and �� leading
to s and s�� These paths can be extended to corresponding paths leading to s�
and s��� Thus� �s�� s

�

�� � ReachSIM � �

B Proof of Theorem �

Theorem � Let M be an implementation model and � be an ACTL safety
formula such that M j� �� Let T ��� be a tableau for � that satisfy the tableau
properties� If the comparison criteria ��� hold then T ��� � M �

Proof� Since M j� �� M � T ���� Thus� there is a simulation preorder SIM 

Si � St� Let ReachSIM be the reachable simulation preorder for SIM � Then
ReachSIM�� 
 St � Si is de�ned by �st� si� � ReachSIM�� if and only if
�si� st� � ReachSIM � We show that ReachSIM�� is a simulation preorder
from T ��� to M �



was done for model checking� We are investigating the possibility of running
this method separately on small properties and then combining the results�

Another solution to the state explosion is to compute the criteria 
on�the�
�y
 together with the computation of ReachSIM and to discover violations
before ReachSIM is fully computed�

A third solution is to use the algorithm in 	�
 as a preliminary step� and try
to expand it to fully support our methodology� The de�nition of Unimple�
mented State is closely related to the evidences in 	�
� On the other hand� our
Unimplemented Transition criterion provides path evidences� while path cov�
erage is not addressed by the methodology of 	�
� Furthermore� our method
can indicate that the speci�cation and the implementation totally agree�
This may serve as an indication that the veri�cation process can be stopped�

�� Irrelevant information� Similar to the area of traditional simulation cov�
erage� measurement of quality produces a lot of information which is often
irrelevant� A major problem is that speci�cations tend to be incomplete by
nature and therefore we do not necessarily want to achieve a bisimulation
relation between the speci�cation and implementation� Therefore� it will
eventually be necessary to devise techniques to �lter the results such that
only the interesting evidences are reported�

We are also investigating whether the reduced tableau described in Section �
is optimal in the sense that it does not contain any redundancies�

�� Expressivity� Our speci�cation language is currently restricted to ACTL
safety formulas� It is straight forward to extend our method to full ACTL�
This will require� however� to add fairness constraints to the tableau struc�
ture and to use the fair simulation preorder 	�
� Unfortunately� there is no
e�cient algorithm to implement fair simulation 	�
� Thus� it is currently im�
practical to use full ACTL� There is a need to �nd logics that are both
reasonable in terms of their expressivity and practical in terms of tableau
construction and comparison criteria�

Acknowledgment�We thank Ilan Beer for suggesting to look into the problem
of coverage in model checking� The �rst author thanks Galileo Technology for
the opportunity to work on the subject�

References

�� I� Beer� S� Ben�David� C� Eisner� and A� Landver� Rulebase � an industry oriented
formal veri
cation tool� In ��th Design Automation Conference� ���
� DAC�

�� E�M� Clarke� O� Grumberg� and D� Peled� Model Checking� MIT press� ����� To
appear�

�� O� Grumberg and D�E� Long� Model checking and modular veri
cation� ACM
Trans� on Programming Languages and Systems� �
������������ �����



�One�Many �
�ack�� �ack� �
A	��req� � �req� � ack� � ack��W

�req� � req� � �ack�� �ack� �AXack��
 � � ��
AG�

��ack�� �ack�� � � ��
��req� � �req��AX��ack�� �ack�� � � ��
req� � �req� �AXack� � � ��
�req� � req� � ack��AXack� � � ��
req� � req� � ack� �AXack� � � ��
req� � req� � ack� �AXack� � � ��
req� � ack� �AX�ack� ��ack�� � � �redundant
req� � req� � �ack�� �ack� �AX�
ack��A	��req� � �req� � ack�� ack��W
�req� � req� � �ack�� �ack� �AXack��
 �
ack��A	��req� � �req� � ack�� ack��W
�req� � req� � �ack�� �ack� �AXack��
��� � �	

Our method reported that for �One�Many criteria ��� are met� In addition�
it reported that the One To Many criterion is not met� As an evidence it pro�
vides the implementation state si such that Li�si� � freq�� req���ack�� ack�g�
This state is mapped to s�t and s�t of the reduced tableau for which Lt�s�t� �
freq�� req���ack�� ack�g and Lt�s�t� � freq���ack�� ack�g�
We may note that �redundant sub formulas agrees with �� for states labeled with
freq�� req�g� and does not agree with �� for states labeled with f�req�� req�g�
Since it comes as a disjunct� it does not limit the reachable simulation� and does
not add allowed behavior� Deleting sub formula �redundant leaves a speci�cation
formula such that criteria ��� are met and the One to Many criterion is also
met�

� Future work

In this paper we presented a novel approach for evaluating the quality of the
model checking process� The method we described can give an engineer the
con�dence that the model is indeed �bug�free
 and reduce the development time�

We are aware that the work we have done is not complete� There are a few
technical issues that will have to be addressed�

�� State explosion� The state explosion problem is even more acute than with
model checking because we have to perform symbolic computations while M
and T ��� are both in memory� This implies that at present the circuits that
we can apply this method to are smaller than those that we can model check�
Therefore we currently cannot provide a solution for large models� However
we believe that over time optimizations in this area will be introduced as



quanti�er� this change is su�cient� In general� we will obtain a smaller tableau
since we also avoid the construction of redundant successors�

Since the reduced tableau is based on the ��value labeling� the de�nition
of satisfaction and simulation preorder are changed accordingly� Our reduced
tableau T ��� for ACTL then has the same properties as the one in 	�
�

� T ��� j� ��
� For every Kripke structure M � M � T ��� if and only if M j� ��

Note that adopting the reduced tableau also requires modi�cations to our criteria
due to the ��value labeling semantics�

��� Reduced Tableau Results

We have de�ned the reduced tableau and proved its tableau properties� In addi�
tion we have adapted the comparison criteria to comply with the ��value label�
ing� We also coded the reduced tableau construction and the comparison criteria
into the SMV model checker� performing the structure comparison in a symbolic
manner�

We have run the arbiter example of Section � with the reduced tableau� For
the complete speci�cation formula � presented there we received a structure
with �� states� A traditional tableau structure would have a state space of ���

states for ��

��� Identifying redundancies in the speci�cation

Section � de�nes criteria that characterize when a speci�cation is rich enough
�i�e�� complete�� We would like also to determine whether a complete speci�cation
contains redundancies� i�e�� subformulas that can be removed or be rewritten
without destroying the completeness of the speci�cation�

Given the reduced tableau� we suggest a new criterion� called One To Many�
that identi�es implementation states that are mapped �by ReachSIM � to mul�
tiple tableau states� Finding such states means that there is a smaller structure
that corresponds to an equivalent speci�cation formula�The criterionOneToMany

is de�ned by�
OneToMany � fsi � Si j �s�t� s�t � St	�si� s�t� � ReachSIM �
�si� s�t� � ReachSIM � s�t 	� s�t
g�

��	 One To Many Example

The following example demonstrates the One to Many criterion� It identi�es a
redundant sub formula� which does not add to the completeness of the speci��
cation formula� Consider the following speci�cation formula �



ReachSIM are all de�ned over the same sets of OBDD variables� Consequently�
in all the derived expressions we apply compose and compose odd to OBDDs
that share variables� i�e� y and u are represented by the same OBDD variables�
The implementation of compose and compose odd uses non�standard OBDD op�
erations in such a way that the resulting OBDDs are also de�ned over the same
�n variables�

Notice that this requires that the OBDD variable change semantics in the
result �e�g�� in Equation � y is represented by tagged OBDD variables in the
input parameters and by untagged variables in the result�� OBDD packages can
easily be extended with these operations�

� Reduced Tableau and Redundancies in Speci�cation

��� Smaller tableau structure

When striving for completeness� the size of tableau structures as de�ned in 	�
 is
usually too large to be practical� and may be much larger than the state space of
the given implementation� This is because the state space of such tableaux con�
tain all combinations of subformulas of the speci�cation formula� Such tableaux
usually contain many redundant states� that can be removed while preserving
the tableau properties� If not removed� these states may introduce evidences
which are not of interest�

Much of the redundancies can be eliminated if each state contains exactly the
set of formulas required for satisfying the speci�cation formula� Consider for ex�
ample the ACTL formulaAXAXp� Its set of subformulas is fAXAXp�AXp� pg�
We desire a tableau structure in which each state contains only the set of subfor�
mulas required to satisfy the formula� In this case� the initial state should satisfy
AXAXp� its successor should satisfy AXp and its successor should satisfy p� In
each of these states all unmentioned subformulas have a �don�t care
 value� Thus�
one state of the reduced tableau represents many states� For instance� the initial
state fAXAXpg represents four initial states in the traditional tableau 	�
� In
such examples we may get a linear size tableau instead of an exponential one�

Following the above motivation� the reduced tableau will be de�ned over a
��value labeling for atomic propositions� i�e�� for an atomic proposition p� a state
may be labeled by either p� �p or neither of them� Also� only the reachable
portion of the structure will be constructed�

Further reduction may be obtained if the set of successors for each state is
constructed more carefully� If a state s has two successors s� and s��� such that
the set of formulas of s�� is contained in the set of formulas of s�� then s� is not
constructed� Any tableau behavior starting at s� has a corresponding behavior
from s��� Thus� it is unnecessary to include both�

Given an ACTL safety formulas� the de�nition of the reduced tableau is
derived from the Particle tableau for LTL� presented in 	�
 by replacing the use
of the X temporal operator by AX� Since the only di�erence between LTL and
ACTL is that temporal operators are always preceded by the universal path



Assume that we need at most n bits to encode each set of states� Then po�
tentially some of the OBDDs created in the intermediate computations will have
�n OBDD variables� However� by breaking the algorithm operations to smaller
ones and manipulating OBDDs in a nonstandard way we managed to bound the
number of variables of the OBDDs created in intermediate computations by �n�

We de�ne two operations� compose and compose odd� that operate on two
OBDDs a and b over a total number of �n variables� As explained later� the
main advantage of these operations is that they can be implemented using only
�n OBDD variables�

compose�y�u� � �x�a�x�y� � b�x�u�� ���

compose odd�y�u� � �x�a�y�x� � b�u�x��� ���

SIM and ReachSIM can be implemented using compose and compose odd as
follows� Let vi� v

�

i
be the encoding of the states si� s

�

i respectively� Similarly� let
vt� v

�

t
be the encoding of st� s

�

t respectively�

SIMj���vi�vt� �� SIMj �vi�vt� �
�compose odd�Ri�vi�v

�

i
���compose odd�Rt�vt�v

�

t
�� SIMj �v

�

i
�v�

t
���

ReachSIMj���v�

i
�v�

t
� �� ReachSIMj �v�

i
�v�

t
� �

�compose�compose�ReachSIMj �vi�vt�� Ri�vi�v
�

i
��� Rt�vt�v

�

t
�� � SIM �v�

i
�v�

t
��

The derivation of these expressions can be found in Appendix C� The algorithms
above require that the implementation and speci�cation �step
 together along
the transition relation� We break this to stepping along one� followed by step�
ping along the other� This is possible since transitions of the two structures are
independent�

The comparison criteria Unimplemented Transition and Many To One can
also be implemented with these operations� The two other criteria are de�ned
over �n variables and do not require such manipulation�

UnimplementedTransition�vt �v�

t
� �� Rt�vt�v�

t
� �

compose�compose��Ri�vi�v�

i
�� ReachSIM �vi�vt��� ReachSIM �v�

i
�v�

t
��

ManyToOne�vt� ��
�v��ReachSIM �v��vt� � compose��v� 	� v��� ReachSIM �v��vt���

The details of these derivations can be found in Appendix C�
Up to now we showed how to reduce the number of OBDD variables from

�n to �n� We now show how to further reduce this number to �n� Our �rst step
is to use the same OBDD variables to represent the implementation variables
vi and the speci�cation variables vt� These OBDD variables will be referred to
as untagged� Similarly� we use the same OBDD variables to represent v�

i
and v�

t
�

They will be referred to as tagged OBDD variables�
We also specify that whenever we have relations over both implementation

variables and speci�cation variables then the implementation variables are rep�
resented by untagged OBDD variables while the speci�cation variables are rep�
resented by tagged OBDD variables� Note that now the relations Ri� Rt� SIM �



� Implementation of the Method


�� Symbolic Algorithms

In this section we present the symbolic algorithms that implement various parts
of our method� In particular� we show how to compute symbolically the sim�
ulation relation� Our implementation will require less memory than the naive
implementation since we reduce the number of OBDD variables� In Section ���
we show how this is achieved�

For conciseness� we use R�s� s��� S�s� etc� instead of �s� s�� � R� s � S�

Computing SIM � Let M � �Si� S�i� Ri� Li� be the implementation structure
and let T ��� � �St� S�t� Rt� Lt� be a tableau structure� The following pseudo�
code depicts the algorithm for computing SIM �
Init� SIM��si� st� �� f �si� st� � Si � St jLi�si� � Lt�st� g� j �� �
Repeat f
SIMj�� �� f �si� st� j �s�i 	Ri�si� s�i�� �s�t 	Rt�st� s�t��SIMj �s�i� s

�

t�

�SIMj�si� st�g
j �� j � � g until SIMj � SIMj��

SIM �� SIMj

ComputingReachSIM � Given the simulation relation SIM of the pair �M�T ����
the following pseudo�code depicts the algorithm for computing ReachSIM �
Init� ReachSIM� �� �S�i � S�t� 
 SIM � j �� �
Repeat f
ReachSIMj�� �� ReachSIMj �
f �s�i� s

