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Abstract

This thesis focuses on different aspects of formal verification of systems over infinite data
domains. Applications for such systems can be found in communication systems, e-commerce
systems, large data bases and more. A widely used approach in program verification is model-
checking. The problem of model-checking is, given a system and a specification, to determine
whether the system satisfies the specification (and thus the verification succeeds); or that the
system violates the specification (thus verification fails) and some error is found, witnessing the
violation. We focus on the automata-theoretic approach to model-checking. In this approach,
both the system and the specification are modeled as finite automata, and model-checking is then
reduced to reasoning about these automata. However, real-life systems often contain infinitely
many different configurations, as they refer to the data in the system, which is unbounded.
In this case, the model-checking of such systems does not scale well, and may even become
undecidable.

In this thesis we use finite-state automata in order to model different types of such systems.
First, we consider ongoing systems over infinite data domains, with respect to temporal specifica-
tions. An example for such a system is a server that communicates with an unknown number of
clients. We propose a new automaton model that is able to capture the fragment of 3*-Variable
LTL, which is an extension of LTL that allows reasoning about infinite data domains. We use this
model to suggest a bounded model-checking algorithm for such systems, and we characterize
decidable fragments of the logic, for which we suggest a complete model-checking process.

Next, we consider the model of communicating systems, which is most suitable to model
communication and security protocols. We exploit the partition of the system into smaller
components (e.g. server and clients). We also use the finite automata representation, to
suggest a modular verification and repair algorithm that is based on automata learning using the
L* algorithm.

Finally, we consider symbolic automata, whose alphabet is the set of predicates over some
Boolean algebra. We study the L* algorithm in the context of symbolic automata, since, as
we demonstrate, it is widely used in program verification. Next, we study a different learning
paradigm, namely identification is the limit. To the best of our knowledge, this is the first time
that this paradigm is considered in the context of infinite data domains. We suggest an automata
learning algorithm for systems with data over the natural or real numbers, and present some

complexity results regarding the learnability of symbolic automata under this paradigm.






Chapter 1

Introduction

Program verification aims to formally prove that a system is correct with respect to a given
specification. It allows proving that the system is correct for all inputs and for all possible
behaviors — with respect to the specification — rather than looking for errors using testing. One of
the most useful techniques for automated program verification is model checking. The problem
of model-checking is defined as follows. Given a system and a specification, automatically
determine whether the system satisfies the specification and thus the verification succeeds; or
the system violates the specification and the verification fails. In case the verification fails, an
error is found, a witness to the violation.

A widely used methodology for model checking is the automata-theoretic approach [Var95,
VW86]. In the automata-theoretic approach to model checking, the system is modeled by a
finite-state automaton over a finite alphabet, whose language matches the set of computations of
the system. The specification is modeled as a finite-state automaton over a finite alphabet, whose
language is exactly the set of all computations satisfying the specification. Model-checking is
then reduced to reasoning about these automata. However, real-life systems are often infinite-
state, containing unbounded or infinite amount of data, and modeling them using finite state
automata is not straight-forward. One of the main challenges of this thesis is to finitely model
systems over infinite data domains.

We briefly describe some examples for automata over large or infinite alphabets. In model-
checking of finite systems, the state of the system is represented by a set of properties that
hold at this state. These properties are called atomic propositions and are denoted by AP.

24P and automata over

Then, the different configurations of the system are over the alphabet
the alphabet 247 are used in model checking [CGPO1] in order to verify temporal properties.
Another example, used in string sanitizer algorithms [HLM™ 11], are automata over predicates
on the Unicode alphabet which consists of over a million symbols. An infinite alphabet is used
in event recording automata, a determinizable class of timed automata [AFH99], in which an
alphabet letter consists of both a symbol from a finite alphabet, and a non-negative real number.

We refer to such systems as systems over infinite data domains.

Automata over infinite data domains. We study three different models of finite-state automata,

that are used to model systems over infinite data domains (see Figure 1.1). In Chapter 3 we use
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Figure 1.1: Different systems studied in this thesis

variable automata over infinite words, in order to model ongoing computations and temporal
specifications. The left-most automaton in Figure 1.1 accepts a word if at some position in the
word a data value that is assigned to the variable x is sent, but this value is never received later
in the computation.

In Chapter 4 we study communicating systems, which are a composition of C-like compo-
nents, with the ability to communicate data between one another. We model such systems using
finite automata, each representing the control-flow graph of one of the components of the system.
The middle automaton of Figure 1.1 is a component representing the short code given above
the automaton. The models of Chapters 3 and 4 use variables in order to keep track of the data
values throughout the computation. These models are most suitable to model communication
systems such as a network of server and clients, and security protocols.

In Chapter 5 we study symbolic finite-state automata (SFAs) over finite words. There, we
use predicates in order to succinctly describe the transitions between states. The model of
SFAs has no notion of “memory” and data values are not kept along the computation. At the
right-most part of Figure 1.1 we present an SFA (bottom) with predicates labeling transitions.
For example, the predicate [0, 99] is used to describe the 100 transitions of type g LN q for
0 < d <99, presented in the upper automaton given in the figure.

To summarize the different automata types discussed in this thesis, we first observe that we
only consider finite-state automata. We consider finite-state automata over infinite alphabets,
as opposed to standard finite-state automata that are defined over a finite alphabet. In addition,

in Chapter 3 we consider automata over infinite alphabets and over infinite words, while in
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Chapters 4 and 5 we consider automata over infinite alphabets and finite words.

Model-checking and repair. We use the representation of systems over infinite data domains
as finite-state automata in order to apply automata-theoretic methods for the verification of such
systems. In particular, in Chapter 3 we present a new automata model, that is used to model
ongoing systems and specifications over infinite data. Using this new model, we suggest a
bounded model-checking algorithm for systems over infinite data domains. In Chapter 4 we use
the automata-like representation of communicating systems in order to apply L*, an automata
learning algorithm, to modularly prove the correctness of the system. In case an error is found,

we repair the system by eliminating the error, and try to prove correctness of the repaired system.

Learnability. As we mentioned above, in Chapter 4 we apply automata learning in order
to verify the correctness of the system. In Chapter 5 we study more fundamental aspects of
automata learning. We consider symbolic automata, and study the complexity of L* algorithm
for these automata. In addition, we study the learning paradigm of identification in the limit
using polynomial time and data, which has not yet been studied in the context of symbolic

automata.

We now elaborate more on each of the approaches.

Model-Checking Systems over Infinite Data

Temporal logic, particularly linear temporal logic (LTL) [Pnu79], is widely used for specifying
properties of ongoing systems. However, LTL is unable to specify computations that handle
infinite data. Consider, for example, a system containing several processes and a scheduler. If
the set of processes is finite and known in advance, we can express and verify properties such as
“every process is eventually active”. However, if the system is dynamic, in which new processes
can log in and out, and the total number of processes is unbounded, LTL is unable to express
such a property. This is because, in order to make sure that all processes are active, we need a
different ID for each process, resulting in an unbounded amount of data, while LTL is defined
over a finite set of propositions.

VLTL (LTL with variables) [GKS12] extends LTL with variables that range over an infinite
domain, making it a natural logic for specifying ongoing systems over infinite data domains.
In the example above, a VLTL formula can be expressed as ¢1 = Va G (loggedIn(z) —
F (active(x))), where G and F are temporal operators meaning Globally and eventually,
respectively, and z ranges over an unbounded domain of process IDs.! Thus, ¢ specifies that
for every process ID, once it is logged in, it will eventually be active. Notice that ¢; now
specifies this property for an unbounded number of processes. As another example, the formula
o = G Jz(send(x) A F receive(x)), where = ranges over the message contents (or message
IDs), specifies that in every step of the computation, some message is sent, and this particular
message is eventually received. Using variables enables handling infinitely many messages

along a single computation.

'A formal definition for the semantics of temporal operators appears in Chapter 3.2.1.



For ongoing systems, automata over infinite words and finite alphabets, particularly nonde-
terministic and alternating Biichi automata (NBWs and ABWs, respectively) are used [Var95]
in order to model-check the system. Thus, for ongoing systems over infinite data and VLTL,
a similar model is needed, capable of handling infinite alphabets. In [GKS10, GKS12], the
authors suggested non-deterministic variable Biichi word automata (NVBWs), a model that
augments NBWs with variables. NVBWs were used to construct a model-checking algorithm
for a fragment of VLTL, limited to 3-quantifiers that may appear only at the head of the formula.

The emptiness problem for NVBWs is NLOGSPACE-complete. Since the emptiness
problem is crucial for model checking, NVBWs are an attractive model. However, they are quite
weak. For example, NVBWs are unable to model the formula ¢9 above.

In Chapter 3, we present a new model for VLTL specifications, namely alternating variable
Biichi word automata (AVBWs). These are an extension of NVBWs, which we prove to be
stronger and able to express a much richer fragment of VLTL. Specifically, we show that AVBWs
are able to express the entire fragment of 3*-VLTL, which is a fragment of VLTL in negation
normal form (NNF) with only 3-quantifiers, whose positions in the formula is unrestricted.

There is a well-known translation from LTL to ABW [Var95]. Thus, AVBWs are a natural
candidate for modeling VLTL. Indeed, as we show, AVBWs are able to express all of 3*-VLTL,
following a translation that is just as natural as the LTL to ABW translation. We further show
that, unlike the finite alphabet case, in which NBWs and ABWs are equally expressive, in
the infinite alphabet case, alternation proves to be not only syntactically stronger but also
semantically stronger, and AVBWs are more expressive than NVBWs.

As we have noted, our goal is to provide a suitable model for a model-checking algorithm
for VLTL, and as such, this model should be easily checked for emptiness. However, we show
that the strength of AVBWs comes with a price, and their emptiness problem is unfortunately
undecidable. To keep the advantage of ease of translation of VLTL to AVBW s, as well as the
ease of using NVBWs for model-checking purposes, we would then like to translate AVBWs
to NVBWs, in cases where such a translation is possible. This allows us to enjoy the benefit
of both models, and gives rise to a model-checking algorithm that is able to handle a richer
fragment of VLTL than the one previously studied.

We present such a translation procedure, inspired by the construction of [MH84]. As noted,
such a translation is not always possible, and our procedure is then sound but incomplete.
However, we give a characterization for AVBWs for which our procedure does halt, relying on
the graphical structure of the underlying automaton.

The importance of our procedure and structural characterization is twofold: (1) given an
AVBW A, one does not need to know the semantics of A in order to know if it is translatable,
and to automatically translate .4 to an equivalent NVBW when possible; and (2) Given a general
F*-VLTL formula, one can easily construct an equivalent AVBW A, use our characterization to
check whether it is translatable, and continue with the NVBW that our translation outputs.

We use our translation from AVBW to NVBW as a basis for a Bounded Model Checking
(BMC) procedure, even in cases where the translation does not halt. Our BMC procedure

exploits the natural iterative behavior of our translation procedure, and the fact that in every



iteration it produces an NVBW whose language is contained in that of the given AVBW. This
partial NVBW can then be used for finding an erroneous computation of the system.

As an additional contribution, we characterize fragments of 3*-VLTL that have a direct
translation to NVBWs, making them an “easy” case for modeling and model checking.

The work presented in this chapter was published in [FGS, FGS19].

Summary of Contribution of Chapter 3

1. We present AVBWs, a new model that can capture the whole fragment of 3*-VLTL and is
strictly more expressive than NVBWs.

2. We suggest a partial translation algorithm from AVBWs to NVBWs, that yields a bounded
model-checking procedure for VLTL specifications. Moreover, we present a characteriza-
tion for AVBWs on which our algorithm terminates, allowing us to choose between the

bounded verification or the full verification for these cases.

3. We present a characterization of easy fragments of 3*-VLTL, for which the model-
checking problem is decidable. We also suggest a sound and complete model-checking

algorithm for these fragments.

Compositional Verification and Repair

In Chapter 4 we turn to investigate more complicated systems, namely communicating systems.
These are infinite-state C-like programs, extended with the ability to synchronously read and
write messages over communication channels. We model such programs as finite-state automata
over an action alphabet, which reflects the program statements. The accepting states in these
automata model points of interest in the program that the specification can relate to. The
automata representation is similar in nature to that of control-flow graphs. The composition
of the two program components, M and Ma, denoted M || Ms, synchronizes on read-write
actions on the same channel. Between two synchronized actions, the individual actions of both
systems interleave.

The composition of two components can result in a large system, for which the verification
process does not scale well. Verification of large-scale systems is indeed a main challenge in
the field of formal verification. Compositional verification aims to verify small components of
a system separately, and from the correctness of the individual components, to conclude the
correctness of the entire system. This, however, is not always possible, since the correctness of
a component often depends on the behavior of its environment.

The Assume-Guarantee (AG) style compositional verification [MC81, Pnu85] suggests a
solution to this problem. The simplest AG rule checks if a system composed of components
M and M, satisfies a property P by checking that M under assumption A satisfies P and that
any system containing M as a component satisfies A. The assumption A is a component that
is used to model the environment of M. Several frameworks have been proposed to support
this style of reasoning. Finding a suitable assumption A is then a common challenge in such

frameworks.



In Chapter 4, we present Assume-Guarantee-Repair (AGR) — a fully automated framework
which applies the Assume-Guarantee rule, and while seeking a suitable assumption A, incre-
mentally repairs the given program in case the verification fails. Our framework is inspired
by [PGB'08], which presented a learning-based method to finding an assumption A, using the
L* [Ang87b] algorithm for learning regular languages. Here, we exploit the representation of
the program as a finite automaton in order to apply L*.

The specifications we consider are also modeled as finite automata, that does not contain
assignment actions. It may contain communication actions in order to specify behavioral
requirements, as well as constraints over the variables of both system components, that express
requirements on their values in various points in the run.

Consider, for example, the programs M7 and Mo, and the specification P seen in Figure 1.2.
M, reads a bound b on the number of times an action must be performed in M> (this action
can be, say, a push action on a stack). The variable act in Ms counts the number of times the
action has been performed. M5 performs a sequence of actions, and then reads a value — b —
from M; through the channel C. If the number of actions M5 has performed matches b, then
M finishes the current iteration successfully. The property P makes sure that in the parallel
run of the programs, the number of actions never exceeds b, and that this number eventually
reaches b in every iteration. The sync actions here denote communication actions on which the
components synchronize, and are used for the clarity of the description. Notice that P expresses

temporal requirements that contain unquantified first order constraints.

act :=act+1 act <

read?bound

My M2 P

Figure 1.2: The programs M; and M>, and the specification P

The L* algorithm aims at learning a regular language U. Its entities consist of a teacher —
an oracle who answers membership queries (“is the word w in U?”) and equivalence queries
(“is A an automaton whose language is U?”); and a learner, who iteratively constructs a finite
deterministic automaton .4 for U by submitting a sequence of membership and equivalence
queries to the teacher.

In using the L* algorithm for learning an assumption A for the AG-rule, membership queries
are answered according to the satisfaction of the specification P: If M; in parallel with a trace
t satisfies P, then the trace ¢ in hand should be in A. Otherwise, ¢ should not be in A. Once
the learner constructs a stable system A, it submits an equivalence query. The teacher then
checks whether A is a suitable assumption, that is, whether M ||A satisfies P, and whether

the language of M5 is contained in the language of A. According to the results, the process



either continues or halts with an answer to the verification problem. The learning procedure
aims at learning the weakest assumption A,,, which contains all of the traces that in parallel
with M satisfy P . The key observation that guarantees termination is that the components in
this procedure — M1,Ms, P and A,, — are all regular.

Our setting is more complicated, since the traces in the components — both the programs
and the specification — contain constraints, which are to be checked semantically and not
syntactically. These constraints may cause some traces to become infeasible. For example, if a
trace contains an assignment = := 3 followed by a constraint z > 4 (modeling an if statement),
then this trace does not contribute any concrete runs, and therefore does not affect the behavior
of the system. Thus, we must add feasibility checks to the process.

Constraints in the specification also pose a difficulty, as satisfiability of a specification
is determined by the semantics of the constraints and not just by the syntax of the language,
and hence there is more here to check than standard language containment. Moreover, A,,
above may no longer be regular, as we prove in Chapter 4.4. However, our method manages
to overcome this problem in a way that still guarantees termination in case the verification
succeeds, and progress, otherwise.

As we have described above, not only do we construct a learning-based method for the AG-
rule for communicating programs, but we also repair the programs in case the verification fails.
An AG-rule can either conclude that M || My E P (i.e. M;|| M, satisfies P), or return a real,
non-spurious counterexample of a computation of M || My that violates P. In our case, instead
of returning the counterexample, we repair M in a way that eliminates this counterexample.
We do so by using abduction [PH32] to infer a new constraint which makes the counterexample
infeasible.

Following this step we now have an updated component M>, and we apply the AG-rule
again, using information we have gathered in the previous steps. In addition to removing the
error trace, we update the alphabet of M5 with the new constraint.

Thus, AGR operates in a verify-repair loop, where each iteration runs a learning-based
process to determine whether the (current) system satisfies P, and if not, eliminates bad
behaviors from M5 while enriching the set of constraints derived from these bad behaviors,
which often leads to quicker convergence. In case the current system satisfies P, we return the
repaired Mo together with an assumption A that abstracts M, and acts as a smaller proof for the
correctness of the system.

We have implemented a tool for AGR and evaluated it on examples of various sizes and of
various types of errors. Our experiments show that for most examples, AGR converges and finds
a repair after 2-5 iterations of verify-repair. Moreover, our tool generates assumptions that are
significantly smaller then the (possibly repaired) M, thus constructing a compact and efficient
proof of correctness.

The work presented in this chapter was published in [FGPS20].

Summary of Contribution of Chapter 4

1. We present a learning-based Assume-Guarantee-Repair algorithm with the following



properties.

- The AGR algorithm for infinite-state communicating programs, manages to over-
come the difficulties such programs present. In particular, our algorithm overcomes
the inherent irregularity of the first-order constraints in these programs, and offers

syntactic solutions to the semantic problems they impose.

- An algorithm in which the Assume-Guarantee and the Repair procedures intertwine
to produce a repaired program which, due to our construction, maintains many
of the “good” behaviors of the original program. Moreover, in case the original
program satisfies the property, our algorithm is guaranteed to terminate and return

this conclusion.

- An incremental learning algorithm that uses query results from previous iterations

in learning a new language with a richer alphabet.

2. We apply a novel use of abduction to repair communicating programs over first-order

constraints.

3. We have implemented our algorithm, demonstrating the effectiveness of our framework.

Learning Symbolic Automata

Symbolic finite state automata, SFAs for short, are an automata model in which transitions
between states correspond to predicates over a domain of concrete alphabet letters. Their
purpose is to cope with situations where the domain of concrete alphabet letters is large or
infinite. The transitions in an SFA are then predicates over the infinite data domain, allowing to
succinctly describe the transition relation. Formally, the transition predicates are defined with
respect to an effective Boolean algebra as defined in Chapter 5.1.

SFAs have proven useful in many applications [DVLM14, PGLM15, ASJ™16, HD17,SV17,
MRAT17], and consequently have been studied as a theoretical model of automata.

Recently, the subject of learning automata in verification has also attracted attention, as it
has been shown useful in many applications, see Vaandrager’s survey [Vaal7]. Most works
consider the query learning paradigm, in which a learner tries to learn an automaton by issuing
queries to a teacher. These works provide extensions to Angluin’s L* algorithm for learning
DFAs using membership and equivalence queries [Ang87a]. In particular, in Chapter 4 we apply
L* algorithm in order to find assumptions for compositional verification.

In [AD18], the authors study the learnability of SFAs taking as a parameter the learnability
of the underlying algebras, providing positive results regarding specific Boolean algebras. One
of our contributions is to demonstrate that these positive learnability results are far from trivial.
In particular, we show that there are limitations to the power of membership and equivalence
queries when it comes to learning SFAs. To do so, we provide a necessary condition for efficient
learnability of SFAs in the query learning paradigm, from which we obtain a negative result

regarding query learning of SFAs over the propositional algebra. This is, to the best of our

10



knowledge, the first negative result on learning SFAs with membership and equivalence queries
and thus gives useful insights into the limitations of the L* framework in this context.

The main focus of our work lies on the learning paradigm of identification in the limit using
polynomial time and data.> We are interested in providing sufficient or necessary conditions
for a class of SFAs to be learnable under this paradigm. To this aim, we show that the type of
the algebra, in particular whether it is monotonic or not, largely influences the learnability of
the class.

Learnability of a class of languages in a certain paradigm greatly depends on the repre-
sentation chosen for the language. For instance, regular languages are efficiently learnable
(in both paradigms) when represented as DFAs but not when represented as NFAs. While we
are interested in SFAs as the representations, there are various types of SFAs (with the same
expressive power), and the learnabilty results for them may vary.

The literature on SFAs has mainly focused on a special type of SFA, termed normalized,
in which there is at most one transition between every pair of states. This minimization of
the number of transitions comes at the cost of obtaining more complex predicates. We also
consider another special type of SFA, which we term a neat SFA, which by contrast, allows
several transitions between the same pair of states, but restricts the predicates to be basic, as
formally defined in Section 5.1.1.

To get on the right track, we first take a global look at the complexity of the standard
operations on SFAs, and how they vary according to the special form. We revisit the results
in the literature and analyze them along the measures we find adequate for a size of an SFA:
the number of states, the number of transitions and the size of the most complex predicate.’
The results show that most procedures are more efficient on neat SFAs. We note that in many
applications of learning in verification, the challenging part is implementing the teacher, as we
do in Chapter 4. In such cases the complexity of membership and equivalence queries as well as
standard automata operations plays a major role.

We then turn to study identification of SFAs in the limit using polynomial time and data. We
provide a necessary condition and a sufficient condition a class of SFAs M should meet in order
to be efficiently identifiable in the limit. These conditions are expressed in terms of the existence
of certain efficiently computable functions, which we call Generalizey;, Concretizey, and
Decontaminatey;. We then provide positive and negative results regarding learnability of
specific classes of SFAs in this paradigm. In particular, we show that general SFAs over the
propositional algebra cannot be learned in the limit using polynomial time and data, whereas
SFAs over monotonic algebras, such as the interval algebra, can be learned in the limit using

polynomial time and data.

Summary of Contribution of Chapter 5

1. We suggest neat SFAs and show that they are more efficient for Boolean operations and

membership queries, thus making them good candidates for automata learning algorithms.

This paradigm relates to conformance testing. The relation between conformance testing for Mealy machines
and automata learning of DFAs has been explored in [BGJ T05].
3Previous results have concentrated mainly on the number of states.
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2. We discuss the trade-off between the different types of SFAs and study the complexity of

the different automata algorithms for each type.

3. We study the learning paradigm of identification in the limit using polynomial time
and data, in the context of symbolic automata. We present a necessary condition and a

sufficient condition for a class of SFAs to be efficiently learnable in this paradigm.

4. We present an efficient learning algorithm in the paradigm of identification in the limit, for
certain classes of SFAs, for example for SFAs over the interval algebra, while presenting

negative results for the learnability of SFAs over the propositional algebra in this paradigm.

5. We present a necessary condition for a class of SFAs to be efficiently learnable using
the query learning paradigm, and present the first negative result in that context, for the

learnability of SFAs over the propositional algebra.

1.1 Related Work

Translation of standard LTL formulas to automata over infinite words can be found in [BCM 92,
RV11, Var95, VW86].

Several other models of automata over infinite alphabets have been defined and studied.
In [KF94] the authors define register automata over infinite alphabets, and study their decidabil-
ity properties. [NSVO01] use register automata as well as pebble automata to reason about first
order logic and monadic second order logic, and to describe XML documents. [BMST06] limits
the number of variables and uses extended first order logic to reason about both XML and some
verification properties. In [BHJS07] the authors model infinite state systems as well as infinite
data domains, in order to express some extension of monadic first order logic. The definition
of our model of AVBWs is closer to finite automata over infinite words than the models above,
making it easier to understand. Moreover, due to their similarity to ABWs, we were able to
construct a natural translation of 3*-VLTL to AVBWs, inspired by [Var95]. We then translate
AVBWs to NVBWs. Our construction is consistent with [MH84] which provides an algorithm
for translating ABWs to NBWs. However, in our case additional manipulations are needed in
order to handle the variables and track their possible assignments.

The notion of LTL over infinite data domains was studied also in the field of runtime
verification (RV) [CM04, BFH™12, BLS11]. Specifically, in [BFH' 12], the authors suggest
a model of quantified automata with variables, in order to capture traces of computations
with different data values. The purpose in runtime verification is to check whether a single
given trace satisfies the given specification. Moreover, the traces under inspection are finite
traces. This comes into play in [BFH' 12] where the authors use the specific data values that
appear on such a trace in order to evaluate satisfiability. In [BLS11] the authors suggest a
3-valued semantics in order to capture the uncertainty derived from the fact that traces are finite.
LTL with existential and universal quantifiers was also discussed in the context of RV in the
following. In both [BKV13] and [DLT16] the authors suggest LTL with first order formulas, and
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present monitor construction for this logic. In [BKMZ15] the authors allow unrestricted use of
quantifiers and negations, thus using metric first-order temporal logic as a specification language
for monitoring system properties. In [HPU17] the authors use Binary Decision Diagrams
(BDDs) as an implementation for quantified temporal logic with past operators. The authors
of [MJG™ 12] use different logics, including LTL, in order to efficiently generate monitors for
runtime verification.

Our work regarding 3*-VLTL approaches infinite data domains in a different manner. Since
we want to capture both infinite data domains and infinite traces, we need a much more expressive
model, and this is where AVBWs come into play.

In the context of compositional verification, assume-guarantee style compositional verifica-
tion [MC81, Pnu85] has been extensively studied. The assumptions necessary for compositional
verification were first produced manually, limiting the practicality of the method.

More recent works [CGP03a, GPB0S5, GGPO7, CS] proposed techniques for automatic
assumption generation using learning and abstraction refinement techniques, making assume-
guarantee verification more appealing. In [PGB ™08, CS] alphabet refinement has been suggested
as an optimization, to reduce the alphabet of the generated assumptions, and consequently their
sizes. This optimization can easily be incorporated in our AGR framework as well.

Other learning-based approaches for automating assumption generation have been described
in [CCF' 10, GMF08, CFC1T09]. All these works address non-circular rules and are limited to
finite state systems. Automatic assumption generation for circular rules is presented in [EGPS15,
EGPS16], using compositional rules similar to the ones studied in [McM99, NT(00].

Our approach is based on a non-circular rule but it targets complex, infinite-state concurrent
systems, and addresses not only verification but also repair. The compositional framework
presented in [LH14] addresses L*-based compositional verification and synthesis but it only
targets finite state systems.

Also related is the work in [LDD™ 13], which addresses automatic synthesis of circular
compositional proofs based on logical abduction; however the focus of that work is sequential
programs, while here we target concurrent programs. A sequential setting is also considered
in [ADG16], where abduction is used for automatically generating a program environment. Our
computation of abduction is similar to that of [ADG16]. However, we require our constraints to
be over a predefined set of variables, while they look for a minimal set.

The approach presented in [SGP10] aims to compute the interface of an infinite-state
component. Similar to our work, the approach works with both over- and under- approximations
but it only analyzes one component at a time. Furthermore, the component is restricted to be
deterministic (necessary for the permissiveness check). In contrast, we use both components of
a system to compute the necessary assumptions, and as a result they can be much smaller than
in [SGP10]. Furthermore, we do not restrict the components to be deterministic and, mainly, we
also address the system repair (in case of dissatisfaction).

A substantial body of literature covers learning restricted forms of SFAs [GJL10, MM14,
ASKK16, MM17,CDYS17], as well as general SFAs [DD17, AD18], and even non-deterministic
residual SFAs [CHYS19]. For other types of automata over infinite alphabets, [HSM11] sug-
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gests learning abstractions, and [Shel9] presents a learning algorithm for deterministic variable
automata. All these works consider the query learning paradigm, and provide extensions to
Angluin’s L* algorithm for learning DFAs using membership and equivalence queries [Ang87a].
Unique to these works is the work [AD18] which studies the learnability of SFAs taking as
a parameter the learnability of the underlying algebras, providing positive results regarding
specific Boolean algebras. In Chapter 5 we provide the first negative result on learning SFAs
from membership and equivalence queries. In addition, we study the learnability of SFAs in the
paradigm of identification in the limit, which was not studied before in this context.
Algorithms for other natural questions over SFAs already exist in the literature, in particular,
Boolean operations, determinization, and emptiness [VAHT10]; minimization [DV16]; and

language inclusion [KT14].

1.2 Thesis Structure

This thesis is constructed as follows. In Chapter 2 we give some basic notions of finite automata
and review the paradigm of learning from membership and equivalence queries. In Chapter 3
we discuss model-checking of ongoing systems with respect to Variable LTL specifications. In
Chapter 4 we turn to study communicating programs, and present a compositional verification
and repair algorithm for this setting. This algorithm is based on learning assumptions using
the L* algorithm, which we address again in Chapter 5. There, we study the learnability of
symbolic automata both in the query learning paradigm and in the paradigm of identification in
the limit using polynomial time and data. We conclude in Chapter 6 and discuss some interesting

ideas for future work.
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Chapter 2

Preliminaries

First, we introduce finite automata and related definitions and notations. Then, we briefly

describe the L* algorithm for learning regular languages, used in Chapters 4 and 5.

