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Abstract

This thesis focuses on different aspects of formal verification of systems over infinite data

domains. Applications for such systems can be found in communication systems, e-commerce

systems, large data bases and more. A widely used approach in program verification is model-

checking. The problem of model-checking is, given a system and a specification, to determine

whether the system satisfies the specification (and thus the verification succeeds); or that the

system violates the specification (thus verification fails) and some error is found, witnessing the

violation. We focus on the automata-theoretic approach to model-checking. In this approach,

both the system and the specification are modeled as finite automata, and model-checking is then

reduced to reasoning about these automata. However, real-life systems often contain infinitely

many different configurations, as they refer to the data in the system, which is unbounded.

In this case, the model-checking of such systems does not scale well, and may even become

undecidable.

In this thesis we use finite-state automata in order to model different types of such systems.

First, we consider ongoing systems over infinite data domains, with respect to temporal specifica-

tions. An example for such a system is a server that communicates with an unknown number of

clients. We propose a new automaton model that is able to capture the fragment of ∃∗-Variable

LTL, which is an extension of LTL that allows reasoning about infinite data domains. We use this

model to suggest a bounded model-checking algorithm for such systems, and we characterize

decidable fragments of the logic, for which we suggest a complete model-checking process.

Next, we consider the model of communicating systems, which is most suitable to model

communication and security protocols. We exploit the partition of the system into smaller

components (e.g. server and clients). We also use the finite automata representation, to

suggest a modular verification and repair algorithm that is based on automata learning using the

L∗ algorithm.

Finally, we consider symbolic automata, whose alphabet is the set of predicates over some

Boolean algebra. We study the L∗ algorithm in the context of symbolic automata, since, as

we demonstrate, it is widely used in program verification. Next, we study a different learning

paradigm, namely identification is the limit. To the best of our knowledge, this is the first time

that this paradigm is considered in the context of infinite data domains. We suggest an automata

learning algorithm for systems with data over the natural or real numbers, and present some

complexity results regarding the learnability of symbolic automata under this paradigm.
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Chapter 1

Introduction

Program verification aims to formally prove that a system is correct with respect to a given

specification. It allows proving that the system is correct for all inputs and for all possible

behaviors – with respect to the specification – rather than looking for errors using testing. One of

the most useful techniques for automated program verification is model checking. The problem

of model-checking is defined as follows. Given a system and a specification, automatically

determine whether the system satisfies the specification and thus the verification succeeds; or

the system violates the specification and the verification fails. In case the verification fails, an

error is found, a witness to the violation.

A widely used methodology for model checking is the automata-theoretic approach [Var95,

VW86]. In the automata-theoretic approach to model checking, the system is modeled by a

finite-state automaton over a finite alphabet, whose language matches the set of computations of

the system. The specification is modeled as a finite-state automaton over a finite alphabet, whose

language is exactly the set of all computations satisfying the specification. Model-checking is

then reduced to reasoning about these automata. However, real-life systems are often infinite-

state, containing unbounded or infinite amount of data, and modeling them using finite state

automata is not straight-forward. One of the main challenges of this thesis is to finitely model

systems over infinite data domains.

We briefly describe some examples for automata over large or infinite alphabets. In model-

checking of finite systems, the state of the system is represented by a set of properties that

hold at this state. These properties are called atomic propositions and are denoted by AP .

Then, the different configurations of the system are over the alphabet 2AP , and automata over

the alphabet 2AP are used in model checking [CGP01] in order to verify temporal properties.

Another example, used in string sanitizer algorithms [HLM+11], are automata over predicates

on the Unicode alphabet which consists of over a million symbols. An infinite alphabet is used

in event recording automata, a determinizable class of timed automata [AFH99], in which an

alphabet letter consists of both a symbol from a finite alphabet, and a non-negative real number.

We refer to such systems as systems over infinite data domains.

Automata over infinite data domains. We study three different models of finite-state automata,

that are used to model systems over infinite data domains (see Figure 1.1). In Chapter 3 we use

3



Specification: “there ex-
ists a message that is sent
but is not eventually re-
ceived”

1: while(true)
2: x1 = readInput;
3: while(x1 ≤ 999)
4: x1 = readInput;
5: x2 = encrypt(x1);

q0 q1

1

0
2
···

99

0

100
101102· · ·

···

1

2
···

100

101

102
99

q0 q1

q2

send.x
¬recieve.x

recieve.x
q1

q0

q2

q3

q4

In?x1

x1 ≤ 999
In?x1

x1 > 999

enc!x1

getEnc?x2

q0 q1

[0, 99] [0, 99]

[100,∞) [100,∞)

A Variable automaton
used to model ongoing
communication between
server and clients

A communicating systems that models
a C-like program

A symbolic automaton mod-
els infinite alphabet using
predicates

Figure 1.1: Different systems studied in this thesis

variable automata over infinite words, in order to model ongoing computations and temporal

specifications. The left-most automaton in Figure 1.1 accepts a word if at some position in the

word a data value that is assigned to the variable x is sent, but this value is never received later

in the computation.

In Chapter 4 we study communicating systems, which are a composition of C-like compo-

nents, with the ability to communicate data between one another. We model such systems using

finite automata, each representing the control-flow graph of one of the components of the system.

The middle automaton of Figure 1.1 is a component representing the short code given above

the automaton. The models of Chapters 3 and 4 use variables in order to keep track of the data

values throughout the computation. These models are most suitable to model communication

systems such as a network of server and clients, and security protocols.

In Chapter 5 we study symbolic finite-state automata (SFAs) over finite words. There, we

use predicates in order to succinctly describe the transitions between states. The model of

SFAs has no notion of “memory” and data values are not kept along the computation. At the

right-most part of Figure 1.1 we present an SFA (bottom) with predicates labeling transitions.

For example, the predicate [0, 99] is used to describe the 100 transitions of type q0
d−→ q1 for

0 ≤ d ≤ 99, presented in the upper automaton given in the figure.

To summarize the different automata types discussed in this thesis, we first observe that we

only consider finite-state automata. We consider finite-state automata over infinite alphabets,

as opposed to standard finite-state automata that are defined over a finite alphabet. In addition,

in Chapter 3 we consider automata over infinite alphabets and over infinite words, while in
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Chapters 4 and 5 we consider automata over infinite alphabets and finite words.

Model-checking and repair. We use the representation of systems over infinite data domains

as finite-state automata in order to apply automata-theoretic methods for the verification of such

systems. In particular, in Chapter 3 we present a new automata model, that is used to model

ongoing systems and specifications over infinite data. Using this new model, we suggest a

bounded model-checking algorithm for systems over infinite data domains. In Chapter 4 we use

the automata-like representation of communicating systems in order to apply L∗, an automata

learning algorithm, to modularly prove the correctness of the system. In case an error is found,

we repair the system by eliminating the error, and try to prove correctness of the repaired system.

Learnability. As we mentioned above, in Chapter 4 we apply automata learning in order

to verify the correctness of the system. In Chapter 5 we study more fundamental aspects of

automata learning. We consider symbolic automata, and study the complexity of L∗ algorithm

for these automata. In addition, we study the learning paradigm of identification in the limit

using polynomial time and data, which has not yet been studied in the context of symbolic

automata.

We now elaborate more on each of the approaches.

Model-Checking Systems over Infinite Data

Temporal logic, particularly linear temporal logic (LTL) [Pnu79], is widely used for specifying

properties of ongoing systems. However, LTL is unable to specify computations that handle

infinite data. Consider, for example, a system containing several processes and a scheduler. If

the set of processes is finite and known in advance, we can express and verify properties such as

“every process is eventually active”. However, if the system is dynamic, in which new processes

can log in and out, and the total number of processes is unbounded, LTL is unable to express

such a property. This is because, in order to make sure that all processes are active, we need a

different ID for each process, resulting in an unbounded amount of data, while LTL is defined

over a finite set of propositions.

VLTL (LTL with variables) [GKS12] extends LTL with variables that range over an infinite

domain, making it a natural logic for specifying ongoing systems over infinite data domains.

In the example above, a VLTL formula can be expressed as ϕ1 = ∀x G (loggedIn(x) →
F (active(x))), where G and F are temporal operators meaning Globally and eventually,

respectively, and x ranges over an unbounded domain of process IDs.1 Thus, ϕ1 specifies that

for every process ID, once it is logged in, it will eventually be active. Notice that ϕ1 now

specifies this property for an unbounded number of processes. As another example, the formula

ϕ2 = G∃x(send(x) ∧ F receive(x)), where x ranges over the message contents (or message

IDs), specifies that in every step of the computation, some message is sent, and this particular

message is eventually received. Using variables enables handling infinitely many messages

along a single computation.

1A formal definition for the semantics of temporal operators appears in Chapter 3.2.1.
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For ongoing systems, automata over infinite words and finite alphabets, particularly nonde-

terministic and alternating Büchi automata (NBWs and ABWs, respectively) are used [Var95]

in order to model-check the system. Thus, for ongoing systems over infinite data and VLTL,

a similar model is needed, capable of handling infinite alphabets. In [GKS10, GKS12], the

authors suggested non-deterministic variable Büchi word automata (NVBWs), a model that

augments NBWs with variables. NVBWs were used to construct a model-checking algorithm

for a fragment of VLTL, limited to ∃-quantifiers that may appear only at the head of the formula.

The emptiness problem for NVBWs is NLOGSPACE-complete. Since the emptiness

problem is crucial for model checking, NVBWs are an attractive model. However, they are quite

weak. For example, NVBWs are unable to model the formula ϕ2 above.

In Chapter 3, we present a new model for VLTL specifications, namely alternating variable

Büchi word automata (AVBWs). These are an extension of NVBWs, which we prove to be

stronger and able to express a much richer fragment of VLTL. Specifically, we show that AVBWs

are able to express the entire fragment of ∃∗-VLTL, which is a fragment of VLTL in negation

normal form (NNF) with only ∃-quantifiers, whose positions in the formula is unrestricted.

There is a well-known translation from LTL to ABW [Var95]. Thus, AVBWs are a natural

candidate for modeling VLTL. Indeed, as we show, AVBWs are able to express all of ∃∗-VLTL,

following a translation that is just as natural as the LTL to ABW translation. We further show

that, unlike the finite alphabet case, in which NBWs and ABWs are equally expressive, in

the infinite alphabet case, alternation proves to be not only syntactically stronger but also

semantically stronger, and AVBWs are more expressive than NVBWs.

As we have noted, our goal is to provide a suitable model for a model-checking algorithm

for VLTL, and as such, this model should be easily checked for emptiness. However, we show

that the strength of AVBWs comes with a price, and their emptiness problem is unfortunately

undecidable. To keep the advantage of ease of translation of VLTL to AVBWs, as well as the

ease of using NVBWs for model-checking purposes, we would then like to translate AVBWs

to NVBWs, in cases where such a translation is possible. This allows us to enjoy the benefit

of both models, and gives rise to a model-checking algorithm that is able to handle a richer

fragment of VLTL than the one previously studied.

We present such a translation procedure, inspired by the construction of [MH84]. As noted,

such a translation is not always possible, and our procedure is then sound but incomplete.

However, we give a characterization for AVBWs for which our procedure does halt, relying on

the graphical structure of the underlying automaton.

The importance of our procedure and structural characterization is twofold: (1) given an

AVBW A, one does not need to know the semantics of A in order to know if it is translatable,

and to automatically translateA to an equivalent NVBW when possible; and (2) Given a general

∃∗-VLTL formula, one can easily construct an equivalent AVBW A, use our characterization to

check whether it is translatable, and continue with the NVBW that our translation outputs.

We use our translation from AVBW to NVBW as a basis for a Bounded Model Checking

(BMC) procedure, even in cases where the translation does not halt. Our BMC procedure

exploits the natural iterative behavior of our translation procedure, and the fact that in every

6



iteration it produces an NVBW whose language is contained in that of the given AVBW. This

partial NVBW can then be used for finding an erroneous computation of the system.

As an additional contribution, we characterize fragments of ∃∗-VLTL that have a direct

translation to NVBWs, making them an “easy” case for modeling and model checking.

The work presented in this chapter was published in [FGS, FGS19].

Summary of Contribution of Chapter 3

1. We present AVBWs, a new model that can capture the whole fragment of ∃∗-VLTL and is

strictly more expressive than NVBWs.

2. We suggest a partial translation algorithm from AVBWs to NVBWs, that yields a bounded

model-checking procedure for VLTL specifications. Moreover, we present a characteriza-

tion for AVBWs on which our algorithm terminates, allowing us to choose between the

bounded verification or the full verification for these cases.

3. We present a characterization of easy fragments of ∃∗-VLTL, for which the model-

checking problem is decidable. We also suggest a sound and complete model-checking

algorithm for these fragments.

Compositional Verification and Repair

In Chapter 4 we turn to investigate more complicated systems, namely communicating systems.

These are infinite-state C-like programs, extended with the ability to synchronously read and

write messages over communication channels. We model such programs as finite-state automata

over an action alphabet, which reflects the program statements. The accepting states in these

automata model points of interest in the program that the specification can relate to. The

automata representation is similar in nature to that of control-flow graphs. The composition

of the two program components, M1 and M2, denoted M1||M2, synchronizes on read-write

actions on the same channel. Between two synchronized actions, the individual actions of both

systems interleave.

The composition of two components can result in a large system, for which the verification

process does not scale well. Verification of large-scale systems is indeed a main challenge in

the field of formal verification. Compositional verification aims to verify small components of

a system separately, and from the correctness of the individual components, to conclude the

correctness of the entire system. This, however, is not always possible, since the correctness of

a component often depends on the behavior of its environment.

The Assume-Guarantee (AG) style compositional verification [MC81, Pnu85] suggests a

solution to this problem. The simplest AG rule checks if a system composed of components

M1 and M2 satisfies a property P by checking that M1 under assumption A satisfies P and that

any system containing M2 as a component satisfies A. The assumption A is a component that

is used to model the environment of M1. Several frameworks have been proposed to support

this style of reasoning. Finding a suitable assumption A is then a common challenge in such

frameworks.
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In Chapter 4, we present Assume-Guarantee-Repair (AGR) – a fully automated framework

which applies the Assume-Guarantee rule, and while seeking a suitable assumption A, incre-

mentally repairs the given program in case the verification fails. Our framework is inspired

by [PGB+08], which presented a learning-based method to finding an assumption A, using the

L∗ [Ang87b] algorithm for learning regular languages. Here, we exploit the representation of

the program as a finite automaton in order to apply L∗.
The specifications we consider are also modeled as finite automata, that does not contain

assignment actions. It may contain communication actions in order to specify behavioral

requirements, as well as constraints over the variables of both system components, that express

requirements on their values in various points in the run.

Consider, for example, the programs M1 and M2, and the specification P seen in Figure 1.2.

M1 reads a bound b on the number of times an action must be performed in M2 (this action

can be, say, a push action on a stack). The variable act in M2 counts the number of times the

action has been performed. M2 performs a sequence of actions, and then reads a value – b –

from M1 through the channel C. If the number of actions M2 has performed matches b, then

M2 finishes the current iteration successfully. The property P makes sure that in the parallel

run of the programs, the number of actions never exceeds b, and that this number eventually

reaches b in every iteration. The sync actions here denote communication actions on which the

components synchronize, and are used for the clarity of the description. Notice that P expresses

temporal requirements that contain unquantified first order constraints.

q0
q1

q2

read?bound

bound > 0

C!bound
sync

p0

p1

p2

p3

act := 0

act := act + 1

C?check

act =
check

sync

r0

r1

r2

act <
bound

act =
bound

sync

act > bound

∗

M1 M2 P

Figure 1.2: The programs M1 and M2, and the specification P

The L∗ algorithm aims at learning a regular language U . Its entities consist of a teacher –

an oracle who answers membership queries (“is the word w in U?”) and equivalence queries

(“is A an automaton whose language is U?”); and a learner, who iteratively constructs a finite

deterministic automaton A for U by submitting a sequence of membership and equivalence

queries to the teacher.

In using the L∗ algorithm for learning an assumptionA for the AG-rule, membership queries

are answered according to the satisfaction of the specification P : If M1 in parallel with a trace

t satisfies P , then the trace t in hand should be in A. Otherwise, t should not be in A. Once

the learner constructs a stable system A, it submits an equivalence query. The teacher then

checks whether A is a suitable assumption, that is, whether M1||A satisfies P , and whether

the language of M2 is contained in the language of A. According to the results, the process
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either continues or halts with an answer to the verification problem. The learning procedure

aims at learning the weakest assumption Aw, which contains all of the traces that in parallel

with M1 satisfy P . The key observation that guarantees termination is that the components in

this procedure – M1,M2, P and Aw – are all regular.

Our setting is more complicated, since the traces in the components – both the programs

and the specification – contain constraints, which are to be checked semantically and not

syntactically. These constraints may cause some traces to become infeasible. For example, if a

trace contains an assignment x := 3 followed by a constraint x ≥ 4 (modeling an if statement),

then this trace does not contribute any concrete runs, and therefore does not affect the behavior

of the system. Thus, we must add feasibility checks to the process.

Constraints in the specification also pose a difficulty, as satisfiability of a specification

is determined by the semantics of the constraints and not just by the syntax of the language,

and hence there is more here to check than standard language containment. Moreover, Aw
above may no longer be regular, as we prove in Chapter 4.4. However, our method manages

to overcome this problem in a way that still guarantees termination in case the verification

succeeds, and progress, otherwise.

As we have described above, not only do we construct a learning-based method for the AG-

rule for communicating programs, but we also repair the programs in case the verification fails.

An AG-rule can either conclude that M1||M2 � P (i.e. M1||M2 satisfies P ), or return a real,

non-spurious counterexample of a computation of M1||M2 that violates P . In our case, instead

of returning the counterexample, we repair M2 in a way that eliminates this counterexample.

We do so by using abduction [PH32] to infer a new constraint which makes the counterexample

infeasible.

Following this step we now have an updated component M2, and we apply the AG-rule

again, using information we have gathered in the previous steps. In addition to removing the

error trace, we update the alphabet of M2 with the new constraint.

Thus, AGR operates in a verify-repair loop, where each iteration runs a learning-based

process to determine whether the (current) system satisfies P , and if not, eliminates bad

behaviors from M2 while enriching the set of constraints derived from these bad behaviors,

which often leads to quicker convergence. In case the current system satisfies P , we return the

repaired M2 together with an assumption A that abstracts M2 and acts as a smaller proof for the

correctness of the system.

We have implemented a tool for AGR and evaluated it on examples of various sizes and of

various types of errors. Our experiments show that for most examples, AGR converges and finds

a repair after 2-5 iterations of verify-repair. Moreover, our tool generates assumptions that are

significantly smaller then the (possibly repaired) M2, thus constructing a compact and efficient

proof of correctness.

The work presented in this chapter was published in [FGPS20].

Summary of Contribution of Chapter 4

1. We present a learning-based Assume-Guarantee-Repair algorithm with the following
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properties.

- The AGR algorithm for infinite-state communicating programs, manages to over-

come the difficulties such programs present. In particular, our algorithm overcomes

the inherent irregularity of the first-order constraints in these programs, and offers

syntactic solutions to the semantic problems they impose.

- An algorithm in which the Assume-Guarantee and the Repair procedures intertwine

to produce a repaired program which, due to our construction, maintains many

of the “good” behaviors of the original program. Moreover, in case the original

program satisfies the property, our algorithm is guaranteed to terminate and return

this conclusion.

- An incremental learning algorithm that uses query results from previous iterations

in learning a new language with a richer alphabet.

2. We apply a novel use of abduction to repair communicating programs over first-order

constraints.

3. We have implemented our algorithm, demonstrating the effectiveness of our framework.

Learning Symbolic Automata

Symbolic finite state automata, SFAs for short, are an automata model in which transitions

between states correspond to predicates over a domain of concrete alphabet letters. Their

purpose is to cope with situations where the domain of concrete alphabet letters is large or

infinite. The transitions in an SFA are then predicates over the infinite data domain, allowing to

succinctly describe the transition relation. Formally, the transition predicates are defined with

respect to an effective Boolean algebra as defined in Chapter 5.1.

SFAs have proven useful in many applications [DVLM14, PGLM15, ASJ+16, HD17, SV17,

MRA+17], and consequently have been studied as a theoretical model of automata.

Recently, the subject of learning automata in verification has also attracted attention, as it

has been shown useful in many applications, see Vaandrager’s survey [Vaa17]. Most works

consider the query learning paradigm, in which a learner tries to learn an automaton by issuing

queries to a teacher. These works provide extensions to Angluin’s L∗ algorithm for learning

DFAs using membership and equivalence queries [Ang87a]. In particular, in Chapter 4 we apply

L∗ algorithm in order to find assumptions for compositional verification.

In [AD18], the authors study the learnability of SFAs taking as a parameter the learnability

of the underlying algebras, providing positive results regarding specific Boolean algebras. One

of our contributions is to demonstrate that these positive learnability results are far from trivial.

In particular, we show that there are limitations to the power of membership and equivalence

queries when it comes to learning SFAs. To do so, we provide a necessary condition for efficient

learnability of SFAs in the query learning paradigm, from which we obtain a negative result

regarding query learning of SFAs over the propositional algebra. This is, to the best of our
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knowledge, the first negative result on learning SFAs with membership and equivalence queries

and thus gives useful insights into the limitations of the L∗ framework in this context.

The main focus of our work lies on the learning paradigm of identification in the limit using

polynomial time and data.2 We are interested in providing sufficient or necessary conditions

for a class of SFAs to be learnable under this paradigm. To this aim, we show that the type of

the algebra, in particular whether it is monotonic or not, largely influences the learnability of

the class.

Learnability of a class of languages in a certain paradigm greatly depends on the repre-

sentation chosen for the language. For instance, regular languages are efficiently learnable

(in both paradigms) when represented as DFAs but not when represented as NFAs. While we

are interested in SFAs as the representations, there are various types of SFAs (with the same

expressive power), and the learnabilty results for them may vary.

The literature on SFAs has mainly focused on a special type of SFA, termed normalized,

in which there is at most one transition between every pair of states. This minimization of

the number of transitions comes at the cost of obtaining more complex predicates. We also

consider another special type of SFA, which we term a neat SFA, which by contrast, allows

several transitions between the same pair of states, but restricts the predicates to be basic, as

formally defined in Section 5.1.1.

To get on the right track, we first take a global look at the complexity of the standard

operations on SFAs, and how they vary according to the special form. We revisit the results

in the literature and analyze them along the measures we find adequate for a size of an SFA:

the number of states, the number of transitions and the size of the most complex predicate.3

The results show that most procedures are more efficient on neat SFAs. We note that in many

applications of learning in verification, the challenging part is implementing the teacher, as we

do in Chapter 4. In such cases the complexity of membership and equivalence queries as well as

standard automata operations plays a major role.

We then turn to study identification of SFAs in the limit using polynomial time and data. We

provide a necessary condition and a sufficient condition a class of SFAs M should meet in order

to be efficiently identifiable in the limit. These conditions are expressed in terms of the existence

of certain efficiently computable functions, which we call GeneralizeM, ConcretizeM, and

DecontaminateM. We then provide positive and negative results regarding learnability of

specific classes of SFAs in this paradigm. In particular, we show that general SFAs over the

propositional algebra cannot be learned in the limit using polynomial time and data, whereas

SFAs over monotonic algebras, such as the interval algebra, can be learned in the limit using

polynomial time and data.

Summary of Contribution of Chapter 5

1. We suggest neat SFAs and show that they are more efficient for Boolean operations and

membership queries, thus making them good candidates for automata learning algorithms.
2This paradigm relates to conformance testing. The relation between conformance testing for Mealy machines

and automata learning of DFAs has been explored in [BGJ+05].
3Previous results have concentrated mainly on the number of states.
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2. We discuss the trade-off between the different types of SFAs and study the complexity of

the different automata algorithms for each type.

3. We study the learning paradigm of identification in the limit using polynomial time

and data, in the context of symbolic automata. We present a necessary condition and a

sufficient condition for a class of SFAs to be efficiently learnable in this paradigm.

4. We present an efficient learning algorithm in the paradigm of identification in the limit, for

certain classes of SFAs, for example for SFAs over the interval algebra, while presenting

negative results for the learnability of SFAs over the propositional algebra in this paradigm.

5. We present a necessary condition for a class of SFAs to be efficiently learnable using

the query learning paradigm, and present the first negative result in that context, for the

learnability of SFAs over the propositional algebra.

1.1 Related Work

Translation of standard LTL formulas to automata over infinite words can be found in [BCM+92,

RV11, Var95, VW86].

Several other models of automata over infinite alphabets have been defined and studied.

In [KF94] the authors define register automata over infinite alphabets, and study their decidabil-

ity properties. [NSV01] use register automata as well as pebble automata to reason about first

order logic and monadic second order logic, and to describe XML documents. [BMS+06] limits

the number of variables and uses extended first order logic to reason about both XML and some

verification properties. In [BHJS07] the authors model infinite state systems as well as infinite

data domains, in order to express some extension of monadic first order logic. The definition

of our model of AVBWs is closer to finite automata over infinite words than the models above,

making it easier to understand. Moreover, due to their similarity to ABWs, we were able to

construct a natural translation of ∃∗-VLTL to AVBWs, inspired by [Var95]. We then translate

AVBWs to NVBWs. Our construction is consistent with [MH84] which provides an algorithm

for translating ABWs to NBWs. However, in our case additional manipulations are needed in

order to handle the variables and track their possible assignments.

The notion of LTL over infinite data domains was studied also in the field of runtime

verification (RV) [CM04, BFH+12, BLS11]. Specifically, in [BFH+12], the authors suggest

a model of quantified automata with variables, in order to capture traces of computations

with different data values. The purpose in runtime verification is to check whether a single

given trace satisfies the given specification. Moreover, the traces under inspection are finite

traces. This comes into play in [BFH+12] where the authors use the specific data values that

appear on such a trace in order to evaluate satisfiability. In [BLS11] the authors suggest a

3-valued semantics in order to capture the uncertainty derived from the fact that traces are finite.

LTL with existential and universal quantifiers was also discussed in the context of RV in the

following. In both [BKV13] and [DLT16] the authors suggest LTL with first order formulas, and
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present monitor construction for this logic. In [BKMZ15] the authors allow unrestricted use of

quantifiers and negations, thus using metric first-order temporal logic as a specification language

for monitoring system properties. In [HPU17] the authors use Binary Decision Diagrams

(BDDs) as an implementation for quantified temporal logic with past operators. The authors

of [MJG+12] use different logics, including LTL, in order to efficiently generate monitors for

runtime verification.

Our work regarding ∃∗-VLTL approaches infinite data domains in a different manner. Since

we want to capture both infinite data domains and infinite traces, we need a much more expressive

model, and this is where AVBWs come into play.

In the context of compositional verification, assume-guarantee style compositional verifica-

tion [MC81, Pnu85] has been extensively studied. The assumptions necessary for compositional

verification were first produced manually, limiting the practicality of the method.

More recent works [CGP03a, GPB05, GGP07, CS] proposed techniques for automatic

assumption generation using learning and abstraction refinement techniques, making assume-

guarantee verification more appealing. In [PGB+08, CS] alphabet refinement has been suggested

as an optimization, to reduce the alphabet of the generated assumptions, and consequently their

sizes. This optimization can easily be incorporated in our AGR framework as well.

Other learning-based approaches for automating assumption generation have been described

in [CCF+10, GMF08, CFC+09]. All these works address non-circular rules and are limited to

finite state systems. Automatic assumption generation for circular rules is presented in [EGPS15,

EGPS16], using compositional rules similar to the ones studied in [McM99, NT00].

Our approach is based on a non-circular rule but it targets complex, infinite-state concurrent

systems, and addresses not only verification but also repair. The compositional framework

presented in [LH14] addresses L∗-based compositional verification and synthesis but it only

targets finite state systems.

Also related is the work in [LDD+13], which addresses automatic synthesis of circular

compositional proofs based on logical abduction; however the focus of that work is sequential

programs, while here we target concurrent programs. A sequential setting is also considered

in [ADG16], where abduction is used for automatically generating a program environment. Our

computation of abduction is similar to that of [ADG16]. However, we require our constraints to

be over a predefined set of variables, while they look for a minimal set.

The approach presented in [SGP10] aims to compute the interface of an infinite-state

component. Similar to our work, the approach works with both over- and under- approximations

but it only analyzes one component at a time. Furthermore, the component is restricted to be

deterministic (necessary for the permissiveness check). In contrast, we use both components of

a system to compute the necessary assumptions, and as a result they can be much smaller than

in [SGP10]. Furthermore, we do not restrict the components to be deterministic and, mainly, we

also address the system repair (in case of dissatisfaction).

A substantial body of literature covers learning restricted forms of SFAs [GJL10, MM14,

ASKK16, MM17, CDYS17], as well as general SFAs [DD17, AD18], and even non-deterministic

residual SFAs [CHYS19]. For other types of automata over infinite alphabets, [HSM11] sug-
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gests learning abstractions, and [She19] presents a learning algorithm for deterministic variable

automata. All these works consider the query learning paradigm, and provide extensions to

Angluin’s L∗ algorithm for learning DFAs using membership and equivalence queries [Ang87a].

Unique to these works is the work [AD18] which studies the learnability of SFAs taking as

a parameter the learnability of the underlying algebras, providing positive results regarding

specific Boolean algebras. In Chapter 5 we provide the first negative result on learning SFAs

from membership and equivalence queries. In addition, we study the learnability of SFAs in the

paradigm of identification in the limit, which was not studied before in this context.

Algorithms for other natural questions over SFAs already exist in the literature, in particular,

Boolean operations, determinization, and emptiness [VdHT10]; minimization [DV16]; and

language inclusion [KT14].

1.2 Thesis Structure

This thesis is constructed as follows. In Chapter 2 we give some basic notions of finite automata

and review the paradigm of learning from membership and equivalence queries. In Chapter 3

we discuss model-checking of ongoing systems with respect to Variable LTL specifications. In

Chapter 4 we turn to study communicating programs, and present a compositional verification

and repair algorithm for this setting. This algorithm is based on learning assumptions using

the L∗ algorithm, which we address again in Chapter 5. There, we study the learnability of

symbolic automata both in the query learning paradigm and in the paradigm of identification in

the limit using polynomial time and data. We conclude in Chapter 6 and discuss some interesting

ideas for future work.
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Chapter 2

Preliminaries

First, we introduce finite automata and related definitions and notations. Then, we briefly

describe the L∗ algorithm for learning regular languages, used in Chapters 4 and 5.

2.1 Finite Automata

In Chapter 4 we introduce communicating systems, and in Chapter 5 we discuss symbolic

automata. Both are extensions of finite automata to different types of automata over infinite data

domains and finite words.

In Chapter 3 we use automata over infinite words, that extend finite automata with both

infinite computations and infinite data domains.

A finite automaton is a tuple A = 〈Σ, Q, q0, δ, F 〉 where

• Σ is a non-empty finite set of alphabet letters.

• Q is a non-empty and finite set of states.

• q0 ∈ Q is the initial state.

• δ ⊆ Q× Σ×Q is the transition relation.

• F ⊆ Q is the set of final states.

A deterministic finite automaton (DFA) is a finite automaton where δ : Q × Σ → Q is a

function. That is, for every p ∈ Q and a ∈ Σ, if 〈p, a, q〉 ∈ δ and 〈p, a, q′〉 ∈ δ then q = q′.

A word w ∈ Σ∗ is a sequence of alphabet letters. Let w = σ1σ2 · · ·σn be a word where

σi ∈ Σ for 1 ≤ i ≤ n. We denote by w[i] the letter in position i in w (that is, σi), and by wi the

suffix σiσi+1 · · ·σn of w starting from position i.

A run of a finite automaton on a word w = σ1 · · ·σn is a finite sequence of transitions

〈q0, σ1, q1〉〈q1, σ2, q2〉 . . . 〈qn−1, σn, qn〉 where q0 is the initial state and for each 1 ≤ i ≤ n− 1
we have 〈qi−1, σi, qi〉 ∈ δ.

We sometimes omit the letters, and denote a run as the sequence of states q0 . . . qn.
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We say that a run r = q0 · · · qn on a word w is accepting iff qn ∈ F . If there exists an

accepting run of a finite automaton A on a word w, we say that w is accepted by A. Note that

for a DFA, there exists a single run for each word w.

The language of an automaton A is the set of all words that are accepted by A, that is,

L(A) = {w ∈ Σ∗ : w is accepted by A}.
A language L is said to be regular iff there exists a DFA A such that L = L(A).