�

t� j �si� st�ReachSIMj �si� st� �Ri�si� s�i� �Rt�st� s�t� � SIM �s�i � s
�

t�� g
j �� j � � g until ReachSIMj � ReachSIMj��

ReachSIM �� ReachSIMj


�� E�cient OBDD Implementation

We now turn our attention to improving the performance of the algorithms
described in the previous section� We assume that an implementation of such
an algorithm will be done within a symbolic model checker such as SMV 	�
�
Since formal analysis always su�ers from state explosion it is necessary to �nd
methods to e�ciently utilize computer memory�When working with OBDDs one
possible way to do so is to try to minimize the number of OBDD variables that
any OBDD created during the computation will have�

We can see from the algorithms presented before that some of the sets� con�
structed in intermediate computation steps� are de�ned over four sets of states�
implementation states� speci�cation states� tagged �next� implementation states�
and tagged �next� speci�cation states� For example� the computation of SIMj��

is de�ned by means of the implementation states si� speci�cation states st� tagged
implementation states s�i �representing implementation next states�� and tagged
speci�cation states s�t �representing speci�cation next states��



�� �req�q � �� � No request results no ack
��� �req�q � �� � A single request
��� �ack�q� �ack�q � �robin� � Simultaneous requests assertions
��� � � �ack�q� � Both requesting � toggle ack
��� esac�
��� ack� �� case

��� �req�q � �� � No request results no ack
��� �req�q � �� � A single request
��� �ack�q� �ack�q � robin� � simultaneous assertion
� � � � �ack�q� � Both requesting � toggle ack
��� esac�
��� assign
��� next�robin� �� if req�� req���ack�� �ack� then �robin
��� else robin endif � � Two simultaneous request assertions
��� next�req�q� �� req�� next�req�q� �� req��
��� next�ack�q� �� ack�� next�ack�q� �� ack��

Applying model checking will show that Mm�o j� ��
In the above example we keep information of the current inputs req� and req��
as well as their value in the previous cycle �i�e� req�q and req�q�� Intuitively�
this duplicates each state in M to four states in the state space of Mm�o�

	�	 Unimplemented Start State evidence

The Unimplemented Start State criterion does not hold when the speci�cation is
not restricted to the valid start states� Consider a speci�cation formula obtained
from � by removing the �� subformula� Applying the comparison method on M

and the modi�ed formula would yield a Unimplemented Start State evidence of a
tableau state s�t such that fack�� �ack�g 
 Lt�s�t�� Restricting the speci�cation
to the valid start states would cause the Unimplemented Start State criteria to
hold�

	�
 Non�Observable Implementation Variables

As can be seen in this example� a state of the implementation is not uniquely
determined by req�� req�� ack� and ack�� The variable robin e�ects the other
variables� but it is a non�observable intermediate variable� This variable is not
explicitly described in the speci�cation� and does not appear in the common set
of atomic propositions AP � referred to by the simulation preorder� Our criteria
are de�ned with respect to observable variables only� but are not limited to
systems where all the variables are observable�



	�� Unimplemented state evidence

Consider a modi�ed version of the implementation M � named Munimp obtained
by adding line � ack� � f�� �g�
between lines ���� and line ����� and replacing line ��� with the following lines�
���� req� temp� req�� ack�� ack�� robin � boolean�
���� define req� �� req� temp� ��ack�� ack���
Here req� temp is a free variable� and the input req� is a restricted input such
that if the state satis�es ack��ack� then req� is forced to be inactive�
Consider also the modi�ed formula �unimp obtained from � by deleting ���
SMV shows that Munimp j� �unimp� However� applying the comparison method
on Munimp and �unimp� reports an Unimplemented State� It supplies as an ev�
idence the state st such that Lt�st� � freq�� �req�� ack�� ack�g� This state is
possible by �unimp but not possible in Munimp�
If we check the source of the incomplete speci�cation we note that the evidence
violates the mutual exclusion property� Both of the arbiter outputs ack� and
ack� are active� The complete speci�cation would detect that Munimp has a
bug� since Munimp 	j� ��
Note that in this example we can also identify that req� inMunimp is a restricted
input relative to the formula �unimp� The state space of Munimp does not in�
clude the states freq�� req�� ack�� ack�g or freq�� �req�� ack�� ack�g� A restricted
environment may hide bugs� so this is just as important as �nding missing prop�
erties�

	�� Many To One evidence

A nonempty Many To One criterion may imply one of two cases� Redundant
implementation� or incompleteness� The latter case is always accompanied with
one of criteria ���� The former case where criteria ��� hold but we have a Many
To One evidence implies that the implementation is complete with respect to the
speci�cation� but it is not e�cient and contains redundancies� There is a smaller
implementation that can preserve the completeness� This information may give
insight on the e�ciency of the implementation�
The following implementation Mm�o uses � implementation variables and two
free inputs instead of � variables and two inputs of implementation M � Criteria
��� are met for Mm�o with respect to ��

�� var
�� req�� req�� req�q� req�q� ack�q� ack�q� robin � boolean�
�� assign
�� init�req�q� �� �� init�req�q� �� ��
�� init�ack�q� �� �� init�ack�q� �� ��
�� init�robin� �� ��
�� define
 � ack� �� case



� � �ack�� �ack��
A	��req� � �req� � ack� � ack��W

�req� � req� � �ack�� �ack� �AXack��
 � � ��
AG�

��ack� � �ack�� � � ��
��req� � �req�� AX��ack�� �ack��� � � ��
�req� � �req�� AXack�� � � ��
��req� � req�� AXack�� � � ��
�req� � ack�� AXack�� � � ��
�req� � ack�� AXack�� � � ��
�req� � req� � �ack�� �ack�� AX�ack��
A	��req� � �req� � ack� � ack��W

�req� � req� � �ack�� �ack� �AXack��
�� � � �	
�req� � req� � �ack�� �ack�� AX�ack��
A	��req� � �req� � ack� � ack��W

�req� � req� � �ack�� �ack� �AXack��
�� � � �


where AG� � A	�Wfalse
� We veri�ed that M j� � using the SMV model
checker� We then applied our method� We found that all comparison criteria
hold� We therefore concluded that � is a complete speci�cation for M �
In order to exemplify the ability of our method we changed the implementation
and the speci�cation in di�erent ways� In all cases the modi�ed implementation
satis�ed the modi�ed speci�cation� However� our method reported the failure of
some of the criteria� By examining the evidence supplied by the report� we could
detect �aws in either the implementation or the speci�cation�

	�� Unimplemented Transition evidence

Consider a modi�ed version of the implementation M � named Mtrans obtained
by adding the line � robin� ack� � f�� �g�
between line ���� and line ����� and by adding the line �
ack� � �next�ack��� between line ���� and line �����
Consider also the modi�ed formula�trans obtained from � by replacing �� with�
�req� � ack�� AX�ack� � ack����
SMV shows thatMtrans j� �trans� However� applying the comparison method on
Mtrans and �trans� reports an Unimplemented Transition� It supplies as an evi�
dence a transition between tableau states st and s�t such that Lt�st� � Lt�s

�

t� �
freq�� req�� �ack�� ack�g� Such a transition is possible by �trans but not possible
in Mtrans in case variable robin is not asserted�

If we check the reason for the incomplete speci�cation we note that the
evidence shows a cycle with req� and ack� asserted followed by a cycle were
ack� is asserted� This ill behavior violates the round robin requirement� The
complete speci�cation would detect that Mtrans has a bug� since Mtrans 	j� ��



assist the designer in the debugging process� Thus� we are looking for meaningful
criteria that can distinguish among di�erent types of problems and identify them�
In Section � we de�ne an additional criterion that can reveal redundancy in the
speci�cation�

� Example

Consider a synchronous arbiter with two inputs� req�� req� and two outputs
ack�� ack�� The assertion of acki is a response to the assertion of reqi� Initially�
both outputs of the arbiter are inactive� At any time� at most one acknowledge
output may be active� The arbiter grants one of the active requests in the next
cycle� and uses a round robin algorithm in case both request inputs are active�
Furthermore in the case of simultaneous assertion �i�e� both requests are asserted
and were not asserted in the previous cycle�� request � has priority in the �rst
simultaneous assertion occurrence� In any additional occurrence of simultaneous
assertion the priority rotates with respect to the previous occurrence�
The implementation and the speci�cation will share a common set of atomic
propositions AP � freq�� req�� ack�� ack�g� An implementation of the arbiter
M � written in the SMV language is presented below�

�� var

�� req�� req�� ack�� ack�� robin � boolean�
�� assign

�� init�ack�� �� ��
�� init�ack�� �� ��
�� init�robin� �� ��
�� next�ack�� �� case

 � �req� � �� � No request results no ack
�� �req� � �� � A single request
��� �ack�� �ack� � �robin� � Simultaneous requests assertions
��� � � �ack�� � Both requesting � toggle ack
��� esac�
��� next�ack�� �� case

��� �req� � �� � No request results no ack
��� �req� � �� � A single request
��� �ack�� �ack� � robin� � simultaneous assertion
��� � � �ack�� � Both requesting � toggle ack
� � esac�
��� next�robin� �� if req�� req���ack�� �ack� then �robin
��� else robin endif � � Two simultaneous request assertions

From the verbal description given at the beginning of the section� one may derive
a temporal formula that speci�es the arbiter �



�� UnImplementedState � fst � St j �si � Si 	 �si� st� 	� ReachSIM 
 g
An Unimplemented State is a state of the tableau that has no correspond�
ing state in the implementation structure� This di�erence may suggest that
the speci�cation is not tight enough� or that a meaningful state was not
implemented�

�� UnImplementedTransition � f�st� s�t� � Rt j �si� s
�

i � Si�

	 �si� st� � ReachSIM� �s�i� s
�

t� � ReachSIM and �si� s�i� 	� Ri 
g
An Unimplemented Transition is a transition between two states of the
tableau� for which a corresponding transition in the implementation does
not exist� The existence of such a transition may suggest that the speci��
cation is not tight enough� or that a required transition �between reachable
implementation states� was not implemented�

�� ManyToOne � fst � St j �s�i� s�i � Si 	 �s�i� st� � ReachSIM� �s�i � st� �
ReachSIM and s�i 	� s�i 
 g
A Many To One state is a tableau state to which multiple implementation
states are mapped� The existence of such a state may indicate that the spec�
i�cation is not detailed enough� It may also suggest that the implementation
contains redundancy�

Our criteria are de�ned for any tableau that has the tableau properties as de�ned
in Section �� Any dissimilarity between the implementation and the speci�cation
will result in a non empty criterion� Empty criteria indicate completeness� but
they are hard to obtain on traditional tableaux since such tableaux contain
redundancies� In the reduced tableau presented in Section �� redundancies are
removed and therefore empty criteria are more likely to be achieved�
Given a structure M and a property � our method consists of the following
steps�

�� Apply model checking to verify that M j� ��
�� Build a �reduced� tableau T ��� for ��
�� Compute SIM of �M�T �����
�� Compute ReachSIM of �M�T ���� from SIM of �M�T �����
�� For each of the comparison criteria� evaluate if its corresponding set is empty

and if not present evidence for its failure�

Theorem�� Let M be an implementation model and � be an ACTL safety
formula such that M j� �� Let T ��� be a tableau for � that has the tableau
properties� If the comparison criteria ��� hold then T ��� �M �

The proof of this theorem is left to Appendix B� The proof implies that if cri�
teria ��� hold then T ��� and M are in fact bisimilar� The fourth criterion is
not necessary for completeness since whenever there are several non�bisimilar
implementation states that are mapped to the same tableau state� then there is
also an unimplemented state or transition� However� this criterion may reveal
redundancies in the implementation�

It is important to note that the goal is not to �nd a smaller set of criteria
that guarantees the speci�cation completeness� The purpose of the criteria is to



If there is a simulation preorder from M to M �� we write M �M � and say that
M simulates M ��

It is well known 	�
 that if M � M � then for every ACTL formula �� if
M � j� � then M j� �� Furthermore� for every ACTL safety formula � it is
possible to construct a Kripke structure T ���� called a tableau� for �� that has
the following tableau properties 	�
�

� T ��� j� ��
� For every structure M � M j� � �� M � T ����

Intuitively� the simulation preorder relates two states if the computation tree
starting from the state of the smaller model can be embedded in the computation
tree starting from the state of the greater one� This� however� is not su�cient
in order to determine how similar the two structures are� Instead� we use the
reachable simulation preorder that relates two states if they are in the simulation
preorder and are also reachable from initial states along corresponding paths�

Formally� let SIM 
 S � S� be the greatest simulation preorder from M to
M �� The reachable simulation preorder for SIM � ReachSIM 
 SIM � is de�ned
by� �s� s�� � ReachSIM if and only if there is a path � � s�� s�� � � � � sk in M

with s� � S� and sk � s and a path �� � s��� s
�

�� � � � � s
�

k in M � with s�� � S�� and
s�k � s� such that for all � � j � k� �sj � s�j� � SIM �
In this case� the paths � and �� are called corresponding paths leading to s and
s��

Lemma�� ReachSIM is a simulation preorder from M to M ��

The proof of the lemma is postponed to Appendix A�

	 Comparison Criteria

LetM � �Si� S�i� Ri� Li� be an implementation structure and T ��� � �St� S�t� Rt� Lt�
be a tableau structure over a common set of atomic propositions AP � For the
two structures we consider only reachable states that are the start of an in�nite
path�

Assume M � T ���� We de�ne four criteria� each is associated with a set�
A criterion is said to hold if the appropriate set is empty� For convenience we
name each criterion the same as the appropriate set� The following sets de�ne
the criteria �

�� UnImplementedStartState � fst � S�t j �si � S�i 	 �si� st� 	� ReachSIM 
 g
An Unimplemented Start State is an initial tableau state that has no corre�
sponding initial state in the implementation structure� The existence of such
a state may indicate that the speci�cation does not properly constrain the
set of start states� It may also indicate the lack of a required initial state in
the implementation�

� The tableau for full ACTL is a fair Kripke structure �not de
ned here�� It has the
same properties except that j� and � are de
ned for fair structures�



as is done in 	��
� However the method in 	��
 is suggested as an alternative to
model checking and not as a complementary method�

The rest of this paper is organized as follows� Section � gives the necessary
background� Section � describes the comparison criteria and the method for their
use� Section � exempli�es the di�erent criteria by applying the method to a small
hardware circuit� Section � presents symbolic algorithms that implement our
method� In Section � we discuss the reduced tableau for ACTL safety formulas�
Finally� the last section describes future work and concludes the paper�

� Preliminaries

Our speci�cation language is the universal branching�time temporal logic ACTL
	�
� restricted to safety properties� LetAP be a set of atomic propositions� The set
of ACTL safety formulas is de�ned inductively in negation normal form� where
negations are applied only to atomic propositions� It consists of the temporal
operators X ��next�state
� and W ��weak until
� and the path quanti�er A
��for all paths
��

� If p � AP then both p and �p are ACTL safety formulas�

� If �� and �� are ACTL safety formulas then so are ������ ������ AX���
and A	��W��
��

We use Kripke structures to model our implementations� A Kripke structure
is a tuple M � �S� S�� R� L� where S is a �nite set of states� S� 
 S is the set
of initial states� R 
 S � S is the transition relation that must be total� and
L � S � �AP is the labeling function that maps each state to the set of atomic
propositions true at that state�

A path in M from a state s is a sequence s�� s�� � � � such that s� � s and for
every i� �si� si��� � R�

The logic ACTL is interpreted over a state s in a Kripke structure M � The
formal de�nition is omitted here� Intuitively�AX�� is true in s if all its successors
satisfy ��� A	��W��
 is true in s if along every path from s� either �� holds
forever or �� eventually holds and �� holds up to that point� We say that a
structure M satis�es a formula �� denoted M j� �� if every initial state of M
satis�es ��

Let M � �S� S�� R� L� and M � � �S�� S��� R
�� L�� be two Kripke structures

over the same set of atomic propositions AP � A relation SIM 
 S � S� is a
simulation preorder from M to M � 	�
 if for every initial state s� of M there is
an initial state s�� of M � such that �s�� s��� � SIM � Moreover� if �s� s�� � SIM

then the following holds�

� L�s� � L��s��� and

� �s�	�s� s�� � R �� �s��	�s
�� s��� � R� � �s�� s��� � SIM 

�

� Full ACTL includes also formulas of the form A���U��� ��strong until���



Quality evaluation of veri�cation activity is not new� Traditional veri�cation
methods have developed measurement criteria to measure the quality of test
suites 	��
� This area of veri�cation is called coverage� The notion of coverage
in model checking is to have a speci�cation that covers the entire functionality
required from the implementation� This can be divided into two questions�

�� Whether the environment is rich enough to provide all possible input se�
quences�

�� Whether the speci�cation contains a su�cient set of properties�

The method we present addresses both problems as will be later shown by an
example�

We compared a small hardware example with the reduced tableau� For the
complete speci�cation formula we received a reduced tableau with �� states� The
tableau presented in 	�
 would have a state space of ��� states for this formula�
It is interesting to note that in this example not all the implementation variables
are observable�

We implemented our method symbolically as an extension to the symbolic
model checker SMV 	�
� Given a model with n state variables� a straightforward
implementation of this method can create intermediate results that consists of
�n OBDD variables� However� our implementation reduces the required number
of OBDD variables from �n to �n�
The main contributions of our paper can be summarized as follows�

� We suggest for the �rst time a theoretical framework that provides quality
evaluation for model checking� The suggested comparison criteria can assist
the designer in �nding errors in the design by indicating points in which the
design and the speci�cation disagree� and suggest criteria for terminating
the veri�cation e�ort�

� We implemented our method symbolically within SMV� Thus� it can be
invoked automatically once the model checking terminates successfully�
Of a special interest is the symbolic computation of the simulation relation
for which no good symbolic algorithm is known�

� We de�ned a new reduced tableau for ACTL that is often signi�cantly
smaller in the number of states and transitions than known tableaux for
ACTL�

In these days� another work on coverage of model checking has been inde�
pendently developed 	�
� The work computes the percentage of states in which a
change in an observable proposition will not a�ect the correctness of the speci��
cation� Their evidence is closely related to our criterion of Unimplemented State�
In their paper they list a number of limitations of their work� They are unable
to give path evidence� cannot point out functionality missing in the model� and
they have no indication that the speci�cation is complete� In the conclusion we
explain how our work solves these problems�

The analysis we perform compares the two models and tries to identify dis�
similarities� It is therefore related to tautology checking of �nite state machines



other hand� if the speci�cation is complete� then the model checking process can
be stopped without checking additional speci�cation formulas� Thus� knowing
whether the speci�cation is complete may both avoid missed implementation
errors and save precious veri�cation time�

Below we describe our method to determine whether a speci�cation is com�
plete with respect to a given implementation�We restrict our attention to safety
properties written in the universal branching�time logic ACTL 	�
� This logic is
relatively restricted� but can still express most of the speci�cations used in prac�
tice� Moreover� it can fully characterizes every deterministic implementation�We
consider a single speci�cation formula �the conjunction of all properties��

We �rst apply model checking to verify that the speci�cation formula is true
for the implementationmodel� The formula is then transformed into a tableau 	�
�
By de�nition� since the formula is true for the model� the tableau is greater by
the simulation preorder 	�
 than the model�

We de�ned a reduced tableau for ACTL safety formulas� Our tableau is based
on the Particle tableau for LTL� presented in 	�
� We further reduce their tableau
by removing redundant tableau states�

We next use the simulation preorder to �nd di�erences between the imple�
mentation and its speci�cation� For example� if we �nd a reachable tableau state
with no corresponding implementation state� then we argue that one of the two
holds� Either the speci�cation is not restrictive enough or the implementation
fails to implement a meaningful state� Our method will not be able to determine
which of the arguments is correct� However� the evidence for the dissimilarity
�in this case a tableau state that none of the implementation states are mapped
to� will assist the designer to make the decision�

We suggest four comparison criteria� each revealing a certain dissimilarity be�
tween the implementation and speci�cation� If all comparison criteria are empty�
we conclude that the tableau is bisimilar to the implementation model and that
the speci�cation fully describes the implementation�We also conclude that there
are no redundant states in the implementation�

The practical aspects of this method are straightforward� Model checking
activity in industry executes the following methodology� A veri�cation engineer
reads the speci�cation� sets up a work environment and then proceeds to present
the model checker with a sequence of properties in order to verify the design
correctness 	�
� The design �or implementation� on which this activity is executed
can be quite large nowadays� As a result the set of properties written and veri�ed
becomes large as well� to the point that the engineer loses control over it�

A large property set makes it necessary to construct tools to evaluate its
overall quality� The basic question to answer is� 
Have I written enough prop�
erties!
� The current solution is to manually review the property set� However�
this solution is not scalable and furthermore since it is done manually it makes
the description of model checking as 
formal veri�cation
 imprecise� This in�
adequate solution indicates a growing need for tools that may be able to tell
the engineer when the design is 
bug�free
 and therefore cut down development
time�



�Have I written enough properties�� �
A method of comparison between speci�cation

and implementation

Sagi Katz� Orna Grumberg
Computer Science Department� Technion� Haifa� Israel

fksagi�ornag�cs�technion�ac�il
Danny Geist � IBM Haifa Research Lab�� Haifa� Israel

geist�haifa�vnet�ibm�com

Abstract� This work presents a novel approach for evaluating the qual�
ity of the model checking process� Given a model of a design �or imple�
mentation� and a temporal logic formula that describes a speci
cation�
model checking determines whether the model satis
es the speci
cation�
Assume that all speci
cation formulas were successfully checked for the
implementation� Are we sure that the implementation is correct� If the
speci
cation is incomplete� we may fail to 
nd an error in the imple�
mentation� On the other hand� if the speci
cation is complete� then the
model checking process can be stopped without adding more speci
ca�
tion formulas� Thus� knowing whether the speci
cation is complete may
both avoid missed implementation errors and save precious veri
cation
time�
The completeness of a speci
cation with respect to a given implemen�
tation is determined as follows� The speci
cation formula is 
rst trans�
formed into a tableau� The simulation preorder is then used to compare
the implementation model and the tableau model� We suggest four com�
parison criteria� each revealing a certain dissimilarity between the im�
plementation and the speci
cation� If all comparison criteria are empty�
we conclude that the tableau is bisimilar to the implementation model
and that the speci
cation fully describes the implementation� We also
conclude that there are no redundant states in the implementation�
The method is exempli
ed on a small hardware example� We imple�
mented our method symbolically as an extension to SMV� The implemen�
tation involves e�cient OBDD manipulations that reduce the number of
OBDD variables from �n to �n�

� Introduction

This work presents a novel approach for evaluating the quality of the model
checking process� Given a model of the design �or implementation� and a tempo�
ral logic formula that describes a speci�cation� model checking 	 � �
 determines
whether the model satis�es the speci�cation�

Assume that all speci�cation formulas were successfully checked for the im�
plementation� Are we sure that the implementation is correct! If the speci�ca�
tion is incomplete� we may fail to �nd an error in the implementation� On the