2.1 Finite Automata

In Chapter 4 we introduce communicating systems, and in Chapter 5 we discuss symbolic
automata. Both are extensions of finite automata to different types of automata over infinite data
domains and finite words.

In Chapter 3 we use automata over infinite words, that extend finite automata with both
infinite computations and infinite data domains.

A finite automaton is a tuple A = (X, Q, qo, 0, F') where
* 3 is a non-empty finite set of alphabet letters.
¢ () is a non-empty and finite set of srates.

* ¢o € @ is the initial state.

L]

6 C @ x X x @ is the transition relation.
e I C ( is the set of final states.

A deterministic finite automaton (DFA) is a finite automaton where 6 : Q X ¥ — Q is a
function. That is, for every p € Q and a € %, if (p,a,q) € é and (p,a,q’) € d then ¢ = ¢'.

A word w € ¥* is a sequence of alphabet letters. Let w = o105 - - - 0, be a word where
o; € ¥ for 1 < i < n. We denote by w]i] the letter in position 4 in w (that is, ¢;), and by w’ the
suffix ;0,41 - - - 0, of w starting from position .

A run of a finite automaton on a word w = o7 - - - 0y, is a finite sequence of transitions
(g0, 01,q1){q1,02,q2) - .. {qn—-1, On, Gn) Where qq is the initial state and foreach 1 <i <n—1
we have (¢;—1, 0, q;) € 9.

We sometimes omit the letters, and denote a run as the sequence of states qg . . . ¢y.
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We say thatarun r = ¢qg - - - ¢, on a word w is accepting iff ¢, € F. If there exists an
accepting run of a finite automaton .4 on a word w, we say that w is accepted by A. Note that
for a DFA, there exists a single run for each word w.

The language of an automaton A is the set of all words that are accepted by .4, that is,
L(A) = {w € ¥* : wis accepted by A}.

A language L is said to be regular iff there exists a DFA A such that £ = L(A).

2.2 Automata Learning

In this thesis we consider the exact model of automata learning.! In exact learning, given a
regular language £, we wish to construct a DFA D such that £(D) = L. In case the language
L is known and we are given a finite representation of it, for example as a regular expression,
then constructing a DFA for L is relatively an easy task. However, in most cases we do not
have a full description of the language. Then, algorithms for learning a DFA for the language £
from a limited amount of information, preferably polynomial, are put into use. In this thesis we
consider the paradigm of query learning, and in particular the L* algorithm [Ang87b], which we
briefly describe in Section 2.2.1 below. In addition, we investigate the paradigm of identification
in the limit from polynomial time and data, which we present in Chapter 5, as we only discuss it

in the context of symbolic automata.

2.2.1 Query Learning and L* Algorithm

The L* algorithm consists of two entities: a learner and a teacher, where the goal of the learner
is to construct a DFA for an unknown language £; and the role of the teacher is to answer
queries issued by the learner, according to the language to be learned. Angluin [Ang87b] showed
that the class of regular languages, when represented by DFAs, can be learned in polynomial
time using membership and equivalence queries, where the complexity of learning is usually
measured by the complexity of operations preformed by the learner, namely the number of
membership and equivalence queries that the learner issues.

The language is known to the teacher, who can answer queries and is assumed to have
unlimited resources. However, most applications implement both the learner and the teacher (as
we demonstrate in Chapter 4), thus the complexity of answering queries needs to be taken into
account as well. In Chapter 5 we discuss different procedures for automata that can affect the
complexity of answering queries, as well as the number of queries issued by the learner, for the
task of learning symbolic automata.

The learner in L* can ask two types of queries: membership queries (MQs) and equivalence
queries (EQs). In a membership query, the learner chooses a word w € ¥*, and asks the teacher
whether w € L. The teacher answers yes/ no accordingly. After initiating some number of MQs,
the learner is able to construct a candidate automaton A, for which it initiates an EQ. In an

EQ, given a candidate DFA A, the learner asks asks whether £(.A) = L. If the answer is yes,

'As opposed to PAC (Probably approximately correct) learning [CT04, GP16].
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then the learning process terminates with the correct DFA for the language. In case the answer
is no, the teacher provides the learner a counterexample cex € L(A) \ L or cex € L\ L(A).
Then, the learner uses this counterexample to initiate a new round of membership queries and
candidate construction.

We say that a word w is a positive example if the teacher answered that w € £ when a MQ
was issued, or if the teacher provided w € £ when answering an EQ. If the teacher provided
w ¢ L either in the MQ or the EQ phase, we call w a negative example.

We say that a learning algorithm is sound, if, given that S;r and S; are the sets of positive
and negative examples provided by the teacher up to stage 7, then at stage ¢ + 1 the learner will
not ask a MQ for a word in Sj U S; . Further, it will not ask an EQ for an automaton that rejects
a word in S;" or accepts a word in S; .

A learning algorithm is efficient if, in case the teacher answers queries according to a regular

language L, then the follwoing are polynomial in the size of the minimal DFA for £:
- The number of MQs in each iteration, until the learner generates a candidate automaton.
- The number of EQs until the learner constructs a DFA A such that £(A) = L.

The L* algorithm is sound and efficient, and thus in case the unknown language L is regular,
L* is guaranteed to terminate, and the number of MQs and EQs is polynomial in the number of
states of the minimal DFA for L.
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Chapter 3

Model-Checking Systems over Infinite
Data

3.1 Systems and Specifications over Infinite Data Domains

In this chapter we discuss the verification of LTL specifications over infinite data domains.
We use an extenstion of LTL, namely VLTL (LTL with variables) [GKS12] that extends LTL
with variables that range over an infinite domain, making it a natural logic for specifying
ongoing systems over infinite data domains. For ongoing systems, automata over infinite words,
particularly nondeterministic and alternating Biichi automata (NBWs and ABWs, respectively)
are used [Var95]. Thus, for ongoing systems with infinite data and VLTL, a similar model is
needed, capable of handling infinite alphabets. In [GKS10, GKS12], the authors suggested
non-deterministic variable Biichi word automata (NVBWs), a model that augments NBWs
with variables.

In this chapter, we present a new model for VLTL specifications, namely alternating variable
Biichi word automata (AVBWs). These are an extension of NVBWs, which we prove to be
stronger and able to express a much richer fragment of VLTL. Specifically, we show that AVBWs
are able to express the entire fragment of 3*-VLTL, which is a fragment of VLTL in negation
normal form (NNF) with only 3-quantifiers, whose positions in the formula are unrestricted.

We now elaborate more on NVBWs and AVBWs. As mentioned, an NVBW A uses variables
that range over an infinite alphabet I'. A run of A on a word w assigns values to the variables
in a way that matches the letters in w. For example, if a letter .8 occurs in w, then a run of
A may read a.x, where z is assigned 8. In addition, the variables may be reset at designated
states along the run, and so a.x can be later used for reading another letter a.5, provided that x
has been reset. Resetting then allows reading an unbounded number of letters along a single
computation, using a fixed set of variables. Another component of NVBWs is an inequality set
E, that allows restricting different variables from being assigned the same value at the same
point in the computation. Our new model of AVBWs extends NVBWs by adding alternation.
An alternating automaton may split its run and continue reading the input along several different

paths simultaneously, all of which must accept.
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There is a well-known translation from LTL to ABWs [Var95]. Thus, AVBWs are a natural
candidate for modeling VLTL. Indeed, as we show in Section 3.3.3, AVBWs are able to express
all of 3*-VLTL, following a translation that is just as natural as the LTL to ABW translation.
Existential quantifiers (anywhere) in the formula are translated to corresponding resets in the
automaton. However, we show that the strength of AVBWs comes with a price, and unlike the
finite alphabet case, for infinite data domains AVBWs are not equivalent to NVBWs. However,
we present a partial translation algorithm from AVBWs to NVBWs, inspired by the construction
of [MH84]. We give a characterization for AVBWs for which our procedure does halt, relying
on the graphical structure of the underlying automaton. The essence of the characterization
is that translatable AVBWs do not have a cycle that contains a reset action that leads to an
accepting state. Consider the specification “there always exists a message that is currently sent,
and each such message will be eventually recieved”, which corresponds to the VLTL formula
w2 = G 3x(send.x A F receive.x). Here, we keep sending messages that must arrive eventually.
However, there is no bound on when they will arrive. Since this is a global requirement, there
must be some cycle that verifies it, and such cycles are exactly the ones that prevent the run of
the translation procedure from halting.

We use our translation from AVBW to NVBW as a basis for a Bounded Model Checking
(BMC) procedure, even in cases where the translation does not halt.

In addition, we characterize fragments of 3*-VLTL that have a direct translation to NVBWs,
making them an “easy” case for modeling and model checking. One such fragment is 35 -
VLTL, which is 3*-VLTL in prenex normal form. We present a reduction from 3*-VLTL
satisfiability to 3%y - VLTL satisfiability for the fragment of 3*-VLTL with no negations. This
makes 3*-VLTL with no negations a decidable fragment in terms of the satisfiability problem.
Moreover, model-checking for 3*-VLTL with no negations, as well as for the other fragments

we discuss in Section 3.5, is decidable.

3.2 Preliminaries

3.2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [Pnu79] is a specification language that is used to reason about
ongoing computations. Let AP be a finite set of atomic propositions. LTL is inductively defined

as follows.
e ¢ is an LTL formula for alla € AP
* Let o1 and o be LTL formulas. Then the following are LTL formulas.

— Boolean operations. —@; 1 V 2; and 1 A ©a.

— Temporal operators. X ¢1; F 1; G o1; 01 U wa; 01 Vo.

LTL formulas are interpreted over infinite words over the alphabet 247, Similar to the

definition for finite words, we use w|i] to denote the letter of w in position i, and w® to denote
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the suffix of w starting from position i. Then, each position w/[i] is a set of atomic propositions.
When w is a computation of a system, then the set w|i] corresponds to all atomic propositions
that are true at step ¢ of the computation. The semantics of LTL is defined as follows. Let
w e (247,

» Fora € AP, we define w = aiff a € w[0].
s wkE —priffw ¥ @
cwkE 1 Ve iff w = 1 orw = ¢o; and w = 1 A e iff w = 1 and w = pe.

w = X iff w! = .

s w = F oy iff there exists 0 < i such that w’ = ¢.
s w |= Gy iff forall 0 < i it holds that w’ = ¢.

» w = 1 U s iff there exists 0 < j such that w’ |= @9, and for all 0 < i < j it holds that
w' = 1.

* w = ¢1 V oy iff one of the following holds.

— There exists 0 < j such that w’ = 1, and for all 0 <4 < j it holds that w’ = po.

— For all 0 < i it holds that w* = .
Note that the temporal operators G and F can be expressed using U and V as follows.

* Gy = falseV ¢, since this requires ¢ to hold all along the computation.

* Fy = trueUp.

Variable LTL

Variable LTL, or VLTL, defined in [GKS12], extends LTL by augmenting atomic propositions
with variables that range over a possibly infinite domain. In this context, the set AP is a set of
parameterized atomic propositions. Let X be a finite set of variables, and let & be a vector of
variables of X. The formulas in VLTL are over AP x X.

We inductively define the syntax of VLTL.

* Forevery a € AP and x € X the formulas a.x and —a.x are VLTL formulas.

* For a VLTL formula ¢(z) and x € X, the formulas 3z¢(z) and Vxp(z) are VLTL

formulas.

* If p1(z) and po(Z) are VLTL formulas, then so are ¢1(Z) V ¢2(Z); ©1(Z) A p2(Z);
Xp@); Fe1(); Go1(2); 01(2) Upa(T); and ¢1(7) V p2(Z).
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Note that in particular, in VLTL we only allow negations of atomic propositions. That is, all
VLTL formulas are in Negation Normal Form (NNF).

Semantics Given a (possibly infinite) domain I, a quantifier-free formula ¢ (Z), an assignment
0:X —T,and aword w € (247X we denote w =4 ¢(7) if w = ©(7)(zp(z) under
the standard semantics of LTL. For example, for w = {a.1}* it holds that w =g Ga.x for
O(x) = 1. For v € I" and a.7y we say that y is the value of a. It is important to note that we only
allow a single occurrence of @ € AP in every state in the computation, that is, no word may
contain both a.y and a.’ for v # +/ in the same position.

Notice that the semantics of the negation is defined with respect to specific values. That is,
if 6(z) = 2 then {a.1}* =g G —a.x, but for &' (x) = 1 we have {a.1}* ¥y G —a.z.

We denote w |=¢ Jxp(Z) if there exists an assignment  <—  for some v € I" such that
w )zg[weﬂ ¢ (7). The assignment ¢, . agrees with ¢ on the values of all variables except the
value of @, which is assigned v, and |=g,,,__, is as defined before. We denote w [=¢ Vo(z) if
for every assignment x <— + to the variable z, it holds that w =g, ¢(Z).

We say that a formula ¢ is closed if every occurrence of a variable in ¢ is under the scope of
a quantifier. Note that the satisfaction of closed formulas is independent of specific assignments.
For a closed formula ¢ over z, we then write w |= ¢(Z), instead of w =9 ¢(Z) for a specific
assignment 6.

The logic 3*-VLTL is the set of all closed VLTL formulas that only use the 3-quantifier.
The 3-quantifier may appear anywhere in the formula. The logic 3% --VLTL is the set of all
3*-VLTL formulas in prenex normal form, i.e., 3-quantifiers appear only at the beginning of
the formula.

The language of a formula ¢, denoted L(), is the set of all computations that satisfy .

3.2.2 Automata over infinite words
Non Deterministic Biichi automata

A non-deterministic Biichi automaton over infinite words (NBW) [Bue62] is a tuple B =
(3, Q, qo, 9, F) where, as in finite automata defined in Chapter 2.1, ¥ is a finite alphabet; Q)
is a finite set of states; gg € (@ is the initial state; F' C () is a set of accepting states; and
6 C @ x X x @ is the transition relation.

A run of Bonaword w € ¥ is an infinite sequence of transitions (qo, w[1], g1){q1, w[2], q2) - . .

where for each i € N, we have (g;, w[i + 1], gi+1) € 9.
A run of B is accepting if it visits some state of F’ infinitely often. We say that B accepts a
word w if there exists an accepting run of B on w. The language of BB, denoted L(B), is the set

of words accepted by B.

Alternating Biichi automata

Before defining alternating automata, we define some preliminary notions.
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Given a finite set D, a D-tree is a set I' C D* such that T is prefix-closed. That is, if
w € T then u € T for every prefix u of w. A node of T' is a word in T, and the root of
T is the empty word €. A path to a node u = dids---d, in T is the sequence of prefixes
€,di,dido, ..., dido - - - dy of u. A successor of anode u € T is of the form u - d where d € D.
For ¢ > 0, the 7’th level in T  is the set of words of length 7 in T'.

Given a set L, an L-labeled D-tree is a pair (T, f) where T is a D-tree, and f : T'— Lisa
labeling function that labels each node in 7" by an element of L.

An alternating Biichi automaton over infinite words (ABW) [MS84] is a tuple B4 =
(3, @, qo, 9, F) where X, ), go and F' are as in NBW. The transition functionis 6 : Q X ¥ —
BT(Q), where BT (Q) is the set of positive Boolean formulas over the set of states as well as
{true, false}. That is, formulas that include only the Boolean operators A and V.! For example,
if 5(q,a) = (¢1 A\ q2) V g3, then, by reading a from ¢, the ABW B4 moves either to both ¢; and
2, or to g3. We assume that ¢ is given in disjunctive normal form (DNF).?

A run of B4 on a word w € X% is a Q-labeled Q-tree, in which the i’th level corresponds
to the set of states that B4 reaches after reading w(i]. The root is labeled by ¢o. For every
g-labeled node u in level ¢, the set of labels of the children of « is a minimal set (with respect
to inclusion) that satisfies d(g, w(i]). For example, if 6(q,a) = (q1 A q2) V g3, and w[i] = a,
and u is a ¢-labeled node on level ¢ — 1, then w has either two children labeled ¢ and ¢o, or a
single child labeled g3. Hence, disjunctions in the transitions are equivalent to non-deterministic
choices and influence the number of different run trees on a word, and conjunctions induce a
split to two or more successors within the run tree.

A run is accepting if every infinite path in the run tree visits a state from F’ infinitely often,
and every finite path ends with ¢rue. That is, the last node on the path is on some level n and is
labeled by ¢ such that true satisfies 6(g, w[n]). The notions of acceptance and language are as
in NBWs.

We say that an automaton (either NBW or ABW) is a labeled automaton if its definition
also includes a labeling function .Z : () — L for its states, where L is a set of labels. We use

this notion to conveniently define variable automata.

Non-Deterministic Variable Biichi automata

We now define non-deterministic variable Biichi automata over infinite words (NVBWs). Our
definition is tailored to model VLTL formulas, and thus is slightly different from the definition
in [GKS10]. Specifically, the alphabet consists of subsets of AP x X, where AP is a finite
set of parameterized atomic propositions. For ease of presentation we denote the alphabet as
¥ = 24P*X However, we only consider words in which each atomic proposition appears only
once at every position of the computation. That is, the set {a.x, b.y, c.x} for a,b,c,€ AP can
be a letter read by an NVBW, whereas the letter {a.x, a.y} is considered only if z and y are

assigned with the same concrete value.

'In particular, the negation operator is not included.
“Note the although § is a function, this does not imply determinism. We express non-determinism using
disjunctions in the Boolean formula that is the output of 4.
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An NVBW is a tuple A = (B,T, E), where B = (247%X Q. qo, 6, reset, F) is a labeled
NBW such that:

¢ X is a finite set of variables.

o reset 1 Q — 2X isa labeling function that labels each state ¢ with the set of variables

that are reset at q.

* Theset E C {z; # z; : x;,x; € X} is an inequality set over X. This set defines

variables that cannot be assigned with the same value at the same point of the computation.
 T'is an infinite alphabet.

A run of an NVBW A on a word w assigns a value from I to every occurrence of a variable.
A variable can “forget” its value only if a reset action occurs. The inequality set £ prevents
from certain variables to be assigned with the same value at the same state in the computation.
Formally, a run of an NVBW A = (B,T, E) on a word w € (247*T)% is a pair (r, 0)
where ™ = (qo, q1, g2, - - - ), is an infinite sequence of states, and § = (g, 01, - - - ) is an infinite

sequence of mappings ¢; : X — I such that:

2AP><X

1. There exists a word @ € ( )“ such that 0;(w][i]) = wli] for every i € N, and 7 is

arun of B on w. We say that w is a symbolic word that is consistent on (, §) with the

concrete word w.

2. The run respects the reset actions: for every i € N,x € X, if © ¢ reset(¢;) then

0i(z) = Oip1(z).

3. The run respects E: for every i € N and for every inequality (z,, # x;) € E it holds
that 0;(x;) # 0;(x,,). Note that this means that inequalities hold locally at each state.

A run (7, 60) on w is accepting if 7 is an accepting run of B on a symbolic word @ that
corresponds to w on (7, #), that is, 7 visits F' infinitely often. The notion of acceptance and
language are as in NBWs.

We say that an NVBW A expresses a formula ¢ if L(A) = L(p).

Example 3.2.1. Consider the concrete word
w = {send.1}({send.2, rec.1}{send.1, rec.2})*
In an NVBW A, a corresponding symbolic word can be
w = {send.x1 }({send.xa, rec.x1 }{send.x1, rec.zo})*

If A includes reset actions for 1 and x2 in every even state in some path of A, then another

concrete word consistent with 1 can be
w' = {send.1}{send.2, rec.1}{send.3, rec.4}{send.4, rec.3}{send.5, rec.6} . ..
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since the values of £ and x2 may change at every even state.

Notice that there are several types of infinite sequences discussed in this Chapter. For ease

of reading, a summary of their types and notation follows.

2AP><F

* Infinite words over , which we usually denote by w.

» Infinite symbolic words over 247*X which we usually denote by 0.
* Infinite paths in an automaton, which we usually denote by 7 = (qo, q1, - - -)-

* Variable assignments, which we usually denote by 6. Sometimes we use 6 to refer to a set

or a sequence of variable assignments, depending on the context.

3.3 Variable automata: Non-determinism vs. Alternation

In Section 3.6 we show that NVBWs are useful for model checking in our setting, since
they have good decidability properties. In particular, there is a polynomial construction for
intersection of NVBWs, and their emptiness problem is NLOGSPACE-complete [GKS10]. In
Section 3.5.1 we describe fragments of 3*-VLTL that have a direct translation to NVBWs.
We now show that NVBWs are too weak to express all VLTL formulas, or even all 3*-VLTL
formulas. Nevertheless, we use NVBW:s for model checking a significant subset of 3*-VLTL.
Before discussing the properties of variable automata, we first give some motivation for
their definition, as presented in Section 3.2.2. In particular, we give motivation for the reset

labeling function and for F, the inequality set.

Example 3.3.1. We begin with resets. Consider the 3*-VLTL formula ¢; = G 3z(a.x). One
possible computation that satisfies 7 is w = a.1 a.2 a.3---. No NVBW with a finite number
of variables can read w, unless some variable is reassigned. The reset action allows these

reassignments.

Example 3.3.2. To see the necessity of the inequality set £, consider the 3*-VLTL formula
w2 = Jz(G—a.x). We can use a variable = to store a value that never appears along the
computation with a. Imposing inequality restrictions on x with all other variables makes sure
that the value assigned to = does not appear along the computation via assignments to other
variables. Note that if the logic does not allow negations at all, the inequality set is not needed,

since only negations can force values to be different along a computation.

3.3.1 NVBWs are not expressive enough for 3*-VLTL

As the following Lemma shows, there are 3*-VLTL formulas that cannot be expressed using
an NVBW. This is in contrast to the finite alphabet case, where every LTL formula has an
equivalent NBW,

Lemma 3.3.3. The formula pg3 = G3x(a.x A Fb.x) cannot be expressed by an NVBW.
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Proof. Consider the following word w over AP = {a,b} and I' = N, which is defined as
follows. For every i > 0, the letter wli] is {a.(i + 1), b. [logy(i + 1) | + 1}. Hence,

w={a.1,b.1}{a.2,b.2}{a.3,b.2}{a.4,0.3} - - - {a.7,b.3}{a.8,b.4} - - -

That is, for every i > 0, it holds that a.(i + 1) € wli], and b.i occurs from w[2°~1 — 1] and
continues until w[2? — 2].

w satisfies g3 since for every ¢ > 0, at every step ¢, we have that a.t holds, and at some
point in the future, specifically at step 2/~ — 1, the proposition b.t will hold. Thus, at every
step t we have a.t A F b.t for some value ¢.

Intuitively, to see that there exists no NVBW that expresses g3, note that between an
occurrence of a.7 and b.7, the number of different values for a increases as 7 is increased. Each
of these values must be remembered in order to be compared with a future occurrence of b, but
an NVBW with finitely many variables cannot handle this requirement.

Formally, assume by way of contradiction that such an NVBW A does exist, and has m
variables. Then when A runs on a word in which a occurs with more than m values, at least
one variable must be reset and used for at least two different values of a during the finite
sub-word in which this occurs. Let iy be such that i9 > max{m, 5} and consider the sub-word
wlip] - - - w[im].> Since this is a sub-word of length m + 1 it holds that some variable z of A
is reset along the run on this sub-word and is used for two different values ¢, ¢’ of a, such that
t < t’, and assume that ¢’ is the minimal value satisfying this requirement. In addition, note that
since a.t occurs in wlig] - - - wiy,| it holds that ig < t < 4,, and thus i, < ¢ + m. Since b.t
only occurs at position 281 — 1, and iy > max{m, 5}, it holds that 2=! — 1 > ¢ 4+ m and thus
b.t does not occur in the sub-word w(ig] - - - W[iy,).

Now, let w’ be the word that is obtained from w above by replacing a.t in w[t] with a.0.
The word w’ does not satisfy g3 since b.0 never occurs in w, and thus does not occur in w’.
However, we show that since x is reset between position ¢ — 1 and the next occurrence of b.t,
the accepting run of A on w is also an accepting run of A on w’. This, since A can no longer
check that the occurrence of .0 and the occurrence of b.t do not match; let » be an accepting

run of A on w and let

<p07w[7;0]’p1> T <pt’w[t]7pt+1> T <p87 w[3]7p5+1> T <pt’7w[t/]7pt’+1> T <pm, w[im]7pm+1>

the part of r reading the sub-word w(ig] - - - w[i,,], where py is the state where variable x is reset.

We note that the first time ¢ occurs in w is when reading a.t from state p;. Thus, all
transitions until state p; remain the same, and the transition (p¢, w’[t], ps+1) can be taken since
both 0 and ¢ are fresh values, and so they both can be assigned to x. All the transitions that
follow up to ps regard other values and do not impose requirements on x, thus can be taken as
well since the rest of the word is unchanged. Since x is reset in p;, the transition from ps to

Ds+1 can be taken with any value of z, and in particular with x = 0. All other values and all

*We choose 4o to be grater than 5 so that the inequality 2°=' — 1 > ¢ + m will hold, as we show below.
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atomic propositions remain the same, thus indeed the transition (ps, w|s|, ps+1) is valid. Again,
all next transitions until py read other variable values and thus cannot impose restrictions on .
Now, when reading w|t'] the variable x is assigned the new value ¢, and so from w|t'] onwards,
the two words w and w’ agree on all letters. Therefore, if w is accepted by A then so is w’, and

so A cannot express the property ¢g 3. |

Not only 3-quantifiers are problematic for NVBWs. NVBWs cannot handle V-quantifiers,

even in PNF. The proof of the following Lemma is identical to the proof of Lemma 3.3.3.

Lemma 3.3.4. The formula py = V2 G (a.x — Fb.x) cannot be expressed by an NVBW.

Note that while v is not expressible by an NVBW, its negation, -y = JxF (a.2 AG —b.x)
is expressible using an NVBW (see Section 3.5.1). Since in model-checking we use the negation
of the formula we wish to verify, we are able to model-check the property expressed by y.
Moreover, we present several techniques for model-checking formulas even if their negations are

not expressible by an NVBW. These techniques use AVBWs, and are described in Section 3.3.2.

3.3.2 Alternating Variable Biichi Automata

In Section 3.3.1 we have shown that NVBWs are not expressive enough, even when considering
only the fragment of 3*-VLTL. We now introduce alternating variable Biichi automata over
infinite words (AVBWs), and show that they can express all of 3*-VLTL. We study their
expressibility and decidability properties.

Definition 3.3.5. An AVBWisatuple A = (B4, T, E) where By = (247*X Q, qo, 6, reset, F)
is a labeled ABW, and X, reset, I/, and I are as in NVBW.

A run of an AVBW A on a word w € (247*T)% is a pair (T, §) where T is a Q-labeled Q-tree,

and 0 associates each node ¢ of T" with a function 0; : X — I such that:
1. The root of T' is labeled with ¢g.

2. For every path 7 of T there exists a symbolic word 1, € (247*X)% such that 0, (10 [i]) =
w(t]. That is, for every path 7, the word w is obtained from a symbolic word . that is

associated with 7, by assigning values to the variables in @, according to 6.

3. The run respects ¢: for each node ¢t € 7" labeled by ¢ of depth ¢ on path 7, the successors
of ¢ are labeled by q1, . .., q: iff {q1,q2, ..., ¢} is a minimal satisfying set of 0 (g, Wx][i]).
That is, the symbolic words that are described in Item 2 can be read following legal

transitions in A.

4. The run respects the reset actions: if ¢’ is a child node of ¢ labeled by ¢ and x ¢ reset (q),
then 6,(z) = 0y (x). That is, along a path in T, as long as x is not reset, it carries the

same value.
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5. The run respects £ : for every (z; # x;) € E and for every node ¢ € T it holds that
Or(xi) # 64(x;).

Intuitively, much like in NVBWs, the variables in every node in every path along the run
tree are assigned values in a way that respects the resets along the path, and the inequality set.
Arun (T, 0) on w is accepting if every infinite path 7 of T is labeled infinitely often with
states in I, and every finite path ends with true. The notion of language is as usual.
Note that the same variable can be assigned different values on different paths, even at the
same depth of the tree (and also along the same path, provided it has been reset).
Just like ABWs, AVBWs are naturally closed under union and intersection. However, unlike

ABWs, they are not closed under complementation. We prove this in Section 3.3.4.

3.3.3 AVBWs can express all of 3*-VLTL

We now show that AVBWs can express 3*-VLTL. Together with Lemma 3.3.3, we reach the

following surprising theorem.

Theorem 3.1. AVBWs are strictly more expressive than NVBWs.

This is in contrast with the finite alphabet case, where there are known algorithms for
translating ABWs to NBWs [MHS84].

Theorem 3.2. Every 3*-VLTL formula ¢ can be expressed by an AVBW A.,.

We start with an example AVBW A for o3 = G 3z(b.z A Fa.z) from Lemma 3.3.3. See
Figure 3.1 for a graphic representation of 4.

Example 3.3.6. Let A = (B, N, ()) where B = (247 {zn.22.23} L4 01} qo, 6, reset, {qo}).