2.2 Automata Learning

In this thesis we consider the exact model of automata learning.1 In exact learning, given a

regular language L, we wish to construct a DFA D such that L(D) = L. In case the language

L is known and we are given a finite representation of it, for example as a regular expression,

then constructing a DFA for L is relatively an easy task. However, in most cases we do not

have a full description of the language. Then, algorithms for learning a DFA for the language L
from a limited amount of information, preferably polynomial, are put into use. In this thesis we

consider the paradigm of query learning, and in particular the L∗ algorithm [Ang87b], which we

briefly describe in Section 2.2.1 below. In addition, we investigate the paradigm of identification

in the limit from polynomial time and data, which we present in Chapter 5, as we only discuss it

in the context of symbolic automata.

2.2.1 Query Learning and L∗ Algorithm

The L∗ algorithm consists of two entities: a learner and a teacher, where the goal of the learner

is to construct a DFA for an unknown language L; and the role of the teacher is to answer

queries issued by the learner, according to the language to be learned. Angluin [Ang87b] showed

that the class of regular languages, when represented by DFAs, can be learned in polynomial

time using membership and equivalence queries, where the complexity of learning is usually

measured by the complexity of operations preformed by the learner, namely the number of

membership and equivalence queries that the learner issues.

The language is known to the teacher, who can answer queries and is assumed to have

unlimited resources. However, most applications implement both the learner and the teacher (as

we demonstrate in Chapter 4), thus the complexity of answering queries needs to be taken into

account as well. In Chapter 5 we discuss different procedures for automata that can affect the

complexity of answering queries, as well as the number of queries issued by the learner, for the

task of learning symbolic automata.

The learner in L∗ can ask two types of queries: membership queries (MQs) and equivalence

queries (EQs). In a membership query, the learner chooses a word w ∈ Σ∗, and asks the teacher

whether w ∈ L. The teacher answers yes/ no accordingly. After initiating some number of MQs,

the learner is able to construct a candidate automaton A, for which it initiates an EQ. In an

EQ, given a candidate DFA A, the learner asks asks whether L(A) = L. If the answer is yes,

1As opposed to PAC (Probably approximately correct) learning [CT04, GP16].
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then the learning process terminates with the correct DFA for the language. In case the answer

is no, the teacher provides the learner a counterexample cex ∈ L(A) \ L or cex ∈ L \ L(A).

Then, the learner uses this counterexample to initiate a new round of membership queries and

candidate construction.

We say that a word w is a positive example if the teacher answered that w ∈ L when a MQ

was issued, or if the teacher provided w ∈ L when answering an EQ. If the teacher provided

w /∈ L either in the MQ or the EQ phase, we call w a negative example.

We say that a learning algorithm is sound, if, given that S+
i and S−i are the sets of positive

and negative examples provided by the teacher up to stage i, then at stage i+ 1 the learner will

not ask a MQ for a word in S+
i ∪ S

−
i . Further, it will not ask an EQ for an automaton that rejects

a word in S+
i or accepts a word in S−i .

A learning algorithm is efficient if, in case the teacher answers queries according to a regular

language L, then the follwoing are polynomial in the size of the minimal DFA for L:

- The number of MQs in each iteration, until the learner generates a candidate automaton.

- The number of EQs until the learner constructs a DFA A such that L(A) = L.

The L∗ algorithm is sound and efficient, and thus in case the unknown language L is regular,

L∗ is guaranteed to terminate, and the number of MQs and EQs is polynomial in the number of

states of the minimal DFA for L.
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Chapter 3

Model-Checking Systems over Infinite
Data

3.1 Systems and Specifications over Infinite Data Domains

In this chapter we discuss the verification of LTL specifications over infinite data domains.

We use an extenstion of LTL, namely VLTL (LTL with variables) [GKS12] that extends LTL

with variables that range over an infinite domain, making it a natural logic for specifying

ongoing systems over infinite data domains. For ongoing systems, automata over infinite words,

particularly nondeterministic and alternating Büchi automata (NBWs and ABWs, respectively)

are used [Var95]. Thus, for ongoing systems with infinite data and VLTL, a similar model is

needed, capable of handling infinite alphabets. In [GKS10, GKS12], the authors suggested

non-deterministic variable Büchi word automata (NVBWs), a model that augments NBWs

with variables.

In this chapter, we present a new model for VLTL specifications, namely alternating variable

Büchi word automata (AVBWs). These are an extension of NVBWs, which we prove to be

stronger and able to express a much richer fragment of VLTL. Specifically, we show that AVBWs

are able to express the entire fragment of ∃∗-VLTL, which is a fragment of VLTL in negation

normal form (NNF) with only ∃-quantifiers, whose positions in the formula are unrestricted.

We now elaborate more on NVBWs and AVBWs. As mentioned, an NVBWA uses variables

that range over an infinite alphabet Γ. A run of A on a word w assigns values to the variables

in a way that matches the letters in w. For example, if a letter a.8 occurs in w, then a run of

A may read a.x, where x is assigned 8. In addition, the variables may be reset at designated

states along the run, and so a.x can be later used for reading another letter a.5, provided that x

has been reset. Resetting then allows reading an unbounded number of letters along a single

computation, using a fixed set of variables. Another component of NVBWs is an inequality set

E , that allows restricting different variables from being assigned the same value at the same

point in the computation. Our new model of AVBWs extends NVBWs by adding alternation.

An alternating automaton may split its run and continue reading the input along several different

paths simultaneously, all of which must accept.
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There is a well-known translation from LTL to ABWs [Var95]. Thus, AVBWs are a natural

candidate for modeling VLTL. Indeed, as we show in Section 3.3.3, AVBWs are able to express

all of ∃∗-VLTL, following a translation that is just as natural as the LTL to ABW translation.

Existential quantifiers (anywhere) in the formula are translated to corresponding resets in the

automaton. However, we show that the strength of AVBWs comes with a price, and unlike the

finite alphabet case, for infinite data domains AVBWs are not equivalent to NVBWs. However,

we present a partial translation algorithm from AVBWs to NVBWs, inspired by the construction

of [MH84]. We give a characterization for AVBWs for which our procedure does halt, relying

on the graphical structure of the underlying automaton. The essence of the characterization

is that translatable AVBWs do not have a cycle that contains a reset action that leads to an

accepting state. Consider the specification “there always exists a message that is currently sent,

and each such message will be eventually recieved”, which corresponds to the VLTL formula

ϕ2 = G ∃x(send.x∧F receive.x). Here, we keep sending messages that must arrive eventually.

However, there is no bound on when they will arrive. Since this is a global requirement, there

must be some cycle that verifies it, and such cycles are exactly the ones that prevent the run of

the translation procedure from halting.

We use our translation from AVBW to NVBW as a basis for a Bounded Model Checking

(BMC) procedure, even in cases where the translation does not halt.

In addition, we characterize fragments of ∃∗-VLTL that have a direct translation to NVBWs,

making them an “easy” case for modeling and model checking. One such fragment is ∃∗PNF -

VLTL, which is ∃∗-VLTL in prenex normal form. We present a reduction from ∃∗-VLTL

satisfiability to ∃∗PNF -VLTL satisfiability for the fragment of ∃∗-VLTL with no negations. This

makes ∃∗-VLTL with no negations a decidable fragment in terms of the satisfiability problem.

Moreover, model-checking for ∃∗-VLTL with no negations, as well as for the other fragments

we discuss in Section 3.5, is decidable.

3.2 Preliminaries

3.2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [Pnu79] is a specification language that is used to reason about

ongoing computations. Let AP be a finite set of atomic propositions. LTL is inductively defined

as follows.

• a is an LTL formula for all a ∈ AP

• Let ϕ1 and ϕ2 be LTL formulas. Then the following are LTL formulas.

– Boolean operations. ¬ϕ; ϕ1 ∨ ϕ2; and ϕ1 ∧ ϕ2.

– Temporal operators. Xϕ1; Fϕ1; Gϕ1; ϕ1 Uϕ2; ϕ1 Vϕ2.

LTL formulas are interpreted over infinite words over the alphabet 2AP . Similar to the

definition for finite words, we use w[i] to denote the letter of w in position i, and wi to denote
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the suffix of w starting from position i. Then, each position w[i] is a set of atomic propositions.

When w is a computation of a system, then the set w[i] corresponds to all atomic propositions

that are true at step i of the computation. The semantics of LTL is defined as follows. Let

w ∈ (2AP )ω.

• For a ∈ AP , we define w |= a iff a ∈ w[0].

• w |= ¬ϕ1 iff w 2 ϕ1.

• w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2; and w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2.

• w |= Xϕ1 iff w1 |= ϕ.

• w |= Fϕ1 iff there exists 0 ≤ i such that wi |= ϕ.

• w |= Gϕ1 iff for all 0 ≤ i it holds that wi |= ϕ.

• w |= ϕ1 Uϕ2 iff there exists 0 ≤ j such that wj |= ϕ2, and for all 0 ≤ i < j it holds that

wi |= ϕ1.

• w |= ϕ1 Vϕ2 iff one of the following holds.

– There exists 0 ≤ j such that wj |= ϕ1, and for all 0 ≤ i ≤ j it holds that wi |= ϕ2.

– For all 0 ≤ i it holds that wi |= ϕ2.

Note that the temporal operators G and F can be expressed using U and V as follows.

• Gϕ ≡ false Vϕ, since this requires ϕ to hold all along the computation.

• Fϕ ≡ true Uϕ.

Variable LTL

Variable LTL, or VLTL, defined in [GKS12], extends LTL by augmenting atomic propositions

with variables that range over a possibly infinite domain. In this context, the set AP is a set of

parameterized atomic propositions. Let X be a finite set of variables, and let x̄ be a vector of

variables of X . The formulas in VLTL are over AP ×X .

We inductively define the syntax of VLTL.

• For every a ∈ AP and x ∈ X the formulas a.x and ¬a.x are VLTL formulas.

• For a VLTL formula ϕ(x̄) and x ∈ X , the formulas ∃xϕ(x̄) and ∀xϕ(x̄) are VLTL

formulas.

• If ϕ1(x̄) and ϕ2(x̄) are VLTL formulas, then so are ϕ1(x̄) ∨ ϕ2(x̄); ϕ1(x̄) ∧ ϕ2(x̄);

Xϕ(x̄); Fϕ1(x̄); Gϕ1(x̄); ϕ1(x̄) Uϕ2(x̄); and ϕ1(x̄) Vϕ2(x̄).
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Note that in particular, in VLTL we only allow negations of atomic propositions. That is, all

VLTL formulas are in Negation Normal Form (NNF).

Semantics Given a (possibly infinite) domain Γ, a quantifier-free formula ϕ(x̄), an assignment

θ : X → Γ, and a word w ∈ (2AP×Γ)ω, we denote w |=θ ϕ(x̄) if w |= ϕ(x̄)[x̄←θ(x̄)] under

the standard semantics of LTL. For example, for w = {a.1}ω it holds that w |=θ G a.x for

θ(x) = 1. For γ ∈ Γ and a.γ we say that γ is the value of a. It is important to note that we only

allow a single occurrence of a ∈ AP in every state in the computation, that is, no word may

contain both a.γ and a.γ′ for γ 6= γ′ in the same position.

Notice that the semantics of the negation is defined with respect to specific values. That is,

if θ(x) = 2 then {a.1}ω |=θ G¬a.x, but for θ′(x) = 1 we have {a.1}ω 2θ′ G¬a.x.

We denote w |=θ ∃xϕ(x̄) if there exists an assignment x ← γ for some γ ∈ Γ such that

w |=θ[x←γ] ϕ(x̄). The assignment θ[x←γ] agrees with θ on the values of all variables except the

value of x, which is assigned γ, and |=θ[x←γ] is as defined before. We denote w |=θ ∀xϕ(x̄) if

for every assignment x← γ to the variable x, it holds that w |=θ[x←γ] ϕ(x̄).

We say that a formula ϕ is closed if every occurrence of a variable in ϕ is under the scope of

a quantifier. Note that the satisfaction of closed formulas is independent of specific assignments.

For a closed formula ϕ over x̄, we then write w |= ϕ(x̄), instead of w |=θ ϕ(x̄) for a specific

assignment θ.

The logic ∃∗-VLTL is the set of all closed VLTL formulas that only use the ∃-quantifier.

The ∃-quantifier may appear anywhere in the formula. The logic ∃∗PNF -VLTL is the set of all

∃∗-VLTL formulas in prenex normal form, i.e., ∃-quantifiers appear only at the beginning of

the formula.

The language of a formula ϕ, denoted L(ϕ), is the set of all computations that satisfy ϕ.

3.2.2 Automata over infinite words

Non Deterministic Büchi automata

A non-deterministic Büchi automaton over infinite words (NBW) [Bue62] is a tuple B =
〈Σ, Q, q0, δ, F 〉 where, as in finite automata defined in Chapter 2.1, Σ is a finite alphabet; Q

is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is a set of accepting states; and

δ ⊆ Q× Σ×Q is the transition relation.

A run ofB on a wordw ∈ Σω is an infinite sequence of transitions 〈q0, w[1], q1〉〈q1, w[2], q2〉 . . .,
where for each i ∈ N, we have 〈qi, w[i+ 1], qi+1〉 ∈ δ.

A run of B is accepting if it visits some state of F infinitely often. We say that B accepts a

word w if there exists an accepting run of B on w. The language of B, denoted L(B), is the set

of words accepted by B.

Alternating Büchi automata

Before defining alternating automata, we define some preliminary notions.
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Given a finite set D, a D-tree is a set T ⊆ D∗ such that T is prefix-closed. That is, if

w ∈ T then u ∈ T for every prefix u of w. A node of T is a word in T , and the root of

T is the empty word ε. A path to a node u = d1d2 · · · dn in T is the sequence of prefixes

ε, d1, d1d2, . . . , d1d2 · · · dn of u. A successor of a node u ∈ T is of the form u · d where d ∈ D.

For i ≥ 0, the i’th level in T is the set of words of length i in T .

Given a set L, an L-labeled D-tree is a pair 〈T, f〉 where T is a D-tree, and f : T → L is a

labeling function that labels each node in T by an element of L.

An alternating Büchi automaton over infinite words (ABW) [MS84] is a tuple BA =
〈Σ, Q, q0, δ, F 〉 where Σ, Q, q0 and F are as in NBW. The transition function is δ : Q× Σ→
B+(Q), where B+(Q) is the set of positive Boolean formulas over the set of states as well as

{true, false}. That is, formulas that include only the Boolean operators ∧ and ∨.1 For example,

if δ(q, a) = (q1 ∧ q2)∨ q3, then, by reading a from q, the ABW BA moves either to both q1 and

q2, or to q3. We assume that δ is given in disjunctive normal form (DNF).2

A run of BA on a word w ∈ Σω is a Q-labeled Q-tree, in which the i’th level corresponds

to the set of states that BA reaches after reading w[i]. The root is labeled by q0. For every

q-labeled node u in level i, the set of labels of the children of u is a minimal set (with respect

to inclusion) that satisfies δ(q, w[i]). For example, if δ(q, a) = (q1 ∧ q2) ∨ q3, and w[i] = a,

and u is a q-labeled node on level i− 1, then u has either two children labeled q1 and q2, or a

single child labeled q3. Hence, disjunctions in the transitions are equivalent to non-deterministic

choices and influence the number of different run trees on a word, and conjunctions induce a

split to two or more successors within the run tree.

A run is accepting if every infinite path in the run tree visits a state from F infinitely often,

and every finite path ends with true . That is, the last node on the path is on some level n and is

labeled by q such that true satisfies δ(q, w[n]). The notions of acceptance and language are as

in NBWs.

We say that an automaton (either NBW or ABW) is a labeled automaton if its definition

also includes a labeling function L : Q→ L for its states, where L is a set of labels. We use

this notion to conveniently define variable automata.

Non-Deterministic Variable Büchi automata

We now define non-deterministic variable Büchi automata over infinite words (NVBWs). Our

definition is tailored to model VLTL formulas, and thus is slightly different from the definition

in [GKS10]. Specifically, the alphabet consists of subsets of AP ×X , where AP is a finite

set of parameterized atomic propositions. For ease of presentation we denote the alphabet as

Σ = 2AP×X . However, we only consider words in which each atomic proposition appears only

once at every position of the computation. That is, the set {a.x, b.y, c.x} for a, b, c,∈ AP can

be a letter read by an NVBW, whereas the letter {a.x, a.y} is considered only if x and y are

assigned with the same concrete value.

1In particular, the negation operator is not included.
2Note the although δ is a function, this does not imply determinism. We express non-determinism using

disjunctions in the Boolean formula that is the output of δ.
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An NVBW is a tuple A = 〈B,Γ,E 〉, where B = 〈2AP×X , Q, q0, δ, reset, F 〉 is a labeled

NBW such that:

• X is a finite set of variables.

• reset : Q → 2X is a labeling function that labels each state q with the set of variables

that are reset at q.

• The set E ⊆ {xi 6= xj : xi, xj ∈ X} is an inequality set over X . This set defines

variables that cannot be assigned with the same value at the same point of the computation.

• Γ is an infinite alphabet.

A run of an NVBW A on a word w assigns a value from Γ to every occurrence of a variable.

A variable can “forget” its value only if a reset action occurs. The inequality set E prevents

from certain variables to be assigned with the same value at the same state in the computation.

Formally, a run of an NVBW A = 〈B,Γ,E 〉 on a word w ∈ (2AP×Γ)ω is a pair 〈π, θ〉
where π = (q0, q1, q2, · · · ), is an infinite sequence of states, and θ = (θ0, θ1, · · · ) is an infinite

sequence of mappings θi : X → Γ such that:

1. There exists a word w̃ ∈ (2AP×X)ω such that θi(w̃[i]) = w[i] for every i ∈ N, and π is

a run of B on w̃. We say that w̃ is a symbolic word that is consistent on 〈π, θ〉 with the

concrete word w.

2. The run respects the reset actions: for every i ∈ N, x ∈ X , if x /∈ reset (qi) then

θi(x) = θi+1(x).

3. The run respects E : for every i ∈ N and for every inequality (xm 6= xl) ∈ E it holds

that θi(xl) 6= θi(xm). Note that this means that inequalities hold locally at each state.

A run 〈π, θ〉 on w is accepting if π is an accepting run of B on a symbolic word w̃ that

corresponds to w on 〈π, θ〉, that is, π visits F infinitely often. The notion of acceptance and

language are as in NBWs.

We say that an NVBW A expresses a formula ϕ if L(A) = L(ϕ).

Example 3.2.1. Consider the concrete word

w = {send.1}({send.2, rec.1}{send.1, rec.2})ω

In an NVBW A, a corresponding symbolic word can be

w̃ = {send.x1}({send.x2, rec.x1}{send.x1, rec.x2})ω

If A includes reset actions for x1 and x2 in every even state in some path of A, then another

concrete word consistent with w̃ can be

w′ = {send.1}{send.2, rec.1}{send.3, rec.4}{send.4, rec.3}{send.5, rec.6} . . .
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since the values of x1 and x2 may change at every even state.

Notice that there are several types of infinite sequences discussed in this Chapter. For ease

of reading, a summary of their types and notation follows.

• Infinite words over 2AP×Γ, which we usually denote by w.

• Infinite symbolic words over 2AP×X , which we usually denote by w̃.

• Infinite paths in an automaton, which we usually denote by π = (q0, q1, . . .).

• Variable assignments, which we usually denote by θ. Sometimes we use θ to refer to a set

or a sequence of variable assignments, depending on the context.

3.3 Variable automata: Non-determinism vs. Alternation

In Section 3.6 we show that NVBWs are useful for model checking in our setting, since

they have good decidability properties. In particular, there is a polynomial construction for

intersection of NVBWs, and their emptiness problem is NLOGSPACE-complete [GKS10]. In

Section 3.5.1 we describe fragments of ∃∗-VLTL that have a direct translation to NVBWs.

We now show that NVBWs are too weak to express all VLTL formulas, or even all ∃∗-VLTL

formulas. Nevertheless, we use NVBWs for model checking a significant subset of ∃∗-VLTL.

Before discussing the properties of variable automata, we first give some motivation for

their definition, as presented in Section 3.2.2. In particular, we give motivation for the reset

labeling function and for E , the inequality set.

Example 3.3.1. We begin with resets. Consider the ∃∗-VLTL formula ϕ1 = G∃x(a.x). One

possible computation that satisfies ϕ1 is w = a.1 a.2 a.3 · · · . No NVBW with a finite number

of variables can read w, unless some variable is reassigned. The reset action allows these

reassignments.

Example 3.3.2. To see the necessity of the inequality set E , consider the ∃∗-VLTL formula

ϕ2 = ∃x(G¬a.x). We can use a variable x to store a value that never appears along the

computation with a. Imposing inequality restrictions on x with all other variables makes sure

that the value assigned to x does not appear along the computation via assignments to other

variables. Note that if the logic does not allow negations at all, the inequality set is not needed,

since only negations can force values to be different along a computation.

3.3.1 NVBWs are not expressive enough for ∃∗-VLTL

As the following Lemma shows, there are ∃∗-VLTL formulas that cannot be expressed using

an NVBW. This is in contrast to the finite alphabet case, where every LTL formula has an

equivalent NBW.

Lemma 3.3.3. The formula ϕG∃ = G ∃x(a.x ∧ F b.x) cannot be expressed by an NVBW.
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Proof. Consider the following word w over AP = {a, b} and Γ = N, which is defined as

follows. For every i ≥ 0, the letter w[i] is {a.(i+ 1), b. blog2(i+ 1)c+ 1}. Hence,

w = {a.1, b.1}{a.2, b.2}{a.3, b.2}{a.4, b.3} · · · {a.7, b.3}{a.8, b.4} · · ·

That is, for every i > 0, it holds that a.(i + 1) ∈ w[i], and b.i occurs from w[2i−1 − 1] and

continues until w[2i − 2].
w satisfies ϕG∃ since for every t ≥ 0, at every step t, we have that a.t holds, and at some

point in the future, specifically at step 2t−1 − 1, the proposition b.t will hold. Thus, at every

step t we have a.t ∧ F b.t for some value t.

Intuitively, to see that there exists no NVBW that expresses ϕG∃, note that between an

occurrence of a.i and b.i, the number of different values for a increases as i is increased. Each

of these values must be remembered in order to be compared with a future occurrence of b, but

an NVBW with finitely many variables cannot handle this requirement.

Formally, assume by way of contradiction that such an NVBW A does exist, and has m

variables. Then when A runs on a word in which a occurs with more than m values, at least

one variable must be reset and used for at least two different values of a during the finite

sub-word in which this occurs. Let i0 be such that i0 > max{m, 5} and consider the sub-word

w[i0] · · ·w[im].3 Since this is a sub-word of length m + 1 it holds that some variable x of A
is reset along the run on this sub-word and is used for two different values t, t′ of a, such that

t < t′, and assume that t′ is the minimal value satisfying this requirement. In addition, note that

since a.t occurs in w[i0] · · ·w[im] it holds that i0 ≤ t ≤ im and thus im ≤ t + m. Since b.t

only occurs at position 2t−1 − 1, and i0 > max{m, 5}, it holds that 2t−1 − 1 > t+m and thus

b.t does not occur in the sub-word w[i0] · · ·w[im].
Now, let w′ be the word that is obtained from w above by replacing a.t in w[t] with a.0.

The word w′ does not satisfy ϕG ∃ since b.0 never occurs in w, and thus does not occur in w′.

However, we show that since x is reset between position t− 1 and the next occurrence of b.t,

the accepting run of A on w is also an accepting run of A on w′. This, since A can no longer

check that the occurrence of a.0 and the occurrence of b.t do not match; let r be an accepting

run of A on w and let

〈p0, w[i0], p1〉 · · · 〈pt, w[t], pt+1〉 · · · 〈ps, w[s], ps+1〉 · · · 〈pt′ , w[t′], pt′+1〉 · · · 〈pm, w[im], pm+1〉

the part of r reading the sub-word w[i0] · · ·w[im], where ps is the state where variable x is reset.

We note that the first time t occurs in w is when reading a.t from state pt. Thus, all

transitions until state pt remain the same, and the transition 〈pt, w′[t], pt+1〉 can be taken since

both 0 and t are fresh values, and so they both can be assigned to x. All the transitions that

follow up to ps regard other values and do not impose requirements on x, thus can be taken as

well since the rest of the word is unchanged. Since x is reset in ps, the transition from ps to

ps+1 can be taken with any value of x, and in particular with x = 0. All other values and all

3We choose i0 to be grater than 5 so that the inequality 2t−1 − 1 > t+m will hold, as we show below.
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atomic propositions remain the same, thus indeed the transition 〈ps, w[s], ps+1〉 is valid. Again,

all next transitions until pt′ read other variable values and thus cannot impose restrictions on x.

Now, when reading w[t′] the variable x is assigned the new value t′, and so from w[t′] onwards,

the two words w and w′ agree on all letters. Therefore, if w is accepted by A then so is w′, and

so A cannot express the property ϕG ∃. �

Not only ∃-quantifiers are problematic for NVBWs. NVBWs cannot handle ∀-quantifiers,

even in PNF. The proof of the following Lemma is identical to the proof of Lemma 3.3.3.

Lemma 3.3.4. The formula ϕ∀ = ∀xG (a.x→ F b.x) cannot be expressed by an NVBW.

Note that while ϕ∀ is not expressible by an NVBW, its negation, ¬ϕ∀ = ∃xF (a.x∧G¬b.x)
is expressible using an NVBW (see Section 3.5.1). Since in model-checking we use the negation

of the formula we wish to verify, we are able to model-check the property expressed by ϕ∀.

Moreover, we present several techniques for model-checking formulas even if their negations are

not expressible by an NVBW. These techniques use AVBWs, and are described in Section 3.3.2.

3.3.2 Alternating Variable Büchi Automata

In Section 3.3.1 we have shown that NVBWs are not expressive enough, even when considering

only the fragment of ∃∗-VLTL. We now introduce alternating variable Büchi automata over

infinite words (AVBWs), and show that they can express all of ∃∗-VLTL. We study their

expressibility and decidability properties.

Definition 3.3.5. An AVBW is a tupleA = 〈BA,Γ,E 〉whereBA = 〈2AP×X , Q, q0, δ, reset, F 〉
is a labeled ABW, and X , reset, E , and Γ are as in NVBW.

A run of an AVBW A on a word w ∈ (2AP×Γ)ω is a pair 〈T, θ〉 where T is a Q-labeled Q-tree,

and θ associates each node t of T with a function θt : X → Γ such that:

1. The root of T is labeled with q0.

2. For every path π of T there exists a symbolic word w̃π ∈ (2AP×X)ω such that θπi(w̃π[i]) =
w[i]. That is, for every path π, the word w is obtained from a symbolic word w̃π that is

associated with π, by assigning values to the variables in w̃π according to θ.

3. The run respects δ: for each node t ∈ T labeled by q of depth i on path π, the successors

of t are labeled by q1, . . . , qt iff {q1, q2, . . . , qt} is a minimal satisfying set of δ(q, w̃π[i]).

That is, the symbolic words that are described in Item 2 can be read following legal

transitions in A.

4. The run respects the reset actions: if t′ is a child node of t labeled by q and x /∈ reset (q),

then θt(x) = θt′(x). That is, along a path in T , as long as x is not reset, it carries the

same value.
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5. The run respects E : for every (xi 6= xj) ∈ E and for every node t ∈ T it holds that

θt(xi) 6= θt(xj).

Intuitively, much like in NVBWs, the variables in every node in every path along the run

tree are assigned values in a way that respects the resets along the path, and the inequality set.

A run 〈T, θ〉 on w is accepting if every infinite path π of T is labeled infinitely often with

states in F , and every finite path ends with true. The notion of language is as usual.

Note that the same variable can be assigned different values on different paths, even at the

same depth of the tree (and also along the same path, provided it has been reset).

Just like ABWs, AVBWs are naturally closed under union and intersection. However, unlike

ABWs, they are not closed under complementation. We prove this in Section 3.3.4.

3.3.3 AVBWs can express all of ∃∗-VLTL

We now show that AVBWs can express ∃∗-VLTL. Together with Lemma 3.3.3, we reach the

following surprising theorem.

Theorem 3.1. AVBWs are strictly more expressive than NVBWs.

This is in contrast with the finite alphabet case, where there are known algorithms for

translating ABWs to NBWs [MH84].

Theorem 3.2. Every ∃∗-VLTL formula ϕ can be expressed by an AVBW Aϕ.

We start with an example AVBW A for ϕG∃ = G∃x(b.x ∧ F a.x) from Lemma 3.3.3. See

Figure 3.1 for a graphic representation of A.

Example 3.3.6. Let A = 〈B,N, ∅〉 where B = 〈2AP×{x1,x2,x3}, {q0, q1}, q0, δ, reset, {q0}〉.

• reset(q0) = {x1, x2}, reset(q1) = {x2, x3}

• δ(q0, {b.x1}) = δ(q0, {a.x2, b.x1}) = q0 ∧ q1

δ(q0, {b.x1, a.x1}) = q0

δ(q1, {b.x2}) = δ(q1, {a.x2}) = δ(q1, {a.x2, b.x3}) = q1

δ(q1, {a.x1}) = δ(q1, {a.x1, b.x2}) = true

Intuitively, q0 makes sure that at each step there is some value with which b holds. The run

then splits to both q0 and q1. The state q1 waits for a with the same value as was seen in q0

(since x1 is not reset along this path, it must be the same value), and uses x2 and x3 to ignore

other values that are attached to a, b. The state q0 continues to read values of b (which again

split the run), while using x2 to ignore values assigned to a.

We now proceed to the proof of Theorem 3.2.
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{a.3, b.7}
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{a.1,b.0} {a.1, b.0}

Figure 3.1: The AVBW A described in Example 3.3.6 and an example of a run. The double
arch between transitions represents a conjunction (∧) in δ.

Proof. Let ϕ be an ∃∗-VLTL formula. We present an explicit construction of Aϕ, based

on the construction of [Var95], using resets to handle the ∃-quantifiers, and inequalities to

handle negations. First, we rename the variables in ϕ and get an equivalent formula ϕ′, in

which every existential quantifier bounds a variable with a different name. For example, if

ϕ = ∃x(a.xU ∃x(b.x)) then ϕ′ = ∃x1(a.x1 U ∃x2(b.x2)). In addition, since we can express

the temporal operators G and F using U and V , we assume all formulas only contain the

temporal operators X , U and V .

Let sub(ϕ′) be the set of sub-formulas of ϕ′ and let var(ϕ′) be the set of variables that

appear in ϕ′.

The AVBW is Aϕ = 〈B,Γ,E 〉 where B = 〈2AP×X , Q, ϕ′, δ, reset, F 〉 and where:

• X = var(ϕ′) ∪ {xp : p ∈ AP}. That is, the variables of Aϕ are the set of variables

of ϕ′, as well as an additional variable for every atomic proposition. Intuitively, these

additional variables allow Aϕ to read the values that are carried by atomic propositions,

and which are irrelevant to the formula.

• Q = sub(ϕ′).

• {xp : p ∈ AP} ⊆ reset(q) for every q ∈ Q, and {x1, · · · , xn} ⊆ reset(q) for q of the

form ∃x1, · · · ,∃xnη. That is, x is reset in every state (i.e. sub-formula) in which x is

under an un-nested ∃ quantifier. Intuitively, the formula states that there exists a value γ

that can be assigned to x for which the sub-formula η is true, and resetting x allows it to

be assigned γ. In addition, the atomic proposition variables are reset in every state.

• E = {x 6= x′ : x′ ∈ X, (¬a.x) ∈ sub(ϕ′)}. Recall that we only allow negations on

atomic propositions. We handle these negations with inequalities. If ¬a.x is a sub-formula

of ϕ, then we do not want the value assigned to x to appear with a when reading a from

state ¬a.x. Thus, all variables that a can occur with from state ¬a.x must be assigned

different values from the value currently assigned to x.
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• F consists of all states of the form η Vψ, just as in the classic LTL to ABW construction.

Intuitively, these states make sure that every U formula is satisfied, and no computation

is stuck in the lefthand side of the U without eventually satisfying its righthand side.

As in the classic LTL to ABW construction, the set of statesQ consists of all sub-formulas of

ϕ′. In our setting, at every given point in the computation there is an assignment to the variables

that may change via resets. If an accepting run of A on w visits a state ψ, then the suffix of w

that is read from ψ satisfies ψ under the current assignment to the variables. The set of variables

X consists of all variables in ϕ′, as well as a variable xp for every atomic proposition p ∈ AP .

The additional variables enable the run to read and ignore values that are currently irrelevant.

For example, for ϕ = ∃xF (b.x ∧ a.x), we want to read (and ignore) values of a and b until

a.γ ∧ b.γ occurs with some γ. Along the run, these values can be assigned to the variables

xa, xb. We proceed to define the transition relation δ. Let A be a subset of AP ×X (recall that

B is defined over the alphabet 2AP×X ). Then δ is defined as follows.

