
1

Model Checking

Orna Grumberg

Technion

Haifa, Israel

Taiwan, October 8, 2009

2

Why (formal) verification?
• safety-critical applications: Bugs are unacceptable!

– Air-traffic controllers
– Medical equipment
– Cars

• Bugs found in later stages of design are expensive,
e.g. Intel’s Pentium bug in floating-point division

• Hardware and software systems grow in size and
complexity: Subtle errors are hard to find by
testing

• Pressure to reduce time-to-market
Automated tools for formal verification are needed

3

Formal Verification
Given

• a model of a (hardware or software) system and

• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a
decidable one:

• Finite-state reactive systems

• Propositional temporal logics

4

Finite state systems - examples

• Hardware designs

• Controllers (elevator, traffic-light)

• Communication protocols (when ignoring the
message content)

• High level (abstracted) description of non
finite state systems

5

Properties in temporal logic

• mutual exclusion:
always (cs1  cs2)

• non starvation:
always (request  eventually grant)

• communication protocols:
( get-message) until send-message

6

Model Checking [EC81,QS82]

An efficient procedure that receives:

▪ A finite-state model describing a system

▪ A temporal logic formula describing a
property

It returns

yes, if the system has the property

no + Counterexample, otherwise

7

Model Checking

▪ Emerging as an industrial standard tool for
verification of hardware designs: Intel,
IBM, Cadence, …

▪ Recently applied successfully also for
software verification: SLAM (Microsoft),
Java PathFinder and SPIN (NASA), BLAST
(EPFL), CBMC (Oxford),…

8

Clarke, Emerson, and Sifakis won the
2007 Turing award for their
contribution to Model Checking

9

Overview

• Temporal logics

• Model Checking

• BDD-based (symbolic) model checking

• SAT-based (bounded) model checking

10

Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb

11

Notation

• Kripke structure M = (S, I, R, L)

– S : (finite) set of states

– I : set of initial states

– R : set of transitions

– L: labeling function, associates each state with a
subset of atomic propositions AP

p qs t
M:

AP = {p, q}

12

=s0s1s2... is a path in M from s iff

s = s0 and

for every i0: (si,si+1)R

13

Temporal Logics

• Linear Time
– Every moment has a unique

successor

– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several

successors

– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logics
– Express properties of event orderings in time

14

Propositional temporal logic

AP – a set of atomic propositions
Temporal operators:
Gp
Fp
Xp
pUq
Path quantifiers: A for all path

E there exists a path

15

M |= f  for every initial state s,

s |= f

16

Computation Tree Logic
(CTL)

CTL operator:

path quantifier + temporal operator

Atomic propositions: p  AP

Boolean operators: f  g , f

CTL temporal operators: EX f, E(fUg), EGf

17

More CTL operators

Universal formulas:

• AX f, A(f U g), AG f , AF f

Existential formulas:

• EX f, E(fUg), EG f , EF f

18

Linear Temporal logic (LTL)

Formulas are of the form Af, where f can
include any nesting of temporal operators
but no path quantifiers

Example: LTL formula which is not CTL
A GF p

Meaning, along every path, infinitely often p

19

CTL*
Includes LTL and CTL and more

20

Example formulas
CTL formulas:

• mutual exclusion: AG (cs1  cs2)

• non starvation: AG (request  AF grant)

• “sanity” check: EF request

LTL formulas:

• fairness: A(GF enabled  GF executed)

• A(x=a  y=b  XXXX z=a+b)

21

Property types

Universal Existential

Safety AGp EGp

Liveness AFp EFp

22

Property types (cont.)

Combination of universal safety

and existential liveness:

“along every possible execution, in every state
there is a possible continuation that will
eventually reach a reset state”

AG EF reset

23

Mutual Exclusion Example
[by Willem Visser]

N1 → T1

T1  S0 → C1  S1

C1 → N1  S0

N2 → T2

T2  S0 → C2  S1

C2 → N2  S0

||

• Two process mutual exclusion with shared semaphore

• Each process has three states

• Non-critical (N)

• Trying (T)

• Critical (C)

• Semaphore can be available (S0) or taken (S1)

• Initially both processes are in the Non-critical state and

the semaphore is available --- N1 N2 S0

24

Model for Mutual Exclusion

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Specification: M ╞ AG EF (N1 N2  S0)

No matter where you are there is

always a way to get to the initial state

25

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)

26

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)

27

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)

28

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)

29

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)

No matter where you are there is

always a way to get to the initial state

30

Model Checking M |= f

• The Model Checking algorithm works
iteratively on subformulas of f , from
simpler subformulas to more complex ones

• For checking AG(request  AF grant)
– Check grant, request
– Then check AF grant
– Next check request  AF grant
– Finally check AG(request  AF grant)

31

Model Checking M |= f (cont.)

• We check subformula g of f only after all
subformulas of g have already been checked

• For subformula g, the algorithm returns

the set of states that satisfy g (Sg)

• The algorithm has time complexity:
O(|M|  |f|)

32

Model Checking M |= f (cont.)

• M |= f if and only if all initial states
of M are contained in Sf .

33

Basic operations in model checking

Given a set of states Q:

• Succ(Q) returns the set of
successors of the states in Q

• Pred(Q) returns the set of states
that have a successor in Q

34

Model checking f = EF g
Given: a model M and the set Sg of states

satisfying g in M

procedure CheckEF (Sg)
Q := emptyset; Q’ := Sg ;
while Q  Q’ do
Q := Q’;
Q’ := Q  Pred(Q)
end while
Sf := Q ; return(Sf)

35

g

g

g

f

f

f

f

f

f

f

Example: f = EF g

36

Model checking f = EG g
CheckEG gets M and Sg and returns Sf

procedure CheckEG (Sg)

Q := S ; Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q  Pred(Q)

end while

Sf := Q ; return(Sf)

37

g

g

g

g

g

g

Example: f = EG g

38

Reachability + model checking f=AGp

• Starting from the initial states, iteratively
computes the set of successors.

• At each iteration checks whether it
reached a state which satisfies p.
– If yes, announces failure.

• Stops when no new states are found.
– Result 1: the set of reachable states.
– Result 2: M |= AGp

39

Model checking f = AG p
CheckAG gets M, Sp and returns Reach

procedure CheckAG (Sp)
Reach:= I ; New := I;
while New   do

If New  Sp return (M | AGp)
New := Succ(New); New :=New\Reach;
Reach := Reach  New;

end while
return(Reach, M |= AGp)

40

Reachability + checking AG a

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7

8

41

Return: M | AG a

a,b a

ab,c

c

a,c a,bb

Failure: New  Sa

1 2

3 4

5
6 7

8

42

Reachability + checking AG (ab)

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7

8

43

Return: Reach, M |= AG (ab)

a,b a

ab,c

c

a,c a,bb

Reach = {1, 2, 3, 4, 5, 6} New = emptyset

1 2

3 4

5
6 7

8

44

Main limitation:

The state explosion problem:
Model checking is efficient in time but

suffers from high space requirements:

The number of states in the system model
grows exponentially with

▪ the number of variables
▪ the number of components in the system

45

If the model is given explicitly (e.g. by
adjacent matrix) then only systems
of restricted size can be handled.

• Strong reduction techniques are
needed, e.g. Partial Order Reduction

46

Symbolic model checking

A solution to the state explosion problem:
BDD-based model checking

• Binary Decision Diagrams (BDDs)
are used to represent the model and sets of
states.

• It can handle systems with hundreds of
Boolean variables.

47

Binary decision diagrams
(BDDs)

• Data structure for representing
Boolean functions

• Often concise in memory

• Canonical representation

• Most Boolean operations can be performed
on BDDs in polynomial time in the BDD size

48

a

b

c

10

c

1 1

b
c

1 1

b

cc

b

0 11 0

a

b

cc

1 1 10

c c c

BDD for f(a,b,c) = (a  b)  c

Decision tree

a

b

c

10

BDD

49

BDDs in model checking

• Every set A  U can be represented by
its characteristic function

1 if uA
fA(u) = 0 if u  A

• If the elements of U are encoded by
sequences over {0,1}n then fA is a Boolean
function and can be represented by a BDD

50

Representing a model with BDDs

• Assume that states in model M are
encoded by {0,1}n and described by
Boolean variables v1...vn

• Sf can be represented by a BDD over
v1...vn

• R (a set of pairs of states (s,s’))
can be represented by a BDD over
v1...vn v1’...vn’

51

Example: representing a model
with BDDs

S = { s1, s2, s3 }
R = { (s1,s2), (s2,s2), (s3,s1) }

State encoding:
s1: v1v2=00 s2: v1v2=01 s3: v1v2=11

For A = {s1, s2} the Boolean formula
representing A:

fA(v1,v2) = (v1  v2)  (v1 v2) = v1

52

fR(v1, v2, v’1, v’2) =

(v1  v2  v’1 v’2) 

(v1  v2  v’1 v’2) 

(v1  v2  v’1  v’2)

fA and fR can be represented by BDDs.

53

Symbolic model checking

• Same algorithm as before

• Succ(Q) and Pred(Q) use Boolean
operations on BDDs R and Q

• Pred(Q)(s) = s’ [R(s,s’)  Q(s’)]
– Boolean operations on BDDs R and Q

54

Symbolic model checking (cont.)

• Most Boolean operations on BDDs are
quadratic in the size of the BDDs

• BDDs are canonical
– Easy to check Q = Q’

55

Symbolic Model checking for f= EF g

Given: BDDs R and Sg :

procedure CheckEF (Sg)

Q := emptyset; Q’ := Sg ;

While Q  Q’ do

Q := Q’;

Q’ := Q  Pred (Q)

end while

Sf := Q ; return(Sf)

56

State explosion problem -
revisited

• state of the art symbolic model
checking can handle effectively
designs with a few hundreds of
Boolean variables

Other solutions for the state explosion
problem are needed!

57

SAT-based model checking

• Translates the model and the
specification to a propositional formula

• Uses efficient tools for solving the
satisfiability problem

Since the satisfiability problem is NP-
complete, SAT solvers are based on
heuristics.

58

SAT tools

• Using heuristics, SAT tools can solve very
large problems fast.

• They can handle systems with 1000
variables that create formulas with a few
millions of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSAT

59

The developers of GRASP and Chaff
won the 2009 CAV award

• for their contribution to model
checking

60

Bounded model checking
for checking AGp

• Unwind the model for k levels, i.e.,
construct all computation of length k

• If a state satisfying p is
encountered, then produce a
counterexample

The method is suitable for
falsification, not verification

61

Bounded model checking with SAT

• Construct a formula fM,k describing all possible
computations of M of length k

• Construct a formula f,k expressing that
=EFp holds within k computation steps

• Check whether f = fM,k  f,k is satisfiable

If f is satisfiable then M | AGp

The satisfying assignment is a counterexample

62

Example – shift register

Shift register of 3 bits: <x, y, z>
Transition relation:
R(x,y,z,x’,y’,z’) = x’=y  y’=z  z’=1

|____|
error

Initial condition:
I(x,y,z) = x=0  y=0  z=0

Specification: AG (x=0  y=0  z=0)

63

Propositional formula for k=2

fM,2 = (x0=0  y0=0  z0=0) 

(x1=y0  y1=z0  z1=1) 

(x2=y1  y2=z1  z2=1)

f,2 = Vi=0,..2 (xi=1  yi=1  zi=1)

Satisfying assignment: 101 011 111

This is a counterexample!

64

A remark

In order to describe a computation of
length k by a propositional formula we
need k+1 copies of the state
variables.

With BDDs we use only two copies of
current and next states.

65

Bounded model checking

• Can handle all of LTL formulas

• Can be used for verification by
choosing k which is large enough

• Using such k is often not practical
due to the size of the model

66

SAT-based verification

• Induction

• interpolation

67

Other solutions to the state
explosion problem

• Abstraction

• Modular verification

• Partial order reduction

• Symmetry

• Distributed model checking

68

References

Model Checking

• Model checking
E. Clarke, O. Grumberg, D. Peled,
MIT Press, 1999.

Temporal Logic

• The Temporal Logic of Programs
A. Pnueli, FOCS 1977

69

• BDDs:
R. E. Bryant, Graph-based Algorithms for
Boolean Function Manipulation, IEEE
transactions on Computers, 1986

• BDD-based model checking:
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.
Dill, L.J. Hwang, Symbolic Model Checking:
10^20 States and Beyond, LICS’90

• SAT-based Bounded model checking:
Symbolic model checking using SAT
procedures instead of BDDs, A. Biere, A.
Cimatti, E. M. Clarke, M. Fujita, Y. Zhu,
DAC'99

70

Thank you!