* reset(qo) = {x1, 72}, reset(q1) = {x2, 3}

e 6(qo, {b-1}) = 6(qo,{a.xa,b.z1}) = qo AN
6(qo, {b.x1,a.21}) = qo

6(qr, {b-w2}) = 0(q1, {a.x2}) = (a1, {a.w2, b.x3}) =
(q1,{a.x1}) = 0(q1,{a.x1,b.z2}) = true

Intuitively, gy makes sure that at each step there is some value with which b holds. The run
then splits to both gy and ¢;. The state g; waits for a with the same value as was seen in qg
(since x; is not reset along this path, it must be the same value), and uses x2 and 3 to ignore
other values that are attached to a, b. The state ¢y continues to read values of b (which again

split the run), while using x5 to ignore values assigned to a.
We now proceed to the proof of Theorem 3.2.
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{a.z1,b.z1}

{b.x1}

{a.z2,b.z1}

{a.z1}

{a.z1,b.x2}

Figure 3.1: The AVBW A described in Example 3.3.6 and an example of a run. The double
arch between transitions represents a conjunction (A) in §.

Proof. Let ¢ be an 3*-VLTL formula. We present an explicit construction of A, based
on the construction of [Var95], using resets to handle the 3-quantifiers, and inequalities to
handle negations. First, we rename the variables in ¢ and get an equivalent formula ¢’, in
which every existential quantifier bounds a variable with a different name. For example, if
¢ = Az(a.x U3z(b.x)) then ¢’ = Jx1(a.x1 UTzo(b.22)). In addition, since we can express
the temporal operators G and F using U and V, we assume all formulas only contain the
temporal operators X, U and V.

Let sub(y’) be the set of sub-formulas of ¢ and let var(y’) be the set of variables that
appear in ¢'.

The AVBW is A, = (B,T, E') where B = (24P*X Q. ¢/, 6, reset, F') and where:

* X =war(¢')U{z, : p € AP}. That is, the variables of A, are the set of variables
of ¢/, as well as an additional variable for every atomic proposition. Intuitively, these
additional variables allow A, to read the values that are carried by atomic propositions,

and which are irrelevant to the formula.

. Q= sub(y)).

* {x,: pe AP} Creset(q) forevery ¢ € @, and {z1,--- ,x,} C reset(q) for ¢ of the
form dx1,--- ,3dx,n. That is, x is reset in every state (i.e. sub-formula) in which z is
under an un-nested 3 quantifier. Intuitively, the formula states that there exists a value -y
that can be assigned to x for which the sub-formula 7 is true, and resetting = allows it to

be assigned . In addition, the atomic proposition variables are reset in every state.

s E={x#42: 2 € X,(—a.x) € sub(yp’)}. Recall that we only allow negations on
atomic propositions. We handle these negations with inequalities. If —a.x is a sub-formula
of ¢, then we do not want the value assigned to x to appear with @ when reading a from
state —a.x. Thus, all variables that a can occur with from state —a.x must be assigned

different values from the value currently assigned to x.
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I consists of all states of the form 7 V 9, just as in the classic LTL to ABW construction.
Intuitively, these states make sure that every U formula is satisfied, and no computation
is stuck in the lefthand side of the U without eventually satisfying its righthand side.

As in the classic LTL to ABW construction, the set of states () consists of all sub-formulas of
¢'. In our setting, at every given point in the computation there is an assignment to the variables
that may change via resets. If an accepting run of A on w visits a state v, then the suffix of w
that is read from 1) satisfies ) under the current assignment to the variables. The set of variables
X consists of all variables in ¢, as well as a variable x,, for every atomic proposition p € AP.
The additional variables enable the run to read and ignore values that are currently irrelevant.
For example, for ¢ = 3zF (b.z A a.x), we want to read (and ignore) values of a and b until
a.y A b.y occurs with some . Along the run, these values can be assigned to the variables
Zq,Tp. We proceed to define the transition relation §. Let A be a subset of AP x X (recall that
B is defined over the alphabet 247*X)_ Then § is defined as follows.

— 0(a.x, A) = true ifa.x € A and 6(a.x, A) = false, otherwise.
— §(—a.x, A) = =8(a.x, A).}

= 0N, A)=6(n, A) N, A).

-0V, A)=d(n,A) vy, A)

- 6(Xn,A)=n

= 0(nUy, A) =6(, A) v (6(n, A) AnUp)

=0V, A) =N, A) v (6(¥, A) AnV o)

= 0(3zn, A) = 0(n, A)

The transition relation ¢ is then as in the classic LTL to ABW construction, with the
additional transitions from states (subformulas) of the type Jx7. These serve only to reset x
and atomic propositions variables, and the run then proceeds as it would proceed from 7. Note
that since we only use formulas in NNF, we define ¢ for both “and” and “or”, as well as for U
(until) and V (release) operators.

Correctness We inductively prove correctness and show that a word w is accepted from a
state 1) with a variable assignment 6 iff w |=¢ 1. The correctness of our construction relies on
the correctness of the construction in [Var95]. However, we need to take special care in the reset
action and existential quantifiers; and in the negations and inequality set.

For a state a.z and a letter A € 247, the AVBW accepts and moves to true iff a.z € A.
Since we only consider closed formulas, we assume x was previously existentially quantified
and is assigned with some value. Now, for a state —a.x, the AVBW moves to true iff a.z ¢ A.

However, in that case, if x is assigned with value v and a occurs with some value 7' # ~, then

“This can be either true or false.
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the AVBW should allow reading a.y" from state —a.z. Since the inequality set F is defined
tobe B = {z # 2 : 2/ € X,(—a.x) € sub(¢')} for 2/ # x and a.2’ € A, it holds that
d(—a.x, A) = true, and indeed, 2’ cannot be assigned with the same value as x, so the semantics
is preserved.

Inductively, the correctness of § for temporal and Boolean operators follows from the
correctness of the construction of [Var95]. It is left to address existential quantifiers. The
3J-quantifier is handled by resetting the variables under its scope. Indeed, according to the
semantics of 3, for 1 of the form 3z : ¢, the suffix of w holds if ¢/’ holds for some assignment
to x. Resetting x allows the run to correctly assign x in a way that satisfies 1)’. Notice also that

from this point on, due to the 3 quantifier, the previous value assigned to x may be forgotten.ll

3.3.4 AVBWs are not Complementable

As mentioned before, unlike ABWs, AVBWs are not closed under complementation. To prove
this, we show that V*-VLTL cannot generally be expressed by AVBWs. Since negating an
F*-VLTL formula produces a V*-VLTL formula, the result follows.

Lemma 3.3.7. There is no AVBW that expresses py = VxFa.z.

Proof. The formula ¢y states that all domain values appear somewhere along the computation
(with the proposition a). If the alphabet is not countable, then it obviously cannot be enumerated
by a computation. However, the claim holds also for countable alphabets. Assume by way
of contradiction that there exists an AVBW A that expresses ¢y for I' = N. Then A accepts
w = a.0a.1 a.2---. Since the variables are not sensitive to their precise contents but only to
inequalities among the values, it holds that the accepting run of .4 on w can also be used to read

w! = a.1a.2---,in which the value 0 never occurs. [ ]

The negation of ¢y above is in 3*-VLTL, thus there is an AVBW that expresses —py.

Corollary 3.3. AVBWs are not complementable.

Corollary 3.4. V*-VLTL is not expressible by AVBWs.

3.3.5 Variable Automata: From AVBW to NVBW

The emptiness problem for NVBWs is NLOGSPACE-complete [GKS10]. In the context of
model checking, this is an important property. We now show that for AVBWs, this problem is

undecidable.

Lemma 3.3.8. The emptiness problem for AVBWs is undecidable.

Proof. According to [SW], the satisfiability problem for 3*-VLTL is undecidable. The satisfia-
bility of a formula ¢ is equivalent to the nonemptiness of an automaton that expresses ¢, since
a word in the language of the automaton is a satisfying computation of the formula. Since we

have shown that every 3*-VLTL formula can be expressed by an AVBW, the proof follows. H
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Since the emptiness problem for NVBWs is easy, we are motivated to translate AVBWs to
NVBWs in order to model-check properties that are expressed by AVBWs. In particular, such
a translation will enable us to model-check 3*-VLTL properties. This, however, is not always
possible, since AVBWs are strictly more expressive than NVBWs (Theorem 3.1).

We now present a procedure, which translates an interesting subset of AVBWs to equivalent
NVBWs. We later give a structural characterization for AVBWs that can be translated to
NVBWs using our procedure.

From AVBW to NVBW

Our procedure is inspired by the construction of [MH84] for translating an ABW B to an NBW
B’. In [MH84] the states of 5 are of the form (S, O). Intuitively, the run proceeds in rounds.
In every round, every path of the run tree must visit an accepting state at least once. The set
S is the set of the states that B is currently at, and O is the set of states of .S that still “owe” a
visit to an accepting state. That is, O contains the states from S along paths that have not yet
visited an accepting state since the last round. While running B’ on a word w, accepting states
are removed from O, until O = (). Thus, when O = (), all paths have visited an accepting state
at least once. Now, O is again set to be S, and a new round begins. Accordingly, the accepting
states of BB’ are states of the form (.5, ().

Here, we wish to translate an AVBW A to an NVBW A’. For simplicity, we assume that
E = (). The changes for the case where E # () are described later.

In addition to S and O, we must also remember which variables are currently in use, and
might hold values from previous states. In our translation, the states of A’ are tuples containing
S, O, and the sets of variables currently in use. Since AVBWs allow different paths to assign
different values to the same variable, the translation must allocate a new variable for each such
assignment. We also need to release variables that were reset in A, in order to reuse them in A’
to avoid defining infinitely many variables. Since we need to know which variables are in use at
each step of a run of A, we dynamically create both the states and ¢’, the transition function
of A

Since each path in A may allocate different values to the same variable, it might be the
case that the same variable holds infinitely many values (from different paths). Such a variable
induces an unbounded number of variables in A’. The variables make the translation harder,
and as stated in Lemma 3.3.3, even impossible in some cases. Our procedure halts when no new
states are created, and since the new variables are part of the created states, creating infinitely
many such variables causes our procedure not to halt. Therefore, the procedure is incomplete.
Procedure AVBWtoNVBW: Let A = (B4,T', E) be an AVBW, where B4 = (2%, Q, qo,
0, reset, ). For simplicity of the presentation, we assume that B 4 is defined over the alphabet
2X instead of 247*X Recall that we assume that §(¢, X') is in DNF for all ¢ € Q, X’ C X.
Let A’ = (B',T', E') be an NVBW where B’ = (2%, Q’, ¢}, ', reset’, [}, such that’:

* Z ={z;: 0 <1<k} is the set of variables.

SComments are given after each item and are preceded by b>.
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> k can be finite or infinite, according to the translation. If the algorithm converges then
we have |Z| < oo and the AVBW is translatable to an NVBW.

Q' C 2Qx2%7 5 9Q@x2*” ‘The states of A’ are pairs of the form (S, O). Each of S, O
is a set of pairs of type (g, fg) where ¢ € @, and f, : X — Z is a mapping from the
variables of A to the variables of A’.

> At each state we need to know how many different values can be assigned to a variable
x € X by different states of .4, and create variables in Z accordingly, in order to keep

track of the different values of x.

a0 = ({(q0,0)},0).

> The initial state of A’ is the initial state of A with no additional mappings.
F =222 5y,

> The accepting states of A’ are states for which O = (), i.e., all paths in A have visited

an accepting state.

. Preprocessing: For each ¢ € Q: if there is no accepting state or true reachable from ¢

then replace ¢ with false.

> This is in order to remove loops that may prevent halting, but, in fact, are redundant

since they do not lead to an accepting state.

. Initialization: set S := {(go,0)}; O = 0 if go € F and O = {(qo,0)} otherwise;
Qnew := {(S,0)}; Qolq := 0; vars :== 0; Z := 0.

> The purpose of S and O is as explained above; Qnew and Qo1q keep track of the changes
in the states that the procedure creates, in order to halt when no new states are created;

vars holds variables of Z that are currently in use.

. We iteratively define ¢'((S, O), X') for (S, 0) € Qnew, and denote it by (S’,0"). We

continue as long as new states are created, i.e. while Qpnew Z Qold-

(@ Set: 8" :=0; 0" :=0; 7' :=0; Zyeger := 0.
> Zreset contains the set of variables to be reset; at each step, Z’ holds the variables
in Z that label the current edge (and are the image of the variables in X that label
the corresponding edges in .A). The set 7, is initialized at every iteration of the

algorithm.
() Qold := Qola U {(S,0)}
(©) Qnew = Qnew \ {(5,0)}
(d) For each (g, f;) € S, let P, C () be a minimal set of states such that P, = 6(g, X”).
i. Create a state (p, f,) for each p € P,. The function f, is initialized to f,(z) :=

fq(z) for every = ¢ reset(p).
> That is, every successor state p of ¢ remembers the assignments to variables

in g, and releases the assignments to variables that were reset in p.
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ii. Forz € X' with z € dom(f;), update Z' := Z' U {f,(x)}
iii. Foreachz € X' with x ¢ dom(f;), leti € N be the minimal index for which
z; & vars.
A Add to f,, the mapping f,(x) := z; if = ¢ reset(p).
B Update vars := vars U{z;}, Z' :== Z' U{zi}, Zreset := Zreset U {zi}s
7Z = ZU{z}.
> 2z; may already be in Z, if it was introduced earlier.
iv. Define Sp, := {(p, fp) }pep,-
v. If O # 0, set Op, := Sp, if (¢, fg) € O.
> That is, add to O’ only successor states of states from O.
vi. If O = (), set Op, := Sp,.

(e) Set " :=Ug 1,)es 5P O" = (U(g,1,)c0 Or,) \ {{; fo) }per
(f) Add {zi|zi € Zyeset} to the reset function of previous state, (S, O). That is,
reset’ ((S,0)) := reset’ ((S,0)) U{zi|zi € Zreset}-
(2) Update &'((S,0),Z") :=0'((S,0),Z") U {(S', 0"}
(h) Update Qpew := Qnew U {(S",0")}
(i) If for z; € wars it holds that for all (S,0) € Qpew, for all (p, f,) € S we have
2z & range( fq), then:
i. vars:=vars\ {z;}.
ii. add z; to reset’({S’,0")).

> Here we release variables of Z that are no longer in use, by resetting them. Thus
A’ can assign these variables with a new value, and delete them from vars so they

can be used in following transitions.

4. Set Q/ = Qold

To handle cases where E # (), mapping a variable x to a new variable is as follows. For every 2/
with (z # ') € E, let {2;}ic1, be the set of variables that ' is already mapped to in previous
steps. Then, we map x to some variable z and add the inequalities {z # 2; : i € [/} to E.
Figure 3.2 demonstrates a partial NVBW C that is constructed by running AVBWtoNVBW
on the AVBW A shown in Figure 3.1.° Recall that A is an AVBW that expresses the formula
vg3 = G3Iz(b.x A Fa.x). A variable z; in C is reset when there is no mapping from the
variables of X to z;. Consider, for example, the transition from state po to state p3. The edge is
labeled with {b.z3, a.z1 }. The parameterized proposition b.z3 yields a new mapping from z; to
z3, which is released only after a.z3 appears, on the transition from ps to py. In addition, we
can reset the variable z; and reuse it in state ps, since the corresponding transition in the AVBW
is from ¢q; to true once a.x; is seen. Thus, a.z; locally fulfills the requirement for z; and the

mapping 1 — 21 can be forgotten.

SNote that AVBWtoNVBW does not halt when given A as an input.
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@1, z1—22) reset(z2)

Figure 3.2: The NVBW C

A Structural Characterization of Translatable AVBWs

In order to define a structural characterization of translatable AVBWs, we refer to an AVBW A
as a directed graph G 4 whose nodes are the states of A. There is an edge from ¢ to ¢’ iff ¢ is
in 0(q, A) for some A C X. Edges are labeled with the variables labeling the transition. For
example, if (g, x) = g1 V (g2 A ¢3) then there are edges from ¢ to ¢1, g2 and g3, and each edge

is labeled with .

Definition 3.3.9. An z-cycle in an AVBW A is a cycle in G 4 containing an edge labeled x.

Theorem 3.5. Assume that the preprocessing of stage 1 in the algorithm has been applied,
resulting in an AVBW A. Then Procedure AVBWtoNVBW halts on A and returns an equivalent
NVBW iff for every x-cycle Cg in G 4, exactly one of the following holds:

1. For every q on Cg it holds that x ¢ reset(q).

2. Let q be a state such that q is on a path from the initial state to Cg with g1 A g2 € 6(q, A)
for some q1,q2 € Q and x € A, such that q; is on the cycle Cg and q3 leads to an
accepting state. Then, every x-cycle C; # Cg on a path from qa to an accepting state

contains a state ¢' with x € reset(q').”

See Figure 3.3 for a graphical demonstration of this condition.
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The z-cycle

QA

/
g

Figure 3.3: A partial graph G 4 for which the second condition of Theorem 3.5 holds. In the
transition function of the AVBW A we have 6(¢q, A) = q1 Ago for some A. In case x ¢ reset(q’),
the second condition does not hold and our translation algorithm does not halt.

Proof. First, notice that Procedure AVBWtoNVBW halts iff Z is finite, which means that the
number of variables it produces is finite.

For the first direction we show that running AVBWtoNVBW on an AVBW A with the above
properties results in an NVBW with a finite set Z. Consider a variable x € X. If 1 holds for
every x-cycle, then x is not reset on any cycle in G 4. Thus, there is a bound k£ € N such that on
every possible run of A, z is reset most k times, inducing at most k variables in Z. Assume
now that 1 does not hold for a variable € X, and consider an z-cycle Cg on which z is reset.
From 2 we conclude that x is reset on every other z-cycle C{; that is is reachable in A while
reading the same word. Therefore, we can bound the number of different values assigned to
x by the longest simple path between the two x-cycles. Thus, in both cases, x induces finitely
many variables in Z.

For the other direction, if 1-2 do not hold, then there exists a state ¢ that leads both to an
x-cycle Cg on which « is reset, and to an x-cycle C’g with no reset(z), on a path to an accepting
state. While running our procedure, a new mapping x — z; is introduced after every visit to
q € @ such that x € reset(q) on Cg. At the same time, z; cannot be removed from vars, since
there always exists a path that visits Cj, that does not contain a state that resets x. Therefore,
the procedure continuously creates new assignments x — z; for j # 4, and so vars does not
converge. Recall that in the prepossessing we prune paths that do not lead to an accepting state.
Therefore, the fact that there is a path to an accepting state is needed in order for this cycle to

“survive” the preprocessing. |

Completeness and soundness

We now show that no translation algorithm from AVBWs to NVBWs can be both sound and
complete, and, that given a general AVBW 4, it is possible to decide if the algorithm halts on

input .A. We first formally define completeness and soundness.
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Definition 3.3.10. A procedure £ is complete if for every A that has an equivalent NVBW,
E(.A) halts and returns such an equivalent NVBW.

Definition 3.3.11. A procedure £ is sound if, whenever £(A) halts and returns an NVBW A,
it holds that £L(A") = L(A).

Theorem 3.6. There is no algorithm & that translates AVBWs into NVBWs such that all the
following hold.
1. & is complete.
2. & is sound.
3. There is a full characterization of AVBWs for which £ halts, i.e., given a general AVBW
A, decides if the algorithm halts with input A.

Proof. We apply a reduction from the emptiness problem for AVBWs, which we have shown
in Lemma 3.3.8 to be undecidable. Assume there is a translation algorithm £ as described in
Theorem 3.6. Then, consider the following algorithm. Given an AVBW A, if £ halts, check if
E(A) is empty, which implies that £(.A) is empty as well. If £ does not halt on input A, we
know it in advance due to the full characterization. Moreover, we know that £(.A) is not empty.
Indeed, otherwise, since there is an NVBW for the empty language, and since £ is complete,
& would halt on A. Hence, a translation algorithm as described in Theorem 3.6 induces a

procedure that decides the emptiness problem for AVBWs, a contradiction. ]

For our procedure, we have shown a full characterization for halting. We now prove that
our algorithm is sound, and demonstrate its incompleteness by an example of an AVBW for the

empty language, for which our procedure does not halt.

Theorem 3.7. Procedure AVBWItoNVBW is sound.

Proof. We first show that the definition of E’ is correct. Let z, 2’ € X be variables in the
input AVBW A, and let {z, }scx,icn be the set of variables in the constructed NVBW A’,
where a variable z,, in A’ is induced by the variable = in A. Let E and E’ be the sets of
inequalities in A and A’, respectively, and reset , reset’ be the reset functions of A4 and A’.
Every (zz, # ZQC;) € E'is derived from (z # 2’) € E, and each z,, is induced from only
one variable x € X. Therefore, E’ preserves exactly the inequalities of . Now, reset’ is
defined according to reset such that if z; is induced from z, and z is reset in a state g, then z; is
reset in states that include q. Therefore, reset’ allows fresh values only when reset does. The
correctness of the rest of the construction follows from the correctness of [MH84] and from the

explanations in the body of the algorithm. |

Example 3.3.12. Incompleteness of the procedure. Consider the AVBW Ay of Figure 3.4.
Formally, let Ay = (B, T, ) where B = <2{“'m’b'$}, {q0,q1}, qo, 9, reset, {qo}) and

o reset(qo) = {x}, reset(q1) = 0

37



Figure 3.4: The AVBW Ay

* (g0, {az}) =A@
6(q1,{a.z}) =@
d(q1,{b.x}) = true

The language of .4 is empty, since in order to reach an accepting state on the path from ¢,
the input must be exactly {b.i} for some i € I, but the cycle of o can only read {a.j}, without
any b.i. Although there is an NVBW for the empty language, our procedure does not halt on
Ap: it keeps allocating new variables to z, thus new states are created and the procedure does

not reach a fixed point.

3.4 Bounded Model Checking for Systems over Infinite Data

Bounded model checking [BCCZ99] searches for a counterexample in a bounded part of the
system. This approach comes in handy when the search-space is very large. Bounded model
checking is usually applied iteratively, where in every iteration the bound is increased. In
[BCCZ99, CBRZ01] the authors use SAT-based procedures in order to produce a minimal
counterexample. While iterating over k, a CNF formula that describes a computation of length
k that ends in a bad state, is checked. If the formula is unsatisfiable, then the system is safe up
to k steps. If the formula is satisfiable, then a satisfying assignment produces a counterexample
of length k.

In this section we employ the bounded approach in order to search for a witness to the
nonemptiness of an AVBW. We rely on the translation procedure AVBWtoNVBW of Sec-
tion 3.3.5, which translates an AVBW A to an NVBW A’ by iteratively adding states and
variables to A’. We exploit the natural iterative behavior of AVBWtoNVBW in order to seek,
after every iteration, a witness to its nonemptiness in the partial construction C of A’ that has
been calculated until that point. The language of C is a subset of that of A’, which ensures the
correctness of the procedure. Notice that here, we bound the number of iterations, and not the
length of the witness. This method is particularly appealing in our setting, as AVBWtoNVBW

may not converge, yet A’ may include an accepting lasso after finitely many steps.
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Since deciding nonemptiness lies at the heart of automata-based model-checking, we can
use this general scheme in order to describe a bounded model-checking algorithm for 3*-VLTL
formulas and NVBWs.

3.4.1 A Bounded Model-Checking algorithm for 3*-VLTL Formulas

Let 1) be an 3*-VLTL formula that describes a bad behavior. It can be viewed as the negation of
an V*-VLTL formula, which describes a desired, good behavior of the system. Let A, be an
AVBW that expresses 1, and let M be a system modeled by an NVBW A;,. Model checking
M against ¢ amounts to checking the nonemptiness of A, N Ajps. If we can construct an
NVBW A, that is equivalent to Ay, we can directly construct an NVBW Aj, N A/ and test it
for emptiness. If Aﬁ/} does not exist, then bounded model checking is the only hope. Moreover,
since A/,, even if exists, is exponential in the size of the formula, a bounded model-checking

approach may still be preferable.

Algorithm: 3*VLTL-BMC

As we have described, we use the partial output of AVBWtoNVBW and test it for emptiness.

1. Create new states according to algorithm AVBWtoNVBW (steps 1-4), where we follow
the construction breadth-wise, i.e., instead of following one path until no new states are
created, follow all possible successors of the current set of states. This way we scan all

paths simultaneously up to a bounded distance.

2. If AVBWtoNVBW closes a cycle containing an existing accepting state, create a candidate

NVBW C from the current set of states and transitions.

3. Construct C N Ajs, and test it for emptiness. The emptiness test amounts, as in the
case of finite alphabets, to finding an accepting lasso, which can be done on-the-fly
with some additional considerations that match the variables of C and A,;, in a similar
fashion to [GKS12]. If the intersection is empty, go to 1 and continue running AVBW-
toNVBW. Otherwise, the emptiness test returns a word w € (AP x Z)“, which is a
symbolic counterexample. Assigning values to the variables in Z then produces a concrete

counterexample. Since w is lasso-shaped, a concrete calculation can be finitely produced.

As we have mentioned, phases 1-2 comply well with AVBWtoNVBW, due to its iterative
behavior, which produces a sub-NVBW of the final result in every step, even if the run never

converges.

Example 3.4.1. Let og3 = G Jz(b.x A F a.z) be the formula discussed in Section 3.3.1, and
let A in Figure 3.1 be an AVBW that expresses ¢g3. Recall that ¢G5 cannot be expressed
by an NVBW. The NVBW C in Figure 3.2 is a partial result constructed by running 3*VLTL-
BMC on A.
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Consider the following symbolic word.

W = {b.z1 }{b.22}{b.23,a.21 } ({b.21, a.z2 }{b. 22 }{b.21, a.z3 }{b.23, a.21 })*

W is a symbolic witness to the nonemptiness of .4. We can construct a concrete witness over N

as follows.
w={b.1}{b.1}({b.1,a.1}{b.1}{b.1,a.1}{b.1,a.1})*

w is not a very interesting witness for the satisfiability of g 3, yet it suffices in order to know

that A is nonempty. We can look for more interesting concretizations, such as
{b.1}1{b.2}{b.3,a.1}({b.1,a.2}{b.2}{b.1,a.3}{b.3,a.1})*

Note that the distance between an occurrence of b.y and a.7y for v € T is bounded by the length
of a cycle from state ps to itself. Therefore, producing larger automata via 3*VLTL-BMC may

allow producing more interesting concretizations.

3.4.2 Absence of Cycles does not Guarantee Emptiness

In Section 3.4.1 we argued that an accepting cycle in the NVBW C that is partially constructed
by AVBWtoNVBW induces a witness to the nonemptiness of the original AVBW A. We now
demonstrate that the absence of cycles in every such partial NVBW C does not guarantee the
emptiness of A.% Intuitively, this phenomenon occurs when the language of A requires infinitely
many values to appear in every word in the language, a requirement that cannot be fulfilled by a

finite cycle, even if it contains resets.

Example 3.4.2. Consider the AVBW A; shown in Figure 3.5 and some unwinding of it C;

shown in Figure 3.6. The transition function of .4 is defined as follows:

6(q0, {a-x}) = qo N g1 A go
6(q1,{a.y}) = ¢
(g2, {a-y}) = a3
(g3, {a.y}) = 6(g3, {a.z}) = 2

The reset labeling function is:

reset(qo) = reset(qs) = {z}
reset(q1) = reset(q2) = {y}

The inequality set is E = {x # y}. The inequality set of C; is then E' = {z; # z; : i < j}.
Since the inequality set of A, is E' = {x # y}, and the state ¢; does not reset the variable

x, a value that appears once and is assigned to £ may not appear again. Note that x and y may

8Note that absence of cycles means, in particular, that the algorithm AVBWtoNVBW does not halt, as it keeps
creating new states.
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{a.y},{a.z}

Figure 3.5: The AVBW A;

(g0, 0)
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(g0, 0) @1,z —z1)
<{ @, —21) }w) @0 »z) 0d @, a-a) }| Lo e o=
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a2, 2 —=2) @2, —=z3)
Figure 3.6: Cy, a partial NVBW for the translation of .4;

only be assigned the same value along different paths, since the restriction of inequalities holds
for assignments on the same path.

Every state in C; contains a new mapping for z in ¢;. This is due to the fact that ¢; has an
incoming transition labeled a.x, and ¢ does not reset x. The transitions of C; are labeled at
each iteration with a new variable z;. All previous variables {zj } j<i are still kept (that is, are
not reused), in order to make sure that the inequality set E' = {z; # z; : i < j} is satisfied.

Since new variables are introduced in every step, no state in C; — in particular, no accepting
state — is seen twice by AVBWtoNVBW.

For an w-regular language £ over a finite alphabet, there exists a finite set (of size k for some
natural number k) of regular languages £} and £, such that £ = UF_ £} - (£2)« [Saf88]. The
example above shows that this characterization does not hold for the class of languages accepted

by AVBWs. Note that the language of .4; is not empty. For example, it contains all words of

the from a.i a.(i + 1) a.(i + 2) - - -, yet there is no finite candidate that indicates nonemptiness.

This example shows that a witness word in £(C) indicates a witness word in £(.A); However,

the emptiness of £(C) does not indicate the emptiness of £(.A).

3.5 Decidable fragments of 4*-VLTL

As we have mentioned in Section 3.3, the satisfiability problem of 3*-VLTL formulas is in
general undecidable, and 3*-VLTL formulas cannot in general be expressed by NVBWs. In this
section we review fragments of 3*-VLTL that can be expressed by NVBWs, and a fragment of
3*-VLTL for which the satisfiability problem is decidable, even though it cannot be expressed
by NVBWs.
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3.5.1 Fragments of 3*-VLTL that are Expressible by NVBW

We present several fragments of 3*-VLTL that can be directly translated to NVBWs. As a result,

the satisfiability problem for these fragments is decidable.

