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Why (formal) verification?
• safety-critical applications: Bugs are unacceptable!

– Air-traffic controllers
– Medical equipment
– Cars

• Bugs found in later stages of design are expensive, 
e.g. Intel’s Pentium bug in floating-point division

• Hardware and software systems grow in size and 
complexity: Subtle errors are hard to find by 
testing

• Pressure to reduce time-to-market 
Automated tools for formal verification are needed
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Formal Verification
Given 

• a model of a (hardware or software) system and 

• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a 
decidable one:

• Finite-state reactive systems

• Propositional temporal logics



4

Finite state systems - examples

• Hardware designs

• Controllers (elevator, traffic-light)

• Communication protocols (when ignoring the 
message content)

• High level (abstracted) description of non 
finite state systems
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Properties in temporal logic

• mutual exclusion:   
always ( cs1  cs2)

• non starvation:  
always (request  eventually grant)

• communication protocols:  
( get-message) until send-message
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Model Checking [EC81,QS82]

An efficient procedure that receives:

▪ A finite-state model describing a system

▪ A temporal logic formula describing a 
property

It returns 

yes, if the system has the property

no + Counterexample, otherwise 
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Model Checking

▪ Emerging as an industrial standard tool for 
verification of hardware designs: Intel, 
IBM, Cadence, …

▪ Recently applied successfully also for 
software verification: SLAM (Microsoft), 
Java PathFinder  and SPIN (NASA), BLAST 
(EPFL), CBMC (Oxford),…
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Clarke, Emerson, and Sifakis won the 
2007 Turing award for their 
contribution to Model Checking
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Overview

• Temporal logics

• Model Checking 

• BDD-based (symbolic) model checking

• SAT-based (bounded) model checking
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Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb
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Notation

• Kripke structure M = (S, I, R, L)

– S : (finite) set of states

– I : set of initial states

– R : set of transitions

– L: labeling function, associates each state with a 
subset of atomic propositions AP

p qs t
M:

AP = {p, q}
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=s0s1s2... is a path in M from s iff

s = s0 and  

for every i0: (si,si+1)R
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Temporal Logics

• Linear Time
– Every moment has a unique 

successor

– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several 

successors

– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logics
– Express properties of event orderings in time
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Propositional temporal logic

AP – a set of atomic propositions
Temporal operators:
Gp
Fp
Xp
pUq
Path quantifiers: A for all path

E there exists a path
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M |= f  for every initial state s, 

s |= f
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Computation Tree Logic
(CTL)

CTL  operator:

path quantifier + temporal operator

Atomic propositions: p  AP

Boolean operators: f  g , f 

CTL temporal operators:  EX f,  E(fUg), EGf
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More CTL operators

Universal formulas: 

• AX f,  A(f U g), AG f , AF f

Existential formulas:  

• EX f,  E(fUg), EG f , EF f
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Linear Temporal logic (LTL)

Formulas are of the form Af, where f can 
include any nesting of  temporal operators
but no path  quantifiers

Example: LTL formula which is not CTL
A GF p

Meaning, along every path, infinitely often p



19

CTL*
Includes LTL and CTL and more
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Example formulas
CTL formulas:

• mutual exclusion:   AG ( cs1  cs2)

• non starvation:  AG (request  AF grant)

• “sanity” check: EF request

LTL formulas:

• fairness:  A(GF enabled  GF executed)

• A(x=a  y=b  XXXX z=a+b)



21

Property types

Universal Existential

Safety AGp EGp

Liveness AFp EFp
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Property types (cont.)

Combination of universal safety

and existential liveness:

“along every possible execution, in every state
there is a possible continuation that will 
eventually reach a reset state”

AG EF reset
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Mutual Exclusion Example 
[by Willem Visser]

N1  → T1

T1  S0 → C1  S1     

C1 → N1  S0

N2  → T2

T2  S0 → C2  S1

C2 → N2  S0

||

• Two process mutual exclusion with shared semaphore

• Each process has three states

• Non-critical (N)

• Trying (T)

• Critical (C)

• Semaphore can be available (S0) or taken (S1) 

• Initially both processes are in the Non-critical state and

the semaphore is available --- N1 N2 S0
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Model for Mutual Exclusion

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Specification:    M ╞ AG EF (N1 N2  S0)

No matter where you are there is 

always a way to get to the initial state
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Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)
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Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)
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Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)
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Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)
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Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 N2  S0)

No matter where you are there is 

always a way to get to the initial state
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Model Checking M |= f

• The Model Checking algorithm works 
iteratively on subformulas of  f , from 
simpler subformulas to more complex ones

• For checking AG( request  AF grant)
– Check grant, request
– Then check AF grant
– Next check request  AF grant
– Finally check AG( request  AF grant)
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Model Checking M |= f  (cont.)

