Model Checking

Orna Grumberg
Technion
Haifa, Israel

Taiwan, October 8, 2009
Why (formal) verification?

• safety-critical applications: Bugs are unacceptable!
 - Air-traffic controllers
 - Medical equipment
 - Cars

• Bugs found in later stages of design are expensive, e.g. Intel’s Pentium bug in floating-point division

• Hardware and software systems grow in size and complexity: Subtle errors are hard to find by testing

• Pressure to reduce time-to-market

Automated tools for formal verification are needed
Formal Verification

Given
• a model of a (hardware or software) system and
• a formal specification
does the system model satisfy the specification? Not decidable!

To enable automation, we restrict the problem to a decidable one:
• Finite-state reactive systems
• Propositional temporal logics
Finite state systems - examples

- Hardware designs
- Controllers (elevator, traffic-light)
- Communication protocols (when ignoring the message content)
- High level (abstracted) description of non finite state systems
Properties in temporal logic

• mutual exclusion:
 always $\neg (cS_1 \land cS_2)$

• non starvation:
 always (request \Rightarrow eventually grant)

• communication protocols:
 (\neg get-message) until send-message
Model Checking [EC81,QS82]

An efficient procedure that receives:
- A finite-state model describing a system
- A temporal logic formula describing a property

It returns
yes, if the system has the property
no + Counterexample, otherwise
Model Checking

- Emerging as an industrial standard tool for verification of hardware designs: Intel, IBM, Cadence, ...

- Recently applied successfully also for software verification: SLAM (Microsoft), Java PathFinder and SPIN (NASA), BLAST (EPFL), CBMC (Oxford),...
Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to Model Checking
Overview

• Temporal logics
• Model Checking
• BDD-based (symbolic) model checking
• SAT-based (bounded) model checking
Model of a system

Kripke structure / transition system
Notation

- Kripke structure $M = (S, I, R, L)$
 - S: (finite) set of states
 - I: set of initial states
 - R: set of transitions
 - L: labeling function, associates each state with a subset of atomic propositions AP

M: $AP = \{p, q\}$
$\pi = s_0 s_1 s_2 \ldots$ is a path in M from s iff

$s = s_0$ and

for every $i \geq 0$: $(s_i, s_{i+1}) \in R$
Temporal Logics

• Temporal Logics
 – Express properties of event orderings in time

• Linear Time
 – Every moment has a unique successor
 – Infinite sequences (words)
 – Linear Time Temporal Logic (LTL)

• Branching Time
 – Every moment has several successors
 – Infinite tree
 – Computation Tree Logic (CTL)
Propositional temporal logic

AP - a set of atomic propositions

Temporal operators:

- Gp
- Fp
- Xp
- pUq

Path quantifiers: A for all path, E there exists a path
\(M \models f \iff \text{for every initial state } s, \ s \models f \)
Computation Tree Logic (CTL)

CTL operator: path quantifier + temporal operator

Atomic propositions: \(p \in AP \)
Boolean operators: \(f \land g, \neg f \)

CTL temporal operators: \(EX f, E(fUg), EGf \)
More CTL operators

Universal formulas:
• $AX f$, $A(f U g)$, $AG f$, $AF f$

Existential formulas:
• $EX f$, $E(fUg)$, $EG f$, $EF f$
Linear Temporal logic (LTL)

Formulas are of the form $A f$, where f can include any nesting of temporal operators but no path quantifiers.

Example: LTL formula which is not CTL

$A \, GF \, p$

Meaning, along every path, infinitely often p
CTL*

Includes LTL and CTL and more
Example formulas

CTL formulas:
- mutual exclusion: $\mathbf{AG} \neg (cs_1 \land cs_2)$
- non starvation: $\mathbf{AG} (\text{request} \implies \mathbf{AF} \text{grant})$
- “sanity” check: $\mathbf{EF} \text{request}$

LTL formulas:
- fairness: $\mathbf{A}(\mathbf{GF} \text{ enabled} \implies \mathbf{GF} \text{ executed})$
- $\mathbf{A}(x=a \land y=b \implies XXXX z=a+b)$
Property types

<table>
<thead>
<tr>
<th></th>
<th>Universal</th>
<th>Existential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>AG_p</td>
<td>EG_p</td>
</tr>
<tr>
<td>Liveness</td>
<td>AF_p</td>
<td>EF_p</td>
</tr>
</tbody>
</table>
Property types (cont.)