We first consider 3*-VLTL formulas in prenex normal form (PNF), denoted 3% -VLTL. An

pnp-VLTL formula is of the form ¢ = Jx1Jdxo ... 3x,1), where 1 is quantifier-free. Notice
that an AVBW A, that expresses ¢ contains no resets, and is similar to an ABW for ¢ over the
symbolic alphabet. Since resets are at the heart of the complexities of the AVBW to NVBW
construction, and A, is free of them, an NVBW for ¢ is computable in a similar way to the
standard ABW to NBW construction.” Moreover, we can use the standard tableau construction
for LTL [BCM192], and so we have a direct construction from Ipnp-VLTL to NVBW.

Example 3.5.1. An interesting property expressible in 35 y-VLTL is given by the formula
Jx(GF send.xz A F G —recieve.z). If x ranges over the messages content, this formula states
that there is some message that is sent infinitely often, but is not received starting some point in
the computation. This is the semantical negation of the property “every message that is sent will
be received in the future”. That is, 3%, 7-VLTL allows us to express interesting “bad” properties,

which we can test for satisfiability using our algorithms.

Fully Nested 3*-VLTL

We say that an 3*-VLTL formula ¢ is fully nested if every quantifier in ¢ is either at the head of
©, or adjacent to a parameterized atomic proposition. That is, all of the quantifiers in a fully
nested formula are either at the very “outside” of the formula, or at the very “inside” of it. We
denote this fragment 3%, -VLTL. Notice that 37, -VLTL subsumes 3} z-VLTL.

We show now that 37 -VLTL is translatable to NVBW. Consider an 3%, -VLTL formula
¢ and let A, be an AVBW expresses it. We notice that transitions from states that represent
atomic propositions in A, are either true or false, and therefore do not introduce new variables.
Hence, despite the fact that quantifiers inside the formula induce resets in these states, these
resets do not require adding new variables in the translation of A, to an NVBW. Therefore, in
this case, our translation algorithm to NVBW always terminates.

As in Section 3.5.1, here too we can use the tableau construction and directly construct
an NVBW for the formula ¢, by adding resets on states in the tableau that represent atomic

propositions.

Example 3.5.2. Consider the formula ¢ = G F 3z(fail.x), where x ranges over process IDs.
We can use ¢ in order to verify that from some point on, all processes work correctly, since ¢ is

the negation of this property.

°In [SW] the authors conjecture without proof that the formula G 3z : a. does not have an equivalent in PNF.
In Lemma 3.3.3 we show that G 3z (b.z A F a.x) does not have an equivalent NVBW, and therefore does not have
an equivalent 3% p-VLTL formula. This is a different formula from G 3za.z, but the conclusion remains the same.
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Jix £ )-VLTL

Another fragment that is easily translatable to NVBW is Elz‘x ’F)—VLTL, which is the fragment of
F*-VLTL that only uses the temporal operators X and F. A similar fragment for LTL is defined
in [EH86].

Notice that the 3 quantifier and the X, F operators are interchangeable. Intuitively, it does
not matter whether a variable is reset immediately after committing to its future appearance or
before. Therefore, every EIZ‘X F )—VLTL has an equivalent 3% --VLTL formula over X, F only,
that can be calculated by renaming variables under the scope of the quantifier, and pushing the
quantifiers out. As a conclusion, we have that EIE‘X F )—VLTL can be expressed by NVBW.

This fragment expresses very intuitive, yet important properties, as demonstrated in the

following example.

Example 3.5.3. Consider the formula 3zF fail.z, where x ranges over critical process IDs.
Clearly, it is enough for one such process to fail in order for the entire system to be unsafe. Thus,
The fragment of Hz‘x E )—VLTL allows us to easily model-check systems for such bugs.

Remark. The interchangeability between quantifiers and the X, F operators is not applicable
for formulas that include the V quantifier. For example, consider the VLTL formulas ¢ =
FVz(—a.r) and ¢’ = VaF —a.xz. The word w = ({a.1}{a.2})¥ satisfies ¢, since for every
x # 1, the formula —a.x holds in the first step, and —a.z holds at the second step for z = 1.
However, w does not satisfy ¢ since there is no step along the computation where a does not

hold with some value.

To conclude the discussion so far, we have the following.
Theorem 3.8.
1. In terms of expressive power, EI?X ,_-)-VLTL < Jpnp-VLTL < 3%, -VLTL < F*-VLTL.

2. 3(x,p)"VLTL, 3pNp-VLIL, and 3}, -VLTL can all be expressed by NVBWs.

VGR()

The logic of GR(1), first presented by [PPS06], is widely used in software verification, partic-
ularly in synthesis. GR(1) formulas are of the form A, B; — A,; C; where B; and C; are of
the form G F p; for p; € AP. We consider possible extensions of GR(1) to variable GR(1), or
VGR(1), in F*-VLTL.

According to Theorem 3.8, fully-nested 3*-VLTL formula can be expressed by NVBWs.
Therefore, VGR(1) formulas of the form Jxy3xy ... 3z ( A\; Bi — A; C;) where B; and C;
are of the form a;.z; or 3x;(a;.z;) can be expressed by NVBWs.

We now consider a more complex structure of VGR(1) formulas. Consider formulas of the

form ¢ = A; B; — A; C; where C; is in one of the forms

ELTiGFCLZ'.‘TZ‘, GEIijai.a:j, GFHSE](CLZCEJ)

43



and B; is of the latter two forms.?

The formula ¢ is equivalent to (\/; =B;) V (/A\; C;). Thus, constructing an NVBW A, for ¢
amounts to constructing an NVBW A_ g, for every —B;, and an NVBW A, for every C;.

The negation of the formulas B; is of the form F GVz—a.z. This formula states that
from some point of the computation, a does not appear at all. Although this is a V-VLTL
formula, it is easy to construct an NVBW expresses it. Note that the negation of the formula
v = Jx;GF a;.2;, which is Va;F G —a;.x; has no equivalent NVBW. Intuitively, this is since it
requires keeping track on all domain elements, and for each of them, to make sure that starting
from some point in the computation, this values does not appear. However, the position of this
point in the computation is unbounded and may be different for different domain elements.
Therefore, we do not take B; to be of the form of .

As for Cj, the formula 3x;G F a;.; is an 3} p-VLTL formula and thus has an equivalent
NVBW, and the formulas G 3z;F a;.2; and G F 3z;a;.x; are equivalent, and can be represented
as NVBWs since G F 3x;a;.x; is a fully nested 3*-VLTL formula.

Then, A, = (U; A-B;) N (N; Ac;). Since NVBWs are closed under union and intersection
[GKS10], A, is an NVBW.

3.5.2 Further decidable fragments

We now present a fragment of 3*-VLTL that cannot in general be expressed by NVBWs, yet its
satisfiability is decidable. Consider an 3*-VLTL formula . We assume that every 3 quantifier
in ¢ bounds a different variable.!! We define the flattening of ¢, denoted by /!, as the 3*-
VLTL formula obtained from ¢ by removing all the 3 quantifiers, and placing them at the
beginning of the formula. For example, the flattening of ¢ = G 3x1b.x; A JzoF a.xq A b.zg
is of! = 3z132,G b.z1 A Fa.xzy A b.zo. Notice that ¢ # ¢f!, and that /! is an Ip - VLTL
formula.

As we now show, the satisfiability of ¢/! may point to the satisfiability of ¢, and in case

that ¢ is negation free, the two are equisatisfiable.

Lemma 3.5.4. Let p be an 3-VLTL formula. Then, the following holds.
1. L(pfY) C L(y), and therefore if oI is satisfiable then o is satisfiable.
2. If ¢ does not contain negations, then  is satisfiable iff 1" is satisfiable.

Moreover, every witness for the satisfiability of ¢! is a witness for ¢ as well.

Proof. Let Ay, and A5 be AVBWs that express ¢ and ©f!, respectively. Since the difference
between ¢ and /! is only in the location of the 3 quantifiers, the graph structures of Ay,
and A¢ s are identical, and the only difference between them is in the location of the resets.
Indeed, while resets may occur anywhere in Ay, the resets in A, occur only in its initial
state (recall the construction of an AVBW from an 3*-VLTL formula, as described the proof of
Theorem 3.2.)

19As we show in 3.5.1, these latter two formulas are equivalent.
"Every 3*-VLTL has an equivalent in this form.
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Accordingly, in an accepting run-tree Ty, of A5 on a word w, each variable is assigned
a fixed value throughout the run. Notice that due to the similar structure of both AVBWs, the
run-tree 7T}, is also an accepting run-tree of .4, on w, in which each variable is pre-assigned
the values it is assigned in the run of Aw 71 on w, and the resets do not change the values of the
variables.

Therefore, together with the previous paragraph, we have that £(A,s) C L£(Ay). This
concludes the proof of 1.

For 2, the first direction is a special case of 1. For the second direction, let o be a satisfiable
3*-VLTL formula with no negations, and let w be a computation that is accepted by A, with
arun-tree Ty,. Let w’ be the concrete computation that is obtained from w by replacing every
value in w with the same value . Notice that since ¢ and /! are both negation-free, then
both AVBWs have an empty set of inequalities, and so there is no restriction on the values that
may be assigned to the variables throughout the run. Also notice that since the values of all the
variables remain fixed, w’ is accepted by A, s, and therefore satisfies ©f!. We claim that w’
also satisfies . Indeed, since there are no inequalities in both AVBWs, then at every reset to a
variable x along T}, the variable x may be assigned . Therefore, we can use T, to produce an

accepting run-tree of A, on w'. ]

Notice that although ¢ and /! are equisatisfiable in case that ¢ is negation free, they are
not necessarily equivalent. Moreover, ¢ may not even be expressible by an NVBW. We now

present some examples.
Example 3.5.5.
1. Consider the formula ¢ = G 3x(a.x A X G —a.z). The formula 1 can be satisfied only by

a computation in which a is paired with a different value at every step. The formula /7! is
3:(Ga.z A XG —a.z). The formula /! is not satisfiable, even though 1/ is satisfiable.'

2. Consider the formula pg3 = G Jx(b.x A F a.x). We have shown in Section 3.3 that pg 3
cannot be expressed by an NVBW. However, the formula goéla = Jz(Gb.x AFa.x)is
satisfiable, and a witness to its satisfiability, such as w = ({a.1,.1})“, can easily be
found with the F*VLTL-BMC algorithm from Section 3.4.1. As we have shown, w is also
a witness to the satisfiability of g 3.

Note that both 1/ and ¢G5 do not have an equivalent NVBW. However, while we can find a
witness to the satisfiability of ¢g 3 with 3*VLTL-BMC using a very small bound, this algorithm

cannot find a witness to the satisfiability of v, with any bound.

Following the observations that we have discussed here, we can use the flattening of 3*-
VLTL formulas for an incomplete model-checking procedure: Given an NVBW A, and an
F*-VLTL formula ¢, check the emptiness of A@fl N Ap. Since ¢f! is in PNF, emptiness
is decidable. If there exists a word in the intersection, it is a witness to the violation of the
specification given to us as —p. However, if we cannot find a word in the intersection, this does

not imply that the program satisfies the specification.

2The set of computations satisfy 1) is exactly the language of the AVBW 4; from Figure 3.5.
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3.6 Concluding Remarks

In this chapter we consider the verification of ongoing systems over infinite data domains with
respect to VLTL specifications.

We have defined AVBWs, a new model of automata over infinite alphabets, which combines
alternation with variable automata over infinite words. As we have demonstrated, AVBWs
manage to express VLTL formulas that previous models were unable to express, namely all
F*-VLTL formulas. We showed that AVBWs are strictly stronger than NVBWs. Nevertheless,
we presented a procedure for translating AVBWs to NVBWs when possible. Moreover, we
defined a structural characterization of AVBWs that are translatable by our procedure.

3*-VLTL formulas can, in many cases, naturally describe “bad” behaviors, and hence, come
up naturally in the context of model-checking. Thus, AVBWs become an essential tool in
model-checking 3*-VLTL formulas, as every such formula can be expressed by an AVBW. An
example for such an important property is the response property, oy = VzG (a.x — F b.x). The
negation of ¢y is 3xF (a.z A G —b.x), for which we present an easy model-checking algorithm.

When an AVBW can be translated to an NVBW by our procedure, the result can be used in
a model-checking procedure that calculates the intersection of the NVBW with the program
automaton, and checks the nonemptiness of the intersection. However, even for formulas that
are not translatable, we can still use our procedure for a bounded model-checking algorithm.
Moreover, we presented fragments of 3*-VLTL for which there is a direct construction of
NVBW, and a fragment (3*-VLTL with no negations) whose satisfiability is decidable even
though it is not always translatable to NVBW. Thus, we have expanded not only the expressive
fragment of VLTL, but also the fragments that can be model-checked.

To conclude, in order to preform model-checking for an 3*-VLTL formula ¢, we can do one
of the three: translate ¢ to an NVBW if it is one of the types of Section 3.5; build an AVBW A,
and if the structure of Ay agrees with the structural characterization of Theorem 3.5, translate
it to an equivalent NVBW according to Section 3.3.5; or use the bounded model-checking
algorithm presented in Section 3.4 and look for a partial NVBW that enables searching for a
witness for nonemptiness.

Our work presents an incomplete model-checking algorithm for 3*-VLTL formulas, thus
laying the theoretical foundations for a model-checking tool for 3*-VLTL, which we plan
to implement as future work. As a further direction, we plan to use the techniques we have
presented here in order to construct suitable algorithms for model checking VCTL [GKS14]

formulas as well.
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Chapter 4

Compositional Verification and Repair

4.1 Communicating Programs

In this chapter we present the notion of communicating programs. These are C-like programs,
extended with the ability to synchronously read and write messages over communication
channels. We model such programs as automata over an action alphabet that reflects the
program statements. The alphabet includes constraints, which are quantifier-free first-order
formulas, representing the conditions in if and while statements. It also includes assignment
statements and read and write communication actions. The automata representation is similar
in nature to that of control-flow graph. Its advantage, however, is in the ability to exploit an
automata-learning algorithm such as L* for its verification [Ang87b].

Given two communicating programs, M; and Ms, we wish to prove that the composed
system M || Mo, that is the result of the communication of the two components, is correct.
However, the composed system might be too large for the verification to scale well. To
address this problem, we turn to compositional verification. We use the Assume-Guarantee
rule [MC81, Pnu85] and the L* algorithm in order to compositionally prove the correctness
of the system. In case an error is found, we repair the system and return to try and verify the
repaired system.

We first formally define the alphabet over which communicating programs are defined.
Let GG be a finite set of communication channels. Let X be a finite set of variables (whose
ordered vector is ) and D be a (possibly infinite) data domain. For simplicity, we assume that
all variables are defined over D. The elements of D are also used as constants in arithmetic

expressions and constraints.
Definition 4.1.1. An action alphabetis o = G U E U C where:

1. G C{g?x1,9'z1, (9721, 9'22), (g!z1,9722) : g € G, 1,22 € X} is a finite set of
communication actions.

* g?x is a read action of a value to the variable x through channel g.

* glx is a write action of the value of x on channel g. We use g * x to indicate some

action, either read or write, through g.
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* The pairs (g7z1,g!z2) and (g7x1, glxe) represent a synchronization of two pro-

grams on read-write actions over channel g (defined later).

2. £EC{x:=e: e€ E, v € X}isafinite set of assignment statements, where E is a set

of expressions over X U D.

3. C is a finite set of constraints over X U D.

Definition 4.1.2. A communicating program (or, a program) is M = (Q, X, «, 6, qo, F'), where:
1. @ is a finite set of states and gg € @ is the initial state.
2. X is a finite set of variables that range over D.
3. a = GUE UC is the action alphabet of M.
4. § C Q x a x Q is the transition relation.

5. F C Q is the set of accepting states.

The words that are read along a communicating program are a symbolic representation of
the program behaviors. We refer to such a word as a trace. Each such trace induces concrete
runs of the program, which are formed by concrete assignments to the program variables in a
way that conforms with the actions along the word.

Although communicating programs are an extension of finite automata, we investigate them
from a different perspective. While in Chapter 3 the automaton takes as input a computation and
checks whether the computation satisfies the specification by reading the computation against
the specification automaton, here we like to think of the automaton as the generator of the
behavior, as it describes the program. Therefore, we begin with a run of the program, and induce

traces from the run, and not the other way around. We now formally define these notions.

Definition 4.1.3. As defined in Chapter 2.1, a run in a program automaton M is a finite
sequence of states and actions = (qo, a1,q1) - - - (Gn—1, @n, ¢n), starting with the initial state
qo, such that V0 < ¢ < n we have (g;, @ij+1,¢i+1) € 0. The induced trace of r is the sequence

t = (ai,...,ay,) of the actions in r. If ¢, is accepting, then ¢ is an accepted trace of M.

From now on we assume that every trace we discuss is induced by some run. We turn to

define the concrete executions of the program.

Definition 4.1.4. Lett = (aq,...,a,) be atrace and let (fy, .. ., B,) be a sequence of valua-
tions (i.e., assignments to the program variables).! Then a sequence e = (fy, a1, f1,az,. ..,

ap, Br) is an execution of t if the following holds.

1. Bo is an arbitrary valuation.

'Such valuations are usually referred to as states. We do not use this terminology here in order not to confuse
them with the states of the automaton.
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2. If a; = g?x, then 5;(y) = Bi—1(y) for every y # x. Intuitively, x is arbitrarily assigned
by the read action, and the rest of the variables are unchanged.

3. If a; is an assignment = := e, then (;(z) = e[z < B;_1(Z)] and B;(y) = Bi—1(y) for
every y # .

4. If a; = (g?z, g'y) then B;(z) = Bi—1(y) and 5;(z) = Bi—1(z) for every z # x. That is,

the effect of a synchronous communication on a channel is that of an assignment.
5. If a; does not involve a read or an assignment, then 3; = 3;_1.

6. Finally, if a; is a constraint in C, then (5;(Z) F a; (and since a; does not change the

variable assignments, then 5;,_1(Z) F a; holds as well).

We say that ¢ is feasible if there exists an execution of ¢.

The symbolic language of M, denoted T (M ), is the set of all accepted traces induced by
runs of M. The concrete language of M is the set of all executions of accepted traces in 7 (M).
We will mostly be interested in feasible traces, which represent (concrete) executions of the

program.
Example 4.1.5.

— The trace (z := 2 -y, g7z, y := y + 1, gly) is feasible, as it has an execution (z =
Ly=3),(x =6,y =3),(x =20,y =3),(z =20,y =4), (x =20,y = 4).

— The trace (g?x, x := 2%, 2 < 0) is not feasible since no 3 can satisfy the constraint
x < 0if 2 := 22 is executed beforehand.

4.1.1 Parallel Composition

We now describe and define the parallel composition of two communicating programs, and the
way in which they communicate.

Let M7 and M, be two programs, where M; = (Q;, X;, ay, 6;, qo’, Fy) for i = 1,2. Let
G1, G4 be the sets of communication channels occurring in actions of M, Ma, respectively.
We assume that X; N Xy = 0.

The interface alphabet oI of M and M5 consists of all communication actions on channels
that are common to both components. That is, «f = { g7z, glz : g € G1 NG, x € X1 U X},

In parallel composition, the two components synchronize on their communication interface
only when one component writes data through a channel, and the other reads it through the same
channel. The two components cannot synchronize if both are trying to read or both are trying
to write. We distinguish between communication of the two components with each other (on
their common channels), and their communication with their environment. In the former case,
the components must “wait” for each other in order to progress together. In the latter case, the
communication actions of the two components interleave asynchronously.

Formally, the parallel composition of My and Ms, denoted M;||Mo, is the program M =
(Q,x,a,d,qo, F), defined as follows.
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1. Q= (Q1xQ2)U(Q] xQ%), where @} and @, are new copies of )1 and @2, respectively.
The initial state is qo = (¢¢, ¢3)-

2. X = X3UXo,.

3. a={(g?x1,9'x2), (glx1,97x2) : g*x1 € (aqNal)and g*xxo € (aaNad)}U((ag U
az2) \ al). That is, the alphabet includes pairs of read-write communication actions on
channels that are common to M7 and M. It also includes individual actions of M7 and

M5, which are not communications on common channels.

4. ¢ is defined as follows.

(a) For (g * 1,9 * 2) € o

i 6((q1,q2), (9% 1,9 % 2)) = (01, @2)-

ii. 6((q1,43), 71 =w2) = (61(q1,9 * 71), 02(q2, g * 72)).
That is, when a communication is performed synchronously in both components, the
data is transformed through the channel from the writing component to the reading
component. As a result, the values of x1 and x5 equalize. This is enforced in M by
adding a transition labeled by the constraint 1 = x2 that immediately follows the

synchronous communication.
(b) Fora € ay \ ol we define §((¢q1,42),a) = (01(q1,a), g2)-

(c) Fora € ag \ al we define 0((q1,q2),a) = (q1,2(q2,a)).
That is, on actions that are not in the interface alphabet, the two components interleave.

5. F=F x Fy

Figure 4.1 demonstrates the parallel composition of components M; and M. The program
M = M; || M5 reads a password from the environment through channel pass. The two compo-
nents synchronize on channel verify. Assignments to x are interleaved with reading the value

of y from the environment.

4.2 Regular Properties and Their Satisfaction

The specifications we consider in this chapter are also given as some variation of communicating
programs. We now define the syntax and semantics of the properties that we consider as
specifications. These are properties that can be represented as finite automata, hence the name
regular. However, the alphabet of such automata includes communication actions and first-order
constraints over program variables. Thus, such automata are suitable for specifying the desired

and undesired behaviors of communicating programs over time.

Note that according to item 3, one of the actions must be a read action and the other one is a write action.
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verify?x

pass?ty
D

o=z 9 (verify?x,
verifyly)

My

passty

verifyly

pass?y

My

Figure 4.1: Components M; and My and their parallel composition M || Mo.

In order to define our properties, we first need the notion of a deterministic and complete
program. The definition is somewhat different from the standard definition for finite automata
given in Chapter 2.1, since it takes the semantic meaning of constraints into account.

Intuitively, in a deterministic and complete program, every concrete execution has exactly

one trace that induces it.

Definition 4.2.1. A communicating program over alphabet « is deterministic and complete if

for every state ¢ and for every action a € « the following hold:

1. Syntactic determinism and completeness. There is exactly one state ¢’ such that (g, a, ¢

isin 8.3

2. Semantic determinism. If (q, c1,q') and (g, c2, ¢"") are in § for constraints ¢, co € C such

that ¢; # co and ¢ # ¢”, then ¢ A co = false.

3. Semantic completeness. Let C,; be the set of all constraints on transitions leaving g. Then

(Veec, ©) = true.

A property is a deterministic and complete program with no assignment actions, whose
language defines the set of desired and undesired behaviors over the alphabet o P.

A trace is accepted by a property P if it reaches a state in F', the set of accepting states of P.
Otherwise, it reaches a state in @@ \ F', and is rejected by P.

Next, we define the satisfaction relation F between a program and a property. Intuitively, a
program M satisfies a property P (denoted M F P) if all executions induced by accepted traces
of M reach an accepting state in P. Thus, the accepted behaviors of M are also accepted by P.

A property P specifies the behavior of a program M by referring to communication actions

of M and imposing constraints over the variables of M. Thus, the set of variables of P is

3in our examples we sometimes omit the actions that lead to a rejecting sink for the sake of clarity.
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identical to that of M. Let G be the set of communication actions of M. Then, o.P includes a
subset of G as well as constraints over the variables of M. The interface of M and P, which
consists of the communication actions that occur in P, is defined as oo = G N o P.

In order to capture the satisfaction relation between M and P, we define a conjunctive com-
position between M and P, denoted M x P. In conjunctive composition, the two components
synchronize on their common communication actions when both read or both write through the
same communication channel. They interleave on constraints and on actions of oM that are not

in aP.

Definition 4.2.2. Let M = (Qur, Xas, M, 51, ¢)F, Far) be a program and P = (Qp, Xp,
aP,ép, qéD , F'p) be a property, where Xy O Xp. The conjunctive composition of M and P is
M x P={Q,X,«,9,qo, F), where:

1. Q = Qu x Qp. The initial state is g0 = (¢}, ¢t).

2. X =Xy

3. a={glz, g%z, (g7x,9), (g'z,g%y) : gxx, (gxx,g*y) € al }U((aMUaP)\al)).
Note that communication actions of the form (g * x, g * y) can only appear if M is itself
a parallel composition of two programs. That is, the alphabet includes communication

actions on channels common to M and P. It also includes individual actions of M and P.
4. ¢ is defined as follows.

e Fora = (g*z,g*y)in al, or a = g * z in ol, we define 6((q1,q2),a) =
(0n(q1,0),0p(q2, a)).

* Fora € aM \ oI we define 6((q1,¢2),a) = (0ap(q1,a), q2).

* Fora € aP \ al we define 6((q1,q2),a) = (q1,9p(q2,a)).

That is, on actions that are not common communication actions to M and P, the two

components interleave.

5. F:FM X Bp,Whel‘eBp:Qp\Fp.

Note that accepted traces in M x P are those that are accepted in M and rejected in P. Such
traces are called error traces and their corresponding executions are called error executions.
Intuitively, an error execution is an execution along M which violates the properties modeled
by P. Such an execution either fails to synchronize on the communication actions, or reaches
a point in the computation in which its assignments violate some constraint described by P.
These executions are manifested in the traces that are accepted in M but are composed with

matching traces that are rejected in P. We can now formally define when a program satisfies a
property.

Definition 4.2.3. For a program M and a property P, we define M F P iff M x P contains no

feasible accepted traces.
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Thus, a feasible error trace in M x P is an evidence to M E P, since it indicates the existence

of an execution that violates P.

Example 4.2.4. Consider the program M, the property P and a partial construction of M x P
presented in Figure 4.2. P requires every verified password y to be of length at least 4. It is easy
to see that M ¥ P, since the trace t = (password?y,y > 0, verifyly,y < 1000) is a feasible

error trace in M x P.

password?y y >0

password?y

verifyly

verifyly

M x P (partial construction)

Figure 4.2: Partial conjunctive composition of M and P.

4.3 Traces in the Composed system

Before we discuss our framework for compositional verification and repair of communicating
systems, we first prove some properties of traces in the composed system. We later use these
properties in order to prove that our framework is sound and complete (Section 4.4.1), and to

prove correctness and termination of our algorithm (Section 4.5.2 and Section 4.5.4).

Definition 4.3.1. Let ¢ be a trace over alphabet «, and let o/ C «. We denote by t | the
restriction of t on o, which is the trace obtained from ¢ by omitting all letters in ¢ that are not in
o/. If v contains a communication action a = (g * x, g * y) and we have g * € o then the
restriction ¢ |/ includes the corresponding communication, g x z. For g * y € o/ it is defined

similarly.
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Example 4.3.2. Let « = {g1lz,x := = + 1,2 < 10,(g27z,¢2ly)}, and o/ = {q1!z,z =
x + 1, go7x}. Then we have (g2?x, g2!y) Lor= g2z, and for

t=((g2?x,9ly),x:=x+Lz:=x+ 1,z <10,¢1!x)

we have

tlo=(p?r,z:=x+1,z:=2+1,91l0)

Lemma 4.3.3. Let M be a communicating program and P be a property, and let t be a trace
of M x P. Thent | aM is a trace of M.

Proof. Let M = (Qar, Xpr, oM, 00, ), Fry) and P = (Qp, Xp,aP,6p, ¢}, Fp), and
denote M x P = (Q, Xy, 6, qo, F).*

Letr = (qo,¢1,q1) - - - {Gm—1, Cm, ¢m) be the run in M x P such that ¢ is induced from 7.
Denote by tyr =t Lons the trace tyy = (¢iy, -+ , ¢, )-

We first observe the following. If (ai,--- ,ay) is a trace of M x P such that Vi : a; ¢
aM, and ¢ = (qur,¢%) is the state in M x P before reading aj, then Vi > 1 : Jgb :
d((qnr, qﬁ;l), a;) = (qur, g% ), that is, when reading a trace that does not contain letters from
aM, the program M x P only advances on the P component. This is true since by the definition
of 4, if a; is not in a M, then 0((qar, qp), ai) = (qar, Op(qp, ai)).

We now inductively prove that V1 < j < n it holds that (c;,, -+, ¢;;) is a trace of M. In
particular, for 5 = n this means that t;; € M.

Let j := 1 and denote k := ¢;. Then c¢1,...,cx_1 ¢ aM since k is the first index of ¢ for
which ¢, € M. Thus,V1 < i < k: 3¢’ : (¢, ¢7 1), ci) = (¢!, qF). Forciy = ¢, € aM,
by the definition of 8, we have 6((¢}!, ¢f ), ciy) = (6m(ad!, ciy), q') for some ¢’ € Qp. Then
indeed, <qé”, Ciy s (5M(qé\4, ¢i,)) is arun in M, making (¢;, ) a trace of M.