• We check subformula g of f only after all 
subformulas of g have already been checked

• For subformula g, the algorithm returns 

the set of states that satisfy g ( Sg )

• The algorithm has time complexity:  
O( |M|  |f| )
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Model Checking M |= f  (cont.)

• M |= f if and only if all initial states 
of M are contained in Sf .
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Basic operations in model checking

Given a set of states Q:

• Succ(Q) returns the set of 
successors of the states in Q

• Pred(Q) returns the set of states 
that have a successor in Q
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Model checking f = EF g
Given: a model M and the set Sg of states 

satisfying   g in M

procedure CheckEF (Sg )
Q := emptyset;  Q’ := Sg ;
while Q  Q’  do
Q := Q’;
Q’ := Q  Pred(Q)
end while
Sf := Q ; return(Sf )
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g

g

g

f

f

f

f

f

f

f

Example:   f = EF g
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Model checking f = EG g
CheckEG gets M and Sg and returns Sf

procedure CheckEG (Sg)

Q := S ;  Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q  Pred(Q)

end while

Sf := Q ;  return(Sf )
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g

g

g

g

g

g

Example: f = EG g
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Reachability + model checking f=AGp

• Starting from the initial states, iteratively 
computes the set of successors.

• At each iteration checks whether it 
reached a state which satisfies p.
– If yes, announces failure.

• Stops when no new states are found.
– Result 1: the set of reachable states.
– Result 2:    M |= AGp
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Model checking f = AG p
CheckAG gets M, Sp and returns Reach

procedure CheckAG (Sp )
Reach:= I ; New := I;
while New   do

If New  Sp return (M | AGp)
New := Succ(New); New :=New\Reach;
Reach := Reach  New;

end while
return( Reach,  M |= AGp)
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Reachability + checking AG a

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7

8
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Return: M | AG a

a,b a

ab,c

c

a,c a,bb

Failure:     New  Sa

1 2

3 4

5
6 7

8
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Reachability + checking AG (ab)

a,b a

ab,c

c

a,c a,bb

Reach = New = I = { 1, 2 }

1 2

3 4

5
6 7

8
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Return:  Reach,  M |= AG (ab)

a,b a

ab,c

c

a,c a,bb

Reach = {1, 2, 3, 4, 5, 6}      New =  emptyset

1 2

3 4

5
6 7

8
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Main limitation:

The state explosion problem:
Model checking is efficient in time but 

suffers from high space requirements:

The number of states in the system model 
grows exponentially with 

▪ the number of variables
▪ the number of components in the system
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If the model is given explicitly (e.g. by 
adjacent matrix) then only systems 
of restricted size can be handled.

• Strong reduction techniques are 
needed, e.g. Partial Order Reduction
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Symbolic model checking

A solution to the state explosion problem:
BDD-based model checking

• Binary Decision Diagrams  ( BDDs ) 
are used to represent the model and sets of  
states. 

• It can handle systems with hundreds of 
Boolean variables.
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Binary decision diagrams 
(BDDs)

• Data structure for representing 
Boolean functions

• Often concise in memory

• Canonical representation

• Most Boolean operations can be performed 
on BDDs in polynomial time in the BDD size
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a

b

c

10

c

1 1

b
c

1 1

b

cc

b

0 11 0

a

b

cc

1 1 10

c c c

BDD for  f(a,b,c) = (a  b )  c

Decision tree

a

b

c

10

BDD
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BDDs in model checking

• Every set A  U can be represented by 
its characteristic function

1 if uA
fA(u) =       0 if u  A

• If the elements of U are encoded by 
sequences over {0,1}n then fA is a Boolean
function and can be represented by a BDD



50

Representing a model with BDDs

• Assume that states in model M are 
encoded by {0,1}n and described by 
Boolean variables  v1...vn

• Sf can be represented  by a BDD over 
v1...vn

• R (a set of pairs of states (s,s’) ) 
can be represented by a BDD over 
v1...vn v1’...vn’



51

Example:  representing a model 
with BDDs

S = { s1, s2, s3 }
R = { (s1,s2), (s2,s2), (s3,s1) }

State encoding:
s1:  v1v2=00    s2:  v1v2=01   s3:  v1v2=11

For A = {s1, s2} the Boolean formula 
representing A:

fA(v1,v2) = (v1  v2)  (v1 v2)  =  v1
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fR(v1, v2, v’1, v’2 ) =

(v1  v2  v’1 v’2)  

(v1  v2  v’1 v’2) 

(v1  v2  v’1  v’2 )

fA and fR can be represented by BDDs.
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Symbolic model checking

• Same algorithm as before

• Succ(Q) and Pred(Q) use Boolean 
operations on BDDs R and Q

• Pred(Q)(s) = s’ [ R(s,s’)  Q(s’)] 
– Boolean operations on BDDs R and Q
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Symbolic model checking (cont.)

• Most Boolean operations on BDDs are 
quadratic in the size of the BDDs

• BDDs are canonical
– Easy to check Q = Q’
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Symbolic Model checking for  f= EF g

Given: BDDs R and Sg :

procedure CheckEF (Sg )

Q := emptyset;  Q’ := Sg ;

While Q  Q’ do

Q := Q’;

Q’ := Q  Pred ( Q )

end while

Sf := Q ; return(Sf )
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State explosion problem -
revisited

• state of the art symbolic model 
checking can handle effectively 
designs with a few hundreds of 
Boolean variables

Other solutions for the state explosion 
problem are needed!
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SAT-based model checking

• Translates the model and the 
specification to a propositional formula

• Uses efficient tools for solving the 
satisfiability problem 

Since the satisfiability problem is NP-
complete, SAT solvers are based on 
heuristics.
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SAT tools

• Using heuristics, SAT tools can solve very 
large problems fast.

• They can handle systems with 1000 
variables that create formulas with a few 
millions of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSAT
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The developers of GRASP and Chaff 
won the 2009 CAV award

• for their contribution to model
checking 
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Bounded model checking
for checking AGp

• Unwind the model for k levels, i.e., 
construct all computation of length k

• If a state satisfying p is 
encountered, then produce a 
counterexample

The method is suitable for 
falsification, not verification



61

Bounded model checking with SAT

• Construct a formula fM,k describing all possible 
computations of M of length k

• Construct a formula f,k expressing that  
=EFp holds within k computation steps

• Check whether  f = fM,k  f,k is satisfiable

If f is satisfiable then  M | AGp

The satisfying assignment is a counterexample
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Example – shift register

Shift register of 3 bits:   <x, y, z>
Transition relation:
R(x,y,z,x’,y’,z’) =    x’=y   y’=z    z’=1

|____|
error

Initial condition:
I(x,y,z) =  x=0  y=0  z=0

Specification: AG ( x=0  y=0  z=0)
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Propositional formula for k=2

fM,2 = (x0=0  y0=0  z0=0) 

(x1=y0  y1=z0  z1=1) 

(x2=y1  y2=z1  z2=1)

f,2 = Vi=0,..2 (xi=1  yi=1  zi=1)

Satisfying assignment: 101  011  111

This is a counterexample!
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A remark

In order to describe a computation of 
length k by a propositional formula we 
need k+1 copies of the state 
variables.

With BDDs we use only two copies of 
current and next states.
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Bounded model checking

• Can handle all of LTL formulas

• Can be used for verification by 
choosing k which is large enough

• Using such k is often not practical
due to the size of the model
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SAT-based verification

• Induction

• interpolation
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Other solutions to the state 
explosion problem

• Abstraction

• Modular verification

• Partial order reduction

• Symmetry

• Distributed model checking



68

References

Model Checking

• Model checking
E. Clarke, O. Grumberg, D. Peled, 
MIT Press, 1999.

Temporal Logic

• The Temporal Logic of Programs
A. Pnueli, FOCS 1977



69

• BDDs:
R. E. Bryant, Graph-based Algorithms for 
Boolean Function Manipulation, IEEE 
transactions on Computers, 1986

• BDD-based model checking:
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. 
Dill, L.J. Hwang, Symbolic Model Checking: 
10^20 States and Beyond, LICS’90

• SAT-based Bounded model checking:
Symbolic model checking using SAT 
procedures instead of BDDs, A. Biere, A. 
Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, 
DAC'99



70

Thank you!