– δ(a.x,A) = true if a.x ∈ A and δ(a.x,A) = false , otherwise.

– δ(¬a.x,A) = ¬δ(a.x,A).4

– δ(η ∧ ψ,A) = δ(η,A) ∧ δ(ψ,A).

– δ(η ∨ ψ,A) = δ(η,A) ∨ δ(ψ,A)

– δ(X η,A) = η

– δ(ηUψ,A) = δ(ψ,A) ∨ (δ(η,A) ∧ ηUψ)

– δ(η Vψ,A) = δ(η ∧ ψ,A) ∨ (δ(ψ,A) ∧ η Vψ)

– δ(∃xη,A) = δ(η,A)

The transition relation δ is then as in the classic LTL to ABW construction, with the

additional transitions from states (subformulas) of the type ∃xη. These serve only to reset x

and atomic propositions variables, and the run then proceeds as it would proceed from η. Note

that since we only use formulas in NNF, we define δ for both “and” and “or”, as well as for U
(until) and V (release) operators.

Correctness We inductively prove correctness and show that a word w is accepted from a

state ψ with a variable assignment θ iff w |=θ ψ. The correctness of our construction relies on

the correctness of the construction in [Var95]. However, we need to take special care in the reset

action and existential quantifiers; and in the negations and inequality set.

For a state a.x and a letter A ∈ 2AP , the AVBW accepts and moves to true iff a.x ∈ A.

Since we only consider closed formulas, we assume x was previously existentially quantified

and is assigned with some value. Now, for a state ¬a.x, the AVBW moves to true iff a.x /∈ A.

However, in that case, if x is assigned with value γ and a occurs with some value γ′ 6= γ, then

4This can be either true or false.
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the AVBW should allow reading a.γ′ from state ¬a.x. Since the inequality set E is defined

to be E = {x 6= x′ : x′ ∈ X, (¬a.x) ∈ sub(ϕ′)} for x′ 6= x and a.x′ ∈ A, it holds that

δ(¬a.x,A) = true, and indeed, x′ cannot be assigned with the same value as x, so the semantics

is preserved.

Inductively, the correctness of δ for temporal and Boolean operators follows from the

correctness of the construction of [Var95]. It is left to address existential quantifiers. The

∃-quantifier is handled by resetting the variables under its scope. Indeed, according to the

semantics of ∃, for ψ of the form ∃x : ψ′, the suffix of w holds if ψ′ holds for some assignment

to x. Resetting x allows the run to correctly assign x in a way that satisfies ψ′. Notice also that

from this point on, due to the ∃ quantifier, the previous value assigned to x may be forgotten.�

3.3.4 AVBWs are not Complementable

As mentioned before, unlike ABWs, AVBWs are not closed under complementation. To prove

this, we show that ∀∗-VLTL cannot generally be expressed by AVBWs. Since negating an

∃∗-VLTL formula produces a ∀∗-VLTL formula, the result follows.

Lemma 3.3.7. There is no AVBW that expresses ϕ∀ = ∀xF a.x.

Proof. The formula ϕ∀ states that all domain values appear somewhere along the computation

(with the proposition a). If the alphabet is not countable, then it obviously cannot be enumerated

by a computation. However, the claim holds also for countable alphabets. Assume by way

of contradiction that there exists an AVBW A that expresses ϕ∀ for Γ = N. Then A accepts

w = a.0 a.1 a.2 · · · . Since the variables are not sensitive to their precise contents but only to

inequalities among the values, it holds that the accepting run of A on w can also be used to read

w1 = a.1 a.2 · · · , in which the value 0 never occurs. �

The negation of ϕ∀ above is in ∃∗-VLTL, thus there is an AVBW that expresses ¬ϕ∀.

Corollary 3.3. AVBWs are not complementable.

Corollary 3.4. ∀∗-VLTL is not expressible by AVBWs.

3.3.5 Variable Automata: From AVBW to NVBW

The emptiness problem for NVBWs is NLOGSPACE-complete [GKS10]. In the context of

model checking, this is an important property. We now show that for AVBWs, this problem is

undecidable.

Lemma 3.3.8. The emptiness problem for AVBWs is undecidable.

Proof. According to [SW], the satisfiability problem for ∃∗-VLTL is undecidable. The satisfia-

bility of a formula ϕ is equivalent to the nonemptiness of an automaton that expresses ϕ, since

a word in the language of the automaton is a satisfying computation of the formula. Since we

have shown that every ∃∗-VLTL formula can be expressed by an AVBW, the proof follows. �
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Since the emptiness problem for NVBWs is easy, we are motivated to translate AVBWs to

NVBWs in order to model-check properties that are expressed by AVBWs. In particular, such

a translation will enable us to model-check ∃∗-VLTL properties. This, however, is not always

possible, since AVBWs are strictly more expressive than NVBWs (Theorem 3.1).

We now present a procedure, which translates an interesting subset of AVBWs to equivalent

NVBWs. We later give a structural characterization for AVBWs that can be translated to

NVBWs using our procedure.

From AVBW to NVBW

Our procedure is inspired by the construction of [MH84] for translating an ABW B to an NBW

B′. In [MH84] the states of B′ are of the form 〈S,O〉. Intuitively, the run proceeds in rounds.

In every round, every path of the run tree must visit an accepting state at least once. The set

S is the set of the states that B is currently at, and O is the set of states of S that still “owe” a

visit to an accepting state. That is, O contains the states from S along paths that have not yet

visited an accepting state since the last round. While running B′ on a word w, accepting states

are removed from O, until O = ∅. Thus, when O = ∅, all paths have visited an accepting state

at least once. Now, O is again set to be S, and a new round begins. Accordingly, the accepting

states of B′ are states of the form 〈S, ∅〉.
Here, we wish to translate an AVBW A to an NVBW A′. For simplicity, we assume that

E = ∅. The changes for the case where E 6= ∅ are described later.

In addition to S and O, we must also remember which variables are currently in use, and

might hold values from previous states. In our translation, the states of A′ are tuples containing

S,O, and the sets of variables currently in use. Since AVBWs allow different paths to assign

different values to the same variable, the translation must allocate a new variable for each such

assignment. We also need to release variables that were reset in A, in order to reuse them in A′

to avoid defining infinitely many variables. Since we need to know which variables are in use at

each step of a run of A, we dynamically create both the states and δ′, the transition function

of A′.
Since each path in A may allocate different values to the same variable, it might be the

case that the same variable holds infinitely many values (from different paths). Such a variable

induces an unbounded number of variables in A′. The variables make the translation harder,

and as stated in Lemma 3.3.3, even impossible in some cases. Our procedure halts when no new

states are created, and since the new variables are part of the created states, creating infinitely

many such variables causes our procedure not to halt. Therefore, the procedure is incomplete.

Procedure AVBWtoNVBW: Let A = 〈BA,Γ,E 〉 be an AVBW, where BA = 〈2X , Q, q0,

δ, reset, F 〉. For simplicity of the presentation, we assume that BA is defined over the alphabet

2X instead of 2AP×X . Recall that we assume that δ(q,X ′) is in DNF for all q ∈ Q,X ′ ⊆ X .

Let A′ = 〈B′,Γ,E ′〉 be an NVBW where B′ = 〈2Z , Q′, q′0, δ′, reset ′, F ′〉, such that5:

• Z = {zi : 0 ≤ i < k} is the set of variables.
5Comments are given after each item and are preceded by ..
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. k can be finite or infinite, according to the translation. If the algorithm converges then

we have |Z| <∞ and the AVBW is translatable to an NVBW.

• Q′ ⊆ 2Q×2X×Z × 2Q×2X×Z . The states of A′ are pairs of the form 〈S,O〉. Each of S,O

is a set of pairs of type 〈q, fq〉 where q ∈ Q, and fq : X → Z is a mapping from the

variables of A to the variables of A′.

. At each state we need to know how many different values can be assigned to a variable

x ∈ X by different states of A, and create variables in Z accordingly, in order to keep

track of the different values of x.

• q′0 = 〈{(q0, ∅)}, ∅〉.

. The initial state of A′ is the initial state of A with no additional mappings.

• F ′ = 2Q×2X×Z × ∅.

. The accepting states of A′ are states for which O = ∅, i.e., all paths in A have visited

an accepting state.

1. Preprocessing: For each q ∈ Q: if there is no accepting state or true reachable from q

then replace q with false.

. This is in order to remove loops that may prevent halting, but, in fact, are redundant

since they do not lead to an accepting state.

2. Initialization: set S := {〈q0, ∅〉}; O := ∅ if q0 ∈ F and O = {〈q0, ∅〉} otherwise;

Qnew := {〈S,O〉}; Qold := ∅; vars := ∅; Z := ∅.

. The purpose of S and O is as explained above; Qnew and Qold keep track of the changes

in the states that the procedure creates, in order to halt when no new states are created;

vars holds variables of Z that are currently in use.

3. We iteratively define δ′(〈S,O〉, X ′) for 〈S,O〉 ∈ Qnew, and denote it by 〈S′, O′〉. We

continue as long as new states are created, i.e. while Qnew 6⊆ Qold.

(a) Set: S′ := ∅; O′ := ∅; Z ′ := ∅; Zreset := ∅.
. Zreset contains the set of variables to be reset; at each step, Z ′ holds the variables

in Z that label the current edge (and are the image of the variables in X that label

the corresponding edges in A). The set Zreset is initialized at every iteration of the

algorithm.

(b) Qold := Qold ∪ {〈S,O〉}

(c) Qnew := Qnew \ {〈S,O〉}

(d) For each 〈q, fq〉 ∈ S, let Pq ⊆ Q be a minimal set of states such that Pq � δ(q,X ′).

i. Create a state 〈p, fp〉 for each p ∈ Pq. The function fp is initialized to fp(x) :=
fq(x) for every x /∈ reset(p).

. That is, every successor state p of q remembers the assignments to variables

in q, and releases the assignments to variables that were reset in p.
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ii. For x ∈ X ′ with x ∈ dom(fq), update Z ′ := Z ′ ∪ {fq(x)}
iii. For each x ∈ X ′ with x /∈ dom(fq), let i ∈ N be the minimal index for which

zi /∈ vars.

A Add to fp the mapping fp(x) := zi if x /∈ reset(p).

B Update vars := vars ∪ {zi}, Z ′ := Z ′ ∪ {zi}, Zreset := Zreset ∪ {zi},
Z := Z ∪ {zi}.
. zi may already be in Z, if it was introduced earlier.

iv. Define SPq := {〈p, fp〉}p∈Pq .
v. If O 6= ∅, set OPq := SPq if 〈q, fq〉 ∈ O.

. That is, add to O′ only successor states of states from O.

vi. If O = ∅, set OPq := SPq .

(e) Set S′ :=
⋃
〈q,fq〉∈S SPq , O

′ := (
⋃
〈q,fq〉∈O OPq) \ {〈p, fp〉}p∈F

(f) Add {zi|zi ∈ Zreset} to the reset function of previous state, 〈S,O〉. That is,

reset ′(〈S,O〉) := reset ′(〈S,O〉) ∪ {zi|zi ∈ Zreset}.

(g) Update δ′(〈S,O〉, Z ′) := δ′(〈S,O〉, Z ′) ∪ {〈S′, O′〉}

(h) Update Qnew := Qnew ∪ {〈S′, O′〉}

(i) If for zi ∈ vars it holds that for all 〈S,O〉 ∈ Qnew , for all 〈p, fp〉 ∈ S we have

zi /∈ range(fq), then:

i. vars := vars \ {zi}.
ii. add zi to reset ′(〈S′, O′〉).

. Here we release variables of Z that are no longer in use, by resetting them. Thus

A′ can assign these variables with a new value, and delete them from vars so they

can be used in following transitions.

4. Set Q′ := Qold

To handle cases where E 6= ∅, mapping a variable x to a new variable is as follows. For every x′

with (x 6= x′) ∈ E, let {zi}i∈Ix′ be the set of variables that x′ is already mapped to in previous

steps. Then, we map x to some variable z and add the inequalities {z 6= zi : i ∈ Ix′} to E′.

Figure 3.2 demonstrates a partial NVBW C that is constructed by running AVBWtoNVBW
on the AVBW A shown in Figure 3.1.6 Recall that A is an AVBW that expresses the formula

ϕG ∃ = G ∃x(b.x ∧ F a.x). A variable zi in C is reset when there is no mapping from the

variables of X to zi. Consider, for example, the transition from state p2 to state p3. The edge is

labeled with {b.z3, a.z1}. The parameterized proposition b.z3 yields a new mapping from x1 to

z3, which is released only after a.z3 appears, on the transition from p5 to p2. In addition, we

can reset the variable z1 and reuse it in state p3, since the corresponding transition in the AVBW

is from q1 to true once a.x1 is seen. Thus, a.z1 locally fulfills the requirement for z1 and the

mapping x1 → z1 can be forgotten.
6Note that AVBWtoNVBW does not halt when given A as an input.
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p0
({(q0, ∅)}, ∅)

reset(z1)

p1({
(q0, ∅)

(q1, x1 →z1)

}
,{(q1, x1→z1)}

)
reset(z2)

p2({
(q0, ∅)

(q1, x1→z1)
(q1, x1→z2)

}
,{(q1, x1→z1)}

)
reset(z3)

p3({
(q0, ∅)

(q1, x1→z3)
(q1, x1→z2)

}
, ∅

)
reset(z1)

{b.z3, a.z1}

p4({
(q0, ∅)

(q1, x1→z3)
(q1, x1→z1)

}
,

{
(q1, x1→z3)
(q1, x1→z1)

})
reset(z2)

{b.z1, a.z2}

p5({
(q0, ∅)

(q1, x1→z3)
(q1, x1→z1)
(q1, x1→z2)

}
,

{
(q1, x1→z3)
(q1, x1→z1)

}) {b.z2}

{b.z1, a.z3}

{b.z1, a.z1}

{b.z1}

{b.z2}

{a.z1}

{b.z1, a.z2}

Figure 3.2: The NVBW C

A Structural Characterization of Translatable AVBWs

In order to define a structural characterization of translatable AVBWs, we refer to an AVBW A
as a directed graph GA whose nodes are the states of A. There is an edge from q to q′ iff q′ is

in δ(q, A) for some A ⊆ X . Edges are labeled with the variables labeling the transition. For

example, if δ(q, x) = q1 ∨ (q2 ∧ q3) then there are edges from q to q1, q2 and q3, and each edge

is labeled with x.

Definition 3.3.9. An x-cycle in an AVBW A is a cycle in GA containing an edge labeled x.

Theorem 3.5. Assume that the preprocessing of stage 1 in the algorithm has been applied,

resulting in an AVBWA. Then Procedure AVBWtoNVBW halts onA and returns an equivalent

NVBW iff for every x-cycle CG in GA, exactly one of the following holds:

1. For every q on CG it holds that x /∈ reset(q).

2. Let q be a state such that q is on a path from the initial state to CG with q1 ∧ q2 ∈ δ(q, A)
for some q1, q2 ∈ Q and x ∈ A, such that q1 is on the cycle CG and q2 leads to an

accepting state. Then, every x-cycle C′G 6= CG on a path from q2 to an accepting state

contains a state q′ with x ∈ reset(q′).7

7See Figure 3.3 for a graphical demonstration of this condition.
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q

q1p
reset(x)

q0

q2 q′

reset(x)

The x-cycle C′G

The x-cycle CG

x

x

Figure 3.3: A partial graph GA for which the second condition of Theorem 3.5 holds. In the
transition function of the AVBWAwe have δ(q, A) = q1∧q2 for someA. In case x /∈ reset(q′),
the second condition does not hold and our translation algorithm does not halt.

Proof. First, notice that Procedure AVBWtoNVBW halts iff Z is finite, which means that the

number of variables it produces is finite.

For the first direction we show that running AVBWtoNVBW on an AVBWA with the above

properties results in an NVBW with a finite set Z. Consider a variable x ∈ X . If 1 holds for

every x-cycle, then x is not reset on any cycle in GA. Thus, there is a bound k ∈ N such that on

every possible run of A, x is reset most k times, inducing at most k variables in Z. Assume

now that 1 does not hold for a variable x ∈ X , and consider an x-cycle CG on which x is reset.

From 2 we conclude that x is reset on every other x-cycle C′G that is is reachable in A while

reading the same word. Therefore, we can bound the number of different values assigned to

x by the longest simple path between the two x-cycles. Thus, in both cases, x induces finitely

many variables in Z.

For the other direction, if 1-2 do not hold, then there exists a state q that leads both to an

x-cycle CG on which x is reset, and to an x-cycle C′G with no reset(x), on a path to an accepting

state. While running our procedure, a new mapping x → zi is introduced after every visit to

q ∈ Q such that x ∈ reset(q) on CG . At the same time, zi cannot be removed from vars, since

there always exists a path that visits C′G , that does not contain a state that resets x. Therefore,

the procedure continuously creates new assignments x → zj for j 6= i, and so vars does not

converge. Recall that in the prepossessing we prune paths that do not lead to an accepting state.

Therefore, the fact that there is a path to an accepting state is needed in order for this cycle to

“survive” the preprocessing. �

Completeness and soundness

We now show that no translation algorithm from AVBWs to NVBWs can be both sound and

complete, and, that given a general AVBW A, it is possible to decide if the algorithm halts on

input A. We first formally define completeness and soundness.
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Definition 3.3.10. A procedure E is complete if for every A that has an equivalent NVBW,

E(A) halts and returns such an equivalent NVBW.

Definition 3.3.11. A procedure E is sound if, whenever E(A) halts and returns an NVBW A′,
it holds that L(A′) = L(A).

Theorem 3.6. There is no algorithm E that translates AVBWs into NVBWs such that all the

following hold.

1. E is complete.

2. E is sound.

3. There is a full characterization of AVBWs for which E halts, i.e., given a general AVBW

A, decides if the algorithm halts with input A.

Proof. We apply a reduction from the emptiness problem for AVBWs, which we have shown

in Lemma 3.3.8 to be undecidable. Assume there is a translation algorithm E as described in

Theorem 3.6. Then, consider the following algorithm. Given an AVBW A, if E halts, check if

E(A) is empty, which implies that L(A) is empty as well. If E does not halt on input A, we

know it in advance due to the full characterization. Moreover, we know that L(A) is not empty.

Indeed, otherwise, since there is an NVBW for the empty language, and since E is complete,

E would halt on A. Hence, a translation algorithm as described in Theorem 3.6 induces a

procedure that decides the emptiness problem for AVBWs, a contradiction. �

For our procedure, we have shown a full characterization for halting. We now prove that

our algorithm is sound, and demonstrate its incompleteness by an example of an AVBW for the

empty language, for which our procedure does not halt.

Theorem 3.7. Procedure AVBWtoNVBW is sound.

Proof. We first show that the definition of E ′ is correct. Let x, x′ ∈ X be variables in the

input AVBW A, and let {zxi}x∈X,i∈N be the set of variables in the constructed NVBW A′,
where a variable zxi in A′ is induced by the variable x in A. Let E and E′ be the sets of

inequalities in A and A′, respectively, and reset , reset ′ be the reset functions of A and A′.
Every (zxi 6= zx′j ) ∈ E ′ is derived from (x 6= x′) ∈ E , and each zxi is induced from only

one variable x ∈ X . Therefore, E ′ preserves exactly the inequalities of E . Now, reset ′ is

defined according to reset such that if zi is induced from x, and x is reset in a state q, then zi is

reset in states that include q. Therefore, reset ′ allows fresh values only when reset does. The

correctness of the rest of the construction follows from the correctness of [MH84] and from the

explanations in the body of the algorithm. �

Example 3.3.12. Incompleteness of the procedure. Consider the AVBW A∅ of Figure 3.4.

Formally, let A∅ = 〈B,Γ, ∅〉 where B = 〈2{a.x,b.x}, {q0, q1}, q0, δ, reset, {q0}〉 and

• reset(q0) = {x}, reset(q1) = ∅
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q0
reset(x)

q1true

{a.x}

{b.x}

{a.x}

Figure 3.4: The AVBW A∅

• δ(q0, {a.x}) = q0 ∧ q1

δ(q1, {a.x}) = q1

δ(q1, {b.x}) = true

The language of A∅ is empty, since in order to reach an accepting state on the path from q1,

the input must be exactly {b.i} for some i ∈ Γ, but the cycle of q0 can only read {a.j}, without

any b.i. Although there is an NVBW for the empty language, our procedure does not halt on

A∅: it keeps allocating new variables to x, thus new states are created and the procedure does

not reach a fixed point.

3.4 Bounded Model Checking for Systems over Infinite Data

Bounded model checking [BCCZ99] searches for a counterexample in a bounded part of the

system. This approach comes in handy when the search-space is very large. Bounded model

checking is usually applied iteratively, where in every iteration the bound is increased. In

[BCCZ99, CBRZ01] the authors use SAT-based procedures in order to produce a minimal

counterexample. While iterating over k, a CNF formula that describes a computation of length

k that ends in a bad state, is checked. If the formula is unsatisfiable, then the system is safe up

to k steps. If the formula is satisfiable, then a satisfying assignment produces a counterexample

of length k.

In this section we employ the bounded approach in order to search for a witness to the

nonemptiness of an AVBW. We rely on the translation procedure AVBWtoNVBW of Sec-

tion 3.3.5, which translates an AVBW A to an NVBW A′ by iteratively adding states and

variables to A′. We exploit the natural iterative behavior of AVBWtoNVBW in order to seek,

after every iteration, a witness to its nonemptiness in the partial construction C of A′ that has

been calculated until that point. The language of C is a subset of that of A′, which ensures the

correctness of the procedure. Notice that here, we bound the number of iterations, and not the

length of the witness. This method is particularly appealing in our setting, as AVBWtoNVBW
may not converge, yet A′ may include an accepting lasso after finitely many steps.
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Since deciding nonemptiness lies at the heart of automata-based model-checking, we can

use this general scheme in order to describe a bounded model-checking algorithm for ∃∗-VLTL

formulas and NVBWs.

3.4.1 A Bounded Model-Checking algorithm for ∃∗-VLTL Formulas

Let ψ be an ∃∗-VLTL formula that describes a bad behavior. It can be viewed as the negation of

an ∀∗-VLTL formula, which describes a desired, good behavior of the system. Let Aψ be an

AVBW that expresses ψ, and let M be a system modeled by an NVBW AM . Model checking

M against ψ amounts to checking the nonemptiness of Aψ ∩ AM . If we can construct an

NVBW A′ψ that is equivalent to Aψ, we can directly construct an NVBW A′ψ ∩ AM and test it

for emptiness. If A′ψ does not exist, then bounded model checking is the only hope. Moreover,

since A′ψ, even if exists, is exponential in the size of the formula, a bounded model-checking

approach may still be preferable.

Algorithm: ∃∗VLTL-BMC

As we have described, we use the partial output of AVBWtoNVBW and test it for emptiness.

1. Create new states according to algorithm AVBWtoNVBW (steps 1-4), where we follow

the construction breadth-wise, i.e., instead of following one path until no new states are

created, follow all possible successors of the current set of states. This way we scan all

paths simultaneously up to a bounded distance.

2. If AVBWtoNVBW closes a cycle containing an existing accepting state, create a candidate

NVBW C from the current set of states and transitions.

3. Construct C ∩ AM , and test it for emptiness. The emptiness test amounts, as in the

case of finite alphabets, to finding an accepting lasso, which can be done on-the-fly

with some additional considerations that match the variables of C and AM , in a similar

fashion to [GKS12]. If the intersection is empty, go to 1 and continue running AVBW-
toNVBW. Otherwise, the emptiness test returns a word w̃ ∈ (AP × Z)ω, which is a

symbolic counterexample. Assigning values to the variables in Z then produces a concrete

counterexample. Since w is lasso-shaped, a concrete calculation can be finitely produced.

As we have mentioned, phases 1-2 comply well with AVBWtoNVBW, due to its iterative

behavior, which produces a sub-NVBW of the final result in every step, even if the run never

converges.

Example 3.4.1. Let ϕG ∃ = G∃x(b.x ∧ F a.x) be the formula discussed in Section 3.3.1, and

let A in Figure 3.1 be an AVBW that expresses ϕG∃. Recall that ϕG∃ cannot be expressed

by an NVBW. The NVBW C in Figure 3.2 is a partial result constructed by running ∃∗VLTL-
BMC on A.
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Consider the following symbolic word.

w̃ = {b.z1}{b.z2}{b.z3, a.z1}({b.z1, a.z2}{b.z2}{b.z1, a.z3}{b.z3, a.z1})ω

w̃ is a symbolic witness to the nonemptiness of A. We can construct a concrete witness over N
as follows.

w = {b.1}{b.1}({b.1, a.1}{b.1}{b.1, a.1}{b.1, a.1})ω

w is not a very interesting witness for the satisfiability of ϕG∃, yet it suffices in order to know

that A is nonempty. We can look for more interesting concretizations, such as

{b.1}{b.2}{b.3, a.1}({b.1, a.2}{b.2}{b.1, a.3}{b.3, a.1})ω

Note that the distance between an occurrence of b.γ and a.γ for γ ∈ Γ is bounded by the length

of a cycle from state p3 to itself. Therefore, producing larger automata via ∃∗VLTL-BMC may

allow producing more interesting concretizations.

3.4.2 Absence of Cycles does not Guarantee Emptiness

In Section 3.4.1 we argued that an accepting cycle in the NVBW C that is partially constructed

by AVBWtoNVBW induces a witness to the nonemptiness of the original AVBW A. We now

demonstrate that the absence of cycles in every such partial NVBW C does not guarantee the

emptiness ofA.8 Intuitively, this phenomenon occurs when the language ofA requires infinitely

many values to appear in every word in the language, a requirement that cannot be fulfilled by a

finite cycle, even if it contains resets.

Example 3.4.2. Consider the AVBW A1 shown in Figure 3.5 and some unwinding of it C1

shown in Figure 3.6. The transition function of A1 is defined as follows:

δ(q0, {a.x}) = q0 ∧ q1 ∧ q2

δ(q1, {a.y}) = q1

δ(q2, {a.y}) = q3

δ(q3, {a.y}) = δ(q3, {a.x}) = q2

The reset labeling function is:

reset(q0) = reset(q3) = {x}
reset(q1) = reset(q2) = {y}

The inequality set is E = {x 6= y}. The inequality set of C1 is then E′ = {zi 6= zj : i < j}.
Since the inequality set of A1 is E = {x 6= y}, and the state q1 does not reset the variable

x, a value that appears once and is assigned to x may not appear again. Note that x and y may

8Note that absence of cycles means, in particular, that the algorithm AVBWtoNVBW does not halt, as it keeps
creating new states.

40



q0
reset(x)

q2
reset(y)

q1
reset(y)

q3
reset(x)

{a.x}

{a.y}

{a.y}

{a.y}, {a.x}

Figure 3.5: The AVBW A1

({(q0, ∅)}, ∅)

({
(q0, ∅)

(q1, x→z1)
(q2, x→z1)

}
,∅

)
{a.z1}


(q0, ∅)

(q1, x→z1)
(q1, x→z2)
(q3, y →z2)
(q2, x→z2)

,{ (q3, x→z1)
}{a.z2}




(q0, ∅)
(q1, x→z1)
(q1, x→z2)
(q1, x→z3)
(q3, y →z3)
(q2, x→z3)

, ∅
{a.z3}

Figure 3.6: C1, a partial NVBW for the translation of A1

only be assigned the same value along different paths, since the restriction of inequalities holds

for assignments on the same path.

Every state in C1 contains a new mapping for x in q1. This is due to the fact that q1 has an

incoming transition labeled a.x, and q1 does not reset x. The transitions of C1 are labeled at

each iteration with a new variable zi. All previous variables {zj}j<i are still kept (that is, are

not reused), in order to make sure that the inequality set E′ = {zi 6= zj : i < j} is satisfied.

Since new variables are introduced in every step, no state in C1 – in particular, no accepting

state – is seen twice by AVBWtoNVBW.

For an ω-regular language L over a finite alphabet, there exists a finite set (of size k for some

natural number k) of regular languages L1
i and L2

i , such that L = ∪ki=0L1
i · (L2

i )ω [Saf88]. The

example above shows that this characterization does not hold for the class of languages accepted

by AVBWs. Note that the language of A1 is not empty. For example, it contains all words of

the from a.i a.(i+ 1) a.(i+ 2) · · · , yet there is no finite candidate that indicates nonemptiness.

This example shows that a witness word in L(C) indicates a witness word in L(A); However,

the emptiness of L(C) does not indicate the emptiness of L(A).

3.5 Decidable fragments of ∃∗-VLTL

As we have mentioned in Section 3.3, the satisfiability problem of ∃∗-VLTL formulas is in

general undecidable, and ∃∗-VLTL formulas cannot in general be expressed by NVBWs. In this

section we review fragments of ∃∗-VLTL that can be expressed by NVBWs, and a fragment of

∃∗-VLTL for which the satisfiability problem is decidable, even though it cannot be expressed

by NVBWs.
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3.5.1 Fragments of ∃∗-VLTL that are Expressible by NVBW

We present several fragments of ∃∗-VLTL that can be directly translated to NVBWs. As a result,

the satisfiability problem for these fragments is decidable.

∃∗PNF -VLTL

We first consider ∃∗-VLTL formulas in prenex normal form (PNF), denoted ∃∗PNF -VLTL. An

∃∗PNF -VLTL formula is of the form ϕ = ∃x1∃x2 . . . ∃xkψ, where ψ is quantifier-free. Notice

that an AVBW Aϕ that expresses ϕ contains no resets, and is similar to an ABW for ϕ over the

symbolic alphabet. Since resets are at the heart of the complexities of the AVBW to NVBW

construction, and Aϕ is free of them, an NVBW for ϕ is computable in a similar way to the

standard ABW to NBW construction.9 Moreover, we can use the standard tableau construction

for LTL [BCM+92], and so we have a direct construction from ∃∗PNF -VLTL to NVBW.

Example 3.5.1. An interesting property expressible in ∃∗PNF -VLTL is given by the formula

∃x(G F send.x ∧ F G¬recieve.x). If x ranges over the messages content, this formula states

that there is some message that is sent infinitely often, but is not received starting some point in

the computation. This is the semantical negation of the property “every message that is sent will

be received in the future”. That is, ∃∗PNF -VLTL allows us to express interesting “bad” properties,

which we can test for satisfiability using our algorithms.

Fully Nested ∃∗-VLTL

We say that an ∃∗-VLTL formula ϕ is fully nested if every quantifier in ϕ is either at the head of

ϕ, or adjacent to a parameterized atomic proposition. That is, all of the quantifiers in a fully

nested formula are either at the very “outside” of the formula, or at the very “inside” of it. We

denote this fragment ∃∗fn-VLTL. Notice that ∃∗fn-VLTL subsumes ∃∗PNF -VLTL.

We show now that ∃∗fn-VLTL is translatable to NVBW. Consider an ∃∗fn-VLTL formula

ϕ and let Aϕ be an AVBW expresses it. We notice that transitions from states that represent

atomic propositions inAϕ are either true or false , and therefore do not introduce new variables.

Hence, despite the fact that quantifiers inside the formula induce resets in these states, these

resets do not require adding new variables in the translation of Aϕ to an NVBW. Therefore, in

this case, our translation algorithm to NVBW always terminates.

As in Section 3.5.1, here too we can use the tableau construction and directly construct

an NVBW for the formula ϕ, by adding resets on states in the tableau that represent atomic

propositions.

Example 3.5.2. Consider the formula ϕ = G F∃x(fail.x), where x ranges over process IDs.

We can use ϕ in order to verify that from some point on, all processes work correctly, since ϕ is

the negation of this property.
9In [SW] the authors conjecture without proof that the formula G ∃x : a.x does not have an equivalent in PNF.

In Lemma 3.3.3 we show that G ∃x(b.x ∧ F a.x) does not have an equivalent NVBW, and therefore does not have
an equivalent ∃∗PNF -VLTL formula. This is a different formula from G ∃xa.x, but the conclusion remains the same.
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∃∗(X ,F )-VLTL

Another fragment that is easily translatable to NVBW is ∃∗(X ,F )-VLTL, which is the fragment of

∃∗-VLTL that only uses the temporal operators X and F . A similar fragment for LTL is defined

in [EH86].

Notice that the ∃ quantifier and the X ,F operators are interchangeable. Intuitively, it does

not matter whether a variable is reset immediately after committing to its future appearance or

before. Therefore, every ∃∗(X ,F )-VLTL has an equivalent ∃∗PNF -VLTL formula over X ,F only,

that can be calculated by renaming variables under the scope of the quantifier, and pushing the

quantifiers out. As a conclusion, we have that ∃∗(X ,F )-VLTL can be expressed by NVBW.