Let 1 < j < n, and assume t; 1 = (¢;,, - ,¢;;_,) is a trace of M. Let (qo, ¢iy, q1) - - -
(gj—2,¢i;_1,qj—1) a run that induces ¢; ;. Denote i;_1 = k,i; = k + m for some m > 0.
Then, as before, cgi1, ..., Chrm—1 ¢ aM, thusVk <1 < k+m: 3¢’ : 8(qj—1,q 1), c1) =
(¢j—1,4f"). For ¢;; it holds that 6(qj—1, 4}, _1): ¢i;) = (6 (gj—1,¢i,), ¢')) for some ¢’ € Qp.
Thus (c;,, - -+, ¢;;) is a trace of M, as needed. [

Lemma 4.3.4. Let My, My be two programs, and let t be a trace of M1 ||Ms. Thent | oM is
atrace of My and t | aMs is a trace of Mo.

The proof is similar to the proof of Lemma 4.3.3, however, in this case we need to take

special care of the communication actions.

Proof. Let M; = (Q;, X;, aM;, 6;, g5, F;) for i = 1,2, and denote M || My = ((Q1 X Q2) U

(Q} x Q%), X1 U X2, aM, 6, (q¢5,q3), Fi x Fy), as defined in Section 4.1.1 of Chapter 4.
Letr = (qo,¢1,41) - - - (gm—1, Cm, ¢m) be the run in M;|| M, such that ¢ is induced from .

Denote by t1 =t Jaas, the trace t1 = (¢;y, -+ , ¢, ). The proof for to =t |4y, is the same.

“Recall that the set of variables X p is a subset of X ;.
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We first observe the following. If (a1, - - - , ay) is a trace of M ||Ma such that Vi : a; ¢ oM,
and a; € aMs, and g = (q1, ¢3) is the state in M || My before reading a1, then Vi > 1 : 3¢gb :
§((q1,45 1), a;) = (q1,¢5), that is, when reading a trace that does not contain letters from a.Mj,
the program M || M3 only advances on the My component. This is true since by the definition
of 4, if a; is not in a M, then 6((q1, q2), a;) = (q1, 92(q2, a;)). The requirement of a; € oMo
is since if a; ¢ ams and a1 ¢ am; then a; is an equality constraint of the form = = y after a
communication over a common channel and the transition relation is defined differently.

We now inductively prove that V1 < j < n it holds that (c;;,- - -, ¢;;) is a trace of Mj. In
particular, for j = n this means that ¢; € M;. For some parts of the proof we abuse notations
where ¢ is a communication action over M7 and Ms, and we use it also to denote the restriction
to the first component of Mj.

Let j := 1 and denote k := ;. Then ¢y,...,cx—1 ¢ alM; since k is the first index of ¢
for which ¢, € aM; or ¢, = (c}c, c%) such that ¢ is a communication action and c,l€ € aM,.
In particular, this means that no common communication action had occurred until cg. Thus,
VI <i<k:3¢:06((qd,q¢? 1), c) = (q¢,d?). For ¢, = ¢, € aMy, one of the following
holds:

1. If ¢, € M is not a common communication action, then by the definition of §, we have
5((q(1), qﬁ_l), Ciy) = (51((1(1), Ciy),s qi_l). Then indeed, (q(l), cil,él(qé, ¢iy))isarunin My,
making (¢;, ) a trace of M.

2. If ¢4 = (ct,c3) is a common communication channel, then it holds that cg1 is an
equality constraint. Then, by the definition of § we have that §((¢},q7_4),ciy) =
/ / / / .
(Q(l) ) q;%_l ) and 5((‘]& ) Q%_l )7 Ci1+1) = (51 (Q(l)a Czll)? 52((]]%_17 0121))* Then, agamn we have
that {q{, ¢i,, 01(qg, ¢y )) is arun in My, making (c;, ) a trace of Mj.

Let 1 < j < n, and assume t;_1 = (¢;,, - ,¢;,_,) is a trace of Mj. Let (qo, ciy, q1) - - -
(¢j—2,ci;_,,qj—1) be arun that induces t; 1. Denote i; 1 = k,i; = k 4 m for some m > 0.
Then, as before, cxi1,...,Ckrm—1 ¢ aM; and is not a communication action as well, thus
Vk <l <k+m:3q :6(gj—1,47 1), ) = (¢j—1, 7). For ¢;; it holds that either ¢;; € M1 is
not a communication action and then (g1, iy p—1): €i;) = (01(5-1, Ci; )5 Gim_1)): OF that

/

Ci; = (Ciljacgj ((Qj—1,q1%+m_1)70z'j) = (Qj—llaq]%-',-m—l )
/ . .

and 6((gj—1", @71 ), Cir1) = (01(gj-1, c}j), 62(q7 15 C,LQJ)) In both cases, in M it holds

that 01(q; 1, ¢;;) is defined in M and thus (c;;, - -+, ¢;;) is a trace of My, as needed. [ |

) is a communication action and then §

We now discuss the feasibility of traces in the composed system.

Lemma 4.3.5. Let M be a program and P be a property, and let t be a feasible trace of M x P.
Thent | aM is a feasible trace of M.

Proof. Lett € T(M x P) be a feasible trace. Then, there exists an execution u on ¢. Denote
t = (b1, -+ ,by) and u = (Bo, b1, P1,- -+ ,bn, Br). We inductively build an execution e on

t lanm- The existence of such an execution e proves that ¢ |,/ is feasible.
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Lett {onm= (c1,- - ,cx). Wesete = (y0,€1,71, " » Ck,Yk) Where g, . .., v are defined

as follows.
1. Setj:=0,7:=0.
2. Define g := [y and set j := j + 1.
3. Repeatuntil j = k :

— Let i’ > 4 be the minimal index such that b; = ¢;.

— Define vj := Sy andset j := j + 1,0 := ¢ + 1.

Note that for each i < [ < 4’ is holds that b; is a constraint. This is true since by the definition
of conjunctive composition (Definition 4.2.2), if b; is not a constraint, then b; € oM. But in
that case, b; has to synchronize with some alphabet letter in ¢ |/, contradicting the fact that 4’
is the minimal index for which b; = ¢;. Thus, since u is an execution, and for all i < < ¢’ : b,
is a constraint, it holds that Vi < [ < ¢’ : 8; = f3;. In particular, it holds that 3;_1 = 3; = Vi-1-
Now, since by = c;, we can assign ; to be the same as 3; and result in a valid assignment.

Thus, e is a valid execution on t |47, making ¢ | s feasible as needed. [ |

Lemma 4.3.6. Let My, My be two programs, and let t be a feasible trace of M||Ms. Then
t | aM; is a feasible trace of M; fori € 1,2.

The proof of Lemma 4.3.6 is different from the proof of Lemma 4.3.5, since here we can no
longer use the exact same assignments as the ones of the run on M; || Ma. In the case of M x P,
the variables of M x P are the same as the variables of M, and the two runs only differ on the
constraints that are added to the trace of M x P. In M;||Ma, on the other hand, M; and My are
defined over two different sets of variables, with empty intersection between them. Nevertheless,

The proof is similar to the proof of Lemma 4.3.5.

Proof of Lemma 4.3.6. Denote by X; the set of variables of M, for i € {1,2}. Lett € M;||M>
be a feasible trace. Then, there exists an execution w on t. Denote t = (by,--- ,b,) and
u = (Bo,b1,P1, -+ ,bn, Bn). We build an execution e on t |7 as follows (in the same

way, we can build an execution on ¢ |qnz,). Let t Jann= (c1,---,cx). We define e =

(Y0,¢1,71, "+ Ck, V&) as follows.
1. Setj:=0,i:=0.
2. Define g := [p(X1) and set j := j + 1.
3. Repeatuntil j = k :

— Let ' > ¢ be the minimal index such that b; = ¢; or by = (g * x, g * y) for

c; =g*x € aM.
— Define v; := fi(X1) andset j :=j + 1,4 :=4'+ 1.
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Note that for each i < [ < 4’ is holds that b; ¢ «M; and there are no € X; and y € Xo
such that b; = (g *x x,g *x y) for g *x © € aM;. Otherwise, b; is either a synchronization
between M and Mo, or b; is a letter of M that belongs to aM and is part of ¢ |z, . Both are
contradiction to the fact that ¢’ is the minimal index for which b; and ¢; are either equal or that
c; is a read/write action and b; is a synchronization on that action.

Since w is an execution, and for all ¢ < [ < 4’ it holds that b; does not contain variables of
X1, we have that 3;(X1) = £;(X1) forall i < [ < ¢'. This is since an assignment to a variable
may only change if the variable is involved in the action alphabet. In particular, it holds that
Bir—1(X1) = Bi(X1) = vj—1(X1). We now can assign -y, to be the same as /3 (X ) and result

in a valid assignment, as needed. |

4.4 The Assume-Guarantee Rule for Communicating Systems

Let M; and M5 be two programs, and let P be a property. The classical Assume-Guarantee
(AG) proof rule [Pnu85] assures that if we find an assumption A (in our case, a communicating
program) such that M;||A & P and M, E A both hold, then M;||Ms E P holds as well. For
labeled transition systems over a finite alphabet (LTSs) [CGP03a], the AG-rule is guaranteed to
either prove correctness or return a real (non-spurious) counterexample. The work in [CGP03a]
relies on the L* algorithm [Ang87b] for learning an assumption A for the AG-rule. In particular,
L* aims at learning A,,, the weakest assumption for which M;||A,, E P. A crucial point
of this method is the fact that A,, is regular [GPB02], and thus can be learned by L*. For

communicating programs, this is not the case, as stated in Lemma 4.4.2.

Definition 4.4.1 (Weakest Assumption). Let P be a property and M be a system. The weakest
assumption A,, with respect to M and P has the language £(A,,) = {w : M||w E P}. That
is, Ay, is the set of all words that together with M satisfy P.

Lemma 4.4.2. For infinite-state communicating programs, the weakest assumption A, is not

always regular.

Proof. Consider the programs M; and M», and the property P of Figure 4.3. Let aMs =
{r:=0,y:=0, z:=x+1, y:=y+1, sync}. Note that in order to satisfy P, after the sync
action, a trace ¢t must pass the test z = y. Also note that the weakest assumption A,, does not
depend on the behavior of My, but only on its alphabet. Assume by way of contradiction that
L(Ay) is a regular language, and consider the language

L={z:=0}-{y:=0} - {z:=zx+1,y:=y+ 1} - {sync}

By closure properties of regular languages, it holds that L is a regular language, and thus
following our assumption, we have that L N £(A,,) is regular as an intersection of two regular

languages. However LN L(A,,) is the set of all words that after the initialization {z := 0}{y :=
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0}, contain equally many actions of the form « := z + 1 and y := y + 1. That is
LNL(Ay) ={x:=0} -{y:=0}: L¢; - {sync}
where
Leg ={u e {x:=2+1,y :=y+1}" : numof z := z+1 in  is equal to num of y := y+1 in u}

L4 is not regular since the pumping lemma does not hold for it, and for the same reason

LN L(Ay) is not regular as well, contradicting our assumption that £(A,,) is regular. [

Figure 4.3: A system for which the weakest assumption is not regular.

To cope with this difficulty, we change the focus of learning. Instead of learning the
(possibly) non-regular language of A,,, we learn 7 (M), the set of accepted traces of My. This

language is guaranteed to be regular, as it represented by the automaton M.
4.4.1 Soundness and Completeness of the Assume-Guarantee Rule for Commu-
nicating Systems

Since we have changed the goal of learning, we first show that in the setting of communicating

systems, the assume-guarantee rule is sound and complete.

Theorem 4.1. For communicating programs, the Assume-Guarantee rule is sound and complete.
That is,

* Soundness: for every communicating program A such that «A C oMo, if M;||A E P
and T (My) C T (A) then M;||Ms E P.

» Completeness: If M1|| My F P then there exists an assumption A such that My||AE P
and T (Ma2) C T (A).

Proof. Completeness. If M||My E P, then we can choose A = Mo, and then it holds that
Mi||AE Pand T (M) C T(A).
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Soundness. Assume by way of contradiction that there exists an assumption A such that
Mi||A E P and T(My) C T(A), but My||My ¥ P. Therefore, there exists an error trace
t € (Mi||M2) x P. By Lemma 4.3.3 and Lemma 4.3.4, it holds that t3 = ¢ Laar, € T (Ma2) and
by Lemma 4.3.5 and Lemma 4.3.6 it holds that ¢5 is feasible. Since 7 (Mz) C T (A), it holds
that to € A and thus ¢ is an error trace in (M;||A) x P, contradicting M ||A E P. [ |

4.5 The Assume-Guarantee-Repair (AGR) Framework

In this section we discuss our Assume-Guarantee-Repair (AGR) framework for communicating
programs. The framework consists of a learning-based Assume-Guarantee algorithm, called
A Gy, and a REPAIR procedure, which are tightly joined.

Recall that the goal of L* in our case is to learn 7 (Mz). The nature of AGy «is such that the
assumptions it learns before it reaches M5 may contain the traces of My and more, but still be
represented by a smaller automaton. Therefore, similarly to [CGP03a], AGyp » often terminates
with an assumption A that is much smaller than M». Indeed, our tool often produces very small
assumptions (see Section 4.6).

As mentioned before, not only that we determine whether M; || M2 F P, but we also repair
the program in case it violates the specification. When M;|| My ¥ P, the AGy algorithm
returns an error trace ¢ as a witness for the violation. In this case, we initiate the REPAIR
procedure, which eliminates ¢ from Ms. REPAIR applies abduction in order to learn a new
constraint which, when added to ¢, makes the counterexample infeasible.” The new constraint
enriches the alphabet in a way which may eliminate additional counterexamples from M5, by
making them infeasible. We elaborate on our use of abduction in Section 4.5.2. The removal
of ¢ and the addition of the new constraint result in a new goal MY, for AGy- to learn. We now
return to AGy - to search for a new assumption A’ that allows to verify M;||Mj E P.

An important feature of our AGR algorithm is its incrementality. When learning an assump-
tion A’ for M/, we can use the membership queries previously asked for Mo, since the answer
for them has not been changed. As we show later (Theorem 4.2 in Section 4.5.1), the difference
between the languages of My and M lies in words (traces) whose membership has not yet
been queried on Mo. This allows the learning of M to start from the point where the previous
learning has left off, resulting in a more efficient algorithm.

As opposed to the case where M ||My E P, we cannot guarantee the termination of the
repair process in case M || Mz ¥ P. This is because we are only guaranteed to remove one (bad)
trace and add one (infeasible) trace in every iteration (although in practice, every iteration may
remove a larger set of traces). Thus, we may never converge to a repaired system. Nevertheless,
in case of property violation, our algorithm always finds an error trace, thus a progress towards
a “less erroneous” program is guaranteed.

It should be noted that the AGy « part of our AGR algorithm deviates from the AG-rule

of [CGP03a] in two important ways. First, since the goal of our learning is M5 rather than

>There are also cases in which we do not use abduction, as discussed in Section 4.5.3.
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Ay, our membership queries are different in type and order. Second, in order to identify real
error traces and send them to REPAIR as early as possible, we add additional queries to the
membership phase that reveal such traces. We then send them to REPAIR without ever passing
through equivalence queries, which improves the overall efficiency. Indeed, our experiments
include several cases in which all repairs were invoked from the membership phase. In these
cases, AGR ran an equivalence query only when it has already successfully repaired My, and

terminated.

4.5.1 The Assume-Guarantee-Repair (AGR) Algorithm

We now describe our AGR algorithm in more detail (see Algorithm 4.1). Figure 4.4 describes
the flow of the algorithm. AGR comprises two main parts, namely A Gy - and REPAIR.

The input to AGR are the components M7 and Mo, and the property P. While M; and P
stay unchanged during AGR, M> keeps being updated as long as the algorithm recognizes that
it needs repair.

The algorithm works in iterations, where in every iteration the next updated M3 is calculated,
starting with iteration 4 = 0, where MY = M,. An iteration starts with the membership phase
in line 2 of Algorithm 4.1, and ends either when A Gy successfully terminates (line 16) or
when procedure REPAIR is called (lines 7 and 24). When a new system My is constructed,
A Gy - does not start from scratch. The information that has been used in previous iterations is
still valid for Mﬁ The new iteration is given additional new trace(s) that have been added or
removed from the previous M. 5 (lines 9,11,20, 27).

A Gy consists of two phases: membership, and equivalence.

The membership phase (lines 2-11) consists of a loop in which the learner constructs the
next assumption A;- according to answers it gets from the teacher on a sequence of membership
queries on various traces. These queries are answered in accordance with traces we allow in A%.
There are the traces in M that in parallel with M satisfy P. If a trace ¢ in M3 in parallel with
M does not satisfy P, then ¢ is a bad behavior of M. Therefore, if such a ¢ is found during the
membership phase, REPAIR is invoked.

Once the learner reaches a stable assumption A%, it passes it to the equivalence phase
(lines 12-27). A; is a suitable assumption if both MlHAé- F Pand T (M) C T(A?) hold. In
this case, AGR terminates and returns M} as a successful repair of M. If M; | \A; ¥ P, then a
counterexample ¢ is returned, that is composed of bad traces in M7, A;-, and P. If the bad trace
19, the restriction of ¢ to the alphabet of A’, is also in M3, then ¢2 is a bad behavior of M3, and
here too the REPAIR phase is invoked. Otherwise, AGR returns to the membership phase with
t5 as a trace that should not be in A%, and continues to learn A;

As we have described, REPAIR is called when a bad trace ¢ is found in (M;||M3) x P
and should be removed. If ¢ contains no constraints then its sequence of actions is illegal
and its restriction to € T (M%) should be removed from Mj. In this case, REPAIR returns to
AGy - with a new learning goal 7 (M3+") C T(M3) \ {t2}, along with the answer “no” to

the membership query on ¢2. In Section 4.5.3 we discuss different methods for removing o
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Algorithm 4.1 AGR

1: function AGy«

2:
3
4
5:
6:
7
8
9

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24
25:
26:
27:

28

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

//Membership Queries
Letty € (aM3)*.
if to € T(M3) then

if MlHtQ ¥ P then

Let ¢ € (M;||t2) x P be an error trace. >t is a cex proving M || M4 ¥ P
REPAIR(M3, t)
else > Mil||ta E P
Return to AGy~in Line 2 with to € T (A4%).
else >ty & T(M3)

Return to AGy - in Line 2 with t5 ¢ T(A;)

//Equivalence Queries
Let A§ be the candidate assumption generated by the learner.
if M;[|A’ = P then
if 7(Mj) C T(A}) then
Terminate and return M || M3 = P.
else
Letty € T(M3)\ T(AY).
Setj:=j5+1
Return to AGy~in Line 2 with to € T (A45%).
else > M||AL P
lett (MlHA;) x P be an error trace, and denote t = (t1||t4) X tp.
if t4 € T(M) then
REPAIR(M, t4) > t4 is a cex proving M || M4 ¥ P
else
Setj:=j+1.
Return to AGy-in Line 2 with t4 ¢ T(A;)

. function REPAIR(MS, t)

Lett) € My, ta € M4 t, € Psuchthatt = (t1]|t2) X t,.
if ¢ does not contain constraints then
Return to AGp-in Line 2 with Mi™ = T(M3) \ {t2} and to ¢ T(AST).
else > ¢ contains constraints
Use abduction to eliminate ¢.
Let c be the new constraint learned during abduction.
Update a M3 = aMj U {c}.
Let t}, = to - ¢ be the output of the abduction
Return to AGy+in Line 2 with Mi™ = (T (M3) \ {t2}) U {th},
and to & T (ALt € T(A5™)
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from M3,

The more interesting case is when ¢ contains constraints. In this case, we not only remove
the matching ¢5 from M, but also add a new constraint ¢ to the alphabet, which causes t to
be infeasible. This way we eliminate ¢, and may also eliminate a family of bad traces that
violate the property in the same manner — adding a new constraint can only cause the removal
of additional error traces, and cannot add traces to the system. We deduce c using abduction,
see Section 4.5.2. As before, REPAIR returns to AGy, with a new goal to be learned, but now
also with an extended alphabet. The membership phase is then provided with two new answers
to the membership query: ¢o that should not be included in the new assumption, and (t5 - ¢) that
should be included.

Implementing the L* Teacher

As explained above, AGy - uses the L* algorithm in order to learn each assumption A%, using
membership and equivalence queries. We now formally describe how the teacher answers each
of the queries. As we have noted, the target of learning is the set of traces of M>. However,
the learning process terminates once a suitable assumption of the AG-rule is found. Therefore,
we denote the language the teacher answers according to by U, which informally denotes the
desired result of the learning process.

Membership Queries (MQ) Algorithm 4.1, lines 2-11.

Given a trace t, the teacher answers “is t € U?” as follows.
— Ift ¢ T(Ms), answer “no”.
— If t € T(Ma) check if ¢ is an error trace, and if so, turn directly to repair. That is -

— If M ||t ¥ P, pause learning and turn to repair.

— If M1||t E P, answer the MQ with “yes”.

Equivalence Queries (EQ) Algorithm 4.1 lines 12-27.
Given a candidate A, the teacher answers the EQ “A = U” as follows.

— If M;||A E P, then A is a suitable candidate according to the AG-rule. Then, we check
if the second condition of the AG-rule holds, that is, if 7(Ms) C T (A), and answer

accordingly.

— If M;||A ¥ P, then, check if the error trace that violates P is also a trace of Ma. If yes,
them pause learning and turn to repair. If this is not a real error trace, return the answer

“no” to the EQ , together with the error trace that needs to be eliminated from A.

Incremental learning

One of the advantages of AGR is that it is incremental, in the sense that answers to membership
queries from previous iterations remain unchanged for the repaired system. Formally, we have

the following.
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Figure 4.4: The flow of AGR

Theorem 4.2. Let T (M3) be the language learned by phase i of the AGR algorithm. Assume
that phase i ended with a counterexample t and initiated a call to REPAIR( Mg, t). Then:

1. For every trace to that was queried before, the answer remains the same for T(MQiJrl).

2. AGR did not queryt |, M before, thus removing it from T(Mé“) is consistent with all

previous queries.

3. Ifth is a trace learned using abduction, then AG R did not query it before.

Proof. Item 1. Consider two cases. If to was answered “ty € T (A7)” for some previous
iteration j , then in particular it holds that M ||t F P (line 9 of AGR algorithm). Since M; and
P remain unchanged, then in all future iterations the same holds for ¢5. Since We only remove
a trace ¢ from T(Mg ) if it is an error trace, we conclude that for every j, t2 is never removed
from 7(M3). Thus, t € T(Mi+h).

If to was queried before and the answer was “ts ¢ T (A7)”, then one of the following
holds: M;||t2 ¥ P and as in the previous case, this remains true for all future iterations; or,
to & T(Mg ) for some previous iteration j. Since we only remove traces, it holds that for every
§ < T(M) C T(M3). Thus, t; ¢ T(Mit!) as needed.

Item 2. Due to item 1, all answers on previous queries can be used in order to learn T(Mg )
thus maintaining information from previous iterations is consistent with the L* algorithm. Since
L* does not query any trace more than once, item 2 follows.

Item 3. Since t/, contains a new alphabet letter, it for sure was not queried in any of the

previous iterations. n

63



4.5.2 Semantic Repair by Abduction

We now describe the repair we apply to M3, in case the error trace ¢ contains constraints (see
Algorithm 4.1, line 32). Error traces with no constraints are removed from M} syntactically
(line 31), while in abduction we semantically eliminate ¢t by making it infeasible. The new
constraints are then added to the alphabet of M} and may eliminate additional error traces. Note
that the constraints added by abduction can only restrict the behavior of M5, making more traces
infeasible. Therefore, we do not add counterexamples to Mo.

The process of inferring new constraints from known facts about the program is called
abduction [DD13]. We now describe how we apply it. Given a trace t, let ¢ be the first-order
formula (a conjunction of constraints), which constitutes the SSA representation of ¢ [AWZS88].
In order to make ¢ infeasible, we look for a formula 1) such that 1) A ¢; — false.®

Note thatt € T (M;|| M%) x P, and so it includes variables both from X7, the set of variables
of M, and from X5, the set of variables of M§ Since we wish to repair Mg, the learned ) is
over the variables of X only.

The formula ¢ A ¢; — false is equivalent to ¢ — (¢ — false). Then, ¢ = Vo € X :
(ot — false) = Va € Xi1(—py), is such a desired constraint: ) makes ¢ infeasible and is
defined only over the variables of X3. We now use quantifier elimination [Wei84] to produce a
quantifier-free formula over X5. Computing %) is similar to the abduction suggested in [DD13],
but the focus here is on finding a formula over X rather than over any minimal set of variables as
in [DD13]; in addition, in [DD13] they look for 1 such that ¢; A v is not a contradiction, while
we specifically look for v that blocks ¢;. We use Z3 [DMBO08] to apply quantifier elimination
and to generate the new constraint. After generating )(X52), we add it to the alphabet of M
(line 35 of Algorithm 4.1). In addition, we produce a new trace t5, = ts - 1)(X2). The trace t} is
returned as the output of the abduction.

We now turn to prove that by making ¢, infeasible, we eliminate the error trace .

Lemma 4.5.1. Lett = (t1||t2) X tp. If to is infeasible, then t is infeasible as well.

Proof. This is due to the fact that tp can only restrict the behaviors of ¢; and t9, thus if ¢ is
infeasible, ¢ cannot be made feasible. Formally, Lemma 4.5.1 follows from Lemma 4.3.5 and
Lemma 4.3.6 given in Section 4.3. By Lemma 4.3.5, if ¢t = (¢||t2) x tp is feasible, then ¢1||to
is a feasible trace of M ||Ms. By Lemma 4.3.6, if ¢ ||t is feasible, then ¢ is feasible as well.
Therefore, if t5 is infeasible, then ¢ is infeasible, proving Lemma 4.5.1. [ |

In order to add t, - 1(X3) to M§ while removing ¢2, we split the state ¢ that ¢, reaches in
]\/[2z into two states g and ¢/, and add a transition labeled 1)(X3) from ¢ to ¢’, where only ¢’ is
now accepting, see Figure 4.5. Thus, we eliminate the violating trace from M;||M4. AGR now
returns to AGy,- in order to learn an assumption for the repaired component Mg“, which now

includes ¢/, but not ¢5. Note that 1 is also added to ¢’ of Figure 4.5. The new constraint then

Usually, in abduction, we look for v such that 1) A ¢; is not a contradiction. In our case, however, since ; is a
violation of the specification, we want to infer a formula that makes , unsatisfiable.
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blocks assignments of ¢’ that violate P in the same way as t5, but it allows for other assignments
of ¢ to hold.

Figure 4.5: Adding the constraint ¢)(X2) to block the error trace to

4.5.3 Syntactic Removal of Error Traces

Recall that the goal of REPAIR is to remove a bad trace ¢ from M5 once it is found by AGy « If
t contain constraints, we remove it by using abduction as described in Section 4.5.2. Otherwise,
we can remove ¢ by constructing a system whose language is 7 (M2) \ {t}. We call this the exact
method for repair. However, removing a single trace at a time may lead to slow convergence,
and to an exponential blow-up in the repaired systems. Moreover, as we have discussed, in some
cases there are infinitely many such traces, in which case AGR may never terminate.

For faster convergence, we have implemented two additional heuristics, namely approximate
and aggressive. These heuristics may remove more than a single trace at a time, while keeping
the size of the systems small. While “good” traces may be removed as well, the correctness of
the repair is maintained, since no bad traces are added. Moreover, an error trace is likely to be
in an erroneous part of the system, and in these cases our heuristics manage to remove a set of
error traces in a single step.

We survey the three methods.

e Exact. To eliminate only ¢ from M, we construct a program (an automaton) A; that
accepts only ¢, and complement it to construct A; that accepts all traces except for t.
Finally, we intersect A; with M>. This way we only eliminate ¢, and not other (possibly
good) traces. On the other hand, this method converges slowly in case there are many

error traces, or does not converge at all if there are infinitely many error traces.

» Approximate. Similarly to our repair via abduction in Section 4.5.2, we prevent the last
transition that ¢ takes from reaching an accepting state. Let ¢ be the state that M, reaches
to, when reading . We mark ¢ as non-accepting, and add an accepting state ¢/, to which
all in-going transitions to q are diverted, except for the last transition on ¢. This way, some
traces that lead to q are preserved by reaching ¢’ instead, and the traces that share the last
transition of ¢ are eliminated along with f. As we have argued, these transitions may also

be erroneous.

* Aggressive. In this simple method, we remove ¢, the state that M, reaches to when
reading ¢, from the set of accepting states. This way we eliminate ¢ along with all other

traces that lead to ¢. In case that every accepting state is reached by some error trace,
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this repair might result in an empty language, creating a trivial repair. However, our

experiments show that in most cases, this method quickly leads to a non-trivial repair.

4.5.4 Correctness and Termination

For this discussion, we assume a sound and complete teacher who can answer the membership
and equivalence queries in A Gy +, which require verifying communicating programs and prop-
erties with first-order constraints. Our implementation uses Z3 [DMBOS] in order to answer
satisfiability queries issued in the learning process.

As we have discussed earlier, AGR is not guaranteed to terminate, and there are cases where
the REPAIR stage may be called infinitely many times. However, in case that no repair is needed,
or if a repaired system is obtained after finitely many calls to REPAIR, then AGR is guaranteed
to terminate with a correct answer.

To see why, consider a repaired system M3 for which M;||MJ F P. Since the goal of
AGy - is to syntactically learn M3, which is regular, this stage will terminate at the latest when
AGy - learns exactly M3 (it may terminate sooner if a smaller appropriate assumption is found).
Notice that, in particular, if M;||Ms E P, then AGR terminates with a correct answer in the
first iteration of the verify-repair loop.

REPAIR is only invoked when a (real) error trace ¢ is found in Mé, in which case a new
system Mg“, that does not include ¢, is produced by REPAIR. If M;||M4 ¥ P, then an
error trace is guaranteed to be found by A Gy - either in the membership or equivalence phase.
Therefore, also in case that M4 violates P, the iteration is guaranteed to terminate.

In particular, since every iteration of AGR finds and removes an error trace ¢, and no new
erroneous traces are introduced in the updated system, then in case that M5 has finitely many
error traces, AGR is guaranteed to terminate with a repaired system, which is correct with
respect to P.

To conclude the above discussion, Theorem 4.3 formally states the correctness and termina-
tion of the AGR algorithm. The proof of Theorem 4.3 follows from Lemma 4.5.2, Lemma 4.5.3,

and Lemma 4.5.4 given bellow.
Theorem 4.3.
1. If My ||Ms E P then AGR terminates with the correct answer.

2. If, after finitely many iterations, a repaired program MY} is such that M, ||M: E P, then

AGR terminates with the correct answer (this is a generalization of item 1).

3. If an iteration i of AGR ends with an error trace t, then My|| M4 ¥ P, where M} is the

updated system at iteration i.

4. If My||My ¥ P then AGR finds an error trace. In addition, MY}, the system post REPAIR,

contains less error traces than M.
Lemma 4.5.2. Every iteration i of the AGR algorithm terminates.
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In addition, answers to MQs and EQs are consistent with T(Mﬁ) That is, whenever AGR
returns “t € T(A%)” to L* (lines 9, 20) then indeed t € T (M3), and whenever AGR returns
“t € T(A%)" to L* (lines 11, 27) then indeed t & T (Mj).

Proof. For one iteration of AGR, we show that both membership queries and equivalence
queries are consistent with 7°(M3). In addition, we show that if M;|| Mz ¥ P then REPAIR is
invoked. Thus, if M;||M2 E P, since L* is an algorithm for learning a regular language, and
since 7 (M3) is a regular language, by the termination of L* we conclude that each iteration
terminates. Otherwise, the iteration terminates by a call to REPAIR.

Membership queries. For ta € (aM4)*, membership queries are of the form “is ty €
T(M34)?’. The only case in which the algorithm does not return the same answer as the
L* teacher does, is when ty € T (M3) and Mi||ty ¥ P. In this case we conclude that
M;||M$ ¥ P and thus REPAIR is called (line 7) and the iteration terminates immediately.
Therefore membership queries are consistent with 7 (M3).

Equivalence queries. The teacher returns to L* with a counterexample in lines 20 and 27.
In line 20, AGR returns t € T (A}). Indeed, it holds that ¢ is a trace in T (Mj) \ T(A") thus
in 7(M3). In line 27 AGR returns ¢ ¢ T (A%). In that case, the test of line 23 fails, that is,
t ¢ T(Ms). Therefore, in all cases where AGR returns an answer regarding a trace ¢, this
answer is consistent with 7 (M3). In order to prove that each iteration terminates, we consider
now the cases where AGR does not return a counterexample for an EQ. This happens in line 16
where the algorithm terminates; and in line 24 where REPAIR is invoked. Thus, every iteration

indeed terminates. [ |

Lemma 4.5.3. [f M;||M3 E P, the AGR algorithm terminates with the correct answer. Other-
wise, if M1||Ma ¥ P, AGR finds a counterexample witnessing the violation (and continues to

repairing M3).

Proof. Assume that M ||Ms E P. By Lemma 4.5.2, the answers to MQs and EQs are consistent
with 7' (M3), and from the correctness of L* algorithm we conclude that the algorithm will
eventually learn 7 (M3). Note that in case that M || My E P and that AGR learned 7 (M3), that
is 'T(Aé) = T (MS3), then the test of line 15 holds and the algorithm terminates. That is, in case
M;||M2 E P AGR terminates with the correct answer (line 16).

Assume that M;||My ¥ P. Then there exists an error trace ¢t € (M;||Msy) x P. From
Lemmas 4.3.5, 4.3.6 it holds that t5 =t |, M is feasible in Ms. In particular, it holds that ¢
is an error trace of (M;||t2) x P. Thus, M;||ty # P. Since AGR converges towards 7 (M3)
(by Lemma 4.5.2), either t2 shows up as a membership query, and then line 5 holds, thus the
iteration terminates by a call to REPAIR with ¢ as a witness to the violation; or AGR continues
to the equivalence query part. There, again, to (or some other error trace) will come up as an
error trace to € T (M3), resulting in termination of the iteration in line 24, again, by calling
REPAIR. |

Note that although each phase converges towards 7 (M), it may terminate earlier. We show

that in case the algorithm terminates before finding 7 (M), it returns the correct answer.

67



Lemma 4.5.4. L* terminates and returns the correct answer. That is:

1. If L* outputs an assumption A, then M1||A E P and there exists i such that T (M3) C
T (A), thus we can conclude M ||Mj F P.

2. If a phase i of AGR ends with an error trace t, then My|| M3 ¥ P.

Proof. Item 1. Assume AGR returns an assumption A. We can then conclude that the following
holds for A: there exists 4 such that 7 (M3) C T (A) and M;||A F P, since this is the only
scenario in which an assumption A is returned. From the soundness of our AG rule (Theorem 4.1)
it holds that M || M3 F P.

Item 2. Assume now that a phase 7 of AGR ends with an error trace t. We prove that
M;|| M3 ¥ P. First note that AGR may output such a trace both while making a membership
query and while making an equivalence query. If ¢ was found during a membership query
(line 5), then there exists to € T'(M3) such that M ||ty ¥ P, and t € (M||t2) x P. Since
to € T(MS3), it holds that ¢ is also an error trace of (M7||M3) x P, proving M1 ||Mi ¥ P.

If ¢ was found during an equivalence query (line 24), then ¢ is an error trace in (M | |A§) x P.
Moreover, ¢ iaA;-E T (M3). This makes t an error trace of (M;||M3) x P as well, thus
M, ||M3 ¥ P . This finishes the proof. [

The proof of Theorem 4.3 follows almost directly from the lemmas above.

Proof of Theorem 4.3. Lemma 4.5.3 states that if M1||M4 F P then AGR terminates with the
correct answer. This implies item 1 and item 2.

In addition, Lemma 4.5.3 states that if M1 || M3 ¥ P then AGR finds an error trace witnessing
the violation. Once such an error trace is found, REPAIR is invoked (lines 7 and 24 of
Algorithm 4.1). Since REPAIR eliminates at least one error trace, the system post REPAIR
contains less bad traces, and item 4 follows.

Lemma 4.5.4 states that if an iteration i of AGR ends with an error trace, then M || M3 ¥ P.
This implies item 3. |

4.6 Experimental Results

We implemented our AGR framework in Java, integrating the L* learner implementation from
the LTS A tool [MK99]. We used Z3 [DMBO08] to implement the teacher while answering the
satisfaction queries in A Gy +, and for abduction in REPAIR.

Table 4.1 displays results of running AGR on various examples, varying in their sizes, types
of errors — semantic and syntactic — and their amount. The examples are available on [exa]. The
iterations column indicates the number of iterations of the verify-repair loop, until a repaired
M is achieved. Examples with no errors were verified in the first iteration, and are indicated by
verification. We tested the three repair methods described in Section 4.5.3. Figure 4.6 presents
comparisons between the three methods in terms of run-time and the size of the repair and

assumptions. Note that the graphs are given in logarithmic scale.
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Figure 4.6: Comparing repair methods: time and repair size. Logarithmic scale

Most of our examples model multi-client-server communication protocols, with varying
sizes. Our tool managed to repair all those examples that were flawed.

As can be seen in Table 4.1, our tool successfully generates assumptions that are significantly
smaller than the repaired and the original Mo.

For the examples that needed repair, in most cases our tool needed 2-5 iterations of verify-
repair in order to successfully construct a repaired component. Interestingly, in example #15 the
aggressive method converged slower than the approximate method. This is due to the structure of
M, in which different error traces lead to different states. Marking these states as non-accepting
removed each trace separately. However, some of these traces have a common transition, and
preventing this transition from reaching an accepting state, as done in the approximate method,
managed removing several error traces in a single repair.

Example #22 models a simple structure in which, due to a loop in Ms, the same alphabet
sequence can generate infinitely many error traces. The exact repair method timed out, since
it attempted removing one error trace at a time. On the other hand, the aggressive method
removed all accepting states, creating an empty program — a trivial (yet valid) repair. However,

the approximate method created a valid, non-trivial repair.

4.7 Concluding Remarks

In this chapter we present the model of communicating programs that is able to capture program
behavior and synchronization between the system components, while exploiting the finite
automata representation in order to apply automata learning. We then present the AGR algorithm,
that offers a new take on the learning-based approach to assume-guarantee verification, and
manages coping with complex properties and repairing infinite-state programs.

Our experimental results show that using existing semantic tools, AGR produces very
succinct proofs, and quickly and efficiently repairs flawed communicating programs.

Our algorithm exploits the finite automata-like representation of the systems in order to

apply the L* algorithm and to learn small proofs of correctness.
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Example | M Size | M, Size | P Size | Time (sec.) | A size | Repair Size | Repair Method | #Iterations

#1 4 4 3 0.2 3 verification
#2 16 16 3 1.8 4 verification
#3 32 32 3 11.1 6 verification
#4 64 64 3 95 7 verification

0.08 3 3 aggress. 2

#5 2 3 2 0.09 4 4 approx. 2

0.108 6 9 exact 2

0.106 5 27 aggress. 2

#6 2 27 2 0.126 6 28 approx. 2

0.132 8 81 exact 2

0.13 6 81 aggress. 2

#7 2 81 2 0.138 7 82 approx. 2

0.165 9 243 exact 2

0.15 8 243 aggress. 2

#8 2 243 2 0.17 8 244 approx. 2

0.223 10 729 exact 2
#9 2 4 3 0.093 3 verification
#10 3 16 4 0.29 13 verification
#11 5 256 6 4.88 92 verification
#12 2 4 3 0.08 3 verification
#13 3 16 4 0.22 10 verification
#14 5 256 6 4.44 109 verification

0.69 12 16 aggress. 5

#15 3 16 5 0.28 13 18 approx. 3

4.27 44 864 exact 5

6.63 113 256 aggress. 2

#16 4 256 8 5.94 113 257 approx. 2

12.87 155 1280 exact 2
#17 2 3 4 0.075 3 verification

0.34 5 4 aggress. 2

#18 2 3 4 0.37 5 4 approx. 2

0.488 5 4 exact 2

1.07 18 18 aggress. 3

#19 3 16 5 1.12 18 18 approx. 3

1.26 18 18 exact 3
#20 9 6 15 0.1 6 verification
#21 11 13 17 0.18 11 verification

0.09 1 4 (trivial) aggress. 4

#22 2 4 2 0.21 6 8 approx. 5

timeout exact timeout

0.24 1 12 (trivial) aggress. 2

#23 11 12 17 0.25 1 13 (trivial) approx. 2

0.26 1 144 (trivial) exact 2

0.35 6 9 aggress. 2

#24 4 8 5 0.34 6 9 approx. 2

0.36 6 9 exact 2
#25 3 5 5 0.13 4 verification
#26 4 5 5 0.11 4 verification
#27 4 8 5 0.35 5 verification

Table 4.1: AGR algorithm results on various examples
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Chapter 5

Learning Symbolic Automata

Chapter 4 discusses compositional verification and repair, and demonstrates the use of automata
learning for formal verification. There, we adjust the L* algorithm for the setting of commu-
nicating programs. In this chapter, we discuss more abstract automata type, namely symbolic
automata. Symbolic finite state automata, SFAs for short, are an automata model in which
transitions between states correspond to predicates over a domain of concrete alphabet letters.
Their purpose is to cope with situations where the domain of concrete alphabet letters is large
or infinite. As opposed to the models we study in Chapters 4 and 3, where we use variables in
order to keep track of data values throughout the computation, in the model of SFAs there is no
notion of “memory”. In SFAs, predicates are used in order to make the automaton transitions
more concise, and allow us to express languages over infinite alphabets.

In this chapter we study the learnability of SFAs. The state-of-the-art literature on this
topic follows the query learning paradigm, which stipulates that the learner can interact with
an oracle (teacher) by asking it several types of allowed queries. So far all obtained results
for SFAs are positive. We provide a necessary condition for efficient learnability of SFAs
in this paradigm, from which we obtain the first negative result regarding the complexity of
learnability of SFA over the propositional algebra. Most of this chapter studies learnability of
SFAs under the paradigm of identification in the limit using polynomial time and data. We
provide a necessary condition and a sufficient condition for efficient learnability of SFAs in this
paradigm. We provide an efficient learning algorithm for monotonic algebras, and in particular
for the interval algebra over the natural number or the reals. In addition, we prove that as in the
query learning paradigm, here too the complexity of learnability of SFAs over the propositional

algebra is not polynomial.

5.1 Preliminaries

5.1.1 Effective Boolean Algebra

A Boolean Algebra 4 is a tuple (D, P, [-], L, T, V, A, =) where D is a set of domain elements;

P is a set of predicates closed under the Boolean connectives, where L, T € P; the component
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[-] : P — 2P is the so-called semantics function. IP satisfies the following three requirements: (i)
[L] =0, Gi) [T] = D, and (iii) forall o, 9 € P, [ V] = [p]U[¥], [¢ A Y] = [e]N[¥],
and [-¢] =D\ [¢]. A Boolean Algebra is effective if all the operations above, as well as
satisfiability, are decidable. Henceforth, we implicitly assume Boolean algebras to be effective.

One way to define a Boolean algebra is by defining a set Py of atomic formulas that includes
T and L, and obtaining P by closing Py for conjunction, disjunction and negation. For a
predicate ) € P we say that v is atomic if ¥ € Py. We say that 1 is basic if ¢ is a conjunction

of atomic formulas.

We now introduce two Boolean algebras that are discussed extensively below.

The Interval Algebra is the Boolean algebra in which the domain D is the set Z U {—o00, 0o}
of integers augmented with two special symbols with their standard semantics, and the set of
atomic formulas Py consists of intervals of the form [a, b) where a,b € D and a < b. The

semantics associated with intervals is the natural one: [[[a,b)] = {2z €D : a < z and z < b}.

The Propositional Algebra is defined with respect to a set AP = {p1,p2,...,p} of atomic
propositions. The set of atomic predicates Py consists of the atomic propositions and their
negations. The domain ID consists of all the possible valuations for these propositions, thus
D = B* where B = {0, 1}. The semantics of an atomic predicate p is given by [p;] = {v €
B* : v[i] = 1}, and similarly [-p;] = {v € B¥ : v[i] = 0}. In this case a basic formula is a

monomial, that is, a conjunction of atomic predicated and their negations. .

5.1.2 Symbolic Automata

A symbolic finite automaton (SFA) is a tuple M = (4,Q, qo, 6, F') where 4 is a Boolean
algebra, and as in the definition of finite automata in Section 2.1, ) is a finite set of states,
go € Q is the initial state, F' C () is the set of final states, and 6 C Q) x P4 x () is the transition
relation, where P4 is the set of predicates of 4.

We use the term letters for elements of D where D is the domain of .4 and the term words for
elements of D*. A run of M on a word o103 ... 0, Where o; € D, is a sequence of transitions
(0,1, q1)(q1, Y2, G2) - - - (Gn—1, ¥n, gn) satisfying that o; € [¢;] and that (¢;, ¥i+1, ¢i+1) € 0.
Such a run is said to be accepting if ¢, € F. A word w = 0103 ... 0y, is said to be accepted
by M if there exists an accepting run of M on w. The set of words accepted by an SFA M is
denoted £(M). Note that while the transitions of an SFA are symbolic, its language consists of
concrete words.

An SFA is said to be deterministic if for every state ¢ € () and every letter o € D we have
that |[{{(g,¢,¢') € 6 : o € [¢]}| < 1, namely from every state and every concrete letter there
exists at most one transition. It is said to be complete if |{{q,v,q¢') € § : o € [¢]}| > 1 for
every ¢ € @ and every o0 € ID. As is the case for finite automata (over concrete alphabets),
non-determinism does not add expressive power but does add succinctness [VAHT10]. When A
is deterministic we use d(g, w) to denote the state A reaches on reading the word w from state

q. If 0(qo, w) = q then w is termed an access word to state q.
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[0,100) [0, 200)

Figure 5.1: The SFA M over the interval algebra

5.2 Special Forms and their Properties

5.2.1 Types of Symbolic Automata

We turn to define special types of SFAs, which affect the complexity of related procedures.

Neat and Normalized SFAs We note that there is a trade-off between the number of transitions,
and the complexity of the transition predicates. The literature defines an SFA as normalized
if for every two states ¢ and ¢’ there exists at most one transition from ¢ to ¢’. This definition
prefers fewer transitions at the cost of potentially complicated predicates. By contrast, preferring
simple transitions at the cost of increasing the number of transitions, leads to neat SFAs. We

define an SFA to be neat if all transition predicates are basic predicates.

Feasibility The second distinction concerns the fact that an SFA can have transitions with
unsatisfiable predicates. A symbolic automaton is said to be feasible if for every (q,v,q') € §
we have that [¢)] # (). Feasibility is an orthogonal property to being neat or normalized. Recall

that feasibility checks are local to each transition.
Monotonicity The third distinction we make concerning the nature of a given SFA regards its

underlying algebra. A Boolean algebra 4 over domain DD is said to be monotonic if the following
hold.

1. There exists a total order < on the elements of ID; and
2. There exist two elements d;,y, dy,, such that d;,; < d and d < dy,, for all d € ID; and

3. An atomic predicate ¢/ € Py can be associated with two concrete values a and b such that
[¥] ={deD : a<d<b}.

The interval algebra (given in Section 5.1.1) is clearly monotonic, as is the similar algebra
obtained using R (the real numbers) instead of Z (the integers). On the other hand, the

propositional algebra is clearly non-monotonic.

Example 5.2.1. Consider the SFA M given in Fig 5.1. It is defined over the algebra 2y which
is the interval algebra restricted to the domain D = N U {oco}. The language of M is the set of
all words over N that end with a number between 0 and 100 followed by some (possibly empty)
sequence of numbers smaller than 200. M is defined over a monotonic algebra, and is neat,

normalized, deterministic and complete.

Example 5.2.2. (ASCII Algebra) The ASCII Algebra aims to model regular expressions in

modern programming languages. The domain DD is assumed to be the set of all ASCII codes
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{n: 0 < n < 127}. The predicates contain rich ways to refer to sets of letters, e.g., [A—7]
and [a-z] denote the set of all ASCII upper and lower case letters, respectively, [A-Za—-2z]
denotes their union, and [~ A-Za-z] denotes the complement of [A-Za-z]. The ASCIIL
algebra is defined with respect to a well ordered domain {n : 0 <n < 127}, and has predicates
such as [A-Z] and [a-z] that can be defined by the two end points of the respective interval,

but this is not the case for all predicates, and therefore it is not monotonic.

5.2.2 Size of an SFA

The size of an automaton (not a symbolic one) is typically measured by its number of states.
This is since for DFAs, the size of the alphabet is assumed to be a given constant, and the rest
of the parameters, in particular the transition relation, are at most quadratic in the number of
states. In the case of SFAs the situation is different, as the size of the predicates labeling the
transitions can vary greatly. In fact, if we measure the size of a predicate by the number of nodes
in its parse DAG, then the size of a formula can grow unboundedly. The size and structure of
the predicates influence the complexity of their satisfiability check, and thus the complexity of
corresponding algorithms. On the other hand there might be a trade-off between the size of the
transition predicates and the number of transitions; e.g. a predicate of the form ¢y V ¢ ... V 9%

can be replaced by k transitions, each one labeled by ¢; for 1 <1 < k.

Therefore, we measure the size of an SFA by three parameters: the number of states (1),
the maximal out-degree of a state (m) and the size of the most complex predicate ({). In order to
analyze the complexity of automata algorithms discussed in Sections 5.2.4 and 5.2.5, for a class
P of predicates over a Boolean algebra 4, we also use the following measures: the complexity
measure sat’ (1), which is the complexity of satisfiability check for a predicate of length [ in
PP; and the size measure sizel, (I1,12) (or size! (l1,12)), which is the size of the conjunction
(disjunction) of two predicates in P. While for the interval algebra sizel (I1, 1) is linear in
{1 and s, for the OBDD (ordered binary decision diagrams) algebra Boolean operations on
predicates are polynomial [Bry86]. When the algebra is built on a set of atomic predicates
Py we also use sat™ (1), size]io (I1,12) and size@o (I1,12), for the respective complexities when

restricted to atomic predicates.

5.2.3 Transformations to Special Forms

We now address the task of transforming SFAs into their special forms as presented in Sec-
tion 5.2.1. Moreover, we discuss the complexity of standard procedures on SFAs of these special
forms compared to the complexity on general SFAs. We start with transformations to the special
forms neat, normalized and feasible automata, measured as suggested using (n, m,[) — the

number of states, the maximal out-degree of a state, and the size of the most complex predicate.
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Neat Automata

Since each predicate in a neat SFA is a conjunction of atomic predicates, neat automata are
very intuitive, and the number of transitions in the SFA reflects the complexity of the different
operations, as opposed to the situation with normalized SFAs. This is since most operations
depend on satisfiability checking. For the class P of basic formulas, sat"°([) is usually more
efficient than sat" (1), and in particular is polynomial for the algebras we consider here. This
is since satisfiability testing can be reduced to checking that for a basic predicate ¢ that is a
conjunction of [ atomic predicates, there are no two atomic predicates that contradict each other.
Since satisfiability checking directly affects the complexity of various algorithms discussed in

Section 5.2.4, neat SFAs allow for efficient automata operations, as we show in Section 5.2.5.

Transforming to Neat Given a general SFA M of size (n, m, ), we can construct a neat SFA
M’ of size (n,m-2!,1), by transforming each transition predicate to a DNF formula, and turning
each disjunct into an individual transition. The number of states, n, remains the same. However,
the number of transitions can grow exponentially due to the transformation to DNF. In the
worst case, the size of the most complex predicate can remain the same after the transformation,
resulting in the same [ parameter for both automata. Note that there is no unique minimal
neat SFA. For instance, a predicate ) over the propositional algebra with AP = {p1, p2,p3},
satisfying [¢)] = {100,101, 111} can be represented using two basic transitions (p; A —p2) and
(p1 A p2 A p3); or alternatively using the two basic transitions: (p; A p3) and (p1 A —p2 A —p3),
though it cannot be represented using one basic transition.

Although in the general case, the transformation from normalized to neat SFAs is exponential,
for monotonic algebras we have the following lemma, which follows directly from the definition

of monotonic algebras and basic predicates.

Lemma 5.2.3. Over a monotonic algebra, the conjunction of two atomic predicates is also
an atomic predicate; inductively, any basic formula that does not contain negations, over a
monotonic algebra, is an atomic predicate. In addition, the negation of an atomic predicate is a

disjunction of at most 2 atomic predicates.

Lemma 5.2.4. Let M be a normalized SFA over a monotonic algebra A op. Then, transforming
M into a neat SFA M is linear in the size of M.

Since a DNF formula with m disjunctions is a natural representation of m neat transitions,

Lemma 5.2.4 follows from the following property of monotonic algebras.

Lemma 5.2.5. Let i be a general formula over a monotonic algebra 4. Then, there exists an

equivalent DNF formula 14 of size linear in |1)|.

Proof. First, we transform ) into a Negation Normal Form formula v yyz, pushing negations
inside the formula. When transforming to NNF, the number of atomic predicates (under
negation) remains the same, and so is the number of conjunctions and disjunctions. Since, by

Lemma 5.2.3, a negation of an atomic predicate over a monotonic algebra, namely a negation of
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an interval, results in at most two intervals, we get that | yyp| < 2 - [1)|. Note that ¢ yyp does
not contain any negations, as they were applied to the intervals. We now transform 1y into a
DNF formula )4 recursively, operate on sub-formulas of 1y, distributing conjunctions over
disjunctions.

We inductively prove that |¢4| = | ynr|. For the base case, if ) yyF is a single interval
[a, b), then [a, b) is in DNF and we are done.

For the induction step, consider the two cases.

1. Assume ¥yyr = %1 V 12. By the induction hypothesis, there exists DNF formulas 114
and 194 such that 1,4 = 1; and |¢;d| = |¢;] for i = 1,2. Then, g = Y14 V 1aq is
equivalent to 1 ynr and of the same size.

2. Assume Y ynyr = 11 A 2. Again, by the induction hypothesis, instead of 1 A 12 we
can consider 114 A 19q Where 114 and o4 are in DNF. That is ¢4 = \/le [ai, b;) and
de_v [Cjad')'NOW,

k

l k1
P1d N\ Yog = (\/[az,bz)> A \_/ cj,d; = \/ \/ ([ai,bz‘) A\ [Cj,dj))

i=1 i=1j=1

From properties of intervals, each conjunction [a;, b;)A[c;, d;) is of the form [max{a;, ¢; },
min{b;,d;}). The intervals in {[a;,b;)) : 1 < ¢ < k} do not intersect (otherwise
it would have resulted in a longer single interval), and the same for {[c;,d;) : 1 <
j < l}. Thus, every element a; or c¢j can define at most one interval of the form
[max{a;,c;}, min{b;,d;}). That is, the DNF formula ¢y = \/*_, \/ ([az, bi) A

[, dj)) contains at most k + [ intervals, as the others are not proper intervals. Since the
size of the original ¢ v F is k + [, we have that [Yynp| = [¢4].

To conclude, since ¥y v is linear in the size of v and v is of the same size as )y, we have
that the translation of 1 into the DNF formula 1), is linear. |

Normalized Automata

Neat automata stand in contrast to normalized ones. In a normalized SFA, there is at most
one transition between every pair of states, which allows for a succinct formulation of the
condition to transit from one state to another. On the other hand, this makes the predicates
on the transitions structurally more complicated. Given a general SFA M with parameters
(n,m, 1), we can easily construct a normalized SFA M’ as follows. For every pair of states
q and ¢/, construct a single edge labeled with the predicate V(g,0.qyes ¢- Then, M’ has size
(n,n, sizelm (1)), where we use sizel, (1) to denote the size of m disjunctions of predicates
of size at most [. Note that there is no unique minimal normalized automaton either, since in
general Boolean formulas have multiple representations. However, in Section 5.2.5 we show

that over monotonic algebras there is a canonical minimal normalized SFA.
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The complexity of sat®(I) for general formulas (corresponding to normalized SFAs) is
usually exponentially higher than for basic predicates (and thus for neat SFAs). In addition,
as we saw above, generating a normalized automaton is an easy operation. This motivates
working with neat automata, and generating normalized automata as a last step, if desired (e.g.,

for drawing).

Feasible Automata

The motivation for feasible automata is clear; if the automaton contains unsatisfiable transitions,
then its size is larger than necessary, and the redundancy of transitions makes it less interpretable.
Thus, infeasible SFAs add complexity both algorithmically and for the user, as they are more
difficult to understand. In order to generate a feasible SFA from a given SFA M, we need
to traverse the transitions of M and test the satisfiability of each transition. The parameters
(n,m, 1) of the SFA remain the same since there is no change in the set of states, and there
might be no change in transitions as well (if they are all satisfiable).

In the following, we usually assume that the automata are feasible, and when applying

algorithms, we require the output to be feasible as well.

5.2.4 Complexity of standard automata procedures on general SFAs

We turn to discuss Boolean operations, determinization and minimization, and decision proce-
dures (such as emptiness and equivalence) for the different types of SFAs. For intersection and
union, the product construction of SFAs was studied in [VdHT10, HV11]. There, the authors
assume a normalized SFAs as input, and do not delve on the effect of the construction on the
number of transitions and the complexity of the resulting predicates. Determinization of SFAs
was studied in [VAHT10], and [DV14] study minimization of SFAs, assuming the given SFA
is normalized.

Table 5.1 shows the sizes of the SFAs resulting from the mentioned operations, in terms
of (n,m,l). The analysis applies to all types of SFAs, not just normalized ones. The time
complexity for each operation is given in terms of the parameters (n,m, () and the complexity
of feasibility tests for the resulting SFA, as discussed in Section 5.2.3. Table 5.2 summarizes
the time complexity of decision procedures for SFAs: emptiness, inclusion, and membership.
Again, the analysis applies to all types of SFAs. We note that in many applications of learning
in verification, the challenging part is implementing the teacher, for example in Chapter 4 of
this thesis, as well as in [PGB 08, CKKS20]. In such cases the complexity of membership and
equivalence queries as well as standard automata operations plays a major role.

In both tables we consider two SFAs M and My with parameters (n;, m;, ;) fori = 1,2,
over algebra 4 with predicates P. We use sizek.(I) for an upper bound on the size of m
conjunctions of predicates of size at most /. All SFAs are assumed to be deterministic, except of

course for the input for determinization.

"For complementation, no feasibility check is needed, since we assume a feasible input.
2To determinize transitions, conjunction may be applied n1 X m; times, according to the number of states that
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Operation (n,m,1)
product construction M7, Mo (n1 X ng, mp X ma, sz’zel/[i (I1,12))
complementation of deterministic M ! (ng +1, my + 1, sizebm, (1))
determinization of M (2m, 2m sz'ze]iwml (1)) 2
minimization of M (n1,mq, sizekm, (I1))

Table 5.1: Analysis of standard automata procedures on SFAs.