Combination of universal safety and existential liveness:

“along every possible execution, in every state there is a possible continuation that will eventually reach a reset state”

\[AG \text{ EF} \text{ reset} \]
Mutual Exclusion Example
[by Willem Visser]

• Two process mutual exclusion with shared semaphore
• Each process has three states
 • Non-critical (N)
 • Trying (T)
 • Critical (C)
• Semaphore can be available (S₀) or taken (S₁)
• Initially both processes are in the Non-critical state and the semaphore is available --- N₁ N₂ S₀

\[
\begin{align*}
N₁ & \rightarrow T₁ \\
T₁ \land S₀ & \rightarrow C₁ \land S₁ \\
C₁ & \rightarrow N₁ \land S₀ \\
N₂ & \rightarrow T₂ \\
T₂ \land S₀ & \rightarrow C₂ \land S₁ \\
C₂ & \rightarrow N₂ \land S₀
\end{align*}
\]
Model for Mutual Exclusion

Specification: \(M \models AG EF (N_1 \land N_2 \land S_0) \)

No matter where you are there is always a way to get to the initial state
Mutual Exclusion Example

\[M \models AG EF (N_1 \land N_2 \land S_0) \]
Mutual Exclusion Example

\[M \models AG EF (N_1 \land N_2 \land S_0) \]
Mutual Exclusion Example

\[
M \models AG EF (N_1 \land N_2 \land S_0)
\]
Mutual Exclusion Example

\[M \models AG EF (N_1 \land N_2 \land S_0) \]
Mutual Exclusion Example

\[M \models AG EF (N_1 \land N_2 \land S_0) \]

No matter where you are there is always a way to get to the initial state
Model Checking $M \models f$

- The Model Checking algorithm works iteratively on subformulas of f, from simpler subformulas to more complex ones.

- For checking $AG(\text{request} \Rightarrow AF \text{grant})$
 - Check $\text{grant}, \text{request}$
 - Then check $AF \text{grant}$
 - Next check $\text{request} \Rightarrow AF \text{grant}$
 - Finally check $AG(\text{request} \Rightarrow AF \text{grant})$
Model Checking $M \models f$ (cont.)

- We check subformula g of f only after all subformulas of g have already been checked.

- For subformula g, the algorithm returns the set of states that satisfy g (S_g).

- The algorithm has time complexity: $O(|M| \times |f|)$.
Model Checking $M \models f$ (cont.)

- $M \models f$ if and only if all initial states of M are contained in S_f.
Basic operations in model checking

Given a set of states Q:

- $\text{Succ}(Q)$ returns the set of successors of the states in Q
- $\text{Pred}(Q)$ returns the set of states that have a successor in Q
Model checking $f = \text{EF } g$

Given: a model M and the set S_g of states satisfying g in M

procedure $\text{CheckEF} \left(S_g \right)$
$Q := \text{emptyset}; \quad Q' := S_g$;
while $Q \neq Q'$ do
 $Q := Q'$;
 $Q' := Q \cup \text{Pred}(Q)$
end while
$S_f := Q$; return(S_f)
Example: \(f = EF \ g \)
Model checking $f = \text{EG } g$

CheckEG gets M and S_g and returns S_f

procedure CheckEG (S_g)

$Q := S$; $Q' := S_g$;

while $Q \neq Q'$ do

$Q := Q'$;

$Q' := Q \cap \text{Pred}(Q)$

end while

$S_f := Q$; return(S_f)
Example: \(f = EG \ g \)
Reachability + model checking $f=\text{AG}p$

- Starting from the initial states, iteratively computes the set of successors.

- At each iteration checks whether it reached a state which satisfies $\neg p$.
 - If yes, announces failure.

- Stops when no new states are found.
 - Result 1: the set of reachable states.
 - Result 2: $M \models \text{AG}p$
Model checking \(f = AG p \)

CheckAG gets \(M, S_p \) and returns Reach

procedure CheckAG \((S_p)\)
Reach := I ; New := I;
while New \(\neq \emptyset \) do
 If New \(\not\subseteq S_p \) return \((M \models \neg AG p)\)
 New := Succ(New); New := New \(\setminus\) Reach;
 Reach := Reach \(\cup\) New;
end while
return(Reach, \(M \models AG p \))
Reachability + checking AG a

Reach = New = I = \{ 1, 2 \}
Return: $M \not\models AG \ a$

Failure: New $\not\in S_a$
Reachability + checking AG (a ∨ b)

Reach = New = I = { 1, 2 }
Return: Reach, $M \models AG (a \lor b)$

Reach = \{1, 2, 3, 4, 5, 6\} \quad\text{New} = \text{emptyset}
Main limitation:

The state explosion problem:
Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with
- the number of variables
- the number of components in the system
If the model is given explicitly (e.g. by adjacent matrix) then only systems of restricted size can be handled.

- Strong reduction techniques are needed, e.g. Partial Order Reduction
Symbolic model checking

A solution to the state explosion problem: BDD-based model checking

• Binary Decision Diagrams (BDDs) are used to represent the model and sets of states.

• It can handle systems with hundreds of Boolean variables.
Binary decision diagrams (BDDs)

- Data structure for representing Boolean functions
- Often concise in memory
- Canonical representation
- Most Boolean operations can be performed on BDDs in polynomial time in the BDD size
BDD for $f(a,b,c) = (a \land b) \lor c$

Decision tree

BDD
BDDs in model checking

• Every set $A \subseteq U$ can be represented by its **characteristic function**

 $$f_A(u) = \begin{cases}
 1 & \text{if } u \in A \\
 0 & \text{if } u \notin A
 \end{cases}$$

• If the elements of U are encoded by sequences over $\{0,1\}^n$ then f_A is a **Boolean function** and can be represented by a BDD
Representing a model with BDDs

• Assume that states in model M are encoded by $\{0, 1\}^n$ and described by Boolean variables $v_1 \ldots v_n$

• S_f can be represented by a BDD over $v_1 \ldots v_n$

• R (a set of pairs of states (s, s')) can be represented by a BDD over $v_1 \ldots v_n$ $v_1' \ldots v_n'$
Example: representing a model with BDDs

\[S = \{ s_1, s_2, s_3 \} \]
\[R = \{ (s_1, s_2), (s_2, s_2), (s_3, s_1) \} \]

State encoding:
\[s_1: v_1v_2=00 \quad s_2: v_1v_2=01 \quad s_3: v_1v_2=11 \]

For \(A = \{ s_1, s_2 \} \) the Boolean formula representing \(A \):
\[f_A(v_1, v_2) = (\neg v_1 \land \neg v_2) \lor (\neg v_1 \land v_2) = \neg v_1 \]
\(f_R(v_1, v_2, v'_1, v'_2) = \)

\[
(\neg v_1 \land \neg v_2 \land \neg v'_1 \land v'_2) \lor \\
(\neg v_1 \land v_2 \land \neg v'_1 \land v'_2) \lor \\
(v_1 \land v_2 \land \neg v'_1 \land \neg v'_2)
\]

\(f_A \) and \(f_R \) can be represented by BDDs.
Symbolic model checking

• Same algorithm as before

• $\text{Succ}(Q)$ and $\text{Pred}(Q)$ use Boolean operations on BDDs R and Q

• $\text{Pred}(Q)(s) = \exists s' \ [R(s, s') \land Q(s')]$
 - Boolean operations on BDDs R and Q
Symbolic model checking (cont.)

- Most Boolean operations on BDDs are quadratic in the size of the BDDs

- BDDs are canonical
 - Easy to check $Q = Q'$
Symbolic Model checking for $f = EF g$

Given: BDDs R and S_g:

procedure \textbf{CheckEF} (S_g)

$Q := \emptyset$; $Q' := S_g$;

While $Q \neq Q'$ do

$Q := Q'$;

$Q' := Q \lor \text{Pred}(Q)$

end while

$S_f := Q$; return(S_f)
State explosion problem - revisited

- state of the art symbolic model checking can handle effectively designs with a few hundreds of Boolean variables

Other solutions for the state explosion problem are needed!
SAT-based model checking

• Translates the model and the specification to a propositional formula
• Uses efficient tools for solving the satisfiability problem

Since the satisfiability problem is NP-complete, SAT solvers are based on heuristics.
SAT tools

- Using heuristics, SAT tools can solve very large problems fast.
- They can handle systems with 1000 variables that create formulas with a few millions of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSAT
The developers of GRASP and Chaff won the 2009 CAV award
• for their contribution to model checking
Bounded model checking for checking AGp

• Unwind the model for k levels, i.e., construct all computation of length k

• If a state satisfying $\neg p$ is encountered, then produce a counterexample

The method is suitable for falsification, not verification
Bounded model checking with SAT

- Construct a formula $f_{M,k}$ describing all possible computations of M of length k
- Construct a formula $f_{\varphi,k}$ expressing that $\varphi = EF\neg p$ holds within k computation steps
- Check whether $f = f_{M,k} \land f_{\varphi,k}$ is satisfiable

If f is satisfiable then $M \not\models AGp$

The satisfying assignment is a counterexample
Example - shift register

Shift register of 3 bits: \(<x, y, z> \)

Transition relation:
\[
R(x, y, z, x', y', z') = x' = y \land y' = z \land z' = 1
\]

Initial condition:
\[
I(x, y, z) = x = 0 \lor y = 0 \lor z = 0
\]

Specification: \(AG (x = 0 \lor y = 0 \lor z = 0) \)
Propositional formula for $k=2$

$$f_{M,2} = (x_0=0 \lor y_0=0 \lor z_0=0) \land$$
$$\quad (x_1=y_0 \land y_1=z_0 \land z_1=1) \land$$
$$\quad (x_2=y_1 \land y_2=z_1 \land z_2=1)$$

$$f_{\varphi,2} = \bigvee_{i=0,\ldots,2} (x_i=1 \land y_i=1 \land z_i=1)$$

Satisfying assignment: 101 011 111
This is a counterexample!
A remark

In order to describe a computation of length k by a propositional formula we need $k+1$ copies of the state variables.

With BDDs we use only two copies of current and next states.
Bounded model checking

- Can handle all of LTL formulas
- Can be used for verification by choosing k which is large enough
- Using such k is often not practical due to the size of the model
SAT-based verification

- Induction
- interpolation
Other solutions to the state explosion problem

- Abstraction
- Modular verification
- Partial order reduction
- Symmetry
- Distributed model checking
References

Model Checking

- *Model checking*

Temporal Logic

- *The Temporal Logic of Programs*
 A. Pnueli, FOCS 1977
• **BDDs:**

• **BDD-based model checking:**

• **SAT-based Bounded model checking:**
 Symbolic model checking using SAT procedures instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99
Thank you!