This fragment expresses very intuitive, yet important properties, as demonstrated in the

following example.

Example 3.5.3. Consider the formula ∃xF fail.x, where x ranges over critical process IDs.

Clearly, it is enough for one such process to fail in order for the entire system to be unsafe. Thus,

The fragment of ∃∗(X ,F )-VLTL allows us to easily model-check systems for such bugs.

Remark. The interchangeability between quantifiers and the X ,F operators is not applicable

for formulas that include the ∀ quantifier. For example, consider the VLTL formulas ϕ =
F∀x(¬a.x) and ϕ′ = ∀xF¬a.x. The word w = ({a.1}{a.2})ω satisfies ϕ′, since for every

x 6= 1, the formula ¬a.x holds in the first step, and ¬a.x holds at the second step for x = 1.

However, w does not satisfy ϕ since there is no step along the computation where a does not

hold with some value.

To conclude the discussion so far, we have the following.

Theorem 3.8.

1. In terms of expressive power, ∃∗(X ,F )-VLTL ≤ ∃∗PNF -VLTL ≤ ∃∗fn-VLTL < ∃∗-VLTL.

2. ∃∗(X ,F )-VLTL, ∃∗PNF -VLTL, and ∃∗fn-VLTL can all be expressed by NVBWs.

VGR(1)

The logic of GR(1), first presented by [PPS06], is widely used in software verification, partic-

ularly in synthesis. GR(1) formulas are of the form
∧
iBi →

∧
iCi where Bi and Ci are of

the form G F pi for pi ∈ AP . We consider possible extensions of GR(1) to variable GR(1), or

VGR(1), in ∃∗-VLTL.

According to Theorem 3.8, fully-nested ∃∗-VLTL formula can be expressed by NVBWs.

Therefore, VGR(1) formulas of the form ∃x1∃x2 . . . ∃xk
(∧

iBi →
∧
iCi

)
where Bi and Ci

are of the form ai.xi or ∃xi(ai.xi) can be expressed by NVBWs.

We now consider a more complex structure of VGR(1) formulas. Consider formulas of the

form ϕ =
∧
iBi →

∧
iCi where Ci is in one of the forms

∃xiG F ai.xi, G∃xjF ai.xj , G F∃xj(ai.xj)

43



and Bi is of the latter two forms.10

The formula ϕ is equivalent to (
∨
i ¬Bi)∨ (

∧
iCi). Thus, constructing an NVBW Aϕ for ϕ

amounts to constructing an NVBW A¬Bi for every ¬Bi, and an NVBW ACi for every Ci.

The negation of the formulas Bi is of the form F G∀x¬a.x. This formula states that

from some point of the computation, a does not appear at all. Although this is a ∀-VLTL

formula, it is easy to construct an NVBW expresses it. Note that the negation of the formula

ψ = ∃xiG F ai.xi, which is ∀xiF G¬ai.xi has no equivalent NVBW. Intuitively, this is since it

requires keeping track on all domain elements, and for each of them, to make sure that starting

from some point in the computation, this values does not appear. However, the position of this

point in the computation is unbounded and may be different for different domain elements.

Therefore, we do not take Bi to be of the form of ψ.

As for Ci, the formula ∃xiG F ai.xi is an ∃∗PNF -VLTL formula and thus has an equivalent

NVBW; and the formulas G∃xiF ai.xi and G F∃xiai.xi are equivalent, and can be represented

as NVBWs since G F∃xiai.xi is a fully nested ∃∗-VLTL formula.

Then, Aϕ = (
⋃
iA¬Bi)∩ (

⋂
iACi). Since NVBWs are closed under union and intersection

[GKS10], Aϕ is an NVBW.

3.5.2 Further decidable fragments

We now present a fragment of ∃∗-VLTL that cannot in general be expressed by NVBWs, yet its

satisfiability is decidable. Consider an ∃∗-VLTL formula ϕ. We assume that every ∃ quantifier

in ϕ bounds a different variable.11 We define the flattening of ϕ, denoted by ϕfl, as the ∃∗-
VLTL formula obtained from ϕ by removing all the ∃ quantifiers, and placing them at the

beginning of the formula. For example, the flattening of ϕ = G ∃x1b.x1 ∧ ∃x2F a.x1 ∧ b.x2

is ϕfl = ∃x1∃x2G b.x1 ∧ F a.x1 ∧ b.x2. Notice that ϕ 6≡ ϕfl, and that ϕfl is an ∃∗PNF -VLTL

formula.

As we now show, the satisfiability of ϕfl may point to the satisfiability of ϕ, and in case

that ϕ is negation free, the two are equisatisfiable.

Lemma 3.5.4. Let ϕ be an ∃-VLTL formula. Then, the following holds.

1. L(ϕfl) ⊆ L(ϕ), and therefore if ϕfl is satisfiable then ϕ is satisfiable.

2. If ϕ does not contain negations, then ϕ is satisfiable iff ϕfl is satisfiable.

Moreover, every witness for the satisfiability of ϕfl is a witness for ϕ as well.

Proof. Let Aϕ and Aϕfl be AVBWs that express ϕ and ϕfl, respectively. Since the difference

between ϕ and ϕfl is only in the location of the ∃ quantifiers, the graph structures of Aϕ
and Aϕfl are identical, and the only difference between them is in the location of the resets.

Indeed, while resets may occur anywhere in Aϕ, the resets in Aϕfl occur only in its initial

state (recall the construction of an AVBW from an ∃∗-VLTL formula, as described the proof of

Theorem 3.2.)

10As we show in 3.5.1, these latter two formulas are equivalent.
11Every ∃∗-VLTL has an equivalent in this form.
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Accordingly, in an accepting run-tree Tw of Aϕfl on a word w, each variable is assigned

a fixed value throughout the run. Notice that due to the similar structure of both AVBWs, the

run-tree Tw is also an accepting run-tree of Aϕ on w, in which each variable is pre-assigned

the values it is assigned in the run of Aϕfl on w, and the resets do not change the values of the

variables.

Therefore, together with the previous paragraph, we have that L(Aϕfl) ⊆ L(Aϕ). This

concludes the proof of 1.

For 2, the first direction is a special case of 1. For the second direction, let ϕ be a satisfiable

∃∗-VLTL formula with no negations, and let w be a computation that is accepted by Aϕ with

a run-tree Tw. Let w′ be the concrete computation that is obtained from w by replacing every

value in w with the same value γ. Notice that since ϕ and ϕfl are both negation-free, then

both AVBWs have an empty set of inequalities, and so there is no restriction on the values that

may be assigned to the variables throughout the run. Also notice that since the values of all the

variables remain fixed, w′ is accepted by Aϕfl , and therefore satisfies ϕfl. We claim that w′

also satisfies ϕ. Indeed, since there are no inequalities in both AVBWs, then at every reset to a

variable x along Tw, the variable x may be assigned γ. Therefore, we can use Tw to produce an

accepting run-tree of Aϕ on w′. �

Notice that although ϕ and ϕfl are equisatisfiable in case that ϕ is negation free, they are

not necessarily equivalent. Moreover, ϕ may not even be expressible by an NVBW. We now

present some examples.

Example 3.5.5.

1. Consider the formula ψ = G ∃x(a.x∧X G¬a.x). The formula ψ can be satisfied only by

a computation in which a is paired with a different value at every step. The formula ψfl is

∃x(G a.x ∧ X G¬a.x). The formula ψfl is not satisfiable, even though ψ is satisfiable.12

2. Consider the formula ϕG∃ = G∃x(b.x∧ F a.x). We have shown in Section 3.3 that ϕG∃

cannot be expressed by an NVBW. However, the formula ϕflG∃ = ∃x(G b.x ∧ F a.x) is

satisfiable, and a witness to its satisfiability, such as w = ({a.1, b.1})ω, can easily be

found with the ∃∗VLTL-BMC algorithm from Section 3.4.1. As we have shown, w is also

a witness to the satisfiability of ϕG∃.

Note that both ψ and ϕG∃ do not have an equivalent NVBW. However, while we can find a

witness to the satisfiability of ϕG∃ with ∃∗VLTL-BMC using a very small bound, this algorithm

cannot find a witness to the satisfiability of ψ, with any bound.

Following the observations that we have discussed here, we can use the flattening of ∃∗-
VLTL formulas for an incomplete model-checking procedure: Given an NVBW AM and an

∃∗-VLTL formula ϕ, check the emptiness of Aϕfl ∩ AM . Since ϕfl is in PNF, emptiness

is decidable. If there exists a word in the intersection, it is a witness to the violation of the

specification given to us as ¬ϕ. However, if we cannot find a word in the intersection, this does

not imply that the program satisfies the specification.
12The set of computations satisfy ψ is exactly the language of the AVBW A1 from Figure 3.5.
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3.6 Concluding Remarks

In this chapter we consider the verification of ongoing systems over infinite data domains with

respect to VLTL specifications.

We have defined AVBWs, a new model of automata over infinite alphabets, which combines

alternation with variable automata over infinite words. As we have demonstrated, AVBWs

manage to express VLTL formulas that previous models were unable to express, namely all

∃∗-VLTL formulas. We showed that AVBWs are strictly stronger than NVBWs. Nevertheless,

we presented a procedure for translating AVBWs to NVBWs when possible. Moreover, we

defined a structural characterization of AVBWs that are translatable by our procedure.

∃∗-VLTL formulas can, in many cases, naturally describe “bad” behaviors, and hence, come

up naturally in the context of model-checking. Thus, AVBWs become an essential tool in

model-checking ∃∗-VLTL formulas, as every such formula can be expressed by an AVBW. An

example for such an important property is the response property, ϕ∀ = ∀xG (a.x→ F b.x). The

negation of ϕ∀ is ∃xF (a.x ∧G¬b.x), for which we present an easy model-checking algorithm.

When an AVBW can be translated to an NVBW by our procedure, the result can be used in

a model-checking procedure that calculates the intersection of the NVBW with the program

automaton, and checks the nonemptiness of the intersection. However, even for formulas that

are not translatable, we can still use our procedure for a bounded model-checking algorithm.

Moreover, we presented fragments of ∃∗-VLTL for which there is a direct construction of

NVBW, and a fragment (∃∗-VLTL with no negations) whose satisfiability is decidable even

though it is not always translatable to NVBW. Thus, we have expanded not only the expressive

fragment of VLTL, but also the fragments that can be model-checked.

To conclude, in order to preform model-checking for an ∃∗-VLTL formula ϕ, we can do one

of the three: translate ϕ to an NVBW if it is one of the types of Section 3.5; build an AVBWAϕ,

and if the structure of Aϕ agrees with the structural characterization of Theorem 3.5, translate

it to an equivalent NVBW according to Section 3.3.5; or use the bounded model-checking

algorithm presented in Section 3.4 and look for a partial NVBW that enables searching for a

witness for nonemptiness.

Our work presents an incomplete model-checking algorithm for ∃∗-VLTL formulas, thus

laying the theoretical foundations for a model-checking tool for ∃∗-VLTL, which we plan

to implement as future work. As a further direction, we plan to use the techniques we have

presented here in order to construct suitable algorithms for model checking VCTL [GKS14]

formulas as well.
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Chapter 4

Compositional Verification and Repair

4.1 Communicating Programs

In this chapter we present the notion of communicating programs. These are C-like programs,

extended with the ability to synchronously read and write messages over communication

channels. We model such programs as automata over an action alphabet that reflects the

program statements. The alphabet includes constraints, which are quantifier-free first-order

formulas, representing the conditions in if and while statements. It also includes assignment

statements and read and write communication actions. The automata representation is similar

in nature to that of control-flow graph. Its advantage, however, is in the ability to exploit an

automata-learning algorithm such as L∗ for its verification [Ang87b].

Given two communicating programs, M1 and M2, we wish to prove that the composed

system M1||M2, that is the result of the communication of the two components, is correct.

However, the composed system might be too large for the verification to scale well. To

address this problem, we turn to compositional verification. We use the Assume-Guarantee

rule [MC81, Pnu85] and the L∗ algorithm in order to compositionally prove the correctness

of the system. In case an error is found, we repair the system and return to try and verify the

repaired system.

We first formally define the alphabet over which communicating programs are defined.

Let G be a finite set of communication channels. Let X be a finite set of variables (whose

ordered vector is x̄) and D be a (possibly infinite) data domain. For simplicity, we assume that

all variables are defined over D. The elements of D are also used as constants in arithmetic

expressions and constraints.

Definition 4.1.1. An action alphabet is α = G ∪ E ∪ C where:

1. G ⊆ { g?x1, g!x1, (g?x1, g!x2), (g!x1, g?x2) : g ∈ G, x1, x2 ∈ X} is a finite set of

communication actions.

• g?x is a read action of a value to the variable x through channel g.

• g!x is a write action of the value of x on channel g. We use g ∗ x to indicate some

action, either read or write, through g.
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• The pairs (g?x1, g!x2) and (g?x1, g!x2) represent a synchronization of two pro-

grams on read-write actions over channel g (defined later).

2. E ⊆ { x := e : e ∈ E, x ∈ X} is a finite set of assignment statements, where E is a set

of expressions over X ∪ D.

3. C is a finite set of constraints over X ∪ D.

Definition 4.1.2. A communicating program (or, a program) isM = 〈Q,X,α, δ, q0, F 〉, where:

1. Q is a finite set of states and q0 ∈ Q is the initial state.

2. X is a finite set of variables that range over D.

3. α = G ∪ E ∪ C is the action alphabet of M .

4. δ ⊆ Q× α×Q is the transition relation.

5. F ⊆ Q is the set of accepting states.

The words that are read along a communicating program are a symbolic representation of

the program behaviors. We refer to such a word as a trace. Each such trace induces concrete

runs of the program, which are formed by concrete assignments to the program variables in a

way that conforms with the actions along the word.

Although communicating programs are an extension of finite automata, we investigate them

from a different perspective. While in Chapter 3 the automaton takes as input a computation and

checks whether the computation satisfies the specification by reading the computation against

the specification automaton, here we like to think of the automaton as the generator of the

behavior, as it describes the program. Therefore, we begin with a run of the program, and induce

traces from the run, and not the other way around. We now formally define these notions.

Definition 4.1.3. As defined in Chapter 2.1, a run in a program automaton M is a finite

sequence of states and actions r = 〈q0, a1, q1〉 . . . 〈qn−1, an, qn〉, starting with the initial state

q0, such that ∀0 ≤ i < n we have 〈qi, ai+1, qi+1〉 ∈ δ. The induced trace of r is the sequence

t = (a1, . . . , an) of the actions in r. If qn is accepting, then t is an accepted trace of M .

From now on we assume that every trace we discuss is induced by some run. We turn to

define the concrete executions of the program.

Definition 4.1.4. Let t = (a1, . . . , an) be a trace and let (β0, . . . , βn) be a sequence of valua-

tions (i.e., assignments to the program variables).1 Then a sequence e = (β0, a1, β1, a2, . . . ,

an, βn) is an execution of t if the following holds.

1. β0 is an arbitrary valuation.

1Such valuations are usually referred to as states. We do not use this terminology here in order not to confuse
them with the states of the automaton.
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2. If ai = g?x, then βi(y) = βi−1(y) for every y 6= x. Intuitively, x is arbitrarily assigned

by the read action, and the rest of the variables are unchanged.

3. If ai is an assignment x := e, then βi(x) = e[x̄ ← βi−1(x̄)] and βi(y) = βi−1(y) for

every y 6= x.

4. If ai = (g?x, g!y) then βi(x) = βi−1(y) and βi(z) = βi−1(z) for every z 6= x. That is,

the effect of a synchronous communication on a channel is that of an assignment.

5. If ai does not involve a read or an assignment, then βi = βi−1.

6. Finally, if ai is a constraint in C, then βi(x̄) � ai (and since ai does not change the

variable assignments, then βi−1(x̄) � ai holds as well).

We say that t is feasible if there exists an execution of t.

The symbolic language of M , denoted T (M), is the set of all accepted traces induced by

runs of M . The concrete language of M is the set of all executions of accepted traces in T (M).

We will mostly be interested in feasible traces, which represent (concrete) executions of the

program.

Example 4.1.5.

– The trace (x := 2 · y, g?x, y := y + 1, g!y) is feasible, as it has an execution (x =
1, y = 3), (x = 6, y = 3), (x = 20, y = 3), (x = 20, y = 4), (x = 20, y = 4).

– The trace (g?x, x := x2 , x < 0) is not feasible since no β can satisfy the constraint

x < 0 if x := x2 is executed beforehand.

4.1.1 Parallel Composition

We now describe and define the parallel composition of two communicating programs, and the

way in which they communicate.

Let M1 and M2 be two programs, where Mi = 〈Qi, Xi, αi, δi, q0
i, Fi〉 for i = 1, 2. Let

G1, G2 be the sets of communication channels occurring in actions of M1,M2, respectively.

We assume that X1 ∩X2 = ∅.
The interface alphabet αI of M1 and M2 consists of all communication actions on channels

that are common to both components. That is, αI = { g?x, g!x : g ∈ G1∩G2, x ∈ X1∪X2}.
In parallel composition, the two components synchronize on their communication interface

only when one component writes data through a channel, and the other reads it through the same

channel. The two components cannot synchronize if both are trying to read or both are trying

to write. We distinguish between communication of the two components with each other (on

their common channels), and their communication with their environment. In the former case,

the components must “wait” for each other in order to progress together. In the latter case, the

communication actions of the two components interleave asynchronously.

Formally, the parallel composition of M1 and M2, denoted M1||M2, is the program M =
〈Q, x, α, δ, q0, F 〉, defined as follows.
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1. Q = (Q1×Q2)∪(Q′1×Q′2), whereQ′1 andQ′2 are new copies ofQ1 andQ2, respectively.

The initial state is q0 = (q1
0, q

2
0).

2. X = X1 ∪X2.

3. α = { (g?x1, g!x2), (g!x1, g?x2) : g ∗x1 ∈ (α1∩αI) and g ∗x2 ∈ (α2∩αI)}∪ ((α1∪
α2) \ αI). That is, the alphabet includes pairs of read-write communication actions on

channels that are common to M1 and M2. It also includes individual actions of M1 and

M2, which are not communications on common channels.

4. δ is defined as follows.

(a) For (g ∗ x1, g ∗ x2) ∈ α2:

i. δ((q1, q2), (g ∗ x1, g ∗ x2)) = (q′1, q′2).

ii. δ((q′1, q′2), x1 = x2) = (δ1(q1, g ∗ x1), δ2(q2, g ∗ x2)).

That is, when a communication is performed synchronously in both components, the

data is transformed through the channel from the writing component to the reading

component. As a result, the values of x1 and x2 equalize. This is enforced in M by

adding a transition labeled by the constraint x1 = x2 that immediately follows the

synchronous communication.

(b) For a ∈ α1 \ αI we define δ((q1, q2), a) = (δ1(q1, a), q2).

(c) For a ∈ α2 \ αI we define δ((q1, q2), a) = (q1, δ2(q2, a)).

That is, on actions that are not in the interface alphabet, the two components interleave.

5. F = F1 × F2

Figure 4.1 demonstrates the parallel composition of components M1 and M2. The program

M = M1||M2 reads a password from the environment through channel pass. The two compo-

nents synchronize on channel verify. Assignments to x are interleaved with reading the value

of y from the environment.

4.2 Regular Properties and Their Satisfaction

The specifications we consider in this chapter are also given as some variation of communicating

programs. We now define the syntax and semantics of the properties that we consider as

specifications. These are properties that can be represented as finite automata, hence the name

regular. However, the alphabet of such automata includes communication actions and first-order

constraints over program variables. Thus, such automata are suitable for specifying the desired

and undesired behaviors of communicating programs over time.

2Note that according to item 3, one of the actions must be a read action and the other one is a write action.
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p0 p1

M1

q0 q1

M2

verify?x

x := x · 2

pass?y

verify!y

(q0, p0)

(q0, p1)

(q1, p0)

(q1, p1)

(q′1, p′1)

pass?y

pass?y

x :=x · 2 x :=x · 2

(verify?x,
verify!y)

x = y

Figure 4.1: Components M1 and M2 and their parallel composition M1||M2.

In order to define our properties, we first need the notion of a deterministic and complete

program. The definition is somewhat different from the standard definition for finite automata

given in Chapter 2.1, since it takes the semantic meaning of constraints into account.

Intuitively, in a deterministic and complete program, every concrete execution has exactly

one trace that induces it.

Definition 4.2.1. A communicating program over alphabet α is deterministic and complete if

for every state q and for every action a ∈ α the following hold:

1. Syntactic determinism and completeness. There is exactly one state q′ such that 〈q, a, q′〉
is in δ.3

2. Semantic determinism. If 〈q, c1, q′〉 and 〈q, c2, q′′〉 are in δ for constraints c1, c2 ∈ C such

that c1 6= c2 and q′ 6= q′′, then c1 ∧ c2 ≡ false.

3. Semantic completeness. Let Cq be the set of all constraints on transitions leaving q. Then

(
∨
c∈Cq c) ≡ true .

A property is a deterministic and complete program with no assignment actions, whose

language defines the set of desired and undesired behaviors over the alphabet αP .

A trace is accepted by a property P if it reaches a state in F , the set of accepting states of P .

Otherwise, it reaches a state in Q \ F , and is rejected by P .

Next, we define the satisfaction relation � between a program and a property. Intuitively, a

program M satisfies a property P (denoted M � P ) if all executions induced by accepted traces

of M reach an accepting state in P . Thus, the accepted behaviors of M are also accepted by P .

A property P specifies the behavior of a program M by referring to communication actions

of M and imposing constraints over the variables of M . Thus, the set of variables of P is

3in our examples we sometimes omit the actions that lead to a rejecting sink for the sake of clarity.
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identical to that of M . Let G be the set of communication actions of M . Then, αP includes a

subset of G as well as constraints over the variables of M . The interface of M and P , which

consists of the communication actions that occur in P , is defined as αI = G ∩ αP .

In order to capture the satisfaction relation between M and P , we define a conjunctive com-

position between M and P , denoted M × P . In conjunctive composition, the two components

synchronize on their common communication actions when both read or both write through the

same communication channel. They interleave on constraints and on actions of αM that are not

in αP .

Definition 4.2.2. Let M = 〈QM , XM , αM, δM , q
M
0 , FM 〉 be a program and P = 〈QP , XP ,

αP, δP , q
P
0 , FP 〉 be a property, where XM ⊇ XP . The conjunctive composition of M and P is

M × P = 〈Q,X,α, δ, q0, F 〉, where:

1. Q = QM ×QP . The initial state is q0 = (qM0 , qP0 ).

2. X = XM .

3. α = { g!x, g?x, (g?x, g!y), (g!x, g?y) : g∗x, (g∗x, g∗y) ∈ αI}∪((αM∪αP )\αI)).

Note that communication actions of the form (g ∗ x, g ∗ y) can only appear if M is itself

a parallel composition of two programs. That is, the alphabet includes communication

actions on channels common to M and P . It also includes individual actions of M and P .

4. δ is defined as follows.

• For a = (g ∗ x, g ∗ y) in αI , or a = g ∗ x in αI , we define δ((q1, q2), a) =
(δM (q1, a), δP (q2, a)).

• For a ∈ αM \ αI we define δ((q1, q2), a) = (δM (q1, a), q2).

• For a ∈ αP \ αI we define δ((q1, q2), a) = (q1, δP (q2, a)).

That is, on actions that are not common communication actions to M and P , the two

components interleave.

5. F = FM ×BP , where BP = QP \ FP .

Note that accepted traces in M × P are those that are accepted in M and rejected in P . Such

traces are called error traces and their corresponding executions are called error executions.

Intuitively, an error execution is an execution along M which violates the properties modeled

by P . Such an execution either fails to synchronize on the communication actions, or reaches

a point in the computation in which its assignments violate some constraint described by P .

These executions are manifested in the traces that are accepted in M but are composed with

matching traces that are rejected in P . We can now formally define when a program satisfies a

property.

Definition 4.2.3. For a program M and a property P , we define M � P iff M ×P contains no

feasible accepted traces.
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Thus, a feasible error trace in M × P is an evidence to M 6� P , since it indicates the existence

of an execution that violates P .

Example 4.2.4. Consider the program M , the property P and a partial construction of M × P
presented in Figure 4.2. P requires every verified password y to be of length at least 4. It is easy

to see that M 2 P , since the trace t = (password?y, y > 0, verify!y, y < 1000) is a feasible

error trace in M × P .

M

P

q0

q1

q2

r0 r1

r2

password?y y > 0

verify!y

verify!y

y ≥ 1000 y < 1000

∗

(q0, r0) (q1, r0) (q2, r0)

(q0, r1)

(q0, r2)

(q1, r1)

M × P (partial construction)

password?y y > 0

y < 1000

∗

verify!yy ≥ 1000

Figure 4.2: Partial conjunctive composition of M and P .

4.3 Traces in the Composed system

Before we discuss our framework for compositional verification and repair of communicating

systems, we first prove some properties of traces in the composed system. We later use these

properties in order to prove that our framework is sound and complete (Section 4.4.1), and to

prove correctness and termination of our algorithm (Section 4.5.2 and Section 4.5.4).

Definition 4.3.1. Let t be a trace over alphabet α, and let α′ ⊆ α. We denote by t ↓α′ the

restriction of t on α′, which is the trace obtained from t by omitting all letters in t that are not in

α′. If α contains a communication action a = (g ∗ x, g ∗ y) and we have g ∗ x ∈ α′ then the

restriction t ↓α′ includes the corresponding communication, g ∗ x. For g ∗ y ∈ α′ it is defined

similarly.
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Example 4.3.2. Let α = {g1!x, x := x + 1, x < 10, (g2?x, g2!y)}, and α′ = {g1!x, x :=
x+ 1, g2?x}. Then we have (g2?x, g2!y) ↓α′= g2?x, and for

t = ((g2?x, g2!y), x := x+ 1, x := x+ 1, x < 10, g1!x)

we have

t ↓α′= (g2?x, x := x+ 1, x := x+ 1, g1!x)

Lemma 4.3.3. Let M be a communicating program and P be a property, and let t be a trace

of M × P . Then t ↓ αM is a trace of M .

Proof. Let M = 〈QM , XM , αM, δM , q
M
0 , FM 〉 and P = 〈QP , XP , αP, δP , q

P
0 , FP 〉, and

denote M × P = 〈Q,XM , α, δ, q0, F 〉.4

Let r = 〈q0, c1, q1〉 . . . 〈qm−1, cm, qm〉 be the run in M × P such that t is induced from r.

Denote by tM = t ↓αM the trace tM = (ci1 , · · · , cin).

We first observe the following. If (a1, · · · , ak) is a trace of M × P such that ∀i : ai /∈
αM , and q = (qM , q0

P ) is the state in M × P before reading a1, then ∀i ≥ 1 : ∃qiP :
δ((qM , qi−1

P ), ai) = (qM , qiP ), that is, when reading a trace that does not contain letters from

αM , the programM×P only advances on the P component. This is true since by the definition

of δ, if ai is not in αM , then δ((qM , qP ), ai) = (qM , δP (qP , ai)).

We now inductively prove that ∀1 ≤ j ≤ n it holds that (ci1 , · · · , cij ) is a trace of M . In

particular, for j = n this means that tM ∈M .

Let j := 1 and denote k := i1. Then c1, . . . , ck−1 /∈ αM since k is the first index of t for

which ck ∈ αM . Thus, ∀1 ≤ i < k : ∃qPi : δ((qM0 , qPi−1), ci) = (qM0 , qPi ). For ci1 = ck ∈ αM ,

by the definition of δ, we have δ((qM0 , qPk−1), ci1) = (δM (qM0 , ci1), q′) for some q′ ∈ QP . Then

indeed, 〈qM0 , ci1 , δM (qM0 , ci1)〉 is a run in M , making (ci1) a trace of M .

Let 1 < j ≤ n, and assume tj−1 = (ci1 , · · · , cij−1) is a trace of M . Let 〈q0, ci1 , q1〉 . . .
〈qj−2, cij−1 , qj−1〉 a run that induces tj−1. Denote ij−1 = k, ij = k + m for some m > 0.

Then, as before, ck+1, . . . , ck+m−1 /∈ αM , thus ∀k < l < k +m : ∃qPl : δ(qj−1, q
P
l−1), cl) =

(qj−1, q
P
l ). For cij it holds that δ(qj−1, q

P
k+m−1), cij ) = (δM (qj−1, cij ), q′)) for some q′ ∈ QP .

Thus (ci1 , · · · , cij ) is a trace of M , as needed. �

Lemma 4.3.4. Let M1,M2 be two programs, and let t be a trace of M1||M2. Then t ↓ αM1 is

a trace of M1 and t ↓ αM2 is a trace of M2.

The proof is similar to the proof of Lemma 4.3.3, however, in this case we need to take

special care of the communication actions.

Proof. Let Mi = 〈Qi, Xi, αMi, δi, q
i
0, Fi〉 for i = 1, 2, and denote M1||M2 = 〈(Q1 ×Q2) ∪

(Q′1 ×Q′2), X1 ∪X2, αM, δ, (q1
0, q

2
0), F1 × F2〉, as defined in Section 4.1.1 of Chapter 4.

Let r = 〈q0, c1, q1〉 . . . 〈qm−1, cm, qm〉 be the run in M1||M2 such that t is induced from r.

Denote by t1 = t ↓αM1 the trace t1 = (ci1 , · · · , cin). The proof for t2 = t ↓αM2 is the same.

4Recall that the set of variables XP is a subset of XM .
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We first observe the following. If (a1, · · · , ak) is a trace ofM1||M2 such that ∀i : ai /∈ αM1,

and a1 ∈ αM2, and q = (q1, q
0
2) is the state in M1||M2 before reading a1, then ∀i ≥ 1 : ∃qi2 :

δ((q1, q
i−1
2 ), ai) = (q1, q

i
2), that is, when reading a trace that does not contain letters from αM1,

the program M1||M2 only advances on the M2 component. This is true since by the definition

of δ, if ai is not in αM1, then δ((q1, q2), ai) = (q1, δ2(q2, ai)). The requirement of a1 ∈ αM2

is since if a1 /∈ αm2 and a1 /∈ αm1 then a1 is an equality constraint of the form x = y after a

communication over a common channel and the transition relation is defined differently.

We now inductively prove that ∀1 ≤ j ≤ n it holds that (ci1 , · · · , cij ) is a trace of M1. In

particular, for j = n this means that t1 ∈M1. For some parts of the proof we abuse notations

where c is a communication action over M1 and M2, and we use it also to denote the restriction

to the first component of M1.

Let j := 1 and denote k := i1. Then c1, . . . , ck−1 /∈ αM1 since k is the first index of t

for which ck ∈ αM1 or ck = (c1
k, c

2
k) such that ck is a communication action and c1

k ∈ αM1.

In particular, this means that no common communication action had occurred until ck. Thus,

∀1 ≤ i < k : ∃q2
i : δ((q1

0, q
2
i−1), ci) = (q1

0, q
2
i ). For ci1 = ck ∈ αM1, one of the following

holds:

1. If ck ∈ αM1 is not a common communication action, then by the definition of δ, we have

δ((q1
0, q

2
k−1), ci1) = (δ1(q1

0, ci1), q2
k−1). Then indeed, 〈q1

0, ci1 , δ1(q1
0, ci1)〉 is a run in M1,

making (ci1) a trace of M1.

2. If ck = (c1
k, c

2
k) is a common communication channel, then it holds that ck+1 is an

equality constraint. Then, by the definition of δ we have that δ((q1
0, q

2
k−1), ci1) =

(q1
0
′
, q2
k−1
′) and δ((q1

0
′
, q2
k−1
′), ci1+1) = (δ1(q1

0, c
1
i1), δ2(q2

k−1, c
2
i1)). Then, again we have

that 〈q1
0, ci1 , δ1(q1

0, ci1)〉 is a run in M1, making (ci1) a trace of M1.

Let 1 < j ≤ n, and assume tj−1 = (ci1 , · · · , cij−1) is a trace of M1. Let 〈q0, ci1 , q1〉 . . .
〈qj−2, cij−1 , qj−1〉 be a run that induces tj−1. Denote ij−1 = k, ij = k +m for some m > 0.

Then, as before, ck+1, . . . , ck+m−1 /∈ αM1 and is not a communication action as well, thus

∀k < l < k+m : ∃q2
l : δ(qj−1, q

2
l−1), cl) = (qj−1, q

2
l ). For cij it holds that either cij ∈ αM1 is

not a communication action and then δ(qj−1, q
2
k+m−1), cij ) = (δ1(qj−1, cij ), q2

k+m−1)); or that

cij = (c1
ij
, c2
ij

) is a communication action and then δ((qj−1, q
2
k+m−1), cij ) = (qj−1

′, q2
k+m−1

′)
and δ((qj−1

′, q2
k+m−1

′), ci1+1) = (δ1(qj−1, c
1
ij

), δ2(q2
k+m−1, c

2
ij

)). In both cases, inM1 it holds

that δ1(qj−1, cij ) is defined in M1 and thus (ci1 , · · · , cij ) is a trace of M1, as needed. �

We now discuss the feasibility of traces in the composed system.

Lemma 4.3.5. LetM be a program and P be a property, and let t be a feasible trace ofM×P .

Then t ↓ αM is a feasible trace of M .

Proof. Let t ∈ T (M × P ) be a feasible trace. Then, there exists an execution u on t. Denote

t = (b1, · · · , bn) and u = (β0, b1, β1, · · · , bn, βn). We inductively build an execution e on

t ↓αM . The existence of such an execution e proves that t ↓αM is feasible.
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Let t ↓αM= (c1, · · · , ck). We set e = (γ0, c1, γ1, · · · , ck, γk) where γ0, . . . , γk are defined

as follows.

1. Set j := 0, i := 0.

2. Define γ0 := β0 and set j := j + 1.

3. Repeat until j = k :

– Let i′ > i be the minimal index such that bi′ = cj .

– Define γj := βi′ and set j := j + 1, i := i′ + 1.

Note that for each i < l < i′ is holds that bl is a constraint. This is true since by the definition

of conjunctive composition (Definition 4.2.2), if bl is not a constraint, then bl ∈ αM . But in

that case, bl has to synchronize with some alphabet letter in t ↓αM , contradicting the fact that i′

is the minimal index for which bi′ = cj . Thus, since u is an execution, and for all i < l < i′ : bl
is a constraint, it holds that ∀i ≤ l < i′ : βi = βl. In particular, it holds that βi′−1 = βi = γj−1.

Now, since bi′ = cj , we can assign γj to be the same as βi′ and result in a valid assignment.

Thus, e is a valid execution on t ↓αM , making t ↓αM feasible as needed. �

Lemma 4.3.6. Let M1,M2 be two programs, and let t be a feasible trace of M1||M2. Then

t ↓ αMi is a feasible trace of Mi for i ∈ 1, 2.

The proof of Lemma 4.3.6 is different from the proof of Lemma 4.3.5, since here we can no

longer use the exact same assignments as the ones of the run on M1||M2. In the case of M × P ,

the variables of M × P are the same as the variables of M , and the two runs only differ on the

constraints that are added to the trace of M ×P . In M1||M2, on the other hand, M1 and M2 are

defined over two different sets of variables, with empty intersection between them. Nevertheless,

The proof is similar to the proof of Lemma 4.3.5.

Proof of Lemma 4.3.6. Denote by Xi the set of variables of Mi for i ∈ {1, 2}. Let t ∈M1||M2

be a feasible trace. Then, there exists an execution u on t. Denote t = (b1, · · · , bn) and

u = (β0, b1, β1, · · · , bn, βn). We build an execution e on t ↓αM1 as follows (in the same

way, we can build an execution on t ↓αM2). Let t ↓αM1= (c1, · · · , ck). We define e =
(γ0, c1, γ1, · · · , ck, γk) as follows.

1. Set j := 0, i := 0.

2. Define γ0 := β0(X1) and set j := j + 1.

3. Repeat until j = k :

– Let i′ > i be the minimal index such that bi′ = cj or bi′ = (g ∗ x, g ∗ y) for

cj = g ∗ x ∈ αM1.

– Define γj := βi′(X1) and set j := j + 1, i := i′ + 1.
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Note that for each i < l < i′ is holds that bl /∈ αM1 and there are no x ∈ X1 and y ∈ X2

such that bl = (g ∗ x, g ∗ y) for g ∗ x ∈ αM1. Otherwise, bl is either a synchronization

between M1 and M2, or bl is a letter of M1 that belongs to αM1 and is part of t ↓αM1 . Both are

contradiction to the fact that i′ is the minimal index for which bi′ and cj are either equal or that

cj is a read/write action and bi′ is a synchronization on that action.

Since u is an execution, and for all i < l < i′ it holds that bl does not contain variables of

X1, we have that βi(X1) = βl(X1) for all i < l < i′. This is since an assignment to a variable

may only change if the variable is involved in the action alphabet. In particular, it holds that

βi′−1(X1) = βi(X1) = γj−1(X1). We now can assign γj to be the same as βi′(X1) and result

in a valid assignment, as needed. �

4.4 The Assume-Guarantee Rule for Communicating Systems

Let M1 and M2 be two programs, and let P be a property. The classical Assume-Guarantee

(AG) proof rule [Pnu85] assures that if we find an assumption A (in our case, a communicating

program) such that M1||A � P and M2 � A both hold, then M1||M2 � P holds as well. For

labeled transition systems over a finite alphabet (LTSs) [CGP03a], the AG-rule is guaranteed to

either prove correctness or return a real (non-spurious) counterexample. The work in [CGP03a]

relies on the L∗ algorithm [Ang87b] for learning an assumption A for the AG-rule. In particular,

L∗ aims at learning Aw, the weakest assumption for which M1||Aw � P . A crucial point

of this method is the fact that Aw is regular [GPB02], and thus can be learned by L∗. For

communicating programs, this is not the case, as stated in Lemma 4.4.2.

Definition 4.4.1 (Weakest Assumption). Let P be a property and M be a system. The weakest

assumption Aw with respect to M and P has the language L(Aw) = {w : M ||w � P}. That

is, Aw is the set of all words that together with M satisfy P .

Lemma 4.4.2. For infinite-state communicating programs, the weakest assumption Aw is not

always regular.

Proof. Consider the programs M1 and M2, and the property P of Figure 4.3. Let αM2 =
{x := 0, y := 0, x := x+ 1, y := y+ 1, sync}. Note that in order to satisfy P , after the sync

action, a trace t must pass the test x = y. Also note that the weakest assumption Aw does not

depend on the behavior of M2, but only on its alphabet. Assume by way of contradiction that

L(Aw) is a regular language, and consider the language

L = {x := 0} · {y := 0} · {x := x+ 1, y := y + 1}∗ · {sync}

By closure properties of regular languages, it holds that L is a regular language, and thus

following our assumption, we have that L ∩ L(Aw) is regular as an intersection of two regular

languages. However L∩L(Aw) is the set of all words that after the initialization {x := 0}{y :=
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0}, contain equally many actions of the form x := x+ 1 and y := y + 1. That is

L ∩ L(Aw) = {x := 0} · {y := 0} · Leq · {sync}

where

Leq = {u ∈ {x := x+1, y := y+1}∗ : num of x := x+1 in u is equal to num of y := y+1 in u}

Leq is not regular since the pumping lemma does not hold for it, and for the same reason

L ∩ L(Aw) is not regular as well, contradicting our assumption that L(Aw) is regular. �

q0 q1sync

∗
p0

p1

p2

p3

x := 0 y := 0
x := x+ 1
y := y + 1

sync

∗

r0

r1 r2

r3

sync x=y

∗x 6= y ∗

M1 M2 P

Figure 4.3: A system for which the weakest assumption is not regular.

To cope with this difficulty, we change the focus of learning. Instead of learning the

(possibly) non-regular language of Aw, we learn T (M2), the set of accepted traces of M2. This

language is guaranteed to be regular, as it represented by the automaton M2.

4.4.1 Soundness and Completeness of the Assume-Guarantee Rule for Commu-
nicating Systems

Since we have changed the goal of learning, we first show that in the setting of communicating

systems, the assume-guarantee rule is sound and complete.

Theorem 4.1. For communicating programs, the Assume-Guarantee rule is sound and complete.

That is,

• Soundness: for every communicating program A such that αA ⊆ αM2, if M1||A � P

and T (M2) ⊆ T (A) then M1||M2 � P .

• Completeness: If M1||M2 � P then there exists an assumption A such that M1||A � P

and T (M2) ⊆ T (A).

Proof. Completeness. If M1||M2 � P , then we can choose A = M2, and then it holds that

M1||A � P and T (M2) ⊆ T (A).
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Soundness. Assume by way of contradiction that there exists an assumption A such that

M1||A � P and T (M2) ⊆ T (A), but M1||M2 2 P . Therefore, there exists an error trace

t ∈ (M1||M2)×P . By Lemma 4.3.3 and Lemma 4.3.4, it holds that t2 = t ↓αM2∈ T (M2) and

by Lemma 4.3.5 and Lemma 4.3.6 it holds that t2 is feasible. Since T (M2) ⊆ T (A), it holds

that t2 ∈ A and thus t is an error trace in (M1||A)× P , contradicting M1||A � P . �

4.5 The Assume-Guarantee-Repair (AGR) Framework

In this section we discuss our Assume-Guarantee-Repair (AGR) framework for communicating

programs. The framework consists of a learning-based Assume-Guarantee algorithm, called

AGL∗, and a REPAIR procedure, which are tightly joined.

Recall that the goal of L∗ in our case is to learn T (M2). The nature of AGL∗ is such that the

assumptions it learns before it reaches M2 may contain the traces of M2 and more, but still be

represented by a smaller automaton. Therefore, similarly to [CGP03a], AGL∗ often terminates

with an assumption A that is much smaller than M2. Indeed, our tool often produces very small

assumptions (see Section 4.6).

As mentioned before, not only that we determine whether M1||M2 � P , but we also repair

the program in case it violates the specification. When M1||M2 2 P , the AGL∗ algorithm

returns an error trace t as a witness for the violation. In this case, we initiate the REPAIR

procedure, which eliminates t from M2. REPAIR applies abduction in order to learn a new

constraint which, when added to t, makes the counterexample infeasible.5 The new constraint

enriches the alphabet in a way which may eliminate additional counterexamples from M2, by

making them infeasible. We elaborate on our use of abduction in Section 4.5.2. The removal

of t and the addition of the new constraint result in a new goal M ′2 for AGL∗ to learn. We now

return to AGL∗ to search for a new assumption A′ that allows to verify M1||M ′2 � P .

An important feature of our AGR algorithm is its incrementality. When learning an assump-

tion A′ for M ′2 we can use the membership queries previously asked for M2, since the answer

for them has not been changed. As we show later (Theorem 4.2 in Section 4.5.1), the difference

between the languages of M2 and M ′2 lies in words (traces) whose membership has not yet

been queried on M2. This allows the learning of M ′2 to start from the point where the previous

learning has left off, resulting in a more efficient algorithm.

As opposed to the case where M1||M2 � P , we cannot guarantee the termination of the

repair process in case M1||M2 2 P . This is because we are only guaranteed to remove one (bad)

trace and add one (infeasible) trace in every iteration (although in practice, every iteration may

remove a larger set of traces). Thus, we may never converge to a repaired system. Nevertheless,

in case of property violation, our algorithm always finds an error trace, thus a progress towards

a “less erroneous” program is guaranteed.

It should be noted that the AGL∗ part of our AGR algorithm deviates from the AG-rule

of [CGP03a] in two important ways. First, since the goal of our learning is M2 rather than

5There are also cases in which we do not use abduction, as discussed in Section 4.5.3.
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Aw, our membership queries are different in type and order. Second, in order to identify real

error traces and send them to REPAIR as early as possible, we add additional queries to the

membership phase that reveal such traces. We then send them to REPAIR without ever passing

through equivalence queries, which improves the overall efficiency. Indeed, our experiments

include several cases in which all repairs were invoked from the membership phase. In these

cases, AGR ran an equivalence query only when it has already successfully repaired M2, and

terminated.

4.5.1 The Assume-Guarantee-Repair (AGR) Algorithm

We now describe our AGR algorithm in more detail (see Algorithm 4.1). Figure 4.4 describes

the flow of the algorithm. AGR comprises two main parts, namely AGL∗ and REPAIR.

The input to AGR are the components M1 and M2, and the property P . While M1 and P

stay unchanged during AGR, M2 keeps being updated as long as the algorithm recognizes that

it needs repair.

The algorithm works in iterations, where in every iteration the next updatedM i
2 is calculated,

starting with iteration i = 0, where M0
2 = M2. An iteration starts with the membership phase

in line 2 of Algorithm 4.1, and ends either when AGL∗ successfully terminates (line 16) or

when procedure REPAIR is called (lines 7 and 24). When a new system M i
2 is constructed,

AGL∗ does not start from scratch. The information that has been used in previous iterations is

still valid for M i
2. The new iteration is given additional new trace(s) that have been added or

removed from the previous M i
2 (lines 9,11,20, 27).

AGL∗ consists of two phases: membership, and equivalence.

The membership phase (lines 2-11) consists of a loop in which the learner constructs the

next assumption Aij according to answers it gets from the teacher on a sequence of membership

queries on various traces. These queries are answered in accordance with traces we allow in Aij .

There are the traces in M i
2 that in parallel with M1 satisfy P . If a trace t in M i

2 in parallel with

M1 does not satisfy P , then t is a bad behavior of M2. Therefore, if such a t is found during the

membership phase, REPAIR is invoked.

Once the learner reaches a stable assumption Aij , it passes it to the equivalence phase

(lines 12-27). Aij is a suitable assumption if both M1||Aij � P and T (M i
2) ⊆ T (Aij) hold. In

this case, AGR terminates and returns M i
2 as a successful repair of M2. If M1||Aij 2 P , then a

counterexample t is returned, that is composed of bad traces in M1, A
i
j , and P . If the bad trace

t2, the restriction of t to the alphabet of Aij , is also in M i
2, then t2 is a bad behavior of M i

2, and

here too the REPAIR phase is invoked. Otherwise, AGR returns to the membership phase with

t2 as a trace that should not be in Aij , and continues to learn Aij .

As we have described, REPAIR is called when a bad trace t is found in (M1||M i
2) × P

and should be removed. If t contains no constraints then its sequence of actions is illegal

and its restriction t2 ∈ T (M i
2) should be removed from M i

2. In this case, REPAIR returns to

AGL∗ with a new learning goal T (M i+1
2 ) ⊆ T (M i

2) \ {t2}, along with the answer “no” to

the membership query on t2. In Section 4.5.3 we discuss different methods for removing t2
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Algorithm 4.1 AGR
1: function AGL∗

2: //Membership Queries
3: Let t2 ∈ (αM i

2)∗.
4: if t2 ∈ T (M i

2) then
5: if M1||t2 2 P then
6: Let t ∈ (M1||t2)× P be an error trace. . t is a cex proving M1||M i

2 2 P
7: REPAIR(M i

2, t)
8: else . M1||t2 � P
9: Return to AGL∗ in Line 2 with t2 ∈ T (Aij).

10: else . t2 /∈ T (M i
2)

11: Return to AGL∗ in Line 2 with t2 /∈ T (Aij).

12: //Equivalence Queries
13: Let Aij be the candidate assumption generated by the learner.
14: if M1||Aij � P then
15: if T (M i

2) ⊆ T (Aij) then
16: Terminate and return M1||M i

2 � P .
17: else
18: Let t2 ∈ T (M i

2) \ T (Aij).
19: Set j := j + 1
20: Return to AGL∗ in Line 2 with t2 ∈ T (Aij).

21: else . M1||Aij 2 P
22: let t ∈ (M1||Aij)× P be an error trace, and denote t = (t1||tA)× tP .
23: if tA ∈ T (M i

2) then
24: REPAIR(M i

2, tA) . tA is a cex proving M1||M i
2 2 P

25: else
26: Set j := j + 1.
27: Return to AGL∗ in Line 2 with tA /∈ T (Aij).

28: function REPAIR(M i
2, t)

29: Let t1 ∈M1, t2 ∈M i
2, tp ∈ P such that t = (t1||t2)× tp.

30: if t does not contain constraints then
31: Return to AGL∗ in Line 2 with M i+1

2 = T (M i
2) \ {t2} and t2 /∈ T (Ai+1

0 ).
32: else . t contains constraints
33: Use abduction to eliminate t.
34: Let c be the new constraint learned during abduction.
35: Update αM i+1

2 = αM i
2 ∪ {c}.

36: Let t′2 = t2 · c be the output of the abduction
37: Return to AGL∗ in Line 2 with M i+1

2 = (T (M i
2) \ {t2}) ∪ {t′2},

38: and t2 6∈ T (Ai+1
0 ), t′2 ∈ T (Ai+1

0 )
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from M i
2.

The more interesting case is when t contains constraints. In this case, we not only remove

the matching t2 from M i
2, but also add a new constraint c to the alphabet, which causes t2 to

be infeasible. This way we eliminate t2, and may also eliminate a family of bad traces that

violate the property in the same manner – adding a new constraint can only cause the removal

of additional error traces, and cannot add traces to the system. We deduce c using abduction,

see Section 4.5.2. As before, REPAIR returns to AGL∗with a new goal to be learned, but now

also with an extended alphabet. The membership phase is then provided with two new answers

to the membership query: t2 that should not be included in the new assumption, and (t2 · c) that

should be included.

Implementing the L∗ Teacher

As explained above, AGL∗ uses the L∗ algorithm in order to learn each assumption Aij , using

membership and equivalence queries. We now formally describe how the teacher answers each

of the queries. As we have noted, the target of learning is the set of traces of M2. However,

the learning process terminates once a suitable assumption of the AG-rule is found. Therefore,

we denote the language the teacher answers according to by U , which informally denotes the

desired result of the learning process.

Membership Queries (MQ) Algorithm 4.1, lines 2-11.

Given a trace t, the teacher answers “is t ∈ U?” as follows.

– If t /∈ T (M2), answer “no”.

– If t ∈ T (M2) check if t is an error trace, and if so, turn directly to repair. That is -

– If M1||t 2 P , pause learning and turn to repair.

– If M1||t � P , answer the MQ with “yes”.

Equivalence Queries (EQ) Algorithm 4.1 lines 12-27.

Given a candidate A, the teacher answers the EQ “A ≡ U” as follows.

– If M1||A � P , then A is a suitable candidate according to the AG-rule. Then, we check

if the second condition of the AG-rule holds, that is, if T (M2) ⊆ T (A), and answer

accordingly.

– If M1||A 2 P , then, check if the error trace that violates P is also a trace of M2. If yes,

them pause learning and turn to repair. If this is not a real error trace, return the answer

“no” to the EQ , together with the error trace that needs to be eliminated from A.

Incremental learning

One of the advantages of AGR is that it is incremental, in the sense that answers to membership

queries from previous iterations remain unchanged for the repaired system. Formally, we have

the following.
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Figure 4.4: The flow of AGR

Theorem 4.2. Let T (M i
2) be the language learned by phase i of the AGR algorithm. Assume

that phase i ended with a counterexample t and initiated a call to REPAIR(M i
2, t). Then:

1. For every trace t2 that was queried before, the answer remains the same for T (M i+1
2 ).

2. AGR did not query t ↓αM i
2

before, thus removing it from T (M i+1
2 ) is consistent with all

previous queries.

3. If t′2 is a trace learned using abduction, then AGR did not query it before.

Proof. Item 1. Consider two cases. If t2 was answered “t2 ∈ T (Aj)” for some previous

iteration j , then in particular it holds that M1||t2 � P (line 9 of AGR algorithm). Since M1 and

P remain unchanged, then in all future iterations the same holds for t2. Since We only remove

a trace t from T (M j
2 ) if it is an error trace, we conclude that for every j, t2 is never removed

from T (M j
2 ). Thus, t ∈ T (M i+1

2 ).

If t2 was queried before and the answer was “t2 /∈ T (Aj)”, then one of the following

holds: M1||t2 2 P and as in the previous case, this remains true for all future iterations; or,

t2 /∈ T (M j
2 ) for some previous iteration j. Since we only remove traces, it holds that for every

j < j′, T (M j′

2 ) ⊆ T (M j
2 ). Thus, t2 /∈ T (M i+1

2 ) as needed.

Item 2. Due to item 1, all answers on previous queries can be used in order to learn T (M j
2 ),

thus maintaining information from previous iterations is consistent with the L∗ algorithm. Since

L∗ does not query any trace more than once, item 2 follows.

Item 3. Since t′2 contains a new alphabet letter, it for sure was not queried in any of the

previous iterations. �
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4.5.2 Semantic Repair by Abduction

We now describe the repair we apply to M i
2, in case the error trace t contains constraints (see

Algorithm 4.1, line 32). Error traces with no constraints are removed from M i
2 syntactically

(line 31), while in abduction we semantically eliminate t by making it infeasible. The new

constraints are then added to the alphabet of M i
2 and may eliminate additional error traces. Note

that the constraints added by abduction can only restrict the behavior of M2, making more traces

infeasible. Therefore, we do not add counterexamples to M2.

The process of inferring new constraints from known facts about the program is called

abduction [DD13]. We now describe how we apply it. Given a trace t, let ϕt be the first-order

formula (a conjunction of constraints), which constitutes the SSA representation of t [AWZ88].

In order to make t infeasible, we look for a formula ψ such that ψ ∧ ϕt → false.6

Note that t ∈ T (M1||M i
2)×P , and so it includes variables both fromX1, the set of variables

of M1, and from X2, the set of variables of M i
2. Since we wish to repair M i

2, the learned ψ is

over the variables of X2 only.

The formula ψ ∧ ϕt → false is equivalent to ψ → (ϕt → false). Then, ψ = ∀x ∈ X1 :
(ϕt → false) = ∀x ∈ X1(¬ϕt), is such a desired constraint: ψ makes t infeasible and is

defined only over the variables of X2. We now use quantifier elimination [Wei84] to produce a

quantifier-free formula over X2. Computing ψ is similar to the abduction suggested in [DD13],

but the focus here is on finding a formula overX2 rather than over any minimal set of variables as

in [DD13]; in addition, in [DD13] they look for ψ such that ϕt ∧ ψ is not a contradiction, while

we specifically look for ψ that blocks ϕt. We use Z3 [DMB08] to apply quantifier elimination

and to generate the new constraint. After generating ψ(X2), we add it to the alphabet of M i
2

(line 35 of Algorithm 4.1). In addition, we produce a new trace t′2 = t2 · ψ(X2). The trace t′2 is

returned as the output of the abduction.

We now turn to prove that by making t2 infeasible, we eliminate the error trace t.

Lemma 4.5.1. Let t = (t1||t2)× tP . If t2 is infeasible, then t is infeasible as well.

Proof. This is due to the fact that tP can only restrict the behaviors of t1 and t2, thus if t2 is

infeasible, t cannot be made feasible. Formally, Lemma 4.5.1 follows from Lemma 4.3.5 and

Lemma 4.3.6 given in Section 4.3. By Lemma 4.3.5, if t = (t1||t2)× tP is feasible, then t1||t2
is a feasible trace of M1||M2. By Lemma 4.3.6, if t1||t2 is feasible, then t2 is feasible as well.

Therefore, if t2 is infeasible, then t is infeasible, proving Lemma 4.5.1. �

In order to add t2 · ψ(X2) to M i
2 while removing t2, we split the state q that t2 reaches in

M i
2 into two states q and q′, and add a transition labeled ψ(X2) from q to q′, where only q′ is

now accepting, see Figure 4.5. Thus, we eliminate the violating trace from M1||M i
2. AGR now

returns to AGL∗ in order to learn an assumption for the repaired component M i+1
2 , which now

includes t′2 but not t2. Note that ψ is also added to t′ of Figure 4.5. The new constraint then

6Usually, in abduction, we look for ψ such that ψ ∧ ϕt is not a contradiction. In our case, however, since ϕt is a
violation of the specification, we want to infer a formula that makes ϕt unsatisfiable.
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blocks assignments of t′ that violate P in the same way as t2, but it allows for other assignments

of t′ to hold.

q q′
ψ(X2)t2

t′

Figure 4.5: Adding the constraint ψ(X2) to block the error trace t2

4.5.3 Syntactic Removal of Error Traces

Recall that the goal of REPAIR is to remove a bad trace t from M2 once it is found by AGL∗. If

t contain constraints, we remove it by using abduction as described in Section 4.5.2. Otherwise,

we can remove t by constructing a system whose language is T (M2)\{t}. We call this the exact

method for repair. However, removing a single trace at a time may lead to slow convergence,

and to an exponential blow-up in the repaired systems. Moreover, as we have discussed, in some

cases there are infinitely many such traces, in which case AGR may never terminate.

For faster convergence, we have implemented two additional heuristics, namely approximate

and aggressive. These heuristics may remove more than a single trace at a time, while keeping

the size of the systems small. While “good” traces may be removed as well, the correctness of

the repair is maintained, since no bad traces are added. Moreover, an error trace is likely to be

in an erroneous part of the system, and in these cases our heuristics manage to remove a set of

error traces in a single step.

We survey the three methods.

• Exact. To eliminate only t from M2, we construct a program (an automaton) At that

accepts only t, and complement it to construct Āt that accepts all traces except for t.

Finally, we intersect Āt with M2. This way we only eliminate t, and not other (possibly

good) traces. On the other hand, this method converges slowly in case there are many

error traces, or does not converge at all if there are infinitely many error traces.

• Approximate. Similarly to our repair via abduction in Section 4.5.2, we prevent the last

transition that t takes from reaching an accepting state. Let q be the state that M2 reaches

to, when reading t. We mark q as non-accepting, and add an accepting state q′, to which

all in-going transitions to q are diverted, except for the last transition on t. This way, some

traces that lead to q are preserved by reaching q′ instead, and the traces that share the last

transition of t are eliminated along with t. As we have argued, these transitions may also

be erroneous.

• Aggressive. In this simple method, we remove q, the state that M2 reaches to when

reading t, from the set of accepting states. This way we eliminate t along with all other

traces that lead to q. In case that every accepting state is reached by some error trace,
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this repair might result in an empty language, creating a trivial repair. However, our

experiments show that in most cases, this method quickly leads to a non-trivial repair.

4.5.4 Correctness and Termination

For this discussion, we assume a sound and complete teacher who can answer the membership

and equivalence queries in AGL∗, which require verifying communicating programs and prop-

erties with first-order constraints. Our implementation uses Z3 [DMB08] in order to answer

satisfiability queries issued in the learning process.

As we have discussed earlier, AGR is not guaranteed to terminate, and there are cases where

the REPAIR stage may be called infinitely many times. However, in case that no repair is needed,

or if a repaired system is obtained after finitely many calls to REPAIR, then AGR is guaranteed

to terminate with a correct answer.

To see why, consider a repaired system M i
2 for which M1||M i

2 � P . Since the goal of

AGL∗ is to syntactically learn M i
2, which is regular, this stage will terminate at the latest when

AGL∗ learns exactly M i
2 (it may terminate sooner if a smaller appropriate assumption is found).

Notice that, in particular, if M1||M2 � P , then AGR terminates with a correct answer in the

first iteration of the verify-repair loop.

REPAIR is only invoked when a (real) error trace t is found in M i
2, in which case a new

system M i+1
2 , that does not include t, is produced by REPAIR. If M1||M i

2 2 P , then an

error trace is guaranteed to be found by AGL∗ either in the membership or equivalence phase.

Therefore, also in case that M i
2 violates P , the iteration is guaranteed to terminate.

In particular, since every iteration of AGR finds and removes an error trace t, and no new

erroneous traces are introduced in the updated system, then in case that M2 has finitely many

error traces, AGR is guaranteed to terminate with a repaired system, which is correct with

respect to P .

To conclude the above discussion, Theorem 4.3 formally states the correctness and termina-

tion of the AGR algorithm. The proof of Theorem 4.3 follows from Lemma 4.5.2, Lemma 4.5.3,

and Lemma 4.5.4 given bellow.

Theorem 4.3.

1. If M1||M2 � P then AGR terminates with the correct answer.

2. If, after finitely many iterations, a repaired program M ′2 is such that M1||M ′2 � P , then

AGR terminates with the correct answer (this is a generalization of item 1).

3. If an iteration i of AGR ends with an error trace t, then M1||M i
2 2 P , where M i

2 is the

updated system at iteration i.

4. If M1||M2 2 P then AGR finds an error trace. In addition, M ′2, the system post REPAIR,

contains less error traces than M2.

Lemma 4.5.2. Every iteration i of the AGR algorithm terminates.
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In addition, answers to MQs and EQs are consistent with T (M i
2). That is, whenever AGR

returns “t ∈ T (Aij)” to L∗ (lines 9, 20) then indeed t ∈ T (M i
2), and whenever AGR returns

“t 6∈ T (Aij)” to L∗ (lines 11, 27) then indeed t 6∈ T (M i
2).

Proof. For one iteration of AGR, we show that both membership queries and equivalence

queries are consistent with T (M i
2). In addition, we show that if M1||M2 2 P then REPAIR is

invoked. Thus, if M1||M2 � P , since L∗ is an algorithm for learning a regular language, and

since T (M i
2) is a regular language, by the termination of L∗ we conclude that each iteration

terminates. Otherwise, the iteration terminates by a call to REPAIR.

Membership queries. For t2 ∈ (αM i
2)∗, membership queries are of the form “is t2 ∈

T (M i
2)?”. The only case in which the algorithm does not return the same answer as the

L∗ teacher does, is when t2 ∈ T (M i
2) and M1||t2 2 P . In this case we conclude that

M1||M i
2 2 P and thus REPAIR is called (line 7) and the iteration terminates immediately.

Therefore membership queries are consistent with T (M i
2).

Equivalence queries. The teacher returns to L∗ with a counterexample in lines 20 and 27.

In line 20, AGR returns t ∈ T (Aij). Indeed, it holds that t is a trace in T (M i
2) \ T (Aij) thus

in T (M i
2). In line 27 AGR returns t /∈ T (Aij). In that case, the test of line 23 fails, that is,

t /∈ T (M i
2). Therefore, in all cases where AGR returns an answer regarding a trace t, this

answer is consistent with T (M i
2). In order to prove that each iteration terminates, we consider

now the cases where AGR does not return a counterexample for an EQ. This happens in line 16

where the algorithm terminates; and in line 24 where REPAIR is invoked. Thus, every iteration

indeed terminates. �

Lemma 4.5.3. If M1||M i
2 � P , the AGR algorithm terminates with the correct answer. Other-

wise, if M1||M2 2 P , AGR finds a counterexample witnessing the violation (and continues to

repairing M i
2).

Proof. Assume that M1||M2 � P . By Lemma 4.5.2, the answers to MQs and EQs are consistent

with T (M i
2), and from the correctness of L∗ algorithm we conclude that the algorithm will

eventually learn T (M i
2). Note that in case that M1||M2 � P and that AGR learned T (M i

2), that

is T (Aij) = T (M i
2), then the test of line 15 holds and the algorithm terminates. That is, in case

M1||M2 � P AGR terminates with the correct answer (line 16).

Assume that M1||M2 2 P . Then there exists an error trace t ∈ (M1||M2) × P . From

Lemmas 4.3.5, 4.3.6 it holds that t2 = t ↓αM i
2

is feasible in M2. In particular, it holds that t

is an error trace of (M1||t2) × P . Thus, M1||t2 2 P . Since AGR converges towards T (M i
2)

(by Lemma 4.5.2), either t2 shows up as a membership query, and then line 5 holds, thus the

iteration terminates by a call to REPAIR with t2 as a witness to the violation; or AGR continues

to the equivalence query part. There, again, t2 (or some other error trace) will come up as an

error trace t2 ∈ T (M i
2), resulting in termination of the iteration in line 24, again, by calling

REPAIR. �

Note that although each phase converges towards T (M i
2), it may terminate earlier. We show

that in case the algorithm terminates before finding T (M i
2), it returns the correct answer.
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Lemma 4.5.4. L∗ terminates and returns the correct answer. That is:

1. If L∗ outputs an assumption A, then M1||A � P and there exists i such that T (M i
2) ⊆

T (A), thus we can conclude M1||M i
2 � P .

2. If a phase i of AGR ends with an error trace t, then M1||M i
2 2 P .

Proof. Item 1. Assume AGR returns an assumption A. We can then conclude that the following

holds for A: there exists i such that T (M i
2) ⊆ T (A) and M1||A � P , since this is the only

scenario in which an assumptionA is returned. From the soundness of our AG rule (Theorem 4.1)

it holds that M1||M i
2 � P .

Item 2. Assume now that a phase i of AGR ends with an error trace t. We prove that

M1||M i
2 2 P . First note that AGR may output such a trace both while making a membership

query and while making an equivalence query. If t was found during a membership query

(line 5), then there exists t2 ∈ T (M i
2) such that M1||t2 2 P , and t ∈ (M1||t2) × P . Since

t2 ∈ T (M i
2), it holds that t is also an error trace of (M1||M i

2)× P , proving M1||M i
2 2 P .

If t was found during an equivalence query (line 24), then t is an error trace in (M1||Aij)×P .

Moreover, t ↓αAij∈ T (M i
2). This makes t an error trace of (M1||M i

2) × P as well, thus

M1||M i
2 2 P . This finishes the proof. �

The proof of Theorem 4.3 follows almost directly from the lemmas above.

Proof of Theorem 4.3. Lemma 4.5.3 states that if M1||M i
2 � P then AGR terminates with the

correct answer. This implies item 1 and item 2.

In addition, Lemma 4.5.3 states that ifM1||M i
2 2 P then AGR finds an error trace witnessing

the violation. Once such an error trace is found, REPAIR is invoked (lines 7 and 24 of

Algorithm 4.1). Since REPAIR eliminates at least one error trace, the system post REPAIR

contains less bad traces, and item 4 follows.

Lemma 4.5.4 states that if an iteration i of AGR ends with an error trace, then M1||M i
2 2 P .

This implies item 3. �

4.6 Experimental Results

We implemented our AGR framework in Java, integrating the L∗ learner implementation from

the LTSA tool [MK99]. We used Z3 [DMB08] to implement the teacher while answering the

satisfaction queries in AGL∗, and for abduction in REPAIR.

Table 4.1 displays results of running AGR on various examples, varying in their sizes, types

of errors – semantic and syntactic – and their amount. The examples are available on [exa]. The

iterations column indicates the number of iterations of the verify-repair loop, until a repaired

M2 is achieved. Examples with no errors were verified in the first iteration, and are indicated by

verification. We tested the three repair methods described in Section 4.5.3. Figure 4.6 presents

comparisons between the three methods in terms of run-time and the size of the repair and

assumptions. Note that the graphs are given in logarithmic scale.
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Figure 4.6: Comparing repair methods: time and repair size. Logarithmic scale

Most of our examples model multi-client-server communication protocols, with varying

sizes. Our tool managed to repair all those examples that were flawed.

As can be seen in Table 4.1, our tool successfully generates assumptions that are significantly

smaller than the repaired and the original M2.

For the examples that needed repair, in most cases our tool needed 2-5 iterations of verify-

repair in order to successfully construct a repaired component. Interestingly, in example #15 the

aggressive method converged slower than the approximate method. This is due to the structure of

M2, in which different error traces lead to different states. Marking these states as non-accepting

removed each trace separately. However, some of these traces have a common transition, and

preventing this transition from reaching an accepting state, as done in the approximate method,

managed removing several error traces in a single repair.

Example #22 models a simple structure in which, due to a loop in M2, the same alphabet

sequence can generate infinitely many error traces. The exact repair method timed out, since

it attempted removing one error trace at a time. On the other hand, the aggressive method

removed all accepting states, creating an empty program – a trivial (yet valid) repair. However,

the approximate method created a valid, non-trivial repair.

4.7 Concluding Remarks

In this chapter we present the model of communicating programs that is able to capture program

behavior and synchronization between the system components, while exploiting the finite

automata representation in order to apply automata learning. We then present the AGR algorithm,

that offers a new take on the learning-based approach to assume-guarantee verification, and

manages coping with complex properties and repairing infinite-state programs.

Our experimental results show that using existing semantic tools, AGR produces very

succinct proofs, and quickly and efficiently repairs flawed communicating programs.

Our algorithm exploits the finite automata-like representation of the systems in order to

apply the L∗ algorithm and to learn small proofs of correctness.
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Example M1 Size M2 Size P Size Time (sec.) A size Repair Size Repair Method #Iterations
#1 4 4 3 0.2 3 verification
#2 16 16 3 1.8 4 verification
#3 32 32 3 11.1 6 verification
#4 64 64 3 95 7 verification

#5 2 3 2
0.08 3 3 aggress. 2
0.09 4 4 approx. 2

0.108 6 9 exact 2

#6 2 27 2
0.106 5 27 aggress. 2
0.126 6 28 approx. 2
0.132 8 81 exact 2

#7 2 81 2
0.13 6 81 aggress. 2

0.138 7 82 approx. 2
0.165 9 243 exact 2

#8 2 243 2
0.15 8 243 aggress. 2
0.17 8 244 approx. 2

0.223 10 729 exact 2
#9 2 4 3 0.093 3 verification
#10 3 16 4 0.29 13 verification
#11 5 256 6 4.88 92 verification
#12 2 4 3 0.08 3 verification
#13 3 16 4 0.22 10 verification
#14 5 256 6 4.44 109 verification

#15 3 16 5
0.69 12 16 aggress. 5
0.28 13 18 approx. 3
4.27 44 864 exact 5

#16 4 256 8
6.63 113 256 aggress. 2
5.94 113 257 approx. 2

12.87 155 1280 exact 2
#17 2 3 4 0.075 3 verification

#18 2 3 4
0.34 5 4 aggress. 2
0.37 5 4 approx. 2

0.488 5 4 exact 2

#19 3 16 5
1.07 18 18 aggress. 3
1.12 18 18 approx. 3
1.26 18 18 exact 3

#20 9 6 15 0.1 6 verification
#21 11 13 17 0.18 11 verification

#22 2 4 2
0.09 1 4 (trivial) aggress. 4
0.21 6 8 approx. 5

timeout exact timeout

#23 11 12 17
0.24 1 12 (trivial) aggress. 2
0.25 1 13 (trivial) approx. 2
0.26 1 144 (trivial) exact 2

#24 4 8 5
0.35 6 9 aggress. 2
0.34 6 9 approx. 2
0.36 6 9 exact 2

#25 3 5 5 0.13 4 verification
#26 4 5 5 0.11 4 verification
#27 4 8 5 0.35 5 verification

Table 4.1: AGR algorithm results on various examples
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Chapter 5

Learning Symbolic Automata

Chapter 4 discusses compositional verification and repair, and demonstrates the use of automata

learning for formal verification. There, we adjust the L∗ algorithm for the setting of commu-

nicating programs. In this chapter, we discuss more abstract automata type, namely symbolic

automata. Symbolic finite state automata, SFAs for short, are an automata model in which

transitions between states correspond to predicates over a domain of concrete alphabet letters.

Their purpose is to cope with situations where the domain of concrete alphabet letters is large

or infinite. As opposed to the models we study in Chapters 4 and 3, where we use variables in

order to keep track of data values throughout the computation, in the model of SFAs there is no

notion of “memory”. In SFAs, predicates are used in order to make the automaton transitions

more concise, and allow us to express languages over infinite alphabets.

In this chapter we study the learnability of SFAs. The state-of-the-art literature on this

topic follows the query learning paradigm, which stipulates that the learner can interact with

an oracle (teacher) by asking it several types of allowed queries. So far all obtained results

for SFAs are positive. We provide a necessary condition for efficient learnability of SFAs

in this paradigm, from which we obtain the first negative result regarding the complexity of

learnability of SFA over the propositional algebra. Most of this chapter studies learnability of

SFAs under the paradigm of identification in the limit using polynomial time and data. We

provide a necessary condition and a sufficient condition for efficient learnability of SFAs in this

paradigm. We provide an efficient learning algorithm for monotonic algebras, and in particular

for the interval algebra over the natural number or the reals. In addition, we prove that as in the

query learning paradigm, here too the complexity of learnability of SFAs over the propositional

algebra is not polynomial.

5.1 Preliminaries

5.1.1 Effective Boolean Algebra

A Boolean Algebra A is a tuple 〈D,P, J·K,⊥,>,∨, ∧,¬〉 where D is a set of domain elements;

P is a set of predicates closed under the Boolean connectives, where ⊥,> ∈ P; the component
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J·K : P→ 2D is the so-called semantics function. P satisfies the following three requirements: (i)

J⊥K = ∅, (ii) J>K = D, and (iii) for all ϕ,ψ ∈ P, Jϕ ∨ ψK = JϕK∪JψK, Jϕ ∧ ψK = JϕK∩JψK,

and J¬ϕK = D \ JϕK. A Boolean Algebra is effective if all the operations above, as well as

satisfiability, are decidable. Henceforth, we implicitly assume Boolean algebras to be effective.

One way to define a Boolean algebra is by defining a set P0 of atomic formulas that includes

> and ⊥, and obtaining P by closing P0 for conjunction, disjunction and negation. For a

predicate ψ ∈ P we say that ψ is atomic if ψ ∈ P0. We say that ψ is basic if ψ is a conjunction

of atomic formulas.

We now introduce two Boolean algebras that are discussed extensively below.

The Interval Algebra is the Boolean algebra in which the domain D is the set Z ∪ {−∞,∞}
of integers augmented with two special symbols with their standard semantics, and the set of

atomic formulas P0 consists of intervals of the form [a, b) where a, b ∈ D and a < b. The

semantics associated with intervals is the natural one: J[a, b)K = {z ∈ D : a ≤ z and z < b}.

The Propositional Algebra is defined with respect to a set AP = {p1, p2, . . . , pk} of atomic

propositions. The set of atomic predicates P0 consists of the atomic propositions and their

negations. The domain D consists of all the possible valuations for these propositions, thus

D = Bk where B = {0, 1}. The semantics of an atomic predicate p is given by JpiK = {v ∈
Bk : v[i] = 1}, and similarly J¬piK = {v ∈ Bk : v[i] = 0}. In this case a basic formula is a

monomial, that is, a conjunction of atomic predicated and their negations. .

5.1.2 Symbolic Automata

A symbolic finite automaton (SFA) is a tuple M = 〈A, Q, q0, δ, F 〉 where A is a Boolean

algebra, and as in the definition of finite automata in Section 2.1, Q is a finite set of states,

q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ ⊆ Q× PA ×Q is the transition

relation, where PA is the set of predicates of A .

We use the term letters for elements of D where D is the domain of A and the term words for

elements of D∗. A run ofM on a word σ1σ2 . . . σn where σi ∈ D, is a sequence of transitions

〈q0, ψ1, q1〉〈q1, ψ2, q2〉 . . . 〈qn−1, ψn, qn〉 satisfying that σi ∈ JψiK and that 〈qi, ψi+1, qi+1〉 ∈ δ.

Such a run is said to be accepting if qn ∈ F . A word w = σ1σ2 . . . σn is said to be accepted

byM if there exists an accepting run ofM on w. The set of words accepted by an SFAM is

denoted L(M). Note that while the transitions of an SFA are symbolic, its language consists of

concrete words.

An SFA is said to be deterministic if for every state q ∈ Q and every letter σ ∈ D we have

that |{〈q, ψ, q′〉 ∈ δ : σ ∈ JψK}| ≤ 1, namely from every state and every concrete letter there

exists at most one transition. It is said to be complete if |{〈q, ψ, q′〉 ∈ δ : σ ∈ JψK}| ≥ 1 for

every q ∈ Q and every σ ∈ D. As is the case for finite automata (over concrete alphabets),

non-determinism does not add expressive power but does add succinctness [VdHT10]. When A
is deterministic we use δ(q, w) to denote the state A reaches on reading the word w from state

q. If δ(q0, w) = q then w is termed an access word to state q.
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Figure 5.1: The SFAM over the interval algebra

5.2 Special Forms and their Properties

5.2.1 Types of Symbolic Automata

We turn to define special types of SFAs, which affect the complexity of related procedures.

Neat and Normalized SFAs We note that there is a trade-off between the number of transitions,

and the complexity of the transition predicates. The literature defines an SFA as normalized

if for every two states q and q′ there exists at most one transition from q to q′. This definition

prefers fewer transitions at the cost of potentially complicated predicates. By contrast, preferring

simple transitions at the cost of increasing the number of transitions, leads to neat SFAs. We

define an SFA to be neat if all transition predicates are basic predicates.

Feasibility The second distinction concerns the fact that an SFA can have transitions with

unsatisfiable predicates. A symbolic automaton is said to be feasible if for every 〈q, ψ, q′〉 ∈ δ
we have that JψK 6= ∅. Feasibility is an orthogonal property to being neat or normalized. Recall

that feasibility checks are local to each transition.

Monotonicity The third distinction we make concerning the nature of a given SFA regards its

underlying algebra. A Boolean algebra A over domain D is said to be monotonic if the following

hold.

1. There exists a total order < on the elements of D; and

2. There exist two elements dinf, dsup such that dinf ≤ d and d ≤ dsup for all d ∈ D; and

3. An atomic predicate ψ ∈ P0 can be associated with two concrete values a and b such that

JψK = {d ∈ D : a ≤ d < b}.

The interval algebra (given in Section 5.1.1) is clearly monotonic, as is the similar algebra

obtained using R (the real numbers) instead of Z (the integers). On the other hand, the

propositional algebra is clearly non-monotonic.

Example 5.2.1. Consider the SFAM given in Fig 5.1. It is defined over the algebra AN which

is the interval algebra restricted to the domain D = N ∪ {∞}. The language ofM is the set of

all words over N that end with a number between 0 and 100 followed by some (possibly empty)

sequence of numbers smaller than 200. M is defined over a monotonic algebra, and is neat,

normalized, deterministic and complete.

Example 5.2.2. (ASCII Algebra) The ASCII Algebra aims to model regular expressions in

modern programming languages. The domain D is assumed to be the set of all ASCII codes
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{n : 0 ≤ n ≤ 127}. The predicates contain rich ways to refer to sets of letters, e.g., [A-Z]

and [a-z] denote the set of all ASCII upper and lower case letters, respectively, [A-Za-z]

denotes their union, and [ˆA-Za-z] denotes the complement of [A-Za-z]. The ASCII

algebra is defined with respect to a well ordered domain {n : 0 ≤ n ≤ 127}, and has predicates

such as [A-Z] and [a-z] that can be defined by the two end points of the respective interval,

but this is not the case for all predicates, and therefore it is not monotonic.

5.2.2 Size of an SFA

The size of an automaton (not a symbolic one) is typically measured by its number of states.

This is since for DFAs, the size of the alphabet is assumed to be a given constant, and the rest

of the parameters, in particular the transition relation, are at most quadratic in the number of

states. In the case of SFAs the situation is different, as the size of the predicates labeling the

transitions can vary greatly. In fact, if we measure the size of a predicate by the number of nodes

in its parse DAG, then the size of a formula can grow unboundedly. The size and structure of

the predicates influence the complexity of their satisfiability check, and thus the complexity of

corresponding algorithms. On the other hand there might be a trade-off between the size of the

transition predicates and the number of transitions; e.g. a predicate of the form ψ1 ∨ψ2 . . .∨ψk
can be replaced by k transitions, each one labeled by ψi for 1 ≤ i ≤ k.

Therefore, we measure the size of an SFA by three parameters: the number of states (n),

the maximal out-degree of a state (m) and the size of the most complex predicate (l). In order to

analyze the complexity of automata algorithms discussed in Sections 5.2.4 and 5.2.5, for a class

P of predicates over a Boolean algebra A , we also use the following measures: the complexity

measure satP(l), which is the complexity of satisfiability check for a predicate of length l in

P; and the size measure sizeP∧(l1, l2) (or sizeP∨(l1, l2)), which is the size of the conjunction

(disjunction) of two predicates in P. While for the interval algebra sizeP∧(l1, l2) is linear in

l1 and l2, for the OBDD (ordered binary decision diagrams) algebra Boolean operations on

predicates are polynomial [Bry86]. When the algebra is built on a set of atomic predicates

P0 we also use satP0(l), sizeP0
∧ (l1, l2) and sizeP0

∨ (l1, l2), for the respective complexities when

restricted to atomic predicates.

5.2.3 Transformations to Special Forms

We now address the task of transforming SFAs into their special forms as presented in Sec-

tion 5.2.1. Moreover, we discuss the complexity of standard procedures on SFAs of these special

forms compared to the complexity on general SFAs. We start with transformations to the special

forms neat, normalized and feasible automata, measured as suggested using 〈n,m, l〉— the

number of states, the maximal out-degree of a state, and the size of the most complex predicate.
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Neat Automata

Since each predicate in a neat SFA is a conjunction of atomic predicates, neat automata are

very intuitive, and the number of transitions in the SFA reflects the complexity of the different

operations, as opposed to the situation with normalized SFAs. This is since most operations

depend on satisfiability checking. For the class P0 of basic formulas, satP0(l) is usually more

efficient than satP(l), and in particular is polynomial for the algebras we consider here. This

is since satisfiability testing can be reduced to checking that for a basic predicate ϕ that is a

conjunction of l atomic predicates, there are no two atomic predicates that contradict each other.

Since satisfiability checking directly affects the complexity of various algorithms discussed in

Section 5.2.4, neat SFAs allow for efficient automata operations, as we show in Section 5.2.5.

Transforming to Neat Given a general SFAM of size 〈n,m, l〉, we can construct a neat SFA

M′ of size 〈n,m ·2l, l〉, by transforming each transition predicate to a DNF formula, and turning

each disjunct into an individual transition. The number of states, n, remains the same. However,

the number of transitions can grow exponentially due to the transformation to DNF. In the

worst case, the size of the most complex predicate can remain the same after the transformation,

resulting in the same l parameter for both automata. Note that there is no unique minimal

neat SFA. For instance, a predicate ψ over the propositional algebra with AP = {p1, p2, p3},
satisfying JψK = {100, 101, 111} can be represented using two basic transitions (p1 ∧¬p2) and

(p1 ∧ p2 ∧ p3); or alternatively using the two basic transitions: (p1 ∧ p3) and (p1 ∧ ¬p2 ∧ ¬p3),

though it cannot be represented using one basic transition.

Although in the general case, the transformation from normalized to neat SFAs is exponential,

for monotonic algebras we have the following lemma, which follows directly from the definition

of monotonic algebras and basic predicates.

Lemma 5.2.3. Over a monotonic algebra, the conjunction of two atomic predicates is also

an atomic predicate; inductively, any basic formula that does not contain negations, over a

monotonic algebra, is an atomic predicate. In addition, the negation of an atomic predicate is a

disjunction of at most 2 atomic predicates.

Lemma 5.2.4. LetM be a normalized SFA over a monotonic algebra Amon . Then, transforming

M into a neat SFAM′ is linear in the size ofM.

Since a DNF formula with m disjunctions is a natural representation of m neat transitions,

Lemma 5.2.4 follows from the following property of monotonic algebras.

Lemma 5.2.5. Let ψ be a general formula over a monotonic algebra A . Then, there exists an

equivalent DNF formula ψd of size linear in |ψ|.

Proof. First, we transform ψ into a Negation Normal Form formula ψNNF , pushing negations

inside the formula. When transforming to NNF, the number of atomic predicates (under

negation) remains the same, and so is the number of conjunctions and disjunctions. Since, by

Lemma 5.2.3, a negation of an atomic predicate over a monotonic algebra, namely a negation of
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an interval, results in at most two intervals, we get that |ψNNF | ≤ 2 · |ψ|. Note that ψNNF does

not contain any negations, as they were applied to the intervals. We now transform ψNNF into a

DNF formula ψd recursively, operate on sub-formulas of ψNNF , distributing conjunctions over

disjunctions.

We inductively prove that |ψd| = |ψNNF |. For the base case, if ψNNF is a single interval

[a, b), then [a, b) is in DNF and we are done.

For the induction step, consider the two cases.

1. Assume ψNNF = ψ1 ∨ ψ2. By the induction hypothesis, there exists DNF formulas ψ1d

and ψ2d such that ψid ≡ ψi and |ψid| = |ψi| for i = 1, 2. Then, ψd = ψ1d ∨ ψ2d is

equivalent to ψNNF and of the same size.

2. Assume ψNNF = ψ1 ∧ ψ2. Again, by the induction hypothesis, instead of ψ1 ∧ ψ2 we

can consider ψ1d ∧ ψ2d where ψ1d and ψ2d are in DNF. That is ψ1d =
∨k
i=1[ai, bi) and

ψ2d =
∨l
j=1[cj , dj). Now,

ψ1d ∧ ψ2d =
(

k∨
i=1

[ai, bi)
)
∧

 l∨
j=1

[cj , dj)

 =
k∨
i=1

l∨
j=1

(
[ai, bi) ∧ [cj , dj)

)

From properties of intervals, each conjunction [ai, bi)∧[cj , dj) is of the form [max{ai, cj},
min{bi, dj}). The intervals in {[ai, bi) : 1 ≤ i ≤ k} do not intersect (otherwise

it would have resulted in a longer single interval), and the same for {[cj , dj) : 1 ≤
j ≤ l}. Thus, every element ai or cj can define at most one interval of the form

[max{ai, cj},min{bi, dj}). That is, the DNF formula ψd =
∨k
i=1

∨l
j=1

(
[ai, bi) ∧

[cj , dj)
)

contains at most k + l intervals, as the others are not proper intervals. Since the

size of the original ψNNF is k + l, we have that |ψNNF | = |ψd|.

To conclude, since ψNNF is linear in the size of ψ and ψd is of the same size as ψNNF , we have

that the translation of ψ into the DNF formula ψd is linear. �

Normalized Automata

Neat automata stand in contrast to normalized ones. In a normalized SFA, there is at most

one transition between every pair of states, which allows for a succinct formulation of the

condition to transit from one state to another. On the other hand, this makes the predicates

on the transitions structurally more complicated. Given a general SFA M with parameters

〈n,m, l〉, we can easily construct a normalized SFAM′ as follows. For every pair of states

q and q′, construct a single edge labeled with the predicate
∨
〈q,ϕ,q′〉∈δ ϕ. Then,M′ has size

〈n, n, sizeP∨m(l)〉, where we use sizeP∨m(l) to denote the size of m disjunctions of predicates

of size at most l. Note that there is no unique minimal normalized automaton either, since in

general Boolean formulas have multiple representations. However, in Section 5.2.5 we show

that over monotonic algebras there is a canonical minimal normalized SFA.
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The complexity of satP(l) for general formulas (corresponding to normalized SFAs) is

usually exponentially higher than for basic predicates (and thus for neat SFAs). In addition,

as we saw above, generating a normalized automaton is an easy operation. This motivates

working with neat automata, and generating normalized automata as a last step, if desired (e.g.,

for drawing).

Feasible Automata

The motivation for feasible automata is clear; if the automaton contains unsatisfiable transitions,

then its size is larger than necessary, and the redundancy of transitions makes it less interpretable.

Thus, infeasible SFAs add complexity both algorithmically and for the user, as they are more

difficult to understand. In order to generate a feasible SFA from a given SFA M, we need

to traverse the transitions ofM and test the satisfiability of each transition. The parameters

〈n,m, l〉 of the SFA remain the same since there is no change in the set of states, and there

might be no change in transitions as well (if they are all satisfiable).

In the following, we usually assume that the automata are feasible, and when applying

algorithms, we require the output to be feasible as well.

5.2.4 Complexity of standard automata procedures on general SFAs

We turn to discuss Boolean operations, determinization and minimization, and decision proce-

dures (such as emptiness and equivalence) for the different types of SFAs. For intersection and

union, the product construction of SFAs was studied in [VdHT10, HV11]. There, the authors

assume a normalized SFAs as input, and do not delve on the effect of the construction on the

number of transitions and the complexity of the resulting predicates. Determinization of SFAs

was studied in [VdHT10], and [DV14] study minimization of SFAs, assuming the given SFA

is normalized.

Table 5.1 shows the sizes of the SFAs resulting from the mentioned operations, in terms

of 〈n,m, l〉. The analysis applies to all types of SFAs, not just normalized ones. The time

complexity for each operation is given in terms of the parameters 〈n,m, l〉 and the complexity

of feasibility tests for the resulting SFA, as discussed in Section 5.2.3. Table 5.2 summarizes

the time complexity of decision procedures for SFAs: emptiness, inclusion, and membership.

Again, the analysis applies to all types of SFAs. We note that in many applications of learning

in verification, the challenging part is implementing the teacher, for example in Chapter 4 of

this thesis, as well as in [PGB+08, CKKS20]. In such cases the complexity of membership and

equivalence queries as well as standard automata operations plays a major role.

In both tables we consider two SFAsM1 andM2 with parameters 〈ni,mi, li〉 for i = 1, 2,

over algebra A with predicates P. We use sizeP∧m(l) for an upper bound on the size of m

conjunctions of predicates of size at most l. All SFAs are assumed to be deterministic, except of

course for the input for determinization.

1For complementation, no feasibility check is needed, since we assume a feasible input.
2To determinize transitions, conjunction may be applied n1 ×m1 times, according to the number of states that
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Operation 〈n,m, l〉
product constructionM1,M2 〈n1 × n2, m1 ×m2, sizeP∧(l1, l2)〉

complementation of deterministicM1
1 〈n1 + 1, m1 + 1, sizeP∨m1 (l1)〉

determinization ofM1 〈2n1 , 2m1 , sizeP∧n1×m1 (l1)〉 2

minimization ofM1 〈n1,m1, sizeP∧m1 (l1)〉

Table 5.1: Analysis of standard automata procedures on SFAs.

Decision Procedures Time Complexity
emptiness linear in n,m

emptiness + feasibility n×m× satP(l)
membership of γ1 · · · γt ∈ D∗

∑t
i=1 satP(sizeP∧(l, |ψγi |)) 3

inclusionM1 ⊆M2 ((n1 × n2)× (m1 ×m2)× satP(sizeP∧(l1, l2)))

Table 5.2: Analysis of times complexity of decision procedures for SFAs

We now briefly describe the algorithms we analyze in both tables.

Product Construction [VdHT10, HV11] The product construction for SFAs is similar to the

product of DFAs – the set of states is the product of the states ofM1 andM2; and a transition

is a synchronization of transitions ofM1 andM2. That is, a transition from 〈q1, q2〉 to 〈p1, p2〉
can be made while reading a concrete letter γ, iff 〈q1, ψ1, p1〉 ∈ δ1 and 〈q2, ψ2, p2〉 ∈ δ2

and γ satisfies both ψ1 and ψ2. Therefore, the predicates labeling transitions in the product

construction are conjunctions of predicates from the two SFAsM1 andM2.

Complementation In order to complement a deterministic SFAM1, we first need to makeM1

complete. In order to do so, we add one state which is a non-accepting sink, and from each

state we add at most one transition which is the negation of all other transitions from that state.

In case thatM1 is complete, then complementation only negates the set of accepting states,

resulting in the same parameters 〈n1,m1, l1〉.

Determinization [VdHT10] In order to make an SFA deterministic, the algorithm of [VdHT10]

uses the subset construction for DFAs, resulting in an exponential blowup in the number of

states. However, in the case of SFAs this is not enough, and the predicates require special care.

Let P = {q1, · · · , qt} be a state in the deterministic SFA, where q1, . . . , qt are states of the

original SFAM1, and let ψ1, . . . , ψt be some predicates labelling outgoing transitions from

q1, . . . qt, correspondingly. Then, in order to determinize transitions, the algorithm of [VdHT10]

computes the conjunction
∧t
i=1 ψ1, which labels a single transition from the state P .

Minimization [DV14] Given a deterministic SFAM1, the output of minimization is an equiv-

alent deterministic SFA with a minimal number of states. When constructing such an SFA,

the number of states and transitions cannot grow. However, as in determinization, if two

states ofM1 are replaced with one state, then outgoing transitions might overlap, resulting

in a non-deterministic SFA. Therefore, to make sure that transitions do not overlap, all algo-

correspond to a new deterministic state.
3Where ψγi is a predicate describing γi.
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rithms described in [DV14] compute minterms, which are the smallest conjunctions of outgoing

transitions. Minterms then do not intersect, and thus the output is deterministic.

Emptiness If we assume a feasible SFAM as an input, then in order to check for emptiness

we need to find an accepting state which is reachable from the initial state (as in DFAs). If

we do not assume a feasible input, we need to test the satisfiability of each transition, thus the

complexity depends on the complexity measure satP(l).4

Membership Similarly to emptiness, in order to check if a concrete word γ1 · · · γn is in L(M),

we need to locally consider the satisfiability of each transition. In the case of membership, we

need to check whether the letter γi satisfies the predicate on the corresponding transition.

Inclusion Deciding inclusion amounts to checking emptiness and feasibility ofM1 ∩M2. We

assume here that bothM1 andM2 are deterministic and complete.

5.2.5 Complexity of standard automata procedures on special SFAs

We now discuss the advantages of neat SFAs and of monotonic algebras, in the context of the

algorithms presented in the tables, and show that, in general, they are more efficient to handle

compared to other SFAs.

Neat SFAs

As can be observed from Table 5.2, almost all decision procedures regarding SFAs depend on

satP(l). For neat SFAs it is more precise to say that they depend on satP0(l), and since satP0(l)
is usually less costly than satP(l), most decision procedures are more efficient on neat automata.

Here, we claim that applying automata algorithms on neat SFAs preserves their neatness, thus

suggesting that neat SFAs may be preferable in many applications.

Lemma 5.2.6. Let M1 and M2 be neat SFAs. Then: M1 ∩ M2, M1 ∪ M2, M1, and

determinization / minimization ofM1, are all neat SFAs as well.

Proof. The proof follows from the product construction [VdHT10, HV11] and the determiniza-

tion [VdHT10] and minimization [DV14] constructions. All of these use only conjunctions in

order to construct the predicates on the output SFAs. Thus, if the predicates on the input SFAs

are basic, then so are the output predicates. �

Monotonic Algebras

We now consider the class MAm of SFAs over a monotonic algebra Am with predicates P. We

first discuss sizeP∧(l1, l2) and satP(l), as they are essential measures in automata operations.

Then we show that forM1 andM2 in the class MAm , the product construction is linear in the

number of transitions, adding to the efficiency of SFAs over monotonic algebras.

4Note that the feasibility check is local, and depends only on the satisfiability of the predicates labeling transitions.
This is in contrast to the model of Chapter 4 where we check the feasibility of the whole word.
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Lemma 5.2.7. Letψ1 andψ2 be formulas over a monotonic algebra Am. Then: sizeP∧(|ψ1|, |ψ2|)
is linear in |ψ1|+ |ψ2| and satP(|ψ1|) is linear in |ψ1|.

Proof. Transforming to DNF is linear, as we show in Lemma 5.2.5. There, we show that

the conjunction of two DNF formulas of sizes k and l has size k + l, which implies that the

conjunction of general formulas has linear size. In addition, satP(l) is trivial for a single interval,

and following Lemma 5.2.5, is linear for general formulas. The satisfiability of a single interval

is trivial, since we define intervals as predicates of the form [a, b) for a < b, and thus every

interval is satisfiable. Even if we allow unsatisfiable intervals, satisfiability check will amount to

the question “is a < b?”. �

Lemma 5.2.8. LetM1 andM2 be deterministic SFAs over a monotonic algebra Am. Then the

out-degree of their product SFAM is at most m = 2 · (m1 +m2).

Proof. From Lemma 5.2.4, we can construct neat SFAsM′1 andM′2 of sizes 〈ni, 2mi, li〉 for

i ∈ {1, 2}. For a state q in an SFA, the set {〈q, [ai, bi), pi〉} of q’s outgoing transitions can be

defined using the set {ai} of the minimal element of each transition. Similarly to the proof of

Lemma 5.2.5, each transition 〈〈q1, q2〉, [a, b) ∧ [c, d), 〈p1, p2〉〉 in the product SFA results in a

formula [max{a, c},min{b, d}). Then, for q1 ∈ Q1, every minimal element in the set of q1’s

outgoing transitions can define at most one transition inM, and the same for a state q2 ∈ Q2,

and so the number of transitions from 〈q1, q2〉 is at most m1 +m2, as required. �

Lemma 5.2.9. LetM be a neat SFA over a monotonic algebra. Then, transformingM into a

complete SFAM′ is polynomial in the size ofM.

Proof. In order to completeM, we add a non-accepting sink r in case it does not already exist,

and at most m transitions from each state q to r, when m is the out-degree of the SFA, resulting

in at most |Q| ×m new transitions. �

Definition 5.2.10. For predicates over a monotonic algebra, we define a canonical represen-

tation of a predicate ψ as the simplified DNF formula which is the disjunction of all intervals

satisfying ψ.

Note that every predicate ψ over a monotonic algebra defines a unique partition of the

domain into disjoint intervals. This unique partition corresponds to a simplified DNF formula,

which is exactly the canonical representation of ψ.

Example 5.2.11. The canonical representation of ψ = [0, 100) ∧ ([50, 150) ∨ [20, 40)) is

[20, 40) ∨ [50, 100).

Lemma 5.2.12. LetM be an SFA over a monotonic algebra. Then:

1. There is a unique minimal-state neat SFAM′ such that L(M) = L(M′).

2. There is a canonical minimal-state normalized SFAM′′ such that L(M) = L(M′′).
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Proof. First, we note that for a language L = L(M) for some SFAM, there exists a minimal-

state SFA. This is since as, similarly to DFAs, when considering the equivalence relation N

defined by (u, v) ∈ N ⇐⇒ ∀z ∈ D∗ : (uz ∈ L ⇔ vz ∈ L), the equivalence classes of the

relation N correspond to the states in the minimal-state SFA.

As for transitions, we have the following.

1. Let ψ be a general predicate labeling a transition inM. Then ψ defines a unique partition

of the domain into disjoint intervals, which are exactly the transitions in a neat SFA. Then,

the minimal state neat SFA is unique.

2. For normalized transitions, we can use Lemma 5.2.5 to transform a general predicate

labeling a transition to a DNF predicate one in linear time. A DNF predicate over a

monotonic algebra is in-fact a disjunction of disjoint intervals. Then, to obtain a canonical

representation, we order these intervals by order of their minimal elements. �

5.3 Query Learning

Recall that the paradigm of query learning stipulates that the learner can interact with an

oracle (teacher) by asking it several types of allowed queries. Angluin showed, on the negative

side, that regular languages cannot be learned (in the exact model) from only membership

queries (MQ) [Ang81] or only equivalence queries (EQ) [Ang90]. On the positive side, An-

gluin [Ang87a] showed that regular languages, represented as DFAs, can be learned using both

MQ and EQ. The celebrated algorithm, termed L∗, was extended to learning many other classes

of languages and representations, e.g. [Sak90, BV96, AV10, BHKL09, AEF15, MP95, AF16],

see the survey [Fis18] for more references.

In particular, an extension of L∗, termed MAT∗, to learn SFAs was provided in [AD18],

which proved that SFAs over an algebra A can be efficiently learned using MAT∗ if and only

if the underlying algebra is efficiently learnable (see Definition 5.3.1), and the size of the

disjunctions of k predicates does not grow exponentially in k.5 From this it was concluded that

SFAs over the following underlying algebras are efficiently learnable: Boolean algebras over

finite domains, equality algebra, tree automata algebra, and SFAs algebra. Efficient learning of

SFAs over a monotonic algebra using MQ and EQ was established in [CDYS17], which improved

on the results of [MM14, MM17] by using a binary search instead of a helpful teacher.

The result of [AD18] provides means to establish new positive results on learning classes

of SFAs using MQ and EQ, but it does not provide means for obtaining negative results for

query learning of SFAs using MQ and EQ. We strengthen this result by providing a learnability

result that is independent of the use of a specific learning algorithm. In particular, we show that

efficient learnability of a Boolean algebra A using MQ and EQ is a necessary condition for the

learnability of the class of SFAs over A , as we state in Theorem 5.1.

5As is the case, for instance, in the OBDD algebra [Bry86].
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Definition 5.3.1. We say that an algebra A is polynomially learnable using MQs and EQs if there

exists a query learning algorithm that given a predicate ψ over A can learn ψ using poly(|ψ|)
MQs and EQs.

Theorem 5.1. If a class of SFAs M over a Boolean algebra A is polynomially learnable using

MQ and EQs, then A is polynomially learnable using MQ and EQs.

Proof. Assume that M is polynomially learnable using MQ and EQs, using an algorithm QM.

We show that there exists a polynomial learning algorithm QA for the algebra A using MQ and

EQs. The algorithm QA uses QM as a subroutine, and behaves as a teacher for QM. Whenever

QM asks a M-MQ on a word γ1 . . . γk, if k > 1 then QA answers “no”. If k=1 then the M-MQ

is essentially an A-MQ, thus QA issues this query and passes the answer to QM. Whenever QM

asks a M-EQ on SFAM, ifM is not a two state SFA with a single transition labeled by some

predicate ψ, then QA answers “no” to the M-EQ and returns some word w ∈ L(M) s.t. |w| > 1
and w was not provided before, as a counterexample. Otherwise (if the SFA is of the above

form) then QA asks an A-EQ on ψ. If the answer is “yes” then QA terminates and returns ψ as

the result of the learning algorithm; if the answer to the A-EQ on ψ is “no”, then the provided

counterexample 〈γ, bγ〉 is passed back to QM together with the answer “no” to the M-EQ.

The algorithm described above is sound, and the teacher is consistent, and thus, since M
is learnable using QM, the algorithm eventually terminates. Note that QM learns exactly the

language of a one-letter word which consists of the predicate to be learned by QA . This is since

it only answers MQs positively on one-letter words, and an EQ is answered positively only if the

SFA consists of two states and one transition. Therefore the algorithm learns one predicate over

the algebra, and thus if M over A is learnable, then so is A . �

From Theorem 5.1 we derive what we believe to be the first negative result on learning SFAs

from MQ and EQ, as we show that SFAs over the propositional algebra are not polynomially

learnable using MQ and EQ. Polynomiality is measured with respect to the parameters 〈n,m, l〉
representing the size of the SFA and the number k of atomic propositions. We achieve this by

showing that no learning algorithm A for the Boolean algebra using MQ and EQ can do better

than asking 2k MQ/EQs, where k is the number of atomic propositions.6

Proposition 5.3.2. Let A be a sound learning algorithm for the propositional algebra over Bk.

Then, there exists a target predicate ψ, for which A will be forced to ask at least 2k − 1 queries

(either MQ or EQ).

Proof. Since A is sound, at stage i + 1 we have S+
i+1 ⊇ S+

i and S−i+1 ⊇ S−i and at least one

inclusion is strict. Since the size of the concrete alphabet is 2k, for every round i < 2k, an

adversarial teacher can answer both MQs and EQs negatively. In the case of EQ there must be an

element in Bk \ (S−i ∪ S
+
i ) with which the provided automaton disagrees. The adversary will

return one such element as a counterexample. This forces A to ask at least 2k−1 queries. �
6In [Nak00] Boolean formulas represented using OBDDs are claimed to be polynomially learnable with MQ and

EQ. However, [Nak00] measures the size of an OBDD by its number of nodes, which can be exponential in the
number of propositions.
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Corollary 5.2. SFAs over the propositional algebra with k propositions cannot be learned in

poly(k) time using MQ and EQ.

The propositional algebra is a special case of the n-dimensional boxes algebra. Learning

n-dimensional boxes was studied using MQ and EQ [GGM94, BGGM98, BK98], as well as

in the PAC setting [BK00]. The algorithms presented in [GGM94, BGGM98, BK98, BK00]

are mostly exponential in n. Alternatively, [GGM94, BGGM98] suggest algorithms that are

exponential in the number of boxes in the union. In [BK98] a linear query learning algorithm

for unions of disjoint boxes is presented. Since n-dimensional boxes subsume the propositional

algebra, Corollary 5.2 implies the following.

Corollary 5.3. The class of SFAs over n-dimensional boxes algebra cannot be learned in

poly(n) time using MQ and EQ.

In case the minimal normalized SFA and the minimal neat SFA are isomorphic, then in

essence, we only need to learn basic predicates. We call such automata purely neat. A motivation

for purely neat SFAs can be found, for example, in [BJR06], where purely neat transitions

augmented to finite alphabet letters are used to model communication protocols. The algorithm

of [BJR06] is exponential in the number of propositions appearing in some conjunction. Here,

we prove that this is a lower bound on the learnability of purely neat SFAs using MQs and

EQs. We observe that the proof of Theorem 5.1 applies also for purely neat SFAs, thus we can

strengthen the theorem as follows.

Theorem 5.4. Any class of SFAs M over a Boolean algebra A , that subsumes all two-state SFAs

with a single transition between them, labeled by an arbitrary predicate from A , is polynomially

learnable using MQ and EQ only if the algebra A is polynomially learnable using MQ and EQ.

Corollary 5.5. Purely neat SFAs over the propositional algebra with k propositions cannot be

learned in poly(k) time using MQ and EQ.

5.4 Identification in the Limit

The model of identification in the limit using polynomial time and data was proposed by

Gold [Gol78] who showed that regular languages represented by DFAs are learnable in this

model. We follow de la Higuera’s more general definition [dlH97a].

This learning paradigm has a somewhat information theoretic perspective, in that it asks

whether a class of languages can be learned from a polynomial set of correctly labeled words.

A sample for a language L is a finite set S consisting of labeled examples, that is, pairs of the

form 〈w, bw〉 where w is a word and bw ∈ {0, 1} is its label, satisfying that bw = 1 if and only

if w ∈ L. Given two words w and w′, we say that w and w′ are not equivalent with respect to S ,

denoted w 6∼S w′, iff there exists z such that 〈wz, b〉, 〈w′z, b′〉 ∈ S and b 6= b′. Otherwise we

say that w and w′ are equivalent wrt. S, and denote w ∼S w′.
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The sample is considered polynomial if it is of size polynomial in the smallest representation

for L. In addition, it is required that given such a so-called characteristic sample SL (formally

defined in Definition 5.4.1), a learning algorithm can efficiently learn the target L (i.e. in time

polynomial in SL), and more generally, that there exists an efficient learning algorithm, that

outputs a representation agreeing with a given sample. Finally, it is required that the learning

algorithm is not diverted from its correct conjecture when seeing additional information on top

of the characteristic sample, in the sense that it correctly learns the target language L given any

sample S ′ for L that is a superset of the characteristic sample SL. The formal definition follows.

Definition 5.4.1 (identification in the limit using polynomial time and data). A class of langua-

ges L is said to be identified in the limit using polynomial time and data via representations

in a class C if there exists a learning algorithm Alg such that the following two requirements

are met.

1. Given a finite sample S of labeled examples, Alg returns in polynomial time a hypothesis

C ∈ C that agrees with S.

2. For a language L ∈ L, let C ∈ C be the minimal representation for L. Then, there exists

a sample SL, termed a characteristic sample, of size polynomial in the size of C, such

that Alg returns an hypothesis C′ that is equivalent to C, when run on any sample that

subsumes SL.

Note that the first condition ensures polynomial time and the second polynomial data. If given

arbitrary large finite sets, that do not have a representation in class C, the algorithm is promised

to return some representation that agrees with the sample; the algorithm is then allowed to

fail on the second condition. De la Higuera’s notion of characteristic sample is a core concept

in grammatical inference, for various reasons. Firstly, it addresses shortcomings of several

other attempts to formulate polynomial-time learning in the limit [Ang88, Pit89]. Secondly,

this notion has inspired the design of popular algorithms for learning formal languages such

as, for example, the RPNI algorithm [OG92]. Thirdly, it was shown to bear strong relations

to a classical notion of machine teaching [GM96]; models of the latter kind are currently

experiencing increased attention in the machine learning community [ZSZR18].

In this chapter, since we are interested in symbolic automata learning, we consider the

representation class C to be a class of certain SFAs. The goal of an identification in the limit

algorithm for SFAs is two-folded. The algorithm needs to construct the SFA in terms of

structural representation, that is, its states and transitions; and to learn the predicates labeling

the transitions. Identification in the limit of SFAs then requires first finding a polynomial size

characteristic sample, over the concrete domain elements, and second, devising an SFA inference

algorithm meeting the requirements of Definition 5.4.1. This problem appears to be hard, and

has no solution in the general case. Indeed, we show that SFAs over the propositional algebra

cannot be learned in this paradigm. On the other hand we show that the class of SFAs over the

interval algebra can be learned in this paradigm.
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5.4.1 Identification in the limit of DFAs using polynomial time and data

It was shown by [Gol78, OG92] that DFAs are identifiable in the limit using polynomial time

and data. Our results rely on some properties of the algorithms for identification in the limit for

DFA. Therefore, for completeness of the presentation, we first provide a complete description

of the procedures showing that DFAs are identifiable in the limit using polynomial time and

data, and that they satisfy the required properties.

Theorem 5.6 ([OG92]). The class of DFAs is identifiable in the limit using polynomial time

and data via procedures CharDFA and InferDFA satisfying that ifD is a minimal and complete

DFA and CharDFA(D) = SD then the following holds:

1. SD contains a prefix-closed set A of words. The words in A are termed access words.7

Moreover, A can be chosen to contain only lex-access words, which are the smallest

access words in the lexicographic order.

2. For every u1, u2 ∈ A it holds that u1 6∼SD u2.

3. For every u, v ∈ A and σ ∈ Σ, if δ(q0, uσ) 6= δ(q0, v) then uσ 6∼SD v.

We later use these properties in order to construct a DFA out of a given set S. Therefore,

we need to relate between the words of the sample and the transition relation of the automaton.

This is the motivation for properties (2) and (3). As for the first property, given a set S ⊇ SD,

property (1) helps us recognize the words in S that are also in SD. For SFAs, this property allows

us to understand which of the alphabet letters are relevant in order to identify the predicates

labeling transitions.

To prove Theorem 5.6 we first show that given a DFAD = 〈Σ, Q, q0, F, δ〉, we can construct

a polynomial-sized sample of words SD that agrees with D and satisfies the required properties.

We show an algorithm that (i) can infer in polynomial time from a given sample S a DFA that

agrees with S, and (ii) if it is given the set SD, or any set S ⊇ SD that agrees with D, then it

infers a DFA that is equivalent to D. All this together proves Theorem 5.6 (and explains why

we can refer to SD as the characteristic sample).

Constructing a characteristic set

Given a minimal and complete DFA, the algorithm CharDFA works as follows. It first creates

a prefix-closed set of access words to states. This can be done by considering the graph of the

automaton and running an algorithm for finding a spanning tree T from the initial state. Choosing

one of the letters on each edge, the access word for a state is obtained by concatenating the

labels on the unique path of T that reaches that state. If we wish to work with lex-access words,

we can use a depth-first search algorithm that spans branches according to the order of letters in

Σ, starting from the smallest. The labels on the paths of the spanning tree constructed this way

will form the set of lex-access words. Let S be the set of access words (or lex-access words).

Next, the algorithm turns to find a distinguishing word vi,j for every pair of state si, sj ∈ S
(where si 6= sj). Lemma 5.4.2 below states that any pair of states of the minimal DFA

7As we later show, the words of A intuitively correspond to the states of D.
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has a distinguishing word of size quadratic in the size of the DFA. Let E be the set of all

such distinguishing words. We may assume ε ∈ E.8 Then the algorithm returns the set

SD = {〈w,D(w)〉 : w ∈ (S · E) ∪ (S · Σ · E)} where D(w) is the label D gives w (i.e. 1 if

D accepts w, and 0 otherwise).

It is easy to see that SD satisfies the properties of Theorem 5.6.

Lemma 5.4.2. Let D = 〈Σ, Q, q0, F, δ〉 be a minimal DFA, and let q1, q2 ∈ Q s.t. q1 6= q2.

Then there exists a polynomial time procedure that returns a word v of size at most |Q|2 such

that δ(q1, v) is accepting iff δ(q2, v) is rejecting.

Proof. We can apply the product construction to Di = 〈Σ, Q, qi, F, δ〉 for i ∈ {1, 2} and search

for a path from the initial state (q1, q2) to a state in F × (Q \ F ) or (Q \ F )× F to find a word

that leads to an accepting state when read from q1 and a rejecting state when read from q2 or

vice versa. Since a shortest simple path in a graph is bounded by the number of nodes, the

shortest such word is of length at most |Q|2. The shortest path can be found using breadth-first

search algorithms that run in time linear in the number of vertices and edges, thus polynomial in

the size of the DFA. �

Since computing a spanning tree (in particular via DFS) and finding shortest paths can be

done in polynomial time, this shows that for DFAs we can construct the characteristic set in

polynomial time. That is, while Definition 5.4.1 only requires that the characteristic set be of

polynomial size, for DFAs we can show that it can also be computed in polynomial time.

Inferring a DFA

Next, we describe algorithm InferDFA that given a set of sample words S, infers from it in

polynomial time a DFA that agrees with S. Moreover, if S ⊇ SD where SD is a characteristic

sample set of a DFAD, and S agrees with L(D), then InferDFA returns an equivalent DFA toD.

Let W be the set of words in the given sample S (without their labels). Let R be the set of

prefixes of W , and C be the set of suffixes of W . Note that ε ∈ R and ε ∈ C. Let r0, r1, . . . be

some enumeration of R and c0, c1, . . . some enumeration of C where r0 = c0 = ε. In the sequel,

we often use iw for the index of w in R. The algorithm builds a matrix M of size |R| × |C|
whose entries take values in {0, 1, ?}. The algorithm sets the value of entry (i, j) as follows. If

ricj is not in W , it is set to ?. Otherwise it is set to 1 iff the word ricj is labeled 1 in S . We get

that ri ∼S rj iff for every k such that both M(i, k) and M(j, k) are different than ?, we have

that M(i, k) = M(j, k).

The algorithm sets R0 = {ε}. Once Ri is constructed, the algorithm tries to establish

whether rσ for r ∈ Ri and σ ∈ Σ is distinguished from all words in Ri. It does so by

considering all other words r′ ∈ Ri and checking whether rσ ∼S r′. If rσ is found to be

8Unless D accepts all words or rejects all words, it has at an accepting state and a rejecting state, and ε is the
shortest word distinguishing these states. If all states of D are accepting (or all rejecting) the algorithm returns
SD = {〈ε, 1〉} (resp. SD = {〈ε, 0〉}).
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distinct from all words in Ri, then Ri+1 is set to Ri ∪ {rσ}. The algorithm proceeds until no

new words are distinguished. Let R = Rk where k is the iteration of convergence.

If not all words in R are in W (that is M(i, 0) =? for some ri ∈ R), the algorithm returns

the prefix-tree automaton.9 Otherwise, the states of the constructed DFA are set to be the words

in R. The initial state is ε and a state ri is classified as accepting iff M(i, 0) = 1 (recall that the

entry M(i, 0) stands for the value of ri · ε in S). To determine the transitions, for every r ∈ R
and σ ∈ Σ, recall that there exists at least one state r′ ∈ R that cannot be distinguished from rσ.

The algorithm then adds a transition from r on σ to r′.

Proposition 5.4.3.

1. Algorithm InferDFA runs in polynomial time and returns a DFA that agrees with the

given sample S.

2. Let SD be the sample constructed for a DFA D by algorithm CharDFA, and let S ⊇ SD.

Then algorithm InferDFA returns a DFA that recognizes the same language as D.

Proof.

1. The number of prefixes (or suffixes) of a set of words is bounded by the size of the longest

word times the size of the set. Thus M is of polynomial size, and so is its construction.

The number of iterations required for converging the Ri sets is bounded by |W |. The

prefix-tree automaton can be computed in polynomial time. Determining acceptance is

polynomial in |R|, and determining the transitions is polynomial in |R| × |Σ|. Therefore

the overall running time of the algorithm is polynomial.

Clearly, if InferDFA returns the prefix-tree automaton then it agrees with the given

sample S. We claim that it agrees with the given sample also in the second case. We

show, by induction on the length of the word, that for every w ∈ W , if w reaches state

r of the constructed DFA, then w ∼S r. Then, since w is in the sample, and r is in the

sample (otherwise the algorithm would return the prefix-tree automaton), it follows that

M(iw, 0) = M(ir, 0), hence the DFA agrees with the sample on w.

For the base case, we have that |w| = 0 then the DFA accepts if r0 is accepting, which

holds iff M(0, 0) = 1. Indeed, this entry is filled with the label of ε in S. Consider now

w = vσ for some v ∈ Σ∗ and σ ∈ Σ. Assume that the DFA reaches the state s` on reading

v and the state sm on reading w. By the induction hypothesis, we know that r` ∼S v.

From the construction of the algorithm it follows that r`σ ∼S sm as otherwise, reading

σ from r` would lead to a different state. If rm 6∼S w then exists a suffix ci ∈ C s.t.

M(m, i) 6= M(iw, i). But then σci is also in C. Then M(`, j) 6= M(iv, j), contradicting

that r` ∼S v.

9The prefix-tree automaton is the automaton obtained by placing all words in a tree data structure (sharing
common prefixes) and labeling a state accepting iff the unique word reaching that state is in the sample and is
labeled 1.
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2. Next, we show that if S subsumes SD then the returned DFA agrees with D. Let

w1, . . . , wn be the set of accessible words chosen by CharDFA. Since S consists of a

distinguished word for every pair of access words wi and wj of D, algorithm InferDFA
will determine wi 6∼S wj andR will consist of at least n states. It may not consist of more

states, since the sample has to agree with the language of D and every word agrees with

some state of D on all possible suffixes, thus cannot be determined distinct by InferDFA.

Since S · Σ · E was placed in S , for every distinguished state w and every σ ∈ Σ the alg.

InferDFA can determine the transition from w upon reading σ. Since S · ε is placed in

S, alg. InferDFA can correctly label the set of accepting states. Therefore, the obtained

DFA is isomorphic to the original DFA. �

We can thus conclude that the class CD of DFAs is identifiable in the limit using polynomial

time and data. Furthermore, CD satisfies the properties of Theorem 5.6.

5.4.2 Conditions for identification in the limit of SFAs

We now turn to discuss our results regarding identification in the limit of symbolic automata.

We provide a necessary condition, and a sufficient condition for deciding whether a class of

SFAs is identifiable in the limit using polynomial time and data.

A necessary condition for identification in the limit of SFAs

We make use of the following definitions. A sequence 〈Γ1, . . . ,Γm〉 consisting of sets of

concrete letters Γi ⊆ D is referred to as a concrete partition of D if the sets are pairwise disjoint

(namely Γi ∩ Γj = ∅ for every i 6= j). Similarly, a sequence of predicates 〈ψ1, . . . , ψm〉 over a

Boolean algebra A is referred to as a predicate partition if JψiK ∩ JψjK = ∅ for every i 6= j.

Definition 5.4.4.

• A function fg from a concrete partition to a predicate partition is termed generalizing if

fg(〈Γ1, . . . ,Γm〉) = 〈ψ1, . . . , ψk〉 implies k = m and JψiK ⊇ Γi for all 1 ≤ i ≤ m.

• A function fc from a predicate partition to a concrete partition is termed concretizing if

fc(〈ψ1, . . . , ψm〉) = 〈Γ1, . . . ,Γk〉 implies k = m and Γi ⊆ JψiK for all 1 ≤ i ≤ m.

We say that fg (resp. fc) is efficient if it can be computed in polynomial time. Note that if fc is

efficient then the sets Γi in the constructed concrete partition are of polynomial size.

Theorem 5.7. A necessary condition for a class of SFAs M to be identified in the limit

using polynomial time and data is that there exist efficient concretizing and generalizing

functions, ConcretizeM and GeneralizeM, satisfying that if ConcretizeM(〈ψ1, . . . , ψm〉) =
〈Γ1, . . . ,Γm〉 and GeneralizeM(〈Γ′1, . . . ,Γ′m〉) = 〈ϕ1, . . . , ϕm〉 where Γi ⊆ Γ′i for every

1 ≤ i ≤ m, then JϕiK = JψiK for every 1 ≤ i ≤ m.
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Proof. Assume one of the requirements fails. That is, either there exists no efficient concretizing

or generalizing function, or the generalization fails if the concrete partition is enhanced with

more words. LetM ∈ M be an SFA whose initial state, qι, has outgoing transitions labeled

by ψ1, . . . , ψm. Then, from the definition of identification in the limit, we cannot learn the

outgoing transitions of qι. Thus we cannot learnM, and the class M cannot be identified in the

limit using polynomial time and data. �

Example 5.4.5. Consider the class MAN of SFAs over the algebra AN of Example 5.2.1, and

consider the functions

ConcretizeMAN
(〈[d1 = 0, d′1), [d2, d

′
2), . . . , [dm, d′m =∞)〉) = 〈{d1}, . . . , {dm}〉

GeneralizeMI
(〈Γ1, . . . ,Γn〉) = 〈[min Γ1,min Γ2), . . . , [min Γn,∞)〉

Then, ConcretizeMAN
and GeneralizeMAN

are efficient and satisfy the conditions of Theo-

rem 5.7, since every element added to a set Γi has to be inside the corresponding interval, and

thus cannot affect the result of generalization.

We say that a Boolean algebra A with predicates P over domain D is efficiently identifiable

if there exist polynomially computable functions fc : P → D and fg : D → P such that

fc(ψ) ⊆ JψK and Jfg(Γ)K ⊇ Γ for every ψ ∈ P and Γ ⊆ D, and moreover if fc(ψ) = Γ, Γ′ ⊇ Γ
and fg(Γ′) = ψ′, then Jψ′K = JψK. Using this terminology we can state the following corollary.

Corollary 5.8. Efficient identifiability of the underlying algebra is a necessary condition for

identification in the limit using polynomial time and data of the respective class of SFAs.

This corollary holds since the condition of Theorem 5.7 is violated when the underlying

algebra is not efficiently identifiable (when considering partitions of size one).

A sufficient condition for identification in the limit of SFAs

The result regarding the sufficient condition on identification in the limit of SFAs using poly-

nomial time and data relies on the respective result for DFAs [Gol78, OG92], as stated in

Theorem 5.9 that follows from Section 5.4.1.

Theorem 5.9 ([Gol78, OG92]). There exist procedures CharDFA and InferDFA witnessing

that the class of DFAs is identified in the limit using polynomial time and data.

To state the sufficient condition we need the following definitions:

Definition 5.4.6.

• For an SFA M, the alphabet Σconc, as defined in line 4 of Alg. 5.1, is the set of all

concretizations of predicates labeling transitions inM.

89



Algorithm 5.1 CharSFA – Build a characteristic sample for a given SFA
Input an SFAM, algorithm CharDFA, function ConcretizeM
Output a concrete characteristic set SM ⊆ D∗ × {0, 1}

1: function CHARSFA(M = 〈A, Q, qι, F, δ〉)
2: for all q ∈ Q do let 〈ψq1, · · · , ψqm〉 be the predicates labeling
3: outgoing transitions from q

4: Σconc :=
⋃
q∈Q ConcretizeM(〈ψq1, · · · , ψqm〉)

5: δD := ∅
6: for all q, q′ ∈ Q, d ∈ Σconc do
7: if 〈q, ψ, q′〉 ∈ δ and d ∈ JψK then
8: δD := δD ∪ 〈q, d, q′〉
9: DM := 〈Σconc, Q, qι, F, δD〉

10: SM = CharDFA(DM)
11: return SM

• A function fd that takes as input a sample set S and outputs a sample set S ′ ⊆ S, is

termed decontaminating if given a characteristic sample SM over the alphabet Σconc, if

S ⊇ SM is over an alphabet Σ ⊇ Σconc, then fd(S) = S ′ for some S ′ over the alphabet

Σconc satisfying that SM ⊆ S ′ ⊆ S.

Theorem 5.10. For a class M of SFAs, if there exist functions ConcretizeM and GeneralizeM

satisfying the criteria of Theorem 5.7, and in addition there exists an efficient decontaminat-

ing function DecontaminateM, then the class M is identified in the limit using polynomial

time and data.

Given functions ConcretizeM, DecontaminateM and GeneralizeM for a class M of SFAs

meeting the criteria of Theorem 5.10, we show that the class M can be identified in the limit

using polynomial time and data.

The procedures we provide, CharSFA and InferSFA, described in Alg. 5.1 and Alg. 5.2,

respectively, use the algorithms CharDFA and InferDFA, respectively, as well as the methods

ConcretizeM, GeneralizeM and DecontaminateM. We briefly describe these two algorithms,

and then turn to prove Theorem. 5.10.

The algorithm CharSFA (Alg. 5.1), receives an SFAM∈M, and returns a characteristic

sample for it. It does so by constructing a DFA DM over the alphabet Σconc with the same

structure asM (i.e. same states and edges), where a transition in DM is labeled by a concrete

letter d iff d satisfies the predicate on the corresponding transition inM (Alg. 5.1 lines 6-8).

Recall that since ConcretizeM is an efficient concretizing function, its output is finite, and thus

Σconc is finite as well. Hence DM is indeed a DFA (over a finite and concrete alphabet). Then,

Alg. 5.1 generates and returns the sample SM using the algorithm CharDFA applied on the

DFA DM (line 10).

Algorithm InferSFA (Alg. 5.2), given a sample set S, returns an SFAMS for it. First,

InferSFA finds a subset S ′ ⊆ S over the alphabet Σconc by calling DecontaminateM(S)
(line 2). Then it uses S ′ to construct a DFA by applying the inference algorithm InferDFA on S ′
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Algorithm 5.2 InferSFA – Infer an SFA from a sample
Input sample S ⊆ D∗ × {0, 1}, algorithm InferDFA,

functions GeneralizeM, DecontaminateM
Output An SFA that agrees with the given sample S

1: function INFERSFA(S)
2: S ′ := DecontaminateM(S)
3: 〈Σ, Q, qι, F, δD〉 := InferDFA(S ′)
4: δM := ∅
5: for all q ∈ Q do
6: for all qi ∈ Q do Γi := {γ : 〈q, γ, qi〉 ∈ δD}
7: 〈ψ1, . . . , ψn〉 := GeneralizeM(〈Γ1, . . . ,Γn〉)
8: for all qi ∈ Q do δM := δM ∪ 〈q, ψi, qi〉
9: MS := 〈Σ, Q, qι, F, δM〉

10: if ∃w in S that does not agree withMS then
11: return the prefix tree automaton of S
12: else
13: returnMS

(line 3). From this DFA, InferSFA constructs an SFA,MS , by applying GeneralizeM on each

state q to get the symbolic transitions from the set of concrete transitions exiting q (lines 5-8).

In Section 5.4.3 we provide methods ConcretizeM , DecontaminateM and GeneralizeM

for SFAs over monotonic algebras, deriving their identification in the limit result. We now prove

Theorem 5.10.

Proof of Theorem 5.10. To prove sufficiency, we show that if there exist functions ConcretizeM,

DecontaminateM and GeneralizeM meeting the required criteria for a class of SFAs M, then

M is identified in the limit using polynomial time and data. To this end, we show that the two

conditions of Definition 5.4.1 are met.

For the first condition, given that InferDFA, DecontaminateM and GeneralizeM run in

polynomial time, and that the prefix-tree automaton can be constructed in polynomial time, it

is clear that so does InferSFA. In addition, the test of line 10 in Alg. 5.2 ensures the output

agrees with the sample. If the SFAMS does not agree with the sample S, then the prefix tree

automaton of S is returned.

For the second condition, note that the sample generated by CharSFA is polynomial in the

size of DM, from the correctness of CharDFA. In addition, since ConcretizeM is efficient,

DM is polynomial in the size ofM, and thus SM generated by CharSFA is polynomial inM
as well. It is left to show that given that SM is the concrete sample produced by CharSFA when

running on an SFAM, then when InferSFA runs on any sample S ⊇ SM such that S agrees

withM, InferSFA returns an SFA for L(M). Since DecontaminateM is a decontaminating

function, and S ⊇ SM, it holds that the set S ′ = DecontaminateM(S) is such that S ′ ⊇ SM
and is only over the alphabet Σconc, which is exactly the alphabet of the DFA DM generated in

Alg. 5.1 (line 9).

From the correctness of InferDFA, given S ′ ⊇ SM, the inferred DFA D (Alg. 5.2 line 3)
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is equivalent to DM constructed in Alg.5.1. Since DM is complete, for a state q of D, the

concrete partition 〈Γ1, . . . ,Γn〉 generated in Alg. 5.2 line 6, covers Σconc and subsumes the

output of ConcretizeM on the outgoing symbolic transitions from the state equivalent to q

in DM. Thus, since GeneralizeM and ConcretizeM satisfy the criteria of Theorem 5.7, it

holds that the generated predicates agree with the original predicates. In addition, since S , and

therefore S ′, agrees withM, the test of line 10 fails and the returned SFA is equivalent toM.�

5.4.3 Identification in the limit for certain classes of SFAs

We first discuss monotonic algebras, presenting the following positive result. Then we show

that this does not hold for non-monotonic algebras, as stated in Proposition 5.4.12 regarding the

propositional algebra.

Theorem 5.11. Let MAm be the set of SFAs over a monotonic Boolean algebra Am . Then MAm

is identified in the limit using polynomial time and data.

In order to prove Theorem 5.11, we show that the sufficient condition holds for the case

of monotonic algebras. Example 5.4.11 demonstrates how to apply CharSFA and InferSFA
in order to learn an SFA over the algebra AN. In order to prove the sufficient condition of

Theorem 5.10, we first show that the necessary condition of Theorem 5.7 holds for monotonic

algebras.

Proposition 5.4.7. There exist functions ConcretizeMAm
and GeneralizeMAm

for the class MAm

of SFAs over a monotonic Boolean algebra, satisfying the criteria of Theorem 5.7.

Proof. Let D be the domain of Am . Recall that in Section 5.2.1, a monotonic algebra is defined

over its domain D together with the two elements dinf and dsup. We provide the functions

ConcretizeMAm
and GeneralizeMAm

for MAm , and prove that the criteria of Theorem 5.7 hold

for them. For ease of presentation, we consider the class of neat and complete SFAs. The result

holds for general SFAs as well since, by Lemma 5.2.4 and Lemma 5.2.9, the transformation

from a general SFA to a neat and complete SFA over a monotonic algebra is polynomial.

The definitions of ConcretizeMAm
and GeneralizeMAm

are generalizations of the functions

ConcretizeMAN
and GeneralizeMAN

given in Example 5.4.5.

ConcretizeMAm
(〈ψ1, . . . ψm〉) = 〈Γ1, . . . ,Γm〉 where we set Γi = {infimum{d ∈ D :

d ∈ JψiK}} for 1 ≤ i ≤ m . Since Am is monotonic, Γi is well defined and contains a single

element, thus ConcretizeMAm
is an efficient concretizing function.

GeneralizeMAm
(〈Γ1, . . . ,Γm〉) = 〈ψ1, . . . , ψm〉, where ψi is defined as follows. Let Γ =⋃

1≤i≤m Γi. First, for all 1 ≤ i ≤ m we set ψi = ⊥. Then, we iteratively look for the minimal

element γ ∈ Γ. Let i be such that γ ∈ Γi, and let γ′ be the minimal element in Γ satisfying

γ′ /∈ Γi. We then set ψi = ψi ∨ [γ, γ′), and remove all elements γ ≤ γ′′ < γ′ from Γ. We

repeat the process until for the found γ ∈ Γj , there is no γ′ > γ such that γ′ /∈ Γj . In this case,

we define ψj = ψj ∨ [γ, dsup). In order to construct a neat SFA we can later split each ψi that

contains m disjunctions, into m transitions. Then, Γi ⊆ JψiK and the predicates are disjoint,

thus GeneralizeMAm
is an efficient generalizing function.
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Now, let 〈Γ1, . . . ,Γm〉 be the concrete partition obtained from ConcretizeMAm
when applied

on the predicate partition 〈ψ1, . . . , ψm〉. Assume further that the concrete partition 〈Γ′1, . . . ,Γ′m〉
satisfies that Γi ⊆ Γ′i ⊆ JψiK for 1 ≤ i ≤ m. In particular, min(Γ′i) = min(Γi), since Γi con-

tains the minimal elements in JψiK, and Γi ⊆ Γ′i ⊆ JψiK. Therefore, applying GeneralizeMAm

will result in the same interval, satisfying the criterion of Theorem 5.7. �

Example 5.4.8. Let Γ1 = {0, 100, 400, 500} and Γ2 = {150, 200} over the algebra AN with

domain N ∪ {∞}. Then, GeneralizeMAm
sets Γ = {0, 100, 150, 200, 400, 500}, and finds the

minimal element 0 ∈ Γ1. It then looks for the minimal element γ ∈ Γ such that γ /∈ Γ1, and

finds 150 ∈ Γ2. Therefore ψ1 = [0, 150) and Γ is updated to be Γ = {150, 200, 400, 500}.
Next, it finds the minimal element 150 ∈ Γ2, and the minimal element that is not in Γ2 is 400.

Then, ψ2 is set to be ψ2 = [150, 400) and Γ = {400, 500}. Now, ψ1 = [0, 150) ∨ [400,∞)
since 400 ∈ Γ1 and there is no greater element that is not in Γ1.

Procedure DecontaminateMAm
: Input: set S over alphabet Σ

Output: set S ′ over alphabet Σ′

1. Let Aw = {ε}. The set Aw stands for the lex-access words discovered so far.

2. Set Σ′ = {dinf} and set max = dinf.a

3. Traverse Aw according to the lexicographic order, and for every u ∈ Aw, do:

(a) Add σ to Σ′ iff σ > max and u · σ 6∼S u · max and σ is the minimal in Σ
satisfying this property.

(b) If σ was added to Σ′, add uσ to Aw iff there is no u′ ∈ Aw such that uσ ∼S u′.b

(c) Set max = σ and repeat item 3 until no such σ is found.

4. Set max = dinf and repeat item 3 until Σ′ is remained unchanged.

5. Return S ′ = S ∩ Σ′∗.
aRecall that for a monotonic algebra, as defined in Section 5.2.1, there exists an element dinf such that for

every d ∈ D it holds that dinf ≤ d.
bNote that we add σ to Σ′ in item 3a even if there is a u′ such that uσ ∼S u′, as long as u′ is not of the

form of u ·max . Intuitively, this is since we are looking for letters labeling outgoing transitions from the state
that is represented by u.

Algorithm 5.3: DecontaminateMAm

To prove that the sufficient condition holds, we build upon some properties of procedures

CharDFA and InferDFA as stated in Theorem 5.6 in Section 5.4.1.

Proposition 5.4.9. The sufficient condition of Theorem 5.10 holds for the class MAm of SFAs

over a monotonic Boolean algebra.

Proof. In Alg. 5.3 we provide pseudo-code for the procedure DecontaminateMAm
(S).

Given the functions ConcretizeMAm
and GeneralizeMAm

defined in proof of Proposition 5.4.7,

assume that S ⊇ SM is such that SM is the characteristic sample of a DFA DM over alphabet
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Σconc, constructed from some SFAM as described in Alg. 5.1. In Lemma 5.4.10 we show that

under these assumptions it holds that Σ′ = Σconc. Then, for the set S ′ returned in item 5 of

Alg. 5.3, it holds that S ′ = S ∩Σ∗conc. Since S ⊇ SM and Σ∗conc ⊇ SM, it holds that S ′ ⊇ SM
and is defined over the alphabet Σconc. Therefore, DecontaminateMAm

is a decontaminating

function. In addition, DecontaminateMAm
runs in time polynomial in the size of S, thus the

conditions of Theorem 5.10 are met. �

Lemma 5.4.10. Assume that the input to DecontaminateMAm
is S ⊇SM as described in the

proof of Proposition 5.4.9. Then, for Σ′ constructed in function DecontaminateMAm
it holds

that Σ′=Σconc.

Proof. Given the functions ConcretizeMAm
and GeneralizeMAm

defined in proof of Proposi-

tion 5.4.7, we prove that if S ⊇ SM such that SM is the characteristic sample of a DFA

DM over alphabet Σconc, constructed from some SFAM as described in Alg. 5.1, then for

DecontaminateMAm
given in Proposition 5.4.9 we have Σ′ = Σconc. To this end, we show that

the set Aw is exactly the set of all lex-access words of states in DM, and that Σ′ = Σconc.

First, we show that every u ∈ Aw is a lex-access word and that Σ′ ⊆ Σconc. We inductively

prove that every word that is added to Aw is a lex-access word; and that every letter that was

added to Σ′ in some iteration of the procedure DecontaminateMAm
is in Σconc.

For the Base case, we consider Aw = {ε} and Σ′ = {dinf}. From item 1 of Theorem 5.6, we

can assume access words are minimal according to the lexicographic order. Thus, ε ∈ Aw

is indeed a lex-access word (of the state q0). For dinf ∈ Σ′, it holds that Σconc contains the

minimal element of D since it contains all concretizations of intervals, the SFA is complete and

ConcretizeMAm
returns the minimal element of each interval. Therefore dinf ∈ Σconc.

For the induction step, assume that Aw contains only lex-access words and that the current Σ′

is a subset of Σconc. Then, when considering u ∈ Aw in item 3, it holds that u is a lex-access

word of some state q. Then, σ is added to Σ′ only if uσ 6∼S udinf. Since S agrees withM, it

holds that δM(q0, uσ) 6= δM(q0, udinf) and σ is a minimal element with that property. Then, σ

must be a minimal element of an interval labeling an outgoing transition from q, therefore is in

Σconc. Inductively this holds for all elements added to Σ′ in the current iteration. This proves

that Σ′ ⊆ Σconc. Assume now that Aw contains only lex-access words and let uσ be a word

added to Aw in item 3. Then, for all u′ ∈ Aw it holds that uσ 6∼S u′.

Claim. In this setting, uσ 6∼S u′ implies uσ 6∼SM u′.

Proof. Since we assume all words already in Aw are lex-access words, then in particular

u is a lex-access word. In addition, σ ∈ Σ′ and thus σ ∈ Σconc. Since uσ 6∼S u′ and

since S agrees withM, it holds that δM(q0, uσ) 6= δM(q0, u
′). Now, uσ and u′ are both

in Σconc since from item 3 we have Aw ⊆ Σ′∗, and thus δDM(q0, uσ) 6= δDM(q0, v), and

from item 3 of Theorem 5.6 it holds that uσ 6∼SM u′. This proofs the claim.

Then, for all u′ ∈ Aw we have δDM(q0, uσ) 6= δDM(q0, u
′). Then, since we traverse words and

letters in lexicographic order, uσ is a lex-access word for the state δDM(q0, uσ). We have shown

that every u ∈ Aw is a lex-access word and that Σ′ ⊆ Σconc. This concludes the first direction.
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Figure 5.2: The DFA DM constructed in Alg. 5.1

We turn to prove the second direction, that is, we show that every lex-access word is in Aw and

that Σconc ⊆ Σ′.
We start by proving that every lex-access word is inAw. First note that for ε, it holds that ε ∈ Aw.

Next, let uσ be a lex-access word. For all lex-access words u′ found in previous iterations it

holds that uσ 6∼SM u′ from item 2 of Theorem 5.6, and thus uσ 6∼S u′ since SM ⊆ S. Then,

uσ satisfies the condition of item 3 of procedure DecontaminateMAm
, and is added to Aw.

To prove Σconc ⊆ Σ′, we inductively prove that every letter in Σconc is add to Σ′ in some

iteration of DecontaminateMAm
. For the base case, let σ ∈ Σconc be the letter that was added

in item 3 with the access word u = ε. Note that for every SFA, ε is the lex-access word for the

state q0. From the construction of ConcretizeMAm
it holds that σ is the left endpoint of some

interval that is an outgoing transition from q0. Then, indeed σ is found in the first iteration of

item 3. Inductively, let σ label an outgoing transition of q for some q ∈ Q, and let uq be the

lex-access word of q. Since Aw contains all lex-access words, it holds that uq ∈ Aw, and then

the outgoing transitions of q will be considered in some following iteration. Thus, all minimal

letters indicating new intervals are added to Σ′ and we have that Σconc ⊆ Σ′. We conclude

that Σ′ = Σconc. �

Example 5.4.11. Continuing Example 5.4.5, letM be the SFA from Figure 5.1 and consider the

class MAN of SFAs over the interval algebra. Algorithm CharSFA computes the set Σconc using

the function ConcretizeMAN
given in Example 5.4.5. That is, for the predicates labeling outgo-

ing transitions from q0 we have ConcretizeAN(〈[0, 100), [100,∞)〉) = 〈{0}, {100}〉; and for

outgoing transitions from q1, it holds that ConcretizeAN(〈[0, 200), [200,∞)〉) = 〈{0}, {200}〉.
Then, Σconc = {0, 100, 200}, and CharSFA constructs the DFA over Σconc, where concrete

transitions agree with symbolic transitions of the original SFA. See Figure 5.2 for the resulting

DFA DM. Note the transition q0
200−−→ q0 in DM. Even-though 200 is not the end-point of

any interval labeling the outgoing transitions of q0 in the SFAM, this is a transition in the

DFA DM since 200 ∈ Σconc and since DM is complete. In addition, 200 is in the interval

[100,∞) labeling the transition q0
[100,∞)−−−−−→ q0 inM, and therefore 200 labels the corresponding

transition in DM. After constructing DM, algorithm CharSFA applies CharDFA on DM, and

returns the sample set

SM = {〈ε,⊥〉, 〈0,>〉, 〈100,⊥〉, 〈200,⊥〉, 〈0 · 0,>〉, 〈0 · 100,>〉, 〈0 · 200,⊥〉}

Now, assume algorithm InferSFA is given the set

S = {〈ε,⊥〉, 〈0,>〉, 〈100,⊥〉, 〈150,⊥〉, 〈200,⊥〉, 〈0 · 0,>〉, 〈0 · 100,>〉, 〈0 · 200,⊥〉}
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that subsumes SM, over the alphabet Σ = {0, 100, 150, 200}. The algorithm InferSFA applies

DecontaminateMAN
that generates the set S ′ over Σconc, where S ′ is calculated as follows.

It first finds the set Σconc of all elements that are a minimal left point of some interval, and

then chooses from S the words over Σconc. First, note that 100 ∼S 150, 100 ∼S 200 and

150 ∼S 200, while 0 6∼S 100, 150, 200. Since 0 is the minimal element it has to be in Σconc;

and since 100 is the minimal element that is not equivalent to 0 it has to define a new interval

and thus is in Σconc as well. Then, 0 and 100 define the left end-points of all intervals labeling

the outgoing transitions of q0. Next, we consider the suffixes of 0, which is a lex-access

word to the state q1. These are 0 · 0 and 0 · 100 that are equivalent, and 0 · 200 that is not

equivalent to the former. Since 0 · 100 is equivalent to 0 · 0, it holds that 100 does not define

a new interval now, but 200 does as it is the minimal (and only) suffix that is not equivalent

to 0 when considering suffixes of 0. Then, we deduce that Σconc = {0, 100, 200} and thus

S ′ = {〈ε,⊥〉, 〈0,>〉, 〈100,⊥〉, 〈200,⊥〉, 〈0 · 0,>〉, 〈0 · 100,>〉, 〈0 · 200,⊥〉}.
Algorithm InferSFA now applies InferDFA on the set S ′ and the resulting DFA would be the

DFA DM of Figure 5.2. Then it applies GeneralizeMAN
described in Example 5.4.5 and the

result will be the original SFA of Figure 5.1. That is, for outgoing transitions of q0 it applies

GeneralizeMAN
(〈{0}, {100, 200}〉) = 〈[0, 100), [100,∞)〉 and for outgoing transitions of q1 it

applies GeneralizeMAN
(〈{0, 100}, {200}〉) = 〈[0, 200), [200,∞)〉 and uses these predicates to

label the corresponding transitions in the SFA.

Unfortunately, the result of Theorem 5.11 does not extend to the non-monotonic case, as stated

in Proposition 5.4.12 regarding SFAs over the propositional algebra. Note that the number

of different predicates over Bk is unbounded. Since the concrete alphabet size is 2k, we can

learn any SFA of size Ω(2k) using a characteristic sample for the concrete DFA. Therefore,

we consider SFAs which are useful in the sense that they are significantly smaller than the

corresponding DFA. In particular, the out-degree of the SFA is O(k) rather than O(2k) as

of the DFA.

Proposition 5.4.12. The class MPk of SFAs over the propositional algebra on Bk with out-

degree that is bounded by O(k) is not efficiently identifiable.

Proof. Assume by way of contradiction that there exist functions ConcretizeMPk and

GeneralizeMPk satisfying the criteria from Theorem 5.7. Let Ψ be the set of semantic functions,

over the set of k propositions, i.e., functions that differ in the satisfying assignments (rather

than the formula representing them). Then |Ψ| = 22k . Let Υ be the set of concrete subsets of

Bk. Then |Υ| = 22k as well. Recall that ConcretizeMPk should produce a polynomial sized

partition. Let Υpoly be the set of polynomially-sized concrete subsets of Bk. Hence, even if

we consider singleton concrete/predicate partitions, we obtain ConcretizeMPk : Ψ → Υpoly

and GeneralizeMPk : Υpoly → Ψ. Since |Υpoly| < |Υ| = |Ψ|, ConcretizeMPk cannot be

one-to-one and GeneralizeMPk cannot be onto. Thus, for some ψ ∈ Ψ and some ϕ for which

JϕK 6= JψK, we have that GeneralizeMPk (ConcretizeMPk (ψ)) = ϕ , violating the criterion of

Theorem 5.7. �
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This argument holds also if we restrict attention to arbitrary DNF (or arbitrary CNF) functions.

We remark that there is no exponential gap between the number of all subsets of 2k and the

number of all polynomial-size subsets of 2k, which may be viewed as an intuition of why the

problem of learning a general Boolean function in the PAC (probably approximately correct)

setting [Val84, KLV94] is hard, and still extensively studied.

5.5 Concluding Remarks

We provide a necessary condition and a sufficient condition for identification of SFAs in the

limit using polynomial time and data, as well as a necessary condition for efficient learning of

SFAs using MQ and EQ. These imply that SFAs over the propositional algebra are not efficiently

identifiable in the limit, and cannot be efficiently learned in the query learning paradigm, either.

We show that the sufficient condition for identification of SFAs in the limit using polynomial

time and data applies to SFAs over monotonic algebras. We observe that this class of SFAs is

also efficiently learnable using MQ and EQ.

We hope that these sufficient or necessary conditions will help to obtain more positive and

negative results for learning of SFAs, and spark an interest in investigating characteristic samples

in other automata models used in verification.
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Chapter 6

Conclusions and Discussion

Program verification aims to formally prove that a system is correct, with respect to a given

specification. In program verification we aim to prove that the system is correct for all inputs

and for all possible behaviors – with respect to the specification – instead of looking for errors

using testing. In this PhD thesis, we address the verification of systems over large and infinite

data domains.

Many problems for systems over infinite data domains do not scale well, have high complexity,

and are even undecidable. We approach the verification of systems over infinite data domains

by suggesting different ways to model them in a finite manner, depending on the type of the

system. Such modeling then allows us to find scalable algorithms for verification of such systems

(Chapter 4); characterize systems for which there exist efficient algorithms, and in particular,

systems that can be learned in polynomial time (Chapter 5); and find specifications for which

the model-checking problem is decidable, or suggest bounded model checking algorithms for

the undecidable fragments (Chapter 3).

In Chapter 3 we suggest a new model of automata, namely alternating variable Büchi automata

(AVBWs) that are able to express temporal specifications over infinite data domains, and in

particular are able to express the whole fragment of ∃∗-VLTL. The existential fragment of VLTL

is most suitable for error detection, since it allows us to express the existence of erroneous

computations. However, since the model-checking problem for ∃∗-VLTL specifications is

undecidable [SW], we first characterize decidable fragments of the logic. For these fragments,

we suggest a model checking algorithm, based on known methods taken from the world of finite

state systems. In particular, we suggest an algorithm for translating AVBWs to non-deterministic

variable Buchi automata (NVBWs). Over finite domains, these two automata models have the

same expressive power. However, we prove that over infinite data domains, AVBWs are strictly

more expressive than NVBWs. Therefore, our translation algorithm is not complete. We use this

translation in order to suggest a semi-algorithm for model-checking of ∃∗-VLTL specifications.

When running without a bound, this semi-algorithm may not halt. Given a bound k set by the

user, we can use our algorithm to guarantee that systems of size bounded by k do not violate the

given specification. This method is also known as bounded model checking, and is widely used

in program verification, see [BCCZ99, CBRZ01].
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In Chapter 4 we introduce communicating systems, which are C-like programs that are able

to communicate data values between one another. Communicating systems naturally model

communication and security protocols. Due to the communication between different components,

the size of the composed system can grow exponentially in the number of components, and the

verification process does not scale well. Thus, in Chapter 4 we suggest a modular verification

algorithm that takes advantage of the decomposition of the systems into smaller components.

We make use of a known algorithm for compositional verification of systems over finite data

domains [CGP03b]. However, while in [CGP03b] the authors rely on the fact that the system

is defined over a finite data domain in order to prove the correctness of their algorithm, this is

not the case in our setting. We thus first adjust the algorithm to our setting, allowing to find

small proofs of correctness for the setting of communicating programs, that are able to model

more real-life systems. In addition, in cases where the system is not correct, we suggest a novel

repair algorithm, that iteratively eliminates errors and proceeds to verify the repaired system.

Our algorithm is incremental and uses the information it has collected in previous verification

iterations in order to verify repaired components.

Our work regarding compositional verification and repair makes an important use of the L∗ algo-

rithm for learning regular languages [Ang87b] in order to learn small proofs of correctness. In

more detail, in Chapter 4 we follow the techniques of [CGP03b], by looking for an abstraction of

one of the components, such that together with the second component, guarantees the correctness

of the system. This way, we never need to compute the full composition of the system, but only

the composition of the abstraction, which is usually much smaller, allowing the verification to

scale. In order to find such abstractions we make use of L∗, exploiting the finite representation

of the systems as finite automata.

In Chapter 5 we explore foundational aspects of the learnability of automata over infinite data

domains, under different paradigms of automata learning. We analyse the complexity of the

L∗ algorithm for automata over infinite data domains, presenting automata classes and domains

for which learning is efficient. In addition, we consider a different learning paradigm, from a

more information theoretic perspective, namely learnability in the limit [dlH97b, Gol78], which

tries to learn a finite model for a system using characteristic sample sets. These are sets of

polynomial size of allowed and erroneous behaviors of the system. This is the first time that

learning in this paradigm is studied in the context of systems over infinite data. We thus present

a novel learning algorithm for systems over infinite data in the paradigm of learnability in the

limit, which allows learning models for such systems using only a small amount of data.

6.1 Future Work

6.1.1 Automata Learning

Continuing our work of Chapter 5, we note that learnability of n-dimensional box algebra

was studied extensively in different contexts [GGM94, BGGM98, BK98, BK00]. As we show

in Chapter 5.3, even the class of purely neat SFAs over the n-dimensional box algebra is not
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efficiently learnable using MQs and EQs. However, we are yet to determine what is the case for

the identification in the limit paradigm. In preliminary results we were able to establish that the

class of purely neat SFA satisfies the necessary condition of Chapter 5.4.2. However we were

not able to determine whether the sufficient condition holds as well, for purely neat SFAs over

the box algebra.

We hope to be able to use these conditions in order to come up with more complexity results for

different classes of symbolic automata and Boolean algebras.

In addition, we hope to use the results regarding learnability of symbolic automata in program

verification. In Chapter 4 we use L∗ algorithm to learn assumptions for compositional veri-

fication. In the case of SFAs, the MAT∗ algorithm is polynomial in the size of the SFA, and

terminates given that the underlying algebra is learnable. For monotonic algebras, for example

the interval algebra, both MAT∗ and our proposed algorithm for identification in the limit are

polynomial in the size of the learned SFA. We hope to find more applications for the learnability

of symbolic automata in different aspects of program verification.

6.1.2 Program Synthesis

After studying different aspects of program verification for systems over infinite data, a natural

next step is to investigate program synthesis. The problem of program synthesis is to construct a

program that is correct-by-construction. That is, given a specification, to automatically construct

a correct program with respect to this specification. Program synthesis is extensively studied

in the verification community, examples are [PR89, Kup12, FS13]. We consider synthesis of

systems over infinite data domains, from different types of temporal logic specifications, as we

describe below. The systems we consider are similar to the ones studied in this thesis, allowing

us to make use of methods from this thesis in order to synthesize such systems.

Synthesis of Universal Properties In the context of program synthesis we consider universal

properties, such as: “all processes are eventually logged-in”, or “every process that is logged-in

is eventually logged-out”. Universal properties are natural as specifications for the synthesis

problem, as we usually aim to construct programs that are correct for all input values. We

suggest to study the synthesis problem of universal VLTL properties. Our preliminary study

shows that this problem is too, in general, undecidable. Moreover, we prove that current

automata models that are used to model LTL and ∃∗-VLTL, are unable to express universal

properties. Therefore, identification of fragments that are expressible using existing models

(using similar techniques as we used for VLTL presented in Chapter 3) is a natural first step for

understanding these specifications. In the long term, we aim to explore the notion of vacuous

synthesis of universal specifications. For example, consider the specification “every process

that is logged-in is eventually logged-out”. A program with no processes at all, or no logged-in

processes, satisfies this specification. We call such behaviors vacuous satisfaction. We wish to

construct programs that require at least one process to be logged-in, or even require infinitely

many processes to be able to log-in to the system. We aim to look for ways to construct programs

for which we can prove this kind of infinite non-vacuous satisfaction.
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Synthesis of First Order Specifications Continuing with LTL, we consider LTL specification

with first order constraints (FO-LTL). Such specification can reason about the change in program

variables over time. For example, we can say “for every point in the computation in which

the variable x is equal 0, there is a later point in the computation in which x > 0”. This is

an extension of the specifications discussed in Chapter 4 to the setting of ongoing systems,

whose computations are modeled as infinite words. In LTL synthesis [PR89], the propositions

that appear in the formula are used as the alphabet of the synthesized program. The program

is then able to trigger events that are described using the propositions from the specification.

However, in the case of FO-LTL, we wish not only to trigger events, but to construct programs

that can manipulate the variable values. The manipulations applied on the values of the program

variables do not necessarily appear in the specification. In fact, they are usually not part of the

specification as the specification specifies the desired behavior but not how to achieve it. For

example, the specification might contain the requirement x > 0, but usually it does not include

assignments such as x := x + 1. In order to infer these variable manipulations, we need not

only to learn the structure of the program, but also to deduce the program statements.

In order to construct the desired program, we aim to use automata learning methods, derived

from the L∗ algorithm. The output is a finite automaton, that can be viewed as the control-flow

graph of the program. While in Chapter 4 that discusses compositional verification, the program

statements for the learned abstraction were taken from the components of the system, and

thus known in advance, in this proposed line of research, one of the greatest challenges is to

automatically deduce program statements from the specification. In Chapter 4 we were able to

deduce statements in order to repair the system, and we hope that we will be able to use similar

methods in order to learn program statements in the context of synthesis.
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על פעולות ולבצע נתונים, ביניהם לתקשר שיכולים רכיבים מספר כוללות אלה מערכות

מידע. ואבטחת תקשורת פרוטוקולי עבור טבעי מודל הן מתקשרות מערכות אלה. נתונים

מודולרי אלגוריתם להציע מנת על שונים לרכיבים המערכת של החלוקה את מנצלים אנו

אוטומטים, בלמידת משתמשים אנחנו זה, לצורך כולה. המערכת של פורמלי לאימות

ידועים אלגוריתמים בעזרת מתקשרות מערכות של ולתיקון לאימות אלגוריתם ומציעים

והסרת במערכת שגיאות מציאת ידי על מתבצע המערכת תיקון אוטומטים. ללמידת

לשגיאה. הגורמים החישובים

אוטומט סימבוליים. אוטומטים של בהקשר גם אוטומטים למידת חוקרים אנחנו לבסוף,

ידי על מיוצג שלו מעבר שכל כך אינסופי, ערכים תחום מעל אוטומט הוא סימבולי

להיות יכול סימבוליים אוטמטים של הא״ב למשל, נתונה. בוליאנית אלגברה מעל פרדיקט

של רצפים לקרוא יכול האוטומט כך הטבעיים. המספרים מעל האינטרוולים כל אוסף

חוקרים אנו באוטומט. מעברים המייצגים לפרדיקטים אותם ולהתאים טבעיים מספרים

יעילים אלגוריתמים ומציגים סימבוליים אוטומטים של בהקשר למידה פרדיגמות מספר

למידת והממשיים. הטבעיים המספרים מעל אוטומטים עבור בפרט אוטמטים, למידת של

המערכות במודל למשל שקורה כפי התוכנה, אימות בתחום חשוב עזר כלי היא אוטומטים

תחומי מעל מערכות עבור למידה אלגוריתמי לחקור המוטיבציה ומכאן המתקשרות,

אינסופיים. ערכים
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תקציר

ערכים תחומי מעל מערכות של פורמלי באימות עוסקת זו בתזה המוצגת המחקר עבודת

פרוטוקולי תקשורת, פרוטוקולי הן כאלה למערכות דוגמאות אינסופיים. או מאוד גדולים

בצורה לוודא מעוניינים אנו פורמלי, באימות ועוד. גדולים, נתונים מסדי מידע, אבטחת

יכולים אנחנו מפרט, בהינתן כך, נתון. למפרט ביחס נכונה היא נתונה שתכנית אוטומטית

שהתכנית במקרה לתכנית. אפשרי קלט כל עבור המפרט את מספקת שהתכנית להוכיח

ספציפי חישוב לקבל מעוניינים אנחנו נכשל, האימות ותהליך המפרט, את מספקת לא

בהמשך. התכנית את לתקן שנוכל כך השגיאה, את המציג התכנית של

בגישה מערכות. של פורמלי לאימות אוטומטים מבוססת בגישה עוסקים אנחנו זו בתזה

ניתן וכך סופיים, אוטומטים ידי על סופית בצורה שניהם ממודלים והמפרט, המערכת זו,

מספקת המערכת האם לבדוק מנת על סופיים אוטומטים מעל באלגוריתמים להשתמש

אינסופיים. ערכים תחומי מכילות היום־יום מחיי רבות מערכות זאת, עם המפרט. את

חסום אינו במערכת הלקוחות מספר לקוחות, עם המתקשר שרת של במערכת למשל, כך

כאשר הגדולים האתגרים אחד לכן, כרצונם. מהמערכת ולהתנתק להתחבר יכולים והם

של ואימות בדיקה המאפשרת סופית בצורה אותן למדל הוא כאלה, מערכות בוחנים

א״ב מעל סופיים אוטומטים באמצעות אלה מערכות למדל ניתן לא בפרט, המערכות.

סופיים. ערכים תחומי מעל מערכות של פורמלי באימות כלל בדרך שנעשה כפי סופי,

תחומי מעל מערכות של פורמלי לאימות יעילים אלגוריתמים למצוא הוא נוסף אתגר

במקרה והבעיה יעיל, לא להיות יכול כאלה מערכות של האימות שכן אינסופיים, ערכים

זו בתזה מציעים אנו אלה, אתגרים עם להתמודד מנת על כריעה. בלתי היא הכללי

משמשים אלה מודלים אינסופיים. ערכים תחומי מעל מערכות עבור שונים מודלים

אינסופיים. ערכים תחומי מעל מערכות של יעיל לאימות אלגוריתמים לבניית אותנו

תמיד הפועל שרת כגון מתמשכים, חישובים יש להן מערכות בוחנים אנחנו תחילה,

במפרטים משתמשים אנו מהמערכת. ומתנתקים המתחברים לקוחות עם ומתקשר

מפרטים הם טמפורליים מפרטים מהמערכת. הדרישות את להביע מנת על טמפורליים

הקיימים המודלים כי מראים אנו זמן. לאורך המערכת של להתנהגות המתייחסים

אנחנו ולכן אינסופיים, ערכים תחומי מעל טמפורליים מפרטים למדל מסוגלים לא

במודל משתמשים אנו אלו. מפרטים להביע המסוגל אוטומטים של חדש מודל מציעים

תחומי מעל מערכות של פורמלי לאימות אלגוריתם להציע מנת על החדש האוטמט

טמפורליים. מפרטים מול אל אינסופיים, ערכים

מתקשרות״. ״מערכות קוראים אנו להן מערכות, של נוסף סוג בוחנים אנחנו בהמשך,
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למדעי בפקולטה שינולד שרי וד״ר גרימברג ארנה פרופסור של בהנחייתן בוצע המחקר

המחשב.

בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת במהלך ובכתבי־עת
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תודות

לא שינולד. ושרי גרימברג ארנה של והנחייתן עזרתן בלי נכתבת הייתה לא הזאת התזה

הייתן אקדמיות. ממנחות יותר הרבה לי הייתן מכן. יותר טובות מנחות לבקש יכולתי

האישי, בפן וגם האקדמי בפן גם אותי ליוויתן האחרונות, השנים בשבע ומשפחה בית לי

מתודה. חוץ מילים לי אין הרבה. כך כל מכן למדתי למעלה. לעלות לי עזרתן ותמיד

בינינו, העצום הפער למרות שותפה בי ראית פיסמן. לדנה גם הרבה תודתי את חייבת אני

־ פסרינו ולקורינה זילס לסנדרה מודה אני בנוסף, רגע. מכל ונהניתי המון, ממך למדתי

הפעולה. שיתוף ועל בי האמונה על איתכן, לעבוד ההזדמנות על תודה

אותי לימדת שלך, האישית הדוגמא בי, שלך האמונה ־ אמא ומיכל. עדין שלי, ההורים

המתמטיקה, אהבת את בי שנטעת אבא, התמדה. ומהי קשה עבודה מהי חריצות, מהי

שאפשר. גבוה הכי שאכוון רצית ותמיד הידע, אהבת

שלכם הרבה העזרה בלי שלכם. המשימה היו שלנו הלימודים ־ ונחמה יוני וחמותי, חמי

הדוקטורט. את לסיים זמן לי היה לא לעולם האינסופית התמיכה ובלי הילדים עם

באמת. בכם. התברכתי בדרך. שאספתי הרבים החברים כל

אותי למשוך ומתי לי, לוותר מתי ידעת בשבילי. תמיד תמיד שם שהיה מי ובעיקר,

תודה שלי. טוב הכי החבר אתה לא. ממש כשאני אפילו ליבך בכל בי האמנת למעלה.

שאתה.

העולם אתם וסיני־אליה. אוריה־שמואל רועי־אהרון, שלי, לילדים מוקדשת הזאת התזה

שלי.

פוג׳יווארה הירושי ע״ש סייבר לאבטחת המחקר למרכז לטכניון, מסורה תודה הכרת

זה. מחקר מימון על הלאומי הסייבר ולמערך
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