Decision Procedures Time Complexity
emptiness linear in n, m
emptiness + feasibility n x m x sat® (1)
membership of vy - - -y € D* b sat®(sizek (1, [vo,])) 3
inclusion M; C M ((n1 x n2) x (mq x ma) x sat®(sizek (11, 15)))

Table 5.2: Analysis of times complexity of decision procedures for SFAs

We now briefly describe the algorithms we analyze in both tables.

Product Construction [VAHT10, HV11] The product construction for SFAs is similar to the
product of DFAs — the set of states is the product of the states of M7 and Mo; and a transition
is a synchronization of transitions of M; and M. That is, a transition from (g1, g2) to (p1, p2)
can be made while reading a concrete letter v, iff (q1,%1,p1) € 61 and (g2, %2, p2) € 02
and ~ satisfies both ¢); and 5. Therefore, the predicates labeling transitions in the product
construction are conjunctions of predicates from the two SFAs M and M.

Complementation In order to complement a deterministic SFA M, we first need to make M/
complete. In order to do so, we add one state which is a non-accepting sink, and from each
state we add at most one transition which is the negation of all other transitions from that state.
In case that M is complete, then complementation only negates the set of accepting states,

resulting in the same parameters (ny,m1,11).

Determinization [VAHT10] In order to make an SFA deterministic, the algorithm of [VAHT10]
uses the subset construction for DFAs, resulting in an exponential blowup in the number of
states. However, in the case of SFAs this is not enough, and the predicates require special care.
Let P = {q1,---,q} be a state in the deterministic SFA, where ¢1, ..., g; are states of the
original SFA M, and let ¢y, ..., ¢, be some predicates labelling outgoing transitions from
q1, - - - qi, correspondingly. Then, in order to determinize transitions, the algorithm of [VAHT10]

computes the conjunction /\Zt-:1 11, which labels a single transition from the state P.

Minimization [DV14] Given a deterministic SFA M, the output of minimization is an equiv-
alent deterministic SFA with a minimal number of states. When constructing such an SFA,
the number of states and transitions cannot grow. However, as in determinization, if two
states of M are replaced with one state, then outgoing transitions might overlap, resulting

in a non-deterministic SFA. Therefore, to make sure that transitions do not overlap, all algo-

correspond to a new deterministic state.
3Where 1, is a predicate describing ;.
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rithms described in [DV14] compute minterms, which are the smallest conjunctions of outgoing

transitions. Minterms then do not intersect, and thus the output is deterministic.

Emptiness If we assume a feasible SFA M as an input, then in order to check for emptiness
we need to find an accepting state which is reachable from the initial state (as in DFAs). If
we do not assume a feasible input, we need to test the satisfiability of each transition, thus the

complexity depends on the complexity measure sat® (1).*

Membership Similarly to emptiness, in order to check if a concrete word 77 - - - 7y, is in L(M),
we need to locally consider the satisfiability of each transition. In the case of membership, we

need to check whether the letter ~y; satisfies the predicate on the corresponding transition.

Inclusion Deciding inclusion amounts to checking emptiness and feasibility of M1 N Mas. We

assume here that both M; and M5 are deterministic and complete.

5.2.5 Complexity of standard automata procedures on special SFAs

We now discuss the advantages of neat SFAs and of monotonic algebras, in the context of the
algorithms presented in the tables, and show that, in general, they are more efficient to handle

compared to other SFAs.

Neat SFAs

As can be observed from Table 5.2, almost all decision procedures regarding SFAs depend on
sat® (). For neat SFAs it is more precise to say that they depend on sat™ (1), and since sat"0(I)
is usually less costly than sat” (1), most decision procedures are more efficient on neat automata.
Here, we claim that applying automata algorithms on neat SFAs preserves their neatness, thus

suggesting that neat SFAs may be preferable in many applications.

Lemma 5.2.6. Let M, and Mo be neat SFAs. Then: Mi N Ma, M; U My, M, and

determinization / minimization of M, are all neat SFAs as well.

Proof. The proof follows from the product construction [VdHT10, HV11] and the determiniza-
tion [VAHT10] and minimization [DV 14] constructions. All of these use only conjunctions in
order to construct the predicates on the output SFAs. Thus, if the predicates on the input SFAs

are basic, then so are the output predicates. |

Monotonic Algebras

We now consider the class M 5, of SFAs over a monotonic algebra 4,,, with predicates P. We
first discuss sizek (I1,12) and sat® (I), as they are essential measures in automata operations.
Then we show that for M; and My, in the class M4, , the product construction is linear in the

number of transitions, adding to the efficiency of SFAs over monotonic algebras.

“Note that the feasibility check is local, and depends only on the satisfiability of the predicates labeling transitions.
This is in contrast to the model of Chapter 4 where we check the feasibility of the whole word.
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Lemma 5.2.7. Let 1y and ) be formulas over a monotonic algebra A,,. Then: sizek (|11, [1b2])
is linear in 1| + [1b2| and sat® (|ap1|) is linear in |3)1].

Proof. Transforming to DNF is linear, as we show in Lemma 5.2.5. There, we show that
the conjunction of two DNF formulas of sizes & and [ has size k + [, which implies that the
conjunction of general formulas has linear size. In addition, sat” () is trivial for a single interval,
and following Lemma 5.2.5, is linear for general formulas. The satisfiability of a single interval
is trivial, since we define intervals as predicates of the form [a,b) for a < b, and thus every
interval is satisfiable. Even if we allow unsatisfiable intervals, satisfiability check will amount to

the question “is a < b?”. |

Lemma 5.2.8. Let M and My be deterministic SFAs over a monotonic algebra 4,,. Then the
out-degree of their product SFA M is at most m = 2 - (my + mz).

Proof. From Lemma 5.2.4, we can construct neat SFAs M and M, of sizes (n;, 2m;, I;) for
i € {1,2}. For a state ¢ in an SFA, the set {(q, [a;, b;), p)} of ¢’s outgoing transitions can be
defined using the set {a;} of the minimal element of each transition. Similarly to the proof of
Lemma 5.2.5, each transition ((q1, ¢2), [a,b) A [¢,d), (p1, p2)) in the product SFA results in a
formula [max{a, ¢}, min{b, d}). Then, for ¢; € @1, every minimal element in the set of ¢;’s
outgoing transitions can define at most one transition in M, and the same for a state g2 € 2,

and so the number of transitions from (g1, g2) is at most m1 + ma, as required. |

Lemma 5.2.9. Let M be a neat SFA over a monotonic algebra. Then, transforming M into a

complete SFA M’ is polynomial in the size of M.

Proof. In order to complete M, we add a non-accepting sink  in case it does not already exist,
and at most m transitions from each state g to r, when m is the out-degree of the SFA, resulting

in at most || x m new transitions. |

Definition 5.2.10. For predicates over a monotonic algebra, we define a canonical represen-
tation of a predicate ¢ as the simplified DNF formula which is the disjunction of all intervals

satisfying .

Note that every predicate ¥ over a monotonic algebra defines a unique partition of the
domain into disjoint intervals. This unique partition corresponds to a simplified DNF formula,

which is exactly the canonical representation of .

Example 5.2.11. The canonical representation of ¢» = [0,100) A ([50,150) V [20,40)) is
120, 40) V [50, 100).

Lemma 5.2.12. Let M be an SFA over a monotonic algebra. Then:
1. There is a unique minimal-state neat SFA M’ such that L(M) = L(M).

2. There is a canonical minimal-state normalized SFA M" such that L(M) = L(M").
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Proof. First, we note that for a language £ = £(M) for some SFA M, there exists a minimal-
state SFA. This is since as, similarly to DFAs, when considering the equivalence relation N
defined by (u,v) € N <= Vz € D* : (uz € L < vz € L), the equivalence classes of the
relation IV correspond to the states in the minimal-state SFA.

As for transitions, we have the following.

1. Let ¢ be a general predicate labeling a transition in M. Then v defines a unique partition
of the domain into disjoint intervals, which are exactly the transitions in a neat SFA. Then,

the minimal state neat SFA is unique.

2. For normalized transitions, we can use Lemma 5.2.5 to transform a general predicate
labeling a transition to a DNF predicate one in linear time. A DNF predicate over a
monotonic algebra is in-fact a disjunction of disjoint intervals. Then, to obtain a canonical

representation, we order these intervals by order of their minimal elements. |

5.3 Query Learning

Recall that the paradigm of query learning stipulates that the learner can interact with an
oracle (teacher) by asking it several types of allowed queries. Angluin showed, on the negative
side, that regular languages cannot be learned (in the exact model) from only membership
queries (MQ) [Ang81] or only equivalence queries (EQ) [Ang90]. On the positive side, An-
gluin [Ang87a] showed that regular languages, represented as DFAs, can be learned using both
MQ and EQ. The celebrated algorithm, termed L*, was extended to learning many other classes
of languages and representations, e.g. [Sak90, BV96, AV10, BHKLO09, AEF15, MP95, AF16],
see the survey [Fis18] for more references.

In particular, an extension of L*, termed MAT", to learn SFAs was provided in [AD18],
which proved that SFAs over an algebra 4 can be efficiently learned using MAT” if and only
if the underlying algebra is efficiently learnable (see Definition 5.3.1), and the size of the
disjunctions of k predicates does not grow exponentially in k.5 From this it was concluded that
SFAs over the following underlying algebras are efficiently learnable: Boolean algebras over
finite domains, equality algebra, tree automata algebra, and SFAs algebra. Efficient learning of
SFAs over a monotonic algebra using MQ and EQ was established in [CDYS17], which improved
on the results of [MM14, MM17] by using a binary search instead of a helpful teacher.

The result of [AD18] provides means to establish new positive results on learning classes
of SFAs using MQ and EQ, but it does not provide means for obtaining negative results for
query learning of SFAs using MQ and EQ. We strengthen this result by providing a learnability
result that is independent of the use of a specific learning algorithm. In particular, we show that
efficient learnability of a Boolean algebra 4 using MQ and EQ is a necessary condition for the

learnability of the class of SFAs over 4, as we state in Theorem 5.1.

5As is the case, for instance, in the OBDD algebra [Bry86].
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Definition 5.3.1. We say that an algebra 4 is polynomially learnable using MQs and EQs if there
exists a query learning algorithm that given a predicate ) over 4 can learn v using poly(|1|)
MQs and EQs.

Theorem 5.1. If a class of SFAs M over a Boolean algebra A is polynomially learnable using
MQ and EQs, then 4 is polynomially learnable using MQ and EQs.

Proof. Assume that M is polynomially learnable using MQ and EQs, using an algorithm Qyy.
We show that there exists a polynomial learning algorithm Q ; for the algebra 4 using MQ and
EQs. The algorithm Q, uses Qy as a subroutine, and behaves as a teacher for Qy;. Whenever
Qy asks a M-MQ on a word 1 . .. Y&, if kK > 1 then Q4 answers “no”. If k=1 then the M-MQ
is essentially an 4-MQ, thus Q ; issues this query and passes the answer to Qp;. Whenever Qy
asks a M-EQ on SFA M, if M is not a two state SFA with a single transition labeled by some
predicate v, then Q4 answers “no” to the M-EQ and returns some word w € £L(M) s.t. |w| > 1
and w was not provided before, as a counterexample. Otherwise (if the SFA is of the above
form) then Q; asks an 4-EQ on . If the answer is “yes” then Q ; terminates and returns v as
the result of the learning algorithm; if the answer to the 4-EQ on ) is “no”, then the provided
counterexample (7, b,) is passed back to Qy together with the answer “no” to the M-EQ.

The algorithm described above is sound, and the teacher is consistent, and thus, since M
is learnable using Qyy, the algorithm eventually terminates. Note that Q) learns exactly the
language of a one-letter word which consists of the predicate to be learned by () 5. This is since
it only answers MQs positively on one-letter words, and an EQ is answered positively only if the
SFA consists of two states and one transition. Therefore the algorithm learns one predicate over

the algebra, and thus if M over 4 is learnable, then so is 4. |

From Theorem 5.1 we derive what we believe to be the first negative result on learning SFAs
from MQ and EQ, as we show that SFAs over the propositional algebra are not polynomially
learnable using MQ and EQ. Polynomiality is measured with respect to the parameters (n, m, [)
representing the size of the SFA and the number & of atomic propositions. We achieve this by
showing that no learning algorithm A for the Boolean algebra using MQ and EQ can do better

than asking 2¥ MQ/EQs, where k is the number of atomic propositions.°

Proposition 5.3.2. Let A be a sound learning algorithm for the propositional algebra over BF.
Then, there exists a target predicate 1), for which A will be forced to ask at least 2% — 1 queries
(either MQ or EQ).

Proof. Since A is sound, at stage ¢ + 1 we have S;EH D) S;r and S;l 2 S, and at least one
inclusion is strict. Since the size of the concrete alphabet is 2, for every round i < 2%, an
adversarial teacher can answer both MQs and EQs negatively. In the case of EQ there must be an
element in B* \ (S;” U S;") with which the provided automaton disagrees. The adversary will

return one such element as a counterexample. This forces A to ask at least 2° —1 queries. M

%In [Nak00] Boolean formulas represented using OBDDs are claimed to be polynomially learnable with MQ and
EQ. However, [Nak0O] measures the size of an OBDD by its number of nodes, which can be exponential in the
number of propositions.
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Corollary 5.2. SFAs over the propositional algebra with k propositions cannot be learned in
poly(k) time using MQ and EQ.

The propositional algebra is a special case of the n-dimensional boxes algebra. Learning
n-dimensional boxes was studied using MQ and EQ [GGM94, BGGM98, BK98], as well as
in the PAC setting [BKOO]. The algorithms presented in [GGM94, BGGM98, BK98, BK00]
are mostly exponential in n. Alternatively, [GGM94, BGGM98] suggest algorithms that are
exponential in the number of boxes in the union. In [BK98] a linear query learning algorithm
for unions of disjoint boxes is presented. Since n-dimensional boxes subsume the propositional
algebra, Corollary 5.2 implies the following.

Corollary 5.3. The class of SFAs over n-dimensional boxes algebra cannot be learned in

poly(n) time using MQ and EQ.

In case the minimal normalized SFA and the minimal neat SFA are isomorphic, then in
essence, we only need to learn basic predicates. We call such automata purely neat. A motivation
for purely neat SFAs can be found, for example, in [BJR06], where purely neat transitions
augmented to finite alphabet letters are used to model communication protocols. The algorithm
of [BJRO6] is exponential in the number of propositions appearing in some conjunction. Here,
we prove that this is a lower bound on the learnability of purely neat SFAs using MQs and
EQs. We observe that the proof of Theorem 5.1 applies also for purely neat SFAs, thus we can

strengthen the theorem as follows.

Theorem 5.4. Any class of SFAs M over a Boolean algebra A4, that subsumes all two-state SFAs
with a single transition between them, labeled by an arbitrary predicate from 4, is polynomially

learnable using MQ and EQ only if the algebra A is polynomially learnable using MQ and EQ.

Corollary 5.5. Purely neat SFAs over the propositional algebra with k propositions cannot be
learned in poly(k) time using MQ and EQ.

5.4 Identification in the Limit

The model of identification in the limit using polynomial time and data was proposed by
Gold [Gol78] who showed that regular languages represented by DFAs are learnable in this
model. We follow de la Higuera’s more general definition [dIH97a].

This learning paradigm has a somewhat information theoretic perspective, in that it asks
whether a class of languages can be learned from a polynomial set of correctly labeled words.
A sample for a language L is a finite set S consisting of labeled examples, that is, pairs of the
form (w, b,,) where w is a word and b,, € {0, 1} is its label, satisfying that b,, = 1 if and only
if w € L. Given two words w and w’, we say that w and w’ are not equivalent with respect to S,
denoted w s w', iff there exists z such that (wz, by, (w'z,b') € S and b # V'. Otherwise we

say that w and w’ are equivalent wrt. S, and denote w ~g w'.
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The sample is considered polynomial if it is of size polynomial in the smallest representation
for L. In addition, it is required that given such a so-called characteristic sample Sy, (formally
defined in Definition 5.4.1), a learning algorithm can efficiently learn the target L (i.e. in time
polynomial in Sy), and more generally, that there exists an efficient learning algorithm, that
outputs a representation agreeing with a given sample. Finally, it is required that the learning
algorithm is not diverted from its correct conjecture when seeing additional information on top
of the characteristic sample, in the sense that it correctly learns the target language L given any

sample S’ for L that is a superset of the characteristic sample Sy,. The formal definition follows.

Definition 5.4.1 (identification in the limit using polynomial time and data). A class of langua-
ges L is said to be identified in the limit using polynomial time and data via representations
in a class C if there exists a learning algorithm Alg such that the following two requirements

are met.

1. Given a finite sample S of labeled examples, Alg returns in polynomial time a hypothesis
C € C that agrees with S.

2. For alanguage L € L, let C € C be the minimal representation for L. Then, there exists
a sample Sy, termed a characteristic sample, of size polynomial in the size of C, such
that Alg returns an hypothesis C’ that is equivalent to C, when run on any sample that

subsumes Sry,.

Note that the first condition ensures polynomial time and the second polynomial data. If given
arbitrary large finite sets, that do not have a representation in class C, the algorithm is promised
to return some representation that agrees with the sample; the algorithm is then allowed to
fail on the second condition. De la Higuera’s notion of characteristic sample is a core concept
in grammatical inference, for various reasons. Firstly, it addresses shortcomings of several
other attempts to formulate polynomial-time learning in the limit [Ang88, Pit89]. Secondly,
this notion has inspired the design of popular algorithms for learning formal languages such
as, for example, the RPNI algorithm [OG92]. Thirdly, it was shown to bear strong relations
to a classical notion of machine teaching [GM96]; models of the latter kind are currently
experiencing increased attention in the machine learning community [ZSZR18].

In this chapter, since we are interested in symbolic automata learning, we consider the
representation class C to be a class of certain SFAs. The goal of an identification in the limit
algorithm for SFAs is two-folded. The algorithm needs to construct the SFA in terms of
structural representation, that is, its states and transitions; and to learn the predicates labeling
the transitions. Identification in the limit of SFAs then requires first finding a polynomial size
characteristic sample, over the concrete domain elements, and second, devising an SFA inference
algorithm meeting the requirements of Definition 5.4.1. This problem appears to be hard, and
has no solution in the general case. Indeed, we show that SFAs over the propositional algebra
cannot be learned in this paradigm. On the other hand we show that the class of SFAs over the

interval algebra can be learned in this paradigm.
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5.4.1 Identification in the limit of DFAs using polynomial time and data

It was shown by [Gol78, OG92] that DFAs are identifiable in the limit using polynomial time
and data. Our results rely on some properties of the algorithms for identification in the limit for
DFA. Therefore, for completeness of the presentation, we first provide a complete description
of the procedures showing that DFAs are identifiable in the limit using polynomial time and

data, and that they satisfy the required properties.

Theorem 5.6 ([0OG92]). The class of DFAs is identifiable in the limit using polynomial time
and data via procedures CharDFA and InferDFA satisfying that if D is a minimal and complete
DFA and CharDFA (D) = Sp then the following holds:

1. Sp contains a prefix-closed set A of words. The words in A are termed access words.”
Moreover, A can be chosen to contain only lex-access words, which are the smallest
access words in the lexicographic order.

2. For every uy,us € A it holds that uy s, us.

3. Foreveryu,v € Aand o € %, if 5(qo, uo) # 6(qo,v) then uo s, v.

We later use these properties in order to construct a DFA out of a given set S. Therefore,
we need to relate between the words of the sample and the transition relation of the automaton.
This is the motivation for properties (2) and (3). As for the first property, given a set S 2 Sp,
property (1) helps us recognize the words in S that are also in Sp. For SFAs, this property allows
us to understand which of the alphabet letters are relevant in order to identify the predicates
labeling transitions.

To prove Theorem 5.6 we first show that given a DFA D = (X, Q, qo, F,, ), we can construct
a polynomial-sized sample of words Sp that agrees with D and satisfies the required properties.
We show an algorithm that (i) can infer in polynomial time from a given sample S a DFA that
agrees with S, and (ii) if it is given the set Sp, or any set S O Sp that agrees with D, then it
infers a DFA that is equivalent to D. All this together proves Theorem 5.6 (and explains why

we can refer to Sp as the characteristic sample).

Constructing a characteristic set

Given a minimal and complete DFA, the algorithm CharDFA works as follows. It first creates
a prefix-closed set of access words to states. This can be done by considering the graph of the
automaton and running an algorithm for finding a spanning tree 7" from the initial state. Choosing
one of the letters on each edge, the access word for a state is obtained by concatenating the
labels on the unique path of 7' that reaches that state. If we wish to work with lex-access words,
we can use a depth-first search algorithm that spans branches according to the order of letters in
3., starting from the smallest. The labels on the paths of the spanning tree constructed this way
will form the set of lex-access words. Let .S be the set of access words (or lex-access words).
Next, the algorithm turns to find a distinguishing word v; ; for every pair of state s;, s; € S

(where s; # s;). Lemma 5.4.2 below states that any pair of states of the minimal DFA

" As we later show, the words of A intuitively correspond to the states of D.
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has a distinguishing word of size quadratic in the size of the DFA. Let E be the set of all
such distinguishing words. We may assume ¢ € E.® Then the algorithm returns the set
Sp ={(w,D(w)) : we (S-E)U(S-X-E)} where D(w) is the label D gives w (i.e. 1 if
D accepts w, and 0 otherwise).

It is easy to see that Sp satisfies the properties of Theorem 5.6.

Lemma 5.4.2. Let D = (X, Q, qo, F,0) be a minimal DFA, and let q1,q2 € Q s.t. q1 # qo.
Then there exists a polynomial time procedure that returns a word v of size at most |Q|? such

that §(q1,v) is accepting iff 0(qo, v) is rejecting.

Proof. We can apply the product construction to D; = (X, Q, ¢;, F, ) fori € {1,2} and search
for a path from the initial state (¢1,¢2) to a state in F' x (Q \ F') or (Q \ F') x F to find a word
that leads to an accepting state when read from ¢; and a rejecting state when read from ¢o or
vice versa. Since a shortest simple path in a graph is bounded by the number of nodes, the
shortest such word is of length at most |Q|?. The shortest path can be found using breadth-first
search algorithms that run in time linear in the number of vertices and edges, thus polynomial in
the size of the DFA. [ |

Since computing a spanning tree (in particular via DFS) and finding shortest paths can be
done in polynomial time, this shows that for DFAs we can construct the characteristic set in
polynomial time. That is, while Definition 5.4.1 only requires that the characteristic set be of

polynomial size, for DFAs we can show that it can also be computed in polynomial time.

Inferring a DFA

Next, we describe algorithm InferDFA that given a set of sample words S, infers from it in
polynomial time a DFA that agrees with S. Moreover, if S O Sp where Sp is a characteristic
sample set of a DFA D, and S agrees with £(D), then InferDFA returns an equivalent DFA to D.

Let W be the set of words in the given sample S (without their labels). Let R be the set of
prefixes of W, and C' be the set of suffixes of . Note thate € Rand ¢ € C. Let g, 71, ... be
some enumeration of R and cg, ¢1, . . . some enumeration of C' where g = ¢y = €. In the sequel,
we often use i,, for the index of w in R. The algorithm builds a matrix M of size |R| x |C|
whose entries take values in {0, 1, 7}. The algorithm sets the value of entry (4, j) as follows. If
ric; is notin W, itis set to 7. Otherwise it is set to 1 iff the word r;c; is labeled 1 in S. We get
that r; ~s r; iff for every k such that both M (i, k) and M (j, k) are different than ?, we have
that M (i, k) = M (4, k).

The algorithm sets Ry = {e}. Once R; is constructed, the algorithm tries to establish
whether ro for r € R; and ¢ € X is distinguished from all words in R;. It does so by

considering all other words 7 € R; and checking whether ro ~g /. If ro is found to be

8Unless D accepts all words or rejects all words, it has at an accepting state and a rejecting state, and e is the
shortest word distinguishing these states. If all states of D are accepting (or all rejecting) the algorithm returns

Sp = {{¢, 1)} (resp. Sp = {(¢,0)}).
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distinct from all words in R;, then R, is setto R; U {ro}. The algorithm proceeds until no
new words are distinguished. Let R = Ry, where k is the iteration of convergence.

If not all words in R are in W (that is M (¢,0) =7 for some r; € R), the algorithm returns
the prefix-tree automaton.’ Otherwise, the states of the constructed DFA are set to be the words
in R. The initial state is € and a state r; is classified as accepting iff M (i,0) = 1 (recall that the
entry M (7,0) stands for the value of r; - € in S). To determine the transitions, for every r € R
and o € Y, recall that there exists at least one state 7/ € R that cannot be distinguished from ro.

The algorithm then adds a transition from r on o to 7’.
Proposition 5.4.3.

1. Algorithm InferDFA runs in polynomial time and returns a DFA that agrees with the

given sample S.

2. Let Sp be the sample constructed for a DFA D by algorithm CharDFA, and let S O Sp.
Then algorithm InferDFA returns a DFA that recognizes the same language as D.

Proof.

1. The number of prefixes (or suffixes) of a set of words is bounded by the size of the longest
word times the size of the set. Thus M is of polynomial size, and so is its construction.
The number of iterations required for converging the R; sets is bounded by |IW|. The
prefix-tree automaton can be computed in polynomial time. Determining acceptance is
polynomial in | R|, and determining the transitions is polynomial in |R| x |X|. Therefore

the overall running time of the algorithm is polynomial.

Clearly, if InferDFA returns the prefix-tree automaton then it agrees with the given
sample S. We claim that it agrees with the given sample also in the second case. We
show, by induction on the length of the word, that for every w € W, if w reaches state
r of the constructed DFA, then w ~gs r. Then, since w is in the sample, and 7 is in the
sample (otherwise the algorithm would return the prefix-tree automaton), it follows that
M (iy,0) = M(ir,0), hence the DFA agrees with the sample on w.

For the base case, we have that |w| = 0 then the DFA accepts if g is accepting, which
holds iff M (0,0) = 1. Indeed, this entry is filled with the label of € in S. Consider now
w = vo forsome v € ¥* and o € 3. Assume that the DFA reaches the state s; on reading
v and the state s,,, on reading w. By the induction hypothesis, we know that r, ~g v.
From the construction of the algorithm it follows that ryo ~s s,, as otherwise, reading
o from ry, would lead to a different state. If r,,, %5 w then exists a suffix ¢; € C s.t.
M(m,i) # M (i, 7). Butthen o¢; is also in C. Then M (¢, j) # M (i,, 7), contradicting
that rp ~g v.

The prefix-tree automaton is the automaton obtained by placing all words in a tree data structure (sharing
common prefixes) and labeling a state accepting iff the unique word reaching that state is in the sample and is
labeled 1.
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2. Next, we show that if S subsumes Sp then the returned DFA agrees with D. Let
wi, . .., Wy, be the set of accessible words chosen by CharDFA. Since S consists of a
distinguished word for every pair of access words w; and w; of D, algorithm InferDFA
will determine w; s w; and R will consist of at least 7 states. It may not consist of more
states, since the sample has to agree with the language of D and every word agrees with
some state of D on all possible suffixes, thus cannot be determined distinct by InferDFA.
Since S - 3 - E was placed in S, for every distinguished state w and every o € X the alg.
InferDFA can determine the transition from w upon reading o. Since S - € is placed in
S, alg. InferDFA can correctly label the set of accepting states. Therefore, the obtained
DFA is isomorphic to the original DFA. |

We can thus conclude that the class Cp of DFAs is identifiable in the limit using polynomial

time and data. Furthermore, Cp satisfies the properties of Theorem 5.6.

5.4.2 Conditions for identification in the limit of SFAs

We now turn to discuss our results regarding identification in the limit of symbolic automata.
We provide a necessary condition, and a sufficient condition for deciding whether a class of

SFAs is identifiable in the limit using polynomial time and data.

A necessary condition for identification in the limit of SFAs

We make use of the following definitions. A sequence (I'y,...,I",,) consisting of sets of
concrete letters I'; C I is referred to as a concrete partition of D if the sets are pairwise disjoint
(namely I'; NT'; = () for every ¢ # j). Similarly, a sequence of predicates (¢1, ..., ¢p,) over a
Boolean algebra 4 is referred to as a predicate partition if [1;] N [¢;] = 0 for every i # j.

Definition 5.4.4.

* A function f,; from a concrete partition to a predicate partition is termed generalizing if
fo(T1,...,Tm)) = (¥n1,..., 1) implies kK = m and ;] D I'; forall 1 <i < m.

A function f. from a predicate partition to a concrete partition is termed concretizing if
fe({h1, ... m)) = (T, ..., Tk) implies k = mand I'; C [¢);] forall 1 < i < m.

We say that f, (resp. f.)is efficient if it can be computed in polynomial time. Note that if f. is

efficient then the sets I'; in the constructed concrete partition are of polynomial size.

Theorem 5.7. A necessary condition for a class of SFAs M to be identified in the limit
using polynomial time and data is that there exist efficient concretizing and generalizing
functions, Concretizey; and Generalizey, satisfying that if Concretizey ({11, ..., 10n)) =
(I'y,...,T'y,) and Generalizey (T, ...,T0.)) = (¢1,...,m) where I'; C T, for every
1 < <'m, then [p;] = [¢:] for every 1 <i < m.
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Proof. Assume one of the requirements fails. That is, either there exists no efficient concretizing
or generalizing function, or the generalization fails if the concrete partition is enhanced with
more words. Let M € M be an SFA whose initial state, g,, has outgoing transitions labeled
by 91, ...,¥y. Then, from the definition of identification in the limit, we cannot learn the
outgoing transitions of ¢,. Thus we cannot learn M, and the class M cannot be identified in the

limit using polynomial time and data. ]

Example 5.4.5. Consider the class Mg, of SFAs over the algebra 4y of Example 5.2.1, and

consider the functions
Concretizey, (([di = 0,d}), [da, d3), ..., [dn, dy, = 0))) = ({d1}, ..., {dm})

Generalizey, ((T'1,...,I'y)) = ((min 'y, minTy), ..., [minT},, c0))

Then, Concretizey,, and Generalizey, are efficient and satisfy the conditions of Theo-
rem 5.7, since every element added to a set I'; has to be inside the corresponding interval, and

thus cannot affect the result of generalization.

We say that a Boolean algebra 4 with predicates P over domain D is efficiently identifiable
if there exist polynomially computable functions f. : P — D and f;, : D — [P such that
fe(¥) €[] and [f4(T)] 2 T forevery ¢ € PandI' C D, and moreover if f.(¢)) =T, IV D T
and f,(I") = ¢/, then [¢'] = [¢]. Using this terminology we can state the following corollary.

Corollary 5.8. Efficient identifiability of the underlying algebra is a necessary condition for

identification in the limit using polynomial time and data of the respective class of SFAs.

This corollary holds since the condition of Theorem 5.7 is violated when the underlying
algebra is not efficiently identifiable (when considering partitions of size one).
A sufficient condition for identification in the limit of SFAs

The result regarding the sufficient condition on identification in the limit of SFAs using poly-
nomial time and data relies on the respective result for DFAs [Gol78, OG92], as stated in
Theorem 5.9 that follows from Section 5.4.1.

Theorem 5.9 ([Gol78, OG92]). There exist procedures CharDFA and InferDFA witnessing
that the class of DFAs is identified in the limit using polynomial time and data.

To state the sufficient condition we need the following definitions:
Definition 5.4.6.

e For an SFA M, the alphabet Y¢conc, as defined in line 4 of Alg. 5.1, is the set of all

concretizations of predicates labeling transitions in M.
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Algorithm 5.1 CharSFA - Build a characteristic sample for a given SFA
Input an SFA M, algorithm CharDFA, function Concretizey
Output a concrete characteristic set Sy C D* x {0,1}

function CHARSFA(M = (14,Q, q,, F, 0))
: for all ¢ € Q do let (], ,44,) be the predicates labeling

1:
2
3 outgoing transitions from ¢
4 Yeone := Ugeq Coneretizen (47, - -+, ¥8,))

5: Op = 0

6 forall ¢,¢ € Q,d € Yconc do

7 if (¢,v,q’) € 0 and d € [¢] then

8 p :=0p U (¢, d, )

9: D = (Xcone, @, ., F, 6p)

10: Spm = Chal‘DFA(DM)

11: return S

e A function f, that takes as input a sample set S and outputs a sample set S’ C S, is
termed decontaminating if given a characteristic sample Sy over the alphabet Y¢onc, if
S D Sxq is over an alphabet 3 O Ygone, then f4(S) = S’ for some S’ over the alphabet
Y conc satisfying that Sy € S’ C S.

Theorem 5.10. For a class M of SFAs, if there exist functions Concretizey; and Generalizey
satisfying the criteria of Theorem 5.7, and in addition there exists an efficient decontaminat-
ing function Decontaminatey, then the class M is identified in the limit using polynomial

time and data.

Given functions Concretizey;, Decontaminatey; and Generalizey for a class M of SFAs
meeting the criteria of Theorem 5.10, we show that the class M can be identified in the limit
using polynomial time and data.

The procedures we provide, CharSFA and InferSFA, described in Alg. 5.1 and Alg. 5.2,
respectively, use the algorithms CharDFA and InferDFA, respectively, as well as the methods
Concretizey;, Generalizey; and Decontaminatey;. We briefly describe these two algorithms,
and then turn to prove Theorem. 5.10.

The algorithm CharSFA (Alg. 5.1), receives an SFA M &€ M, and returns a characteristic
sample for it. It does so by constructing a DFA D4 over the alphabet >.conc With the same
structure as M (i.e. same states and edges), where a transition in D4 is labeled by a concrete
letter d iff d satisfies the predicate on the corresponding transition in M (Alg. 5.1 lines 6-8).
Recall that since Concretizey is an efficient concretizing function, its output is finite, and thus
Yiconc 18 finite as well. Hence D 4 is indeed a DFA (over a finite and concrete alphabet). Then,
Alg. 5.1 generates and returns the sample Sy using the algorithm CharDFA applied on the
DFA D (line 10).

Algorithm InferSFA (Alg. 5.2), given a sample set S, returns an SFA Mg for it. First,
InferSFA finds a subset S’ C S over the alphabet Y¢onc by calling Decontaminatey;(S)
(line 2). Then it uses S’ to construct a DFA by applying the inference algorithm InferDFA on S’
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Algorithm 5.2 InferSFA — Infer an SFA from a sample
Input sample S C D* x {0, 1}, algorithm InferDFA,
functions Generalizey;, Decontaminatey;
Output An SFA that agrees with the given sample S
1: function INFERSFA(S)
2 S’ := Decontaminatey(S)
3 (3,Q,4q., F,op) := InferDFA(S’)
4: Op = 0
5: for all ¢ € ) do
6
7
8
9

forallg; e QdoT; :={v: (¢,7,¢) € 0p}
(Y1, ... ) = Generalizey;((T'1, ..., ')
forall ¢; € Q do S := I U (q, %, ¢)

. MS = <27Q7qL7F7 5M>
10: if Jw in S that does not agree with M s then

11: return the prefix tree automaton of S
12: else
13: return Mg

(line 3). From this DFA, InferSFA constructs an SFA, Mg, by applying Generalizey; on each
state ¢ to get the symbolic transitions from the set of concrete transitions exiting ¢ (lines 5-8).

In Section 5.4.3 we provide methods Concretizey; , Decontaminatey; and Generalizey;
for SFAs over monotonic algebras, deriving their identification in the limit result. We now prove
Theorem 5.10.

Proof of Theorem 5.10. To prove sufficiency, we show that if there exist functions Concretizeyy,
Decontaminatey; and Generalizey; meeting the required criteria for a class of SFAs M, then
M is identified in the limit using polynomial time and data. To this end, we show that the two
conditions of Definition 5.4.1 are met.

For the first condition, given that InferDFA, Decontaminatey; and Generalizey; run in
polynomial time, and that the prefix-tree automaton can be constructed in polynomial time, it
is clear that so does InferSFA. In addition, the test of line 10 in Alg. 5.2 ensures the output
agrees with the sample. If the SFA M s does not agree with the sample S, then the prefix tree
automaton of S is returned.

For the second condition, note that the sample generated by CharSFA is polynomial in the
size of Dy, from the correctness of CharDFA. In addition, since Concretizey is efficient,
D s polynomial in the size of M, and thus S generated by CharSFA is polynomial in M
as well. It is left to show that given that S is the concrete sample produced by CharSFA when
running on an SFA M, then when InferSFA runs on any sample S 2 S such that S agrees
with M, InferSFA returns an SFA for £(M). Since Decontaminateyy is a decontaminating
function, and S O Sy, it holds that the set S’ = Decontaminatey;(S) is such that S’ O Sy
and is only over the alphabet >¢onc, which is exactly the alphabet of the DFA D generated in
Alg. 5.1 (line 9).

From the correctness of InferDFA, given S’ D Sy, the inferred DFA D (Alg. 5.2 line 3)
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is equivalent to D4 constructed in Alg.5.1. Since Dy is complete, for a state ¢ of D, the
concrete partition (I'y, ..., T';,) generated in Alg. 5.2 line 6, covers X¢onc and subsumes the
output of Concretizey; on the outgoing symbolic transitions from the state equivalent to g
in Dy4. Thus, since Generalizey; and Concretizey satisfy the criteria of Theorem 5.7, it
holds that the generated predicates agree with the original predicates. In addition, since S, and
therefore S’, agrees with M, the test of line 10 fails and the returned SFA is equivalent to M.l

5.4.3 Identification in the limit for certain classes of SFAs

We first discuss monotonic algebras, presenting the following positive result. Then we show
that this does not hold for non-monotonic algebras, as stated in Proposition 5.4.12 regarding the

propositional algebra.

Theorem 5.11. Let M, be the set of SFAs over a monotonic Boolean algebra 4,,. Then M4,

is identified in the limit using polynomial time and data.

In order to prove Theorem 5.11, we show that the sufficient condition holds for the case
of monotonic algebras. Example 5.4.11 demonstrates how to apply CharSFA and InferSFA
in order to learn an SFA over the algebra Ay. In order to prove the sufficient condition of
Theorem 5.10, we first show that the necessary condition of Theorem 5.7 holds for monotonic

algebras.

Proposition 5.4.7. There exist functions Concretizey;, and Generalizeyy, for the class Mg,

of SFAs over a monotonic Boolean algebra, satisfying the criteria of Theorem 5.7.

Proof. Let D be the domain of 4,,. Recall that in Section 5.2.1, a monotonic algebra is defined
over its domain D together with the two elements d;,; and d,,. We provide the functions
Concretizey, and Generalizey, for My, and prove that the criteria of Theorem 5.7 hold
for them. For ease of presentation, we consider the class of neat and complete SFAs. The result
holds for general SFAs as well since, by Lemma 5.2.4 and Lemma 5.2.9, the transformation
from a general SFA to a neat and complete SFA over a monotonic algebra is polynomial.
The definitions of Concretizey, and Generalizey, are generalizations of the functions
Concretizey,,, and Generalizey,, given in Example 5.4.5.

Concretizeny, ((¥1,...%m)) = ('1,...,'y) where we set I'; = {infimum{d € D :
d € [1i]}} for 1 < i < m . Since 4, is monotonic, I'; is well defined and contains a single
element, thus ConcretizeMﬂm is an efficient concretizing function.

Generalizey,, ((I't, ..., T'm)) = (Y1, .., ¥m), where 9; is defined as follows. Let I' =
Ulgigm I';. First, forall 1 < ¢ < m we set ¢»; = L. Then, we iteratively look for the minimal
element v € T'. Let ¢ be such that v € T';, and let 7/ be the minimal element in T" satisfying
~' ¢ T';. We then set ¢; = 1; V [,7'), and remove all elements v < 7’ < + from I'. We
repeat the process until for the found v € I';, there is no 7' > ~ such that 7/ ¢ T';. In this case,
we define 1); = v; V [, dyp). In order to construct a neat SFA we can later split each 1); that
contains m disjunctions, into m transitions. Then, I'; C [[¢;] and the predicates are disjoint,

thus Generalizey, is an efficient generalizing function.
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Now, let (I'1, ..., I';,) be the concrete partition obtained from Concretizeyy, when applied
on the predicate partition (11, . .., ¥,). Assume further that the concrete partition (I}, ..., T )
satisfies that I'; C I, C [¢/;] for 1 < ¢ < m. In particular, min(I"}) = min(T;), since I'; con-
tains the minimal elements in [t/;], and T'; C T; C [¢;]. Therefore, applying Generalizey,

will result in the same interval, satisfying the criterion of Theorem 5.7. |

Example 5.4.8. Let I';y = {0, 100,400,500} and I'y = {150,200} over the algebra 4y with
domain N U {oo}. Then, Generalizey, sets I' = {0,100, 150,200,400, 500}, and finds the
minimal element O € I';. It then looks for the minimal element v € T" such that v ¢ T';, and
finds 150 € I'y. Therefore ¢y = [0,150) and I" is updated to be I" = {150, 200, 400, 500}.
Next, it finds the minimal element 150 € I', and the minimal element that is not in I's is 400.
Then, v is set to be ¥ = [150,400) and I" = {400,500}. Now, ¢; = [0, 150) V [400, c0)

since 400 € I'; and there is no greater element that is not in I';.

Procedure Decontaminatey, : Input: set S over alphabet
Output: set S’ over alphabet Y/

1. Let A, = {€}. The set A,, stands for the lex-access words discovered so far.
2. Set X' = {djf} and set maz = d;n.”

3. Traverse A, according to the lexicographic order, and for every u € A,,, do:

(a) Add o to X iff 0 > maz and u - 0 #s w - max and o is the minimal in ¥
satisfying this property.
(b) If o was added to ¥/, add uo to A,, iff there is no v’ € A,, such that us ~g u’.?

(c) Set max = o and repeat item 3 until no such ¢ is found.
4. Set max = d;,y and repeat item 3 until ¥’ is remained unchanged.

5. Return &’ = SN ™.

“Recall that for a monotonic algebra, as defined in Section 5.2.1, there exists an element d;,s such that for
every d € D it holds that d;y < d.

’Note that we add ¢ to X’ in item 3a even if there is a «’ such that uo ~s v’, as long as v’ is not of the
form of u - max. Intuitively, this is since we are looking for letters labeling outgoing transitions from the state
that is represented by wu.

Algorithm 5.3: Decontaminateyy,,

To prove that the sufficient condition holds, we build upon some properties of procedures
CharDFA and InferDFA as stated in Theorem 5.6 in Section 5.4.1.

Proposition 5.4.9. The sufficient condition of Theorem 5.10 holds for the class M g, of SFAs

over a monotonic Boolean algebra.

Proof. In Alg. 5.3 we provide pseudo-code for the procedure Decontaminatey, (S).
Given the functions Concretizey, and Generalizey, defined in proof of Proposition 5.4.7,
assume that S O Sy is such that Sy is the characteristic sample of a DFA D4 over alphabet
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> cone, constructed from some SFA M as described in Alg. 5.1. In Lemma 5.4.10 we show that
under these assumptions it holds that ¥/ = Yconc. Then, for the set S’ returned in item 5 of
Alg. 5.3, it holds that S’ = S N XZ,c. Since S O Spq and X3, 2 S, it holds that S’ O Sy
and is defined over the alphabet >¢onc. Therefore, DecontaminateMﬂm is a decontaminating
function. In addition, Decontaminatey, runs in time polynomial in the size of S, thus the
conditions of Theorem 5.10 are met. |

Lemma 5.4.10. Assume that the input to Decontaminatey; a, 18 S D Sp as described in the
proof of Proposition 5.4.9. Then, for ¥ constructed in function Decontaminatey, it holds
that Y= ZCOFIC-

Proof. Given the functions Concretizeyr, and Generalizeyy, defined in proof of Proposi-
tion 5.4.7, we prove that if S O Sjq such that Sy is the characteristic sample of a DFA
D over alphabet Yeone, constructed from some SFA M as described in Alg. 5.1, then for
DecontaminateMﬂm given in Proposition 5.4.9 we have ¥/ = Y¢onc. To this end, we show that
the set A, is exactly the set of all lex-access words of states in D 4, and that ¥/ = Yconc.
First, we show that every u € A,, is a lex-access word and that ¥/ C Y¢onc. We inductively
prove that every word that is added to A,, is a lex-access word; and that every letter that was
added to X' in some iteration of the procedure Decontaminatey,, is in Xconc.

For the Base case, we consider A,, = {€} and X' = {d,,s}. From item 1 of Theorem 5.6, we
can assume access words are minimal according to the lexicographic order. Thus, € € A,
is indeed a lex-access word (of the state gg). For d,r € Y, it holds that Y¢one contains the
minimal element of ID since it contains all concretizations of intervals, the SFA is complete and
Concretizey s, Teturns the minimal element of each interval. Therefore dinf € Lconc-

For the induction step, assume that A, contains only lex-access words and that the current X’
is a subset of Yone. Then, when considering u € A,, in item 3, it holds that u is a lex-access
word of some state ¢g. Then, o is added to X’ only if uo s ud;,s. Since S agrees with M, it
holds that (g0, uo) # dr1(qo, udins) and o is a minimal element with that property. Then, o
must be a minimal element of an interval labeling an outgoing transition from g, therefore is in
Yconc- Inductively this holds for all elements added to X’ in the current iteration. This proves
that ¥’ C Yconc. Assume now that A,, contains only lex-access words and let uo be a word
added to A,, in item 3. Then, for all v’ € A,, it holds that uc s u'.

Claim. In this setting, uo s v’ implies uo %s,, v’

Proof. Since we assume all words already in A,, are lex-access words, then in particular
u is a lex-access word. In addition, o € ¥/ and thus o € Ygone. Since uo %s v’ and
since S agrees with M, it holds that d ¢ (qo, uc) # da(qo, v'). Now, uo and v’ are both
in X¢onc since from item 3 we have A,, C ¥, and thus 6p, , (qo, uo) # 0p,,(qo,v), and
from item 3 of Theorem 5.6 it holds that uo 7s,, u'. This proofs the claim.

Then, for all v’ € A,, we have 0p,,(qo, uc) # ép,,(qo, w’). Then, since we traverse words and
letters in lexicographic order, uo is a lex-access word for the state dp, ,(go, uo). We have shown

that every u € A,, is a lex-access word and that ¥’ C Y¢onc. This concludes the first direction.
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Figure 5.2: The DFA D, constructed in Alg. 5.1

We turn to prove the second direction, that is, we show that every lex-access word is in A,, and
that X¢onc C X.

We start by proving that every lex-access word is in A,,. First note that for ¢, it holds that e € A,,.
Next, let uo be a lex-access word. For all lex-access words u’ found in previous iterations it
holds that uo s,, v from item 2 of Theorem 5.6, and thus uo s u' since Spq € S. Then,
uo satisfies the condition of item 3 of procedure DecontaminateMﬂm, and is added to A,,.

To prove Yconc € Y, we inductively prove that every letter in Ygonc is add to X' in some
iteration of Decontaminatqum. For the base case, let 0 € ¥onc be the letter that was added
in item 3 with the access word u = €. Note that for every SFA, € is the lex-access word for the
state qg. From the construction of ConcretizeMﬂm it holds that o is the left endpoint of some
interval that is an outgoing transition from ¢g. Then, indeed o is found in the first iteration of
item 3. Inductively, let o label an outgoing transition of ¢ for some ¢ € @), and let u, be the
lex-access word of ¢. Since A,, contains all lex-access words, it holds that u, € A,,, and then
the outgoing transitions of ¢ will be considered in some following iteration. Thus, all minimal
letters indicating new intervals are added to X’ and we have that Ycone € X/. We conclude
that ' = Y¢onc. |

Example 5.4.11. Continuing Example 5.4.5, let M be the SFA from Figure 5.1 and consider the
class M4, of SFAs over the interval algebra. Algorithm CharSFA computes the set ¥¢onc using
the function Concre’tizeMﬂN given in Example 5.4.5. That is, for the predicates labeling outgo-
ing transitions from ¢p we have Concretize 5, (([0, 100), [100, 00))) = ({0}, {100}); and for
outgoing transitions from ¢y, it holds that Concretize 4, (([0, 200), [200, c0))) = ({0}, {200}).
Then, Y¢onc = {0, 100,200}, and CharSFA constructs the DFA over X¢onc, Where concrete
transitions agree with symbolic transitions of the original SFA. See Figure 5.2 for the resulting
DFA Dj4. Note the transition gq 200, qo in D 4. Even-though 200 is not the end-point of
any interval labeling the outgoing transitions of ¢y in the SFA M, this is a transition in the
DFA Dy since 200 € X¢onc and since Dy, is complete. In addition, 200 is in the interval
[100, oo) labeling the transition go M qo in M, and therefore 200 labels the corresponding
transition in D . After constructing D a4, algorithm CharSFA applies CharDFA on D, and
returns the sample set

Sm = {(¢, L), (0, T), (100, L), (200, L),(0-0,T),(0-100, T), (0200, L)}
Now, assume algorithm InferSFA is given the set
S ={(e, L),(0, T), (100, L), (150, L), (200, L),(0-0,T),(0-100, T), (0 - 200, L)}
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that subsumes Sy, over the alphabet > = {0, 100, 150, 200}. The algorithm InferSFA applies
DecontaminateMﬂN that generates the set S’ over Ycone, where S’ is calculated as follows.
It first finds the set X¢onc Of all elements that are a minimal left point of some interval, and
then chooses from S the words over Yeonc. First, note that 100 ~g 150, 100 ~g 200 and
150 ~g 200, while 0 ~4s 100, 150, 200. Since 0 is the minimal element it has to be in Y¢ong;
and since 100 is the minimal element that is not equivalent to O it has to define a new interval
and thus is in Y¢onc as well. Then, 0 and 100 define the left end-points of all intervals labeling
the outgoing transitions of gg. Next, we consider the suffixes of 0, which is a lex-access
word to the state ¢;. These are 0 - 0 and 0 - 100 that are equivalent, and 0 - 200 that is not
equivalent to the former. Since 0 - 100 is equivalent to O - 0, it holds that 100 does not define
a new interval now, but 200 does as it is the minimal (and only) suffix that is not equivalent
to 0 when considering suffixes of 0. Then, we deduce that ¥conc = {0, 100,200} and thus
S ={{e, 1),(0,T), (100, L), (200, L),(0-0,T),(0-100, T),(0-200, L)}

Algorithm InferSFA now applies InferDFA on the set S’ and the resulting DFA would be the
DFA D of Figure 5.2. Then it applies Generalizey,,, described in Example 5.4.5 and the
result will be the original SFA of Figure 5.1. That is, for outgoing transitions of ¢ it applies
Generalize, (({0},{100,200})) = ([0, 100), [100, c0)) and for outgoing transitions of ¢ it
applies Generalizey, (({0,100}, {200})) = ([0, 200), [200, oc)) and uses these predicates to

label the corresponding transitions in the SFA.

Unfortunately, the result of Theorem 5.11 does not extend to the non-monotonic case, as stated
in Proposition 5.4.12 regarding SFAs over the propositional algebra. Note that the number
of different predicates over B* is unbounded. Since the concrete alphabet size is 2¥, we can
learn any SFA of size Q(2¥) using a characteristic sample for the concrete DFA. Therefore,
we consider SFAs which are useful in the sense that they are significantly smaller than the
corresponding DFA. In particular, the out-degree of the SFA is O(k) rather than O(2%) as
of the DFA.

Proposition 5.4.12. The class M pj, of SFAs over the propositional algebra on B* with out-
degree that is bounded by O(k) is not efficiently identifiable.

Proof. Assume by way of contradiction that there exist functions Concretizey,, and
Generalizey,,, satisfying the criteria from Theorem 5.7. Let ¥ be the set of semantic functions,
over the set of k propositions, i.e., functions that differ in the satisfying assignments (rather
than the formula representing them). Then |¥| = 22" Let T be the set of concrete subsets of
B¥. Then |T| = 22° as well. Recall that Concretizey,, should produce a polynomial sized
partition. Let Y, be the set of polynomially-sized concrete subsets of B*. Hence, even if
we consider singleton concrete/predicate partitions, we obtain Concretizey,, : ¥ — Y,o
and Generalizew,, : Ypoy — ¥. Since | Yy, < |T| = [¥], Concretizey,, cannot be
one-to-one and Generalizey,, cannot be onto. Thus, for some 1) € ¥ and some ¢ for which
[] # [¥]. we have that Generalizey,,, (Concretizen,,, (1)) = ¢ , violating the criterion of
Theorem 5.7. |
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This argument holds also if we restrict attention to arbitrary DNF (or arbitrary CNF) functions.
We remark that there is no exponential gap between the number of all subsets of 2 and the
number of all polynomial-size subsets of 2%, which may be viewed as an intuition of why the
problem of learning a general Boolean function in the PAC (probably approximately correct)
setting [Val84, KLV94] is hard, and still extensively studied.

5.5 Concluding Remarks

We provide a necessary condition and a sufficient condition for identification of SFAs in the
limit using polynomial time and data, as well as a necessary condition for efficient learning of
SFAs using MQ and EQ. These imply that SFAs over the propositional algebra are not efficiently
identifiable in the limit, and cannot be efficiently learned in the query learning paradigm, either.
We show that the sufficient condition for identification of SFAs in the limit using polynomial
time and data applies to SFAs over monotonic algebras. We observe that this class of SFAs is
also efficiently learnable using MQ and EQ.

We hope that these sufficient or necessary conditions will help to obtain more positive and
negative results for learning of SFAs, and spark an interest in investigating characteristic samples

in other automata models used in verification.
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Chapter 6
Conclusions and Discussion

Program verification aims to formally prove that a system is correct, with respect to a given
specification. In program verification we aim to prove that the system is correct for all inputs
and for all possible behaviors — with respect to the specification — instead of looking for errors
using testing. In this PhD thesis, we address the verification of systems over large and infinite
data domains.

Many problems for systems over infinite data domains do not scale well, have high complexity,
and are even undecidable. We approach the verification of systems over infinite data domains
by suggesting different ways to model them in a finite manner, depending on the type of the
system. Such modeling then allows us to find scalable algorithms for verification of such systems
(Chapter 4); characterize systems for which there exist efficient algorithms, and in particular,
systems that can be learned in polynomial time (Chapter 5); and find specifications for which
the model-checking problem is decidable, or suggest bounded model checking algorithms for
the undecidable fragments (Chapter 3).

In Chapter 3 we suggest a new model of automata, namely alternating variable Biichi automata
(AVBWs) that are able to express temporal specifications over infinite data domains, and in
particular are able to express the whole fragment of 3*-VLTL. The existential fragment of VLTL
is most suitable for error detection, since it allows us to express the existence of erroneous
computations. However, since the model-checking problem for F*-VLTL specifications is
undecidable [SW], we first characterize decidable fragments of the logic. For these fragments,
we suggest a model checking algorithm, based on known methods taken from the world of finite
state systems. In particular, we suggest an algorithm for translating AVBWs to non-deterministic
variable Buchi automata (NVBWs). Over finite domains, these two automata models have the
same expressive power. However, we prove that over infinite data domains, AVBWs are strictly
more expressive than NVBWs. Therefore, our translation algorithm is not complete. We use this
translation in order to suggest a semi-algorithm for model-checking of 3*-VLTL specifications.
When running without a bound, this semi-algorithm may not halt. Given a bound k set by the
user, we can use our algorithm to guarantee that systems of size bounded by k£ do not violate the
given specification. This method is also known as bounded model checking, and is widely used
in program verification, see [BCCZ99, CBRZO1].
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In Chapter 4 we introduce communicating systems, which are C-like programs that are able
to communicate data values between one another. Communicating systems naturally model
communication and security protocols. Due to the communication between different components,
the size of the composed system can grow exponentially in the number of components, and the
verification process does not scale well. Thus, in Chapter 4 we suggest a modular verification
algorithm that takes advantage of the decomposition of the systems into smaller components.
We make use of a known algorithm for compositional verification of systems over finite data
domains [CGP0O3b]. However, while in [CGPO03b] the authors rely on the fact that the system
is defined over a finite data domain in order to prove the correctness of their algorithm, this is
not the case in our setting. We thus first adjust the algorithm to our setting, allowing to find
small proofs of correctness for the setting of communicating programs, that are able to model
more real-life systems. In addition, in cases where the system is not correct, we suggest a novel
repair algorithm, that iteratively eliminates errors and proceeds to verify the repaired system.
Our algorithm is incremental and uses the information it has collected in previous verification
iterations in order to verify repaired components.

Our work regarding compositional verification and repair makes an important use of the L* algo-
rithm for learning regular languages [Ang87b] in order to learn small proofs of correctness. In
more detail, in Chapter 4 we follow the techniques of [CGP03b], by looking for an abstraction of
one of the components, such that together with the second component, guarantees the correctness
of the system. This way, we never need to compute the full composition of the system, but only
the composition of the abstraction, which is usually much smaller, allowing the verification to
scale. In order to find such abstractions we make use of L*, exploiting the finite representation
of the systems as finite automata.

In Chapter 5 we explore foundational aspects of the learnability of automata over infinite data
domains, under different paradigms of automata learning. We analyse the complexity of the
L* algorithm for automata over infinite data domains, presenting automata classes and domains
for which learning is efficient. In addition, we consider a different learning paradigm, from a
more information theoretic perspective, namely learnability in the limit [dIH97b, Gol78], which
tries to learn a finite model for a system using characteristic sample sets. These are sets of
polynomial size of allowed and erroneous behaviors of the system. This is the first time that
learning in this paradigm is studied in the context of systems over infinite data. We thus present
a novel learning algorithm for systems over infinite data in the paradigm of learnability in the

limit, which allows learning models for such systems using only a small amount of data.

6.1 Future Work

6.1.1 Automata Learning

Continuing our work of Chapter 5, we note that learnability of n-dimensional box algebra
was studied extensively in different contexts [GGM94, BGGM98, BK98, BK00]. As we show

in Chapter 5.3, even the class of purely neat SFAs over the n-dimensional box algebra is not
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efficiently learnable using MQs and EQs. However, we are yet to determine what is the case for
the identification in the limit paradigm. In preliminary results we were able to establish that the
class of purely neat SFA satisfies the necessary condition of Chapter 5.4.2. However we were
not able to determine whether the sufficient condition holds as well, for purely neat SFAs over
the box algebra.

We hope to be able to use these conditions in order to come up with more complexity results for
different classes of symbolic automata and Boolean algebras.

In addition, we hