Applicability of Fair Simulation

Doron Bustan and Orna Grumberg
Computer Science Department

Technion, Haifa 32000, Israel

email: {orna,doron2}@cs.technion.ac.il

Abstract

In this paper we compare four notions of fair simulation: direct [6],
delay [8], game [12], and exists [11]. Our comparison refers to three
main aspects: The time complexity of constructing the fair simulation,
the ability to use it for minimization, and the relationship between the
fair simulations and universal branching-time logics.

We developed two practical applications that are based on this com-
parison. The first is an efficient approximated minimization algorithm
for the delay,game exists simulations. The second is a new implemen-
tation for the assume-guarantee modular framework presented in [11].
The new implementation significantly improves the complexity of the
framework.



1 Introduction

Temporal logic model checking is a method for verifying finite-state systems
with respect to propositional temporal logic specifications. The method is
fully automatic and quite efficient in time, but is limited by its high space
requirements. Many approaches for overcoming the state explosion problem
of model checking have been suggested, including abstraction, partial order
reduction, modular methods, and symmetry [4]. These approaches are often
based on the idea that the model of the verified system can be replaced by a
more abstract model, smaller in size. The abstract and concrete models are
sufficiently similar so that properties that are verified on the abstract model
can be considered true for the concrete one. This idea is often formalized
by relating models with the simulation preorder [17], in which the greater,
more abstract model has “more behaviors,” and the verified properties are
written in a universal branching time logic such as ACTL or ACTL* [11].

It often happens that during the construction of a reduced abstract
model some unrealistic infinite behaviors are added. A common way to
avoid these behaviors is to add fairness constraints to distinguish between
wanted (fair) and unwanted (unfair) behaviors and to exclude unfair behav-
iors from consideration.

The simulation preorder does not distinguish between fair and unfair
behaviors. It is therefore desirable to find an alternative definition that
relates only fair behaviors of the two models. This task, however, is not
uniquely defined. Indeed, several distinct notions of fair simulation have
been suggested in the literature [6, 8, 12, 11].

Researchers have addressed the question of which notion of fair simula-
tion is preferable. In [12], some of these notions are compared with respect
to the complexity of checking for fair simulation. In [8], a different set of no-
tions is compared with respect to two criteria: The complexity of construct-
ing the preorder, and the ability to minimize a fair model by constructing a
quotient model that is language equivalent to the original one.

In this paper we make a broader comparison of four notions of fair sim-
ulation: direct [6], delay [8], game [12], and exists [11]. We refer to several
criteria that emphasize the advantages of each of the notions. The results
of the comparison are summarized in a table in Figure 1.

We developed two practical applications that are based on the compar-
ison. The first is an efficient approximated minimization algorithm for the
delay, game and exists simulations. For these preorders, a unique equivalent
smallest model does not exist. Therefore, an approximation is appropriate.



In addition, we suggest a new implementation for the assume-guarantee
[10, 13, 18, 19] modular framework presented in [11]. The new implemen-
tation, based on the game simulation rather than the exists simulation,
significantly improves the complexity of the framework.

Our comparison refers to three main aspects of fair simulation. The
first is the time complexity of constructing the preorder. There, we mainly
summarize results of other works (see Figure 1). We see that constructing
the direct, delay, and game simulations is polynomial in the number of states
n and the number of transitions m [8]. In contrast, constructing the exists
simulation is PSPACE-complete [15] , which is a great disadvantage.

The second aspect that we consider is the ability to use the preorder
for minimization. We say that two models are equivalent with respect to
a preorder if each is smaller by the preorder than the other. The goal of
minimization is to find the smallest in size model that is equivalent with
respect to the preorder to the original onel.

In [3] it has been shown that for every model with no fairness constraints
there exists a unique smallest in size model which is simulation equivalent to
it. The minimization algorithm that constructs this smallest in size model
[3] identifies and eliminates two types of redundancies in the given model.
One is the existence of equivalent states. This redundancy is eliminated by
constructing a quotient model. The other is the existence of a successor of
a state whose behavior is contained in the behavior of another successor of
the same state. Such a state is called a little brother. This redundancy is
eliminated by disconnecting little brothers.

We thus examine, for each of the fair simulation preorders, the following
three questions. Given a model M:

e 1.Is there a unique smallest in size model that is simulation equivalent
to M?

e 2. Is the quotient model of M simulation equivalent to M?

e 3. Is the result of disconnecting little brothers in M simulation equiv-
alent to M?

Our examination (see Figure 1) leads to a new minimization algorithm
that uses the direct and delay simulations as approximations for the game

'"Note that this is a stronger criterion than the one used in [8], where only language
equivalence is required.



and exists simulations. The new algorithm obtains a better reduction than
the algorithm suggested in [8].

The third aspect that we investigate is the relationship between the sim-
ulation preorders and universal branching-time logics. A basic requirement
of using a preorder in verification is that it preserves the specification logic,
i.e., if My < M, then, for every formula ¢ in the logic, My = ¢ implies
M, E ¢. Indeed, all four notions of fair simulation satisfy this requirement.
A stronger requirement is that the preorder have a logical characterization
by some logic. This means that M; < M, if and only if for every formula
¢ in the logic, My = ¢ implies M| = ¢.

Logical characterization is useful in determining if model My can be used
as an abstraction for model My, when the logic £ should be preserved. If
the preorder < is logically characterized by £ then checking M; < M, is a
necessary and sufficient condition and will never give a false negative result.

Another important relationship between a logic and a preorder is the
existence of a mazimal model T, for a formula ¢ with respect to the preorder.
The maximal model 7, for a formula ¢ is such that for every model M’,
M’ < Ty if and only if M" = ¢. Maximal models are used as tableaux in
the framework described in [11] for the assume-guarantee paradigm. The
assume-guarantee is an inductive modular verification paradigm in which
the environment of the verified part can be represented by a formula. The
result method is a proof schema which is based on the modular structure of
the system.

In [11], a semi-automatic framework for the assume-guarantee paradigm
is presented. The framework uses the exists preorder and is defined with
respect to the logic ACTL. It uses a tableau to represent an ACTL formula.
This tableau is the maximal model for the formula with respect to the exists
preorder.

In this work we show that there is also a maximal model for ACTL for-
mulas with respect to the game simulation. In addition, we show that other
conditions required for a sound implementation of the assume-guarantee
paradigm hold for the game simulation. Once the game simulation replaces
the exists simulation, the complexity of the implementation is dramatically
reduced.

The results of our comparison are presented in the table in Figure 1.
The proofs of the claims for which no citation is given appear in the next
sections. The rest of the paper is organized as follows: In Section 2 we

®In [8] it is shown that the quotient model is language equivalent to the original model.




minimization relation to logic

time complexity | unique quotient | little has max
notion || of constructing | smallest | model brothers | logical model

the preorder model characterization
Direct || O(m - n) [8] true true true false false
Delay || O(m -n®) [8 false true 3 false false false
Game || O(m-n?) [8 false false [8] | false VAFMC [12] true
Exists || PSPACE false false false ACTL* true

complete [15] [11]

Figure 1: The properties of the different notions of fair simulation

define the simulation preorder and the different notions of fair simulation.
Section 3 investigates simulation minimization. For each of the fair simula-
tions we check whether there exists a unique minimal structure, and whether
constructing a quotient structure or disconnecting little brothers results in
an equivalent structure. We then present a new minimization algorithm for
the game and exists simulations. Section 4 investigates the relationships
between fair simulation and logic. Each notion is checked for logical char-
acterization and for the existence of a maximal structure. In Section 5 we
prove that the game simulation can replace the exists simulation in the im-
plementation of the assume-guarantee paradigm. Finally, in Section 6 we
discuss some conclusions.

2 Preliminaries

Let AP be a set of atomic propositions. We model systems by a fair Kripke
structure M over AP, M = (S, R, So, L, F'), where S is a finite set of states,
So C 5 is a set of initial states, and R C S x § is the transition relation,
which must be total. This means that for every state s € S there is a state
s’ € S such that (s,s’) € R (states which do not satisfy this condition are
deleted). L : S — 24P is a function that labels each state with the set of
atomic propositions true in that state, and F' C S is a set of fair states.

Let s be a state in a Kripke structure M. A trace in M starting from
s is an infinite sequence of states p = sgs1s; ... such that sg = s, and for
every ¢ > 0, (s;,si+1) € R. The i-th state of trace p is denoted p'. In order
to capture the infinite behavior of p, we define

Here, we show that they are delay equivalent.



inf(p) = {s|s=p' for infinitely many i }.

We say that a trace p is fair according to the fair set F iff inf(p) N F # 0.
In this work we refer to two branching-time logics, ACTL* and ACTL [11].
First, we define CTL* formulas in negation normal form, namely, nega-

tion is applied only to atomic propositions. CTL* contains trace formulas

and state formulas and is defined inductively:

e Let p be an atomic proposition, then p and —p are both state formulas
and trace formulas.

o Let ¢ and v be trace formulas, then

— (@A) and (¢ A1) are trace formulas.
— X, (¢U2) and (pR)) are trace formulas.
— Ay and F are state formulas.

o Let ¢ and v be state formulas, then

— (V) and (¢ A1) are state formulas.
— X, (¢U2) and (pR)) are trace formulas.

Next we define the semantics of CTL* with respect to fair Kripke struc-
tures. A state formula ¢ is satisfied by a structure M at state s, denoted
M, s [ ¢, if the following holds (M is omitted if clear from the context):

e Forpe AP, sk=piffpe L(s); s = —piff p & L(s).

e sEoANYiffsEpand sEY;sEoVYiff s ¢ors .
e s = Ay iff for every fair trace p from s, p = .

e s = E¢ iff there exists a fair trace p from s, such that p = ¢.

A trace formula ¢ is satisfied by a trace p, denoted p = ¢, if the following
holds

o pEX¢iff pl | 0.
e p = Alp U o] iff for some i > 0, p' |= 1 and for all j < i, p’ = ¢.

o p = A[p R ] iff for all i > 0, if for every j < i, p? = ¢ then p' |= 1.



ACTL* is the universal fragment of CTL*where the only trace quantifier
allowed is A. ACTL is a subset of ACTL* where every temporal operator is
immediately proceeded by the A quantifier.

We say that M |= ¢ iff for every initial state sy € Sy, M, s¢ = ¢.

2.1 Simulation and fair simulation

We start by defining the simulation relation over Kripke structures with
F =S (Kripke structures with trivial fairness constraints).

Definition 2.1 Given two structures My and My over AP, a relation H C

Sy xSy is a simulation relation [17] over My x My iff the following conditions
hold:

1. For every so1 € So1 there exists so2 € Soz such that (so1,s02) € H.
2. For all (s1,s2) € H,

(a) Li(s1) = La(sg) and
(b) Vsi[(s1,8]) € Ry — 3s4[(s2,55) € Ra A (8], $5) € HJ.

My simulates My (denoted by M; < Ms) if there exists a simulation relation
H over My x M,. We say that My and M, are simulation equivalent if
My < My and My < M. Similarly, (s1,s2) € H, is denoted s1 < sy and s;
and s, are equivalent if s; < sy and sy < s;. This equivalence is denoted
S1 = S9.

The relation < is a preorder on the set of structures. This means that
it is reflexive and transitive. In [11, 2] it is shown that M; < M, iff, for
every ACTL* formula ¢ (with atomic propositions in AP), My = 1 implies
M, E . Thus, the simulation relation has logical characterization over
structures with trivial fairness constraints.

Next, we define the different notions of fair simulation. The first notion
is the direct simulation, which is the most straightforward extension of the
ordinary simulation.

Definition 2.2 H C S; xSy is a direct simulation relation [6] (<4) over
My x My iff it satisfies the conditions of Definition 2.1, except that here 2a
is replaced by:

2(a") L1(s1) = Lz2(s2) and sy € Iy implies s € Fy.

We now define the exists simulation:



Definition 2.3 [11] H C Sy X S3 is an exists simulation (<3) over M; x
My iff it satisfies the conditions of Definition 2.1, except that here 2b is
replaced by:

2(b') for every fair trace py from sy in My there exists a fair trace py from
sy in My such that for all i € IN, (p\,pb) € H.4

The next definitions are based on games over Kripke structures. We start
with a game that characterizes the simulation over structures with trivial
fairness constraints. Given two Kripke structures My, My, we define a game
of two players over My, M. The players are called the adversary and the
protagonist, where the adversary plays on M; and the protagonist plays on
MQ.

Definition 2.4 Given two Kripke structures, My and Ms, a simulation
game consists of a finite or infinite number of rounds. At the beginning, the
adversary selects an initial state so1 in My, and the protagonist responds
by selecting an initial state soy in My such that Ly(so1) = La(so2). In
each round, assume that the adversary is at sy and the protagonist is at s5.
The adversary then moves to a successor s of sy on My, after which the
protagonist moves to a successor sh of so on My such that Ly(s}) = La(sh).

If the protagonist does not have a matching state, the game terminates and
the protagonist fails. Otherwise, if the protagonist always has a matching
successor to move to, the game proceeds ad infinitum for w rounds and the
protagonist wins. The adversary wins iff the protagonist fails.

Definition 2.5 Given two Kripke structures My and Msy, a strategy 7 of
the protagonist is a function 7 : (S1 X S3 — S2) U (So1 X {L} — Soz). The
function 7 should satisfy the following: If sb, = 7 (s}, s2) then (s2,55) € Rs.

The protagonist plays according to a strategy « if when the adversary ini-
tially selects so, € So,, the protagonist selects so, = 7 (sq,, L) and, for
every round ¢, when the adversary moves to s| and the protagonist is in
3, the protagonist moves to s, = (s}, s2). 7 is a winning strategy for the
protagonist if the protagonist wins whenever it plays according to .

We can now present an alternative definition to the simulation preorder.
This definition is equivalent to Definition 2.1 [12].

Definition 2.6 Given two Kripke structures, My and My, My simulates
My (My < My) iff the protagonist has a winning strategy in a simulation
game over My, M.

*In such a case we use the notation (p1,p2) € H.



In order to extend the simulation game to fair simulation, we add a winning
condition which refers to the infinite properties of the game. We then give
two additional definitions of fair simulation, the delay (<4.) and the game
(<y4) simulations.

Definition 2.7 [8] The protagonist delay wins a game over two fair Kripke
structures My and M,y iff the game is played for infinitely many rounds.
Moreover, whenever the adversary reaches a fair state then the protagonist
reaches a fair state within a finite number of rounds.

Definition 2.8 [12] The protagonist game wins a game over two fair
Kripke structures My and M, iff the game is played for infinitely many
rounds. Moreover, if the adversary moves along a fair trace, then the pro-
tagonist moves along a fair trace as well.

We say that 7 is a delay/game winning strategy for the protagonist if the
protagonist delay/game wins whenever it plays according to .

Definition 2.9 [12, 8] Given two fair Kripke structures, My and Moy,
My delay/game simulates My iff the protagonist has a delay/game winning
strategy over My, M.

Definitions 2.2,2.3 and 2.9 are extensions of Definition 2.1 and its equivalent
Definition 2.6. Consequently, on structures with trivial fairness constraints
(F"'=5), all four definitions are equivalent. In [12, 8] the following relation-
ships over the fair simulation preorders are shown:

M, <g My = My <ge My = My <, My = M; <3 M,.

Note that the definitions of game/exists simulation are not limited to specific
types of fairness constraints. They hold even if M; and Ms have different
types of fairness constraints. Finally, we extend the delay/game simulations
for states.

Definition 2.10 For all states sy and sy in a structure M, sy <4/, s2 if
the protagonist has a winning delay/game strategy in a game over M x M
where the adversary starts at sy and the protagonist starts at so.



3 Simulation minimization

For structures with trivial fairness constraints (/' = 5), two forms of re-
dundancy are considered [3]. These redundancies are handled in [3], by first
constructing a quotient structure that results in a structure without equiv-
alent states and then disconnecting little brothers to eliminate the other re-
dundancy. For structures with trivial fairness constraints, eliminating these
redundancies results in a unique, smallest in size structure that is simulation
equivalent to the original structure [3].

The following lemma is a direct consequence of the result in [3] if we
refer to states in F' as having additional labeling.

Lemma 3.1 For every structure, there exists a unique, smallest in size
structure that is direct simulation equivalent to it.

The proof of Lemma 3.1 and the construction of the smallest structure can
be obtained as in [3]. Unfortunately, performing the same operations for the
other notions of fair simulations might result in an inequivalent structure.
In this section we investigate minimization with respect to each notion of
fair simulation. We start by checking whether the quotient structure is
equivalent to the original one. Next we check whether it is safe to disconnect
little brothers. We then determine whether there exists a unique smallest
in size equivalent structure. Finally, we use the results of this section to
suggest a new and better minimizing algorithm.

In this section we use language equivalence and language containment.The
definitions are given below.

Definition 3.2

o The language of sy is contained in the language of sy (s1 C sz) if for
every fair trace py from sy there is a fair trace py from sq such that
Vi > 0, Lip) = L{ph).

o My C My if for every fair trace starting at an initial state sg1 € Sop
there is a fair trace starting at an initial state sga € Spo such that
Vi >0, Li(py) = L2(p)-

o M, is language equivalent to Moy if My C My and My C M;.

Clearly, all notions of fair simulation imply language containment.

10



3.1 Quotient structure

The quotient structure is the result of unifying all equivalent states into
equivalence classes. Recall that states s; and sg are equivalent if s; < s
and sy < s7. The equivalence classes are the states of the quotient structure.
There is a transition from one equivalence class to another iff there exists a
transition from a state in the former to a state in the latter. An equivalence
class is initial if it contains an initial state and is fair if it contains a fair
state. For the delay simulation, we present the following lemma.

Lemma 3.3 Let M be the quotient structure of a structure M. Then
M =4 M?.

The proof of Lemma 3.3 appears in Appendix A and is similar to the proof
in [9].

In [8] it is shown that the quotient structure with respect to game simu-
lation is not equivalent to the original one. We show that for every preorder
<& that lies between game simulation and language containment, the quo-
tient structure with respect to this preorder might not be equivalent to the
original structure.

Lemma 3.4 Let <y be any preorder such that for every My, My,
My SgM2:>M1 S&szMlgMg.

Then there exists a structure M whose quotient structure with respect to <g,
s not equivalent to M with respect to <g,.

Proof Consider the structure My in Figure 2. States sg and sy are equivalent
with respect to game simulation. This can be seen by considering a strategy
that instructs the protagonist to move to the same state the adversary moves
to. This strategy proves both directions of the game equivalence. Since
M, <, My = M; <4 My, sp and sy are also equivalent with respect to <g,.

However, the quotient structure that is the result of unifying states sqg
and s is not equivalent to M; with respect to <g. Since M; <g My =
My C My, it is sufficient to prove that the quotient structure is not language
equivalent to My: the language of M; contains all words in which both @ and
b occur infinitely often, but the language of the quotient structure contains
the word a®.

Furthermore, there is no other definition of a quotient structure of My
that is language equivalent to Mj. Such a quotient structure contains two

11



states, one in which a is true and another in which b is true and at least
one of the states is fair. Assume that the state where a is true is fair. We
distinguish between two cases: If there exists a transition from this state to
itself, then the language of the quotient structure includes a word where b
occurs only finitely many times, a contradiction. Otherwise, the word (aab)®
is not in the language of the quotient structure, a contradiction. Assuming
that the state where b is true is fair, will lead to a contradiction in a similar
way. O

Corollary 3.5 For exists/game simulation, the quotient structure is not

necessarily equivalent to the original structure.

M,
0 1

Figure 2: The structures M; and M; are equivalent to M with respect to
game/exists simulation, and they are both minimal. Note that states 0 and
2 (0" and 2') are equivalent but cannot be unified. (Double circles denote
fair states.)

3.2 Disconnecting little brothers

A state sy is a little brother of another state s3 if both states are successors
of the same state s1, s < s3, and s3 £ sp. Little brothers s; is disconnected
by removing the transition (s1, s2) from R.

Lemma 3.6 Let <4 be a preorder such that
My <ge My = My <o My = My C M.

Assume that structure M’ is the result of disconnecting little brothers in
structure M with respect to <4. M’ might not be equivalent to M with
respect to <q.

12



Proof Consider the structure M; in Figure 3. State s, is a little brother of
state s; with respect to <4z.. This can be seen by considering the strategy
that instructs the protagonist to move from state s; to state sg in the first
round and to move to the same state the adversary moves to in the other
rounds. This strategy shows that sy <y4. s1, because

My <ge My = My <4 My, s; <4 s1. Next, note that s; Z sy, since s;
has a successor labeled ¢ and sy does not. Thus s; €4 s2, and sy is a little
brother of s; with respect to <4.

Next we show that the result of disconnecting s, from sq is not equivalent
to My with respect to <4. Since My <o My = M; C My, it is sufficient to
show that the result of disconnecting s, from sg is not language equivalent
to M;. But this is true since disconnecting s, results in a structure with no
fair traces from s;. O

Corollary 3.7 The structure that results when little brothers are discon-
nected with respect to delay/game/exists simulation might not be equivalent
to the original structure with respect to delay/game/exists simulation.

Figure 3: The structures M; and M, are equivalent with respect to de-
lay /game/exists simulation to M, and they are both minimal. Note that
state 2 (4') is a little brother of 1 (0') but cannot be disconnected.

3.3 Unique smallest in size structure

Lemma 3.8 Let <4 be a preorder such that
My <ge My = My <o My = My C M.

Then there exists a structure M that has no unique smallest in size structure
with respect to <4.

13



Proof Consider the structures in Figure 3. Structures M; and M; are
delay equivalent but are not isomorphic. In order to see that My <4 My,
consider the strategy in which in every round the protagonist moves to the
same state as the adversary, except for the transition from 1’ to 4/, when
the protagonist moves to state 0. Similarly, we can show that M; <y, M,.
Since My <gq. My = My <4 M3, My and M, are equivalent with respect to
<o

Next, we show that there is no smaller structure that is equivalent to M;
and M, with respect to <q4. Since My <o My = M; C My, it is sufficient
to show that there is no smaller structure that is language equivalent to
My and Ms;. Note that every equivalent structure must contain a strongly
connected component with three states labeled {a}, {b} and {c¢}. However,
these states cannot be fair because there are no fair traces in M; and My
which have infinitely many states labeled {c¢}. Thus, there should be two
other states labeled {a} and {b} on a fair, strongly connected component.
Consequently, there have to be at least five states in any structure that is
language equivalent to My and M,. O

Corollary 3.9 There is no unique smallest in size structure with respect
to delay/game/exists simulation.

An interesting observation is that the minimization operations are not
independent® [14]. For example, in structure M in Figure 2, states so and sy
are game/exists equivalent to states sy and ss respectively. Unifying states
so and s results in structure M,. Unifying states s; and ss3 results in struc-
ture M;. Both structures are equivalent to M and neither can be further
minimized. A similar phenomenon occurs in structure M of Figure 3: for
delay/exists/game simulation, states s; and sy are little brothers of states s
and sy respectively. Disconnecting state s4 from state sy results in My, and
disconnecting state sy from state sp results in M. Again, both structures
are equivalent to M, and neither structure can be further minimized.

3.4 An approximate minimization algorithm for
delay /game/exists simulation

In [3], two efficient procedures for minimizing with respect to ordinary sim-
ulation are presented. In the previous sections we have shown that these

®Operations are not independent if one operation disables another.

14



procedures cannot be used for delay/game/exists simulation. Furthermore,
we have shown that there is no equivalent unique smallest in size structure
with respect to these simulations. As a result, we suggest an algorithm that
performs some minimization but does not necessarily construct a minimal
structure. Our algorithm uses the direct/delay simulations as an approxima-
tion of the game/exists simulation. The algorithm is presented in Figure 4.
The first step results in M’ =5, M. The second step results in M" =4 M'.

Given a structure M,
1. Construct a quotient structure M’ with respect to delay simulation.

2. Construct M" by disconnecting little brothers in M’ with respect to
direct simulation.

Figure 4: Minimization algorithm for the delay/game/exists simulations.

Since direct simulation implies delay simulation, M" =;. M. M" is also
equivalent to M with respect to game/exists simulation. Thus, the algo-
rithm combines the advantages of the direct and the delay simulations in
order to produce a reduced structure that is equivalent with respect to de-
lay /game/exists simulations to the original one. The complexity of the first
step is O(m - n?) [8], and of the second step O(m - n) [3]. Thus the total
complexity of the algorithm is O(m - n?).

4 Relating the simulation notions to logics

In this section we investigate the relationship between the different notions
of fair simulation and the logics ACTL and ACTL*. First we check for each
notion whether it has a logical characterization. Next we check whether
there exists a maximal structure for ACTL with respect to each notion.

4.1 Logical characterization

Definition 4.1 Logic L characterizes a preorder < if for all structures M
and My, My < My if and only if for every formula ¢ in L, My = ¢ implies
M, E ¢.

In [11], it is shown that if My <3 M, then the following property holds:
Vo € ACTL*, M, |E ¢ implies M, = ¢. Since all other simulation notions

15



imply the exists simulation, this property holds for all of these notions.

We now investigate which of the fair simulations satisfy the other di-
rection of logical characterization. We show that ACTL* characterizes the
exists simulation but not the game/delay/direct simulation. On the other
hand, ACTL does not characterize any of these notions.

First we prove that the exists simulation is characterized by the ACTL*
logic. We prove that if M «£3 M’, then there exists an ECTL* formula
¢ and an initial state sg of M such that M, sy = ¢. Furthermore, for all
initial states s of M’, M’ sj I~ ¢. This implies that there exists an ACTL*
formula ¢ which is equivalent to —¢ such that M’ =1 but M }= .

Our proof is similar to the proof in [1] for fair bisimulation. It is based
on a different definition of fair simulation. This definition called rational
simulation, is presented below.

Definition 4.2 Let p be a trace through a Kripke structure M. p is a
rational trace if AN, K such that Yi(i > N — p' = p((i_N)mOd K)+NY,

Thus, a rational trace is a trace with a prefix of length N followed by a cycle
of length K.

Definition 4.3 A state s is smaller by rational simulation than a state t
(s <,at t) if they lie in the coarsest preorder H that satisfies

o L(s)=L(1).

o for every fair rational trace ps starting at s there exists a fair rational
trace p; starting at t such that (ps,pi) € H.

M <, M if for every so € So there exists sy € S} such that so <,q S}.

Lemma 4.4 Let s and t be states in structure M. If there exists a fair
trace ps from s such that for all fair traces py fromt, (ps, pi) ¢ H, then there
exists a fair rational trace pgs. from s such that for all fair traces ps from t,

(/057’7 Pt) € H.

The proof of Lemma 4.4 appears in Appendix B. Corollary 4.5 is straight-
forward from Lemma 4.4.

Corollary 4.5 If M £3 M’ then M £+ M'.

In the proof we refer to one structure instead of two. This can be done when
we refer to M” which is the union of M and M’ where, S” = SUS’, (assume
SNS"'=0), R"=RUR', and F”" = FU F’. having deduced Corollary 4.5,

it is now sufficient to prove the following:

16



Lemma 4.6 For every structure M and states s and t, If for all FC'TL*
formulas ¢, M, s |= ¢ implies M,t = ¢, then s <,q t.

Proof We prove that s £,,¢ t implies that there exists an ECTL* formula
¢ such that M, s = ¢ but Mt }~= ¢.

We first inductively define a sequence of preorders over S x S.
Definition 4.7
e (s,t) € Hy iff L(s) = L(1).

o (s,t) € Hiyq iff for every fair rational trace ps starting at s there exists
a fair rational trace py starting at t such that (ps, pt) € H;.

Note that for every ¢ > 0, H;;1 C H;. Thus, after at most |S|? preorders,
we reach a fixpoint. We use H., to denote the preorder at the fixpoint. It
is easy to see that H., is exactly the fair rational simulation.

For every state s, we define the following ECTL* formulas. For every
t such that (s,t) ¢ H;, we define D;(s,t) such that for every (s,v) € H;,
v = D;(s,t) and ¢ = D;(s,t). We also define formulas C;(s) such that for
all states v € S, v = C;(s) iff (s,v) € H;.

We define D;(s,t) and C;(s) inductively.

e Let P be the set of atomic propositions true in s. Then for all t € 5,
such that (s,t) € Ho Do(s,t) = Co(s) = Apep) P A(peAP\P) P-

e Let s and ¢ be states such that (s,¢) € H;11. Then there exists a fair
rational path p from s for which there is no H;-corresponding trace

from ¢.

Assume that p = s1,2,...,5N, (SN41,- .- SNk )*. We first define for
1 < 7 < K aformula that describes the cycle from place j+ NV, namely
the trace

SN+js SN+j+1y - - SN4Ky SN+1y -+ -3 SN+4j—1-

cyclel (s5,t) = Ci(S(N414((=1)mod K))) N X(Ci(S(N414( mod K))) N
X(Cols(N414((+1) mod K)) A - X(CilS(N414(+K=2) mod K))) -+ +)-

Let cycleip(s,t) = VIS eyclel (s,1).

Let trace;yq(s,t) = Ci(s1)AX(Ci(s2) . . AX(Ci(sn+r )AX G(cycleiyq(s,t)) .. ).
Let D;y1(s,t) = Etrace;41(s,t).

Let Ci-l-l(s) = /\(s,t)gH,'Di-I-l(Sv t)'

17



Note that pV*! |= cycle;y1(s,t). Furthermore,
p = Ci(s1) NX(Ci(s2), ..., AX(Ci(sn)) . ..), thus s = D;qq(s, t).

Given a state v, if v = D;41(s,t), then there is a fair trace p’ starting
at v such that p' |= trace;41(s,t). We prove that (p,p’) € H;. First, for
each 1 < j < N+ K, p” | Cy(s;). Further, it is true that for j > N + 1,
p" = eycleiyq(s,t). Using these facts, one can show by induction that for
j>1, pNt e cycleggl_l)m()d K)-H(s,t). This implies that for each j > 1,
pNH = Ci(SN-I—l-I—(j—l)mod K)-

Once we know that for every state v such that (s,v) € Hiq, v E
Diy1(s,t), it is easy to see that for every state v, v | Ciy1(s) iff (s,v) €
Hi—l—l-

Let C'» (8) be the formula such that for all v € S, v = Co(s) & (s,v) €
H.,. Then forall t € S, ¢t} Cx(s) & (s,t) € Hy. Since s = Cy(s),
for all t € S such that (s,t) ¢ H there exists ¢y € ECTL* that differentiates
between s and ¢.0

Assume that M £,.,+ M'. Then there exists an initial state sy € Sy such
that for all initial states s{; € S, so Lyar 4. Thus, M, so = C(s0), and for
all sj € S, M, s, = Co(S0). Let p €ACTL* be the formula equivalent to
—(',. Then, since M, sy = 1, M F~ 1 and since for all s, € S, M, s, = ¥,
M’ .

From Corollary 4.5 and Lemma 4.6 we deduce Corollary 4.8.
Corollary 4.8 If for all ACTL* formulas v, M' |= ¢ implies M = 1,
then M <3 M’'.

Unlike ACTL*, ACTL does not characterize the exists simulation. In [1]
two structures, My and My, are given. It is shown in [1] that for every ¢ in
ACTL, M; = ¢ implies M, = ¢. However, there exists an ACTL* formula
@ such that My = ¢ but My £ . Since ACTL* characterizes the exists
simulation, My <3 M;.

Unfortunately, the game, direct, and delay simulations cannot be char-
acterized by either ACTL* or ACTL. In [12] two structures, My and My, are
given such that M; <3 M, but M; £, M,. Since ACTL* characterizes the
exists simulation, for every ¢ in ACTL* (and therefore ACTL), M; = ¢ im-
plies M; | ¢. Therefore, ACTL* (ACTL) does not characterizes the game
simulation. Since the direct/delay simulation implies the game simulation,
ACTL* (ACTL) does not characterize them either.

We have shown that ACTL* characterizes the exists simulation but not
the game/delay/direct simulation. Furthermore, ACTL does not character-
ize any of these notions. The question arises whether the direct/delay/game

18



simulation can be characterized by any other logic. [12] shows that the
game simulation can be characterized by the Universal Alternating Free
p-Calculus (VAFMC) logic when interpreted over fair structures.

We show that no reasonable logic that describes the fair branching be-
havior of a structure can characterize the direct/delay simulation. Consider
structures My and M, in Figure 5. M; and M; cannot be distinguished
by a temporal logic formula. This is because they have computation trees,
with exactly the same fair traces. However, My «4. M; and therefore,
My L4; My. To see that My £4. My note that if the adversary chooses the
path 123° the protagonist must choose the path 1’2’3, However 2 is a fair
state while 2’ and 3’ are not. Thus neither simulation can be characterized

1/ 9 My / 4!
JoseR R

Figure 5: The direct/delay simulations cannot be characterized by temporal
logics.

by any such logic.

4.2 Maximal structure

Next we check for the existence of a maximal structure for a formula with
respect to a preorder.

Definition 4.9 A structure My is mazimal for formula ¢ with respect to
preorder < if for every structure M, M = ¢ < M < M.

In [11] a construction of a maximal structure for ACTL formulas with re-
spect to the exists simulation is presented. The maximal structure is used
as a tableau for the formula. In this section we check whether the di-
rect/delay/game simulations have a maximal structure. We prove that the
maximal structure constructed in [11] is maximal with respect to the game
simulation as well. On the other hand, we show that the formula Afa U b]
has no maximal structure with respect to the direct and delay simulations.
This formula is contained in both ACTL and ACTL*.

19



4.3 A maximal structure for ACTL with respect to game
simulation

We prove that for every ACTL formula, the tableau of the formula as defined
in [11] is the maximal structure for the formula with respect to the game
simulation. First, we describe the construction of the tableau as shown in
[11]. In [11], a different type of fairness constraint, the generalized Biichi
acceptance condition, is used. A generalized Biichi acceptance condition is
aset F'={fi, fa,...fn} of subsets of S. A trace p is fair according to F' iff
for every 1 < i < n,inf(p)N f; # 0. Since the game simulation is not limited
to a certain type of fairness constraint, we do not have to change anything
in its definition.

For the remainder of this section, fix an ACTL formula . Let AP,
be the set of atomic propositions in . The tableau associated with 1 is a
structure Ty = (S, Rt, Sor, LT, F'r). The set of elementary formulas of v,
el(v), is defined as follows:

L. el(p) = el(—p) = {p}if p € APy.

(
2. el(¢1V ¢2) = el(¢1 A d2) = el(d1) U el(da).
L el(AX &) = {AX 6} U el(6).
(
(

w

=

. el(Alp1 U ¢3]) = {AX False, AX(A[¢1 U ¢g]) } U el(d1) Uel(g2).
5. el A[le R ng]) = {AX False, AX(A[le R ng])} U €l(§b1) U €l(§b2)

The set of tableau states is Sp = P(el(¢))®. The labeling function is
L7(s:) = ss N APy. In order to specify the set Sor of initial states and the
transition relation R7, we need an additional function sat that associates
with each sub-formula ¢ of 1 a set of states in Sy. Intuitively, sat(¢) will
be the set of states that satisfy ¢.

1. sat(¢) ={s| ¢ € s} where ¢ € el(2)).

2. sat(—¢) ={s | ¢ € s} where ¢ is an atomic proposition. Recall that
only atomic propositions can be negated in ACTL.

3. sat(oV @) = sat(P) U sat(yp).

4. sat(p A ) = sat(¢) N sat(p).

%Some of the states are deleted in order to keep Rr total.

20



5. sat(A[pUep]) = (sat(p)U(sat(P)Nsat(AX(A[oUg]))))Usat(AX False).
6. sat(A[pRy]) = (sat(p)N(sat(p)Usat(AX(A[¢Rp]))))Usat(AX False).

The set of initial states of the tableau is So7 = sat()). The transition
relation is defined so that if AX ¢ is included in some state then all its
successors should satisfy ¢.

Ry(s1,s2) = /\ (AX @) € 51 = 53 € sat(9).
AX peel(y)

The fairness constraint guarantees that eventuality properties are fulfilled.
This is done by requiring that for every fair trace p, for every elementary
formula AX A[¢ U ¢] of 4, and for every state s on p, if s € sat(AX A[¢p U
©]), then there is a later state ¢ on p such that ¢ € sat(¢). Thus, we obtain
the following fairness constraints:

by ={((51 — sat(AX Al U ¢])) Usat(p)) | AX Alp U ] € el(¢) }.

4.4 The tableau is the maximal structure for game simula-
tion

In this section we prove that for every Kripke structure M, M [ @ iff
M <, Ty. Most lemmas were proved in [11] for the exists simulation. We
give proofs only for the lemmas that are different due to the change of the
simulation preorder.

Lemma 4.10 [11] For all subformulas ¢ of v, if t € sat(¢), then t | ¢.

The main result of Lemma 4.10 is that the tableau for 1 satisfies 4. This
is because any initial state of Ty is in sat(v), and therefore every initial
state of 7y satisfies 1. Consequently, since ACTL is preserved by the <,
preorder, for every Kripke structure M, if M <, 7Ty, then M = 4.

Our next step is to prove that M = ¢ implies M <, Ty. We show that
if M = 1 then the protagonist has a winning strategy function in a game
over M x Ty. We define the strategy function 7 as follows: 7(sg, L) = { ¢ |
o €el(),sol= ¢} and n(s,t) ={d| ¢ € el(y),s E ¢}. Thus, whenever
the adversary moves to a state s’, the protagonist moves to ' = 7w (s, ),
such that both s’, ¢ satisfy exactly the same set of elementary formulas of
1. The following lemma extends this result for all subformulas of .

Lemma 4.11 [11]Ift' = = (s',t), then for every subformula or elementary
formula ¢ of ¥, s' = ¢ implies t' € sat(p).

21



Lemma 4.12 7 is a winning strategy.

Proof

1.

Any given state s’ satisfies a unique subset of el(7). Thus, for every
s’, ' is unique and 7 is a function.

. For every sg € Sp, by Lemma 4.11 M, sy = ¢ implies to = 7(sg, L) €

sat(1). By the definition of Sor, this implies tg € Sor.

. Assume that ¢/ = 7(s/,t). Then for every p € APy, p€ L(s') & s

pepe Lrt).

. Assume that ¢’ = 7 (', ). Let (s,t) be the position of the game in the

previous round. Let AX ¢y, AX ¢9,..., AX ¢, be all the formulas of
the form AX ¢ in el(1) which s satisfies. Then we have s’ = ¢4, §' =

b2, ...,8 | ¢,. By Lemma 4.11, t' € sat(¢1), t' € sat(pa), ...,t' €
sat(¢y,). Now by the definition of 7, the formulas of the form AX ¢ in ¢
must be exactly AX ¢1, AX @y, ..., AX ¢,. Then by the definition

of Ry, we see that (¢,t) € Rr.

. We prove that if p is a fair run, then m(p) is also a fair run. Assume

that 7(p) is not fair. By the definition of Fr, there must be some
elementary subformula AX A[¢, U ¢3] such that

inf(m(p)) N (St — sat(AX Al U 64))) U sat(s)) = 0.

This means that there is an ¢ > 0 such that for all j > ¢, 7(s;,t;-1) €
sat(AX A, U ¢p]) but 7(s;,t;-1) € sat(gp).

Consider the state t; = w(s;,t;i-1). t; € sat(AX Alg, U ¢]) iff
AXAl[p, U ¢] € t;. The definition of # then implies that s;
AX Al¢, U ¢p]. In addition, Lemma 4.11 implies that if ¢; ¢ sat(¢),
then s; & ¢y. Since 7(s;,t;—1) € sat(AX A[¢p, U ¢p]) and for all j > 1,
m(s;,t;-1) ¢ sat(¢y), then s;, 5,41, ...1s a fair trace in M starting at s;,
and every state on this trace satisfies —¢,. But s; = AX Afp, U @3],
a contradiction. Hence 7(p) is in fact a fair trace in 7. O

Corollary 4.13 For any structure M, M = iff M <, Ty. Thus, Ty is
the maximal structure for @ with respect to game simulation.

22



4.5 A maximal structure for direct/delay simulation

We now show that it is impossible to construct a maximal structure for the
formula ¢ = Ala U b] with respect to the direct/delay simulations. Thus,
any logic that contains this formula or an equivalent formula, in particular
ACTL and ACTL*, does not have a maximal structure with respect to these
simulations. More specifically, we show that there is no finite structure 7,
such that Ty = ¢ and 7, is greater by the direct/delay simulation than
any structure that satisfies ¢. Since the direct simulation implies the delay
simulation, it is sufficient to prove this result for the delay simulation. In

" T GRS

OA0A040R0, OACA0SORCA0R

N

M ?

Figure 6: There is no finite structure M’ such that for every n in IN, M’ is
greater by direct/delay simulation than M, and M’ = A[a U b].

Figure 6 we present a sequence of structures My, My, ... such that for every
nin IN, M, E A(aUb). We prove that for every n and every structure
M’ if M, <4e M’ and M’ |= A[a U b] then |M’| > n. Thus, any structure
that satisfies Ala U b] and is greater by the delay simulation than all the
structures in the sequence has to be infinite.

Lemma 4.14 For every n > 0 and every structure M', if M, <4 M' and
M' = Ala U b, then |M'| > n.

Proof Let n € IN be a natural number and M’ be a structure such that
M' = Ala U bl and M,, <4zo M'. In a game over M,, X M’ the protagonist
has a winning strategy and thus it wins in every game no matter how the
adversary plays. Consider the following strategy of the adversary. It starts
from the initial state. As long as the protagonist moves to a fair state the

23



adversary moves to the next fair state (until it reaches the last one). If the
protagonist moves to a state that is not fair, then the adversary moves to
the successor which is not fair in M,, and stays there until the protagonist
moves to a fair state in M’. We distinguish between two cases:

1. The suffix of the game is an infinite sequence of unfair states in both
structures. In this case the adversary is the last player who was in a
fair state. Thus it wins the game. This means that M’ is not greater
than M, by the delay simulation, a contradiction.

2. Otherwise, the adversary moves through n fair states in M,, that are
labeled @ to the state labeled b. Since the adversary moves to a fair
state only when the protagonist is in a fair state, the protagonist has
been in n fair states that are labeled a. Since M’ = Afa U b], these
states must be different (otherwise there would be an infinite fair trace
which is labeled a). Thus the size of M’ is at least n. O

We proved that there is no maximal structure for Ala U b] with respect to
the direct/delay simulations.

5 A new implementation for the assume-guarantee
framework

This section shows that the game simulation can replace the exists simula-
tion in the implementation of the assume-guarantee paradigm [10, 13, 18,
19], as suggested in [11].

In the assume-guarantee paradigm, properties of different parts of the
systems are verified separately. The environment of the verified part is
represented by a formula that describes its properties. The formula either
has been verified or is given by the user. The method proves assertions of the
form 1) M ¢, meaning that if the environment satisfies 1 then the composition
of M with the environment satisfies ¢. The method enables the creation of
a proof schema which is based on the structure of the system. [11] suggests
a framework that uses the assume-guarantee paradigm for semi-automatic
verification. It presents a general method that uses models as assumptions;
the models are either generated from a formula as a tableau or are abstract
models given by the user. The proof of ¥ M¢ is done automatically by
verifying that the composition of the tableau for ¢ with M satisfies ¢. The
method requires a preorder <, a composition operator ||, and a specification
language £ which satisfy the following properties:

24



1. For every two structures My, My, if My < My, then for every formula
¥ in L, My | ¢ implies My = .

2. For every two structures My, Mo, My ||My < M.

3. For every three structures My, My, M5, My < Mj implies M;||M5 <
Ms|| M.

4. Let ¢ be a formula in £ and 7y be a tableau for ¥». Then 7y is the
maximal structure with respect to the preorder <.

5. For every structure M, M < M||M.

An implementation for this framework was presented in [11]. The imple-
mentation uses the ACTL logic as the specification language, the exists
simulation preorder, and a composition operator which satisfy the proper-
ties above. In this section we suggest a new implementation which is similar
to that of [11], except that the game simulation is used as the preorder.
We show that the game simulation can replace the exists simulation. As
we have stated, the game simulation preserves the ACTL logic, and thus
property one is satisfied. In Section 4 we proved that the game simulation
satisfies property four. Thus, it is left to show that the game simulation
preorder and the composition operator as defined in [11] satisfy properties
two, three and five. Again we use generalized Biichi constraints. In order
to prove these properties we need to define the composition operator ||.

Definition 5.1 Let My, My be Kripke structures. The parallel composi-
tion of My and My, denoted My||Ms, is the structure M defined as follows.

[ ] AP:AP1UAP2

S = {(s1,52)|L1(51) N APy = Ly(s3) N AP},

R ={((s1,52), (t1,12))[(s1,11) € R1 A (s2,12) € Ra}.
So = (So, X So,) N S.

o L((s1,52)) = Ly(s1) U La(sa).

o I'={(fi xS2)NS|fi € Fi}U{(51 x fi)) N S[fi € Fa}.

"Some of the states might have to be deleted in order to keep R total.

25



Remark: In all notions of simulation, there is a requirement that if s; < s9,
then Li(s1) = La(s2). When M; and M, are defined over different AP we
replace this requirement with Li(s;) N AP, = La(s2) N AP

Lemma 5.2 (property 2.) For every pair of Kripke structures My, Mo,
M| My <, M.

Proof We define a strategy 7 as follows: 7((so1, Soz2), L) = so1 and 7 ((s], 5), 1) =
s}, 1 .e., the protagonist moves on the projection of the adversary’s trace on

M. It is easy to see that 7 is a function. Let ((sq, s3),s1) be the previous
position in the game and assume that the adversary moves to (s}, s}). Then

st = m((s],85),s1). Clearly, Li3(s},s5) N APy = Ly(s}). The definition of
composition implies that if ((s1, s2), (s}, s5)) is a transition in M;||M; then
(s1,5}) is a transition in M;. Furthermore, if the adversary’s trace is fair

then the protagonist’s trace is fair as well. O

Lemma 5.3 (property 3.) Let My, My, Ms be Kripke structures. Then
M1 Sg M2 zmplzes MlHMg Sg MQHMg

Proof Let m be a strategy in a game over My x My. We define a strategy
7' as follow: 7'((so1,S03), L) = (% (so1,L), s03) and ©'((s], s5), (s2,83)) =
(7 (s],s2),84), i.e., whenever the adversary moves to s] in M; and s in M3,
the protagonist moves to the same state in M3 and to s, = 7(s], s2) in Ms.

It is easy to see that 7’ is a function. Let ((s1,s3), (s2, s3)) be the previ-
ous position in the game and assume that the adversary moves to (s, s5).
Then
7' ((s],85), (s2,83)) = (7(s],s2),55). Let s§, = m(s],s2). Since 7 is a win-
ning strategy, Lyi(s]) = La(s}) and (s2,s}) is a transition in My. Thus,
Lq3(s, s%) = Las(sh, s5). Furthermore, the definition of composition implies
that if ((sy, s3), (s}, %)) is a transition in M;||Ms then ((sz2,s3), (sh, s5)) is
a transition in Mjy||Ms.

Whenever the adversary moves on a fair trace in M;||Ms, the traces
projected on My and Ms are both fair. The protagonist moves on the same
trace on Ms. Thus this trace is fair. Let p; be the trace on M; along which
the adversary moves. Since pp is fair and 7 is a strategy, the trace m(p1)
along which the protagonist moves on M, is fair as well. The definition of ||
implies that the protagonist moves on a fair trace in My||Ms. O

Lemma 5.4 property 5. For every structure M, M <, M||M.
Proof Consider the strategy 7(so, L) = (so,50) and 7 (s, (s,s)) = (¢, ).

Clearly 7 is a winning strategy. O

26



We proved that the game simulation preorder and the composition oper-
ator satisfy the properties required in [11]. Therefore, game simulation can
replace the exists simulation in the assume-guarantee framework presented
in [11].

5.1 Complexity

Verifying a formula of the form ¥ M is PSPACE-complete in the size of
1 [16]. However, the real bottleneck of this framework is checking for fair
simulation between models, which for the exists simulation is PSPACE com-
plete in the size of the models. (Typically, models are much larger than
formulas). Thus, replacing the exists simulation with the game simula-
tion reduces this complexity to polynomial and eliminates the bottleneck
of the framework. However, the algorithm for game simulation presented
in [8] refers to Kripke structures with regular Biichi constraints, and the im-
plementation presented in [11] refers to Kripke structures with generalized
Biichi constraints. In order to apply the algorithm suggested in [8] within
the assume-guarantee framework, we need a translation between these types
of fairness constraints.

[5] defines a transformation of a Biichi automaton with generalized fair-
ness constraints into a Biichi automaton with regular fairness constraints.
Here we show that applying this transformation to a Kripke structure with
generalized Biichi constraints results in a Kripke structure with regular
Biichi constraints that is game simulation equivalent to the original one.
The translation affects the size of the structure and thus the complexity of
the construction of the preorder. The sizes of S and R are multiplied by |F],
where |F| is the number of sets in F'. Thus the complexity of constructing
the preorder is |F|-|R|- (|S|-|F])®> = |R|-|S|?-|F|*. Note that in the tableau
for a formula, |F'| is bounded by the size of the formula and the size of the
tableau is exponential in the size of the formula; thus, the transformation
of the tableau to regular fairness constraints result in a strucuture that is
logarithmic bigger than the original one.

Definition 5.5 [5] Let M =< S, R,So, L,{f1, fa,---fn} > be a Kripke
structure with generalized Biichi constraints. We define the Kripke structure
M, =< AP,S,, R, L., F. > with a regular Bichi constraint, as follows:

e S, =5x{1,2,...n}.

o R, = U {((s1,1), (52,9))[(s1,52) € RAs1 & fi}U

27



U= (51, 7), (52,0 + 1))|(51,52) € RA sy € fi}U
{((Slvn)v (527 1))|(81752) € RAsi€ fn}

° Sr’o = SO X {1}
o L.(s,1)=L(s).
o Ir={(s,n)ls € fa}-

In the proof below M denotes a Kripke structure with generalized Biichi
constraints. M, denotes the transformation of M to a Kripke structure with
regular Biichi constraints. We show that M, <, M and M <, M,.

Lemma 5.6 M <, M,.

Proof : First we define a strategy = for the protagonist: 7 (sg, L) = (so, 1)

and
(Slvi) S€fz
(s’ (s,9)) =14 (syi+1) i<nAs€Ef
(s',1) i=nAsE f,.

Next, we prove that 7 is a winning strategy. It is easy to see that =
is a function. The definition of the transformation implies that if (s,7) =
7(s, (t,7)) then L.((s,7)) = L(s) and that ((¢, j), (s, %)) is a transition in M,.

It is left to prove that if the adversary moves on a fair trace p in M then
the protagonist moves on 7(p), which is a fair trace in M,.

First, we prove that for every 1 € 1,2,...n

(%) there are infinitely many states of the form (s, ) in = (p).

Assume to the contrary that there is an index ¢ € {1,2,...n} which does
not satisfy (*). Let j be the minimal index which does not satisfy (*) and let
k be the index before j (k= ((j — 2)mod n)+ 1). Then there exists a suffix
of m(p) in which all the states are of the form (s, k). This implies that there
exists a suffix of p without states in fx. Thus, p is not fair, a contradiction.

Next we prove that m(p) is fair. Since 7(p) contains infinitely many
states of the form (s,n) and infinitely many states of the form (s, 1), then
there exist infinitely many states in F,. O

Lemma 5.7 M, <, M.

28



Proof We define the strategy = for the protagonist: = ((so,1),L1) = so
and 7((s2,1),51) = s3. It is easy to see that 7 is a function and that
sy = 7((s9,7),s1) implies that L,.((s2,7)) = L(s2). ((s1,7),(s2,7)) € R,
also implies (s1,s2) € R. It is left to prove that if the adversary moves on
a fair trace in M, then the protagonist moves on a fair trace in M. Let
p = (so,%0), (s1,71), (s2,%2), ... be a fair trace in M,. We prove that

m(p) = s0, 7 ((51, 1), 50), T((52,72), 51), 7((53,43), 52), - - . = 50,51, 525 - - -

is a fair run in M. Assume to the contrary that 7(p) is not fair. Then there
exists an index ¢ € {1...n} such that 7(p) contains only finitely many states
in f;. Thus, there is a suffix of 7(p) without any state in f;. This implies that

(**) there exists a suffix of p, without any states of the form (s, ¢), where s
is an element in f;.

Let j be the minimal index that satisfies (**). Then there exists a suffix
of p in which all the states are of the form (s,j). This implies that this
suffix does not contain any states in {(s,n)|s € f,}. Thus p is not fair, a
contradiction. O

6 Conclusion

This work shows that there is no notion of fair simulation which has all the
desired advantages. However, it is clear that their relationship with the log-
ics gives the exists and game simulations several advantages over the delay
and direct simulations. On the other hand, the delay and direct simulations
are better for minimization. Since this research is motivated by usefulness to
model checking, relationships with a logic are important. Thus, it is advan-
tageous to refer to the delay and direct simulations as approximations of the
game/exists simulations. These approximations enable some minimization
with respect to the exists and game simulations. Out of the four notions, we
consider the game simulation to be the best. This is due to its complexity
and its applicability in modular verification.

References

[1] A. Aziz, V. Singhal, T.R. Shiple, A.L. Sangiovanni-Vincentelli,

F. Balarin, and R.K. Brayton. Equivalences for fair kripke structures.

29



In ICALP, LNCS 840, pages 364-375, 1994.

S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property pre-
serving simulation. In Computer-Aided Verification, volume 663 LNCS,
pages 260-273, 1981.

D. Bustan and O. Grumberg. Simulation based minimization. In Con-
ference on Automated Deduction, volume 17, pages 255-270, 2000.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT
Press, 1999.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. In Pro-
ceedings of Computer-Aided Verification, volume 531 of LNCYS| pages
233—- 242, 1991.

D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion
using simulation relation. In Computer-Aided Verification, LNCS 575,
pages 255265, 1991.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-

terminacy. In 32nd Annual Symposium on Foundations of Computer
Science, pages 368-377, San Juan, Puerto Rico, 1-4 October 1991.
IEEE.

K. Etessami, Th. Wilke, and R. Schuller. Fair simulation relations,
parity games, and state space reduction for Biichi automata. In Au-
tomata, Languages and Programming, 28th International colloquium,

LNCS 2076, pages 694-707, 2001.

K. Etessami, Th. Wilke, and R. Schuller. Faster algorithms for com-
puting fair simulation relation, and how to use them for state space
reduction. Technical Report ITD-01-40643, Bell Labs, 2001.

N. Francez. The Analysis of Cyclic Programs. PhD thesis, Weizmann
Institute of Science, 1976.

O. Grumberg and D.E. Long. Model checking and modular verifica-
tion. ACM Trans. on Programming Languages and Systems (TOPLAS),
16(3):843-871, 1994.

30



[12] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In
Proc. 8th Conference on Concurrency Theory, LNCS 1234, 1997.

[13] C. B. Jones. Specification and design of (parallel) programs. In Inter-
national Federation for Information Processing (IFIP), pages 321-332,
1983.

[14] Shmuel Katz and Doron Peled. Defining conditional independence using
collapses. Theoretical Computer Science, 101(2):337-359, 1992.

[15] O. Kupferman and M.Y. Vardi. Verification of fair transition systems.
In Computer Aided Verification (CAV’96), LNCS 1102, pages 372-382,
1996.

[16] O. Kupferman and M.Y. Vardi. Modular model checking. In Proc.
Compositionality Workshop, LNCS 1536. Springer-Verlag, 1998.

[17] R. Milner. An algebraic definition of simulation between programs. In
Proc. of the 2nd International Joint Conferences on Artificial Intelli-
gence (IJCAI), pages 481-489, London, UK, 1971.

[18] J. Misra and K.M. Chandy. Proofs of networks of processes. [EEE
Transactions on Software Engineering, 7:417-426, 1981.

[19] A. Pnueli. In transition from global to modular temporal reasoning
about programs. In K. R. Apt, editor, Logics and Models of Concurrent
Systems, volume 13 of NATO AST series F. sv, 1984.

A A quotient structure for the delay simulation

In this section we prove Lemma 3.3. For every structure M, let M% be its
quotient structure with respect to the delay simulation. Then M and M®
are equivalent with respect to the delay simulation.

The proof that M <z M@ is straightforward. Consider the strategy
m(so, L) = [so] and =(s,[s]) = [¢']. It easy to see that 7 is a winning
strategy.

Before we prove the other direction, we need some new definitions. First,
we extend the definition of delay simulation to a relation over the states of
a structure.

In [8] it is shown that there exists a strategy #* such that 7* is a winning
strategy for every simulation game over M x M, where the adversary and the

31



protagonist start at states s; and s such that s; <y, s3. Another property
of 7* is presented in Proposition A.1.

Proposition A.1 [8] Let sy and sy be states in M such that sy <g. Sg.
Let 8 be a successor of s1 and shy = 7*(s], s2). Then s| <4 5.

Since the delay simulation is transitive, the following proposition is straight-
forward.

Proposition A.2 Let M be a structure and let M@ be its quotient struc-
ture. Let s1 and sy be states in M such that s1 <ge s3. Then every state ss
that is in the same equivalence class as s1 satisfies s3 <y S9.

We denote by [s] the equivalence class of s. Lemma A.3 and Lemma A.4
imply that M® <4 M.

Lemma A.3 Let sy and sy be states in M such that s1 <4 s9. Then the
protagonist has a strateqy in a game over M® x M in which the adversary
starts at [s1] and the protagonist starts at sy. In each round assume that the
adversary is at [s3] and the protagonist is at s4. Then s3 <g4. S4.

Proof Let 7* be the winning strategy over M x M. We define the strategy
7" as follows: At the beginning, 7'([s1], L) = s2. Assume that the previous
position of the game was ([s3], s4) such that s <4. s4 and that the adversary
moves to [s4]. The definition of M% implies that there exists a transition
(ts,t5) in M such that s3 and t3 are in the same class, as are s§ and t5.
Proposition A.2 implies that ¢35 <g. s4. We define 7'([s3]’, s4) = 7*(¢}, s4).
By the definition of 7*, 7’ is well-defined. Moreover, since s; and t} are
in the same equivalence class, st <g4. t4. Furthermore, by Proposition A.1,
since sy = 7*(t5, s4), t5 <4e 8}, and therefore s§ <4 §}.0

Note that this strategy ensures that in every round L%([s3]) = L(s4).
However, it does not ensure that whenever the adversary moves to a fair
state, the protagonist moves to a fair state after finitely many rounds.

Lemma A.4 Let M be a structure and let M® be its quotient structure.
Then M@ <4 M.

Proof We describe a strategy #” which uses memory. In [7, 8] it is shown
that if there exists a strategy with memory then there exists a memoryless
strategy. The strategy 7" “remembers” two arguments: the first argument
is called the status, which can be either fulfilled or unfulfilled. The status is
unfulfilled if the protagonist has not visited a fair trace since the last time

32



the adversary did. Otherwise, the status is fulfilled. The second argument
called the middle, and it “remembers” a state in M.

Let 7* be a winning strategy over M x M and 7’ a strategy over M® x M
as defined in Lemma A.3. We define 7" as follows: #”([s¢], L) = so, If the
status is fulfilled, then 7"([s5], s4) = #'([s5], s4). Thus the middle argument
is ignored. In a round where the status becomes unfulfilled, meaning that
[s3] is fair and s4 is not, we assign middle to be a fair state in the class of
s (there is at least one).

If the status is not fulfilled, assume that the adversary moves to [s}].
Then we assign middle’ = 7'([s}], middle) and 7" ([s}], s4) = 7*(middle’, s4).

In order to see that 7 is a winning strategy, first consider the round
where the status becomes unfulfilled. In this round, s3 and middle are
in the same class. Thus, if the position is ([s3], s4), then s3 <4 middle.
Furthermore, as long as the status does not become fulfilled, middle moves
along a trace in M such that whenever the adversary moves to [ss], s3 <ge
maddle. Since middle starts at a fair state and moves on a trace in M, by
the definition of #*, after a finite number of rounds, the protagonist moves
to a fair state as well. O

B Proving Lemma 4.4

Lemma 4.4 cliams the following;:

Let s and ¢ be states in structure M. If there exists a fair trace ps from

s such that for all fair traces p; from t, ps £,at pt, then there exists a fair

rational trace ps, from s such that for all fair traces p; from ¢, ps. Lrar pe-
We define an equivalence relation with respect to <,,¢, such that states s

and t are equivalent with respect to <,.; if s <,,; t and t <,,; s. We denote

by [s] the equivalence class of s. We say that [s;] <,4¢ 2 iff s1 <,qs s2.

Definition B.1 Let M be a structure. We define the preorder structure
MY as follows:

e AP ={C,Cy,...C,} where {Cy,Cy,...C,} are the equivalence classes

with respect to <,q.
o S¥ ={(s5,C;)|s € S and there exists s' € C; such that (s',s) € H}.
e ((5,C0),(t,C;)) € RY & (s,t) € R.
o SF = {(s0,C})|s0 € So}.

33



o LP((5,Cy)) =C;.
o (s,0))eFP & secF.

Given a state s in M”, we denote by head(s) the first element of s and
by tail(s”) the second element of s

Lemma B.2 Given a fair trace ps from a state s and a state t in a struc-
ture M, the following conditions are equivalent:

1. There exists a fair trace p; from t such that ps <,qt pe.

2. There exists a fair trace py, from (t,[s]) such that for all i > 0,
LY (pi) = [pi]-
Proof For the first direction, assume that there exists a fair trace p; from
t such that ps <,q p;. Consider the trace p;, such that for all « > 0,
head(p},) = p; and tail(p;,) = [py]. By the definition of M¥, p,, is a trace
in MFP. Since p; is fair, pip is fair as well.

For the second direction, assume that there exists a fair trace p;, from
(t,[s]) such that for all + > 0, L(p},) = [p%]. Consider the trace p; that
satisfies pi = head(p,). By the definition of MP, p} is a trace in M.
Furthermore, py <,q¢ p¢. Since py, is a fair trace, p; is fair as well. O

Lemma B.3 Letp,, be a fair trace from (s1, [s2]) in MT such that LY (p,)
is an w-reqular word. Then there exists a rational trace ps, from s; such
that for all i > 0, tail(p,) <rat ps, -

Proof Since L7 (ps,) is an w-regular word, we can write it as wjw4. Let
N = |wy| and K = |ws|. Consider the trace p,, that satisfies, pL = head(pi,p).
Then, for all ¢ > 0, tail(ps,) <at ps, - Let [s2] = tail(pjs\;). Then for all ¢ > 0,
[s2] <rat p],S\lf+I‘y'i. Since M is a finite structure there exists a state sq such
that for infinitely many numbers ¢, ,015\17"']""2' = s4. Since pg, is fair, there are
i < jsuch that pi,\lf"'l"'i = ,0?17"'[‘7']4 =sqandanindex N+ K1 <k < N+K.j
such that ,0’5“1 is a fair state.

Let pg be the following trace: For all 0 <! < N + K -1, pls, = ,ol51 and
forall [ > N+ K -4, Pls/ _ pg(ll—N—I\"~i)mod (=) FNFN+KA e casy 1o see
that py is a fair rational trace. Furthermore, the construction of py implies
that for all [ > 0, tail(plsp) <par pli. O

Finally we prove Lemma 4.4: Assume that there exists a fair trace from
s such that for every fair trace p; from ¢, ps €.t p¢. By Lemma B.2, there

34



is no fair trace py, such that for all i > 0, L7 (pj,) = [pi]. We refer to
(s,[s]) and (t,[t]) as two copies MY and M} of M where the former has
(s,[s]) as a single initial state and the latter has (¢,[t]) as a single initial
state. Then the language of MY \ M/ is not empty. This implies that the
language of MF \ M[" contains an w-regular word. Thus, there exists an
w-regular word w; in the language of (s, [s]) that is not in the language of
(t,[t]). This implies that their exists a fair trace p/p that starts at (s,[s])
and wy = LY (p'p).

By Lemma B.3 there exists a rational fair trace p,; that starts at s, such
that for all i > 0, tail(p'p) <,q p.. Assume to the contrary that there exists
a fair trace p; from ¢ such that ps; <,.¢ ps. Consider the trace psp such that
for all i > 0, head(p'p) = pt and tail(pip) = tail(p"s). Clearly, p;p is a fair
trace from (¢, [s]). Furthermore, LY (p'p) = L¥(py,), thus LY (pip) = ws.
This implies that w, is in the language of M, a contradiction. O

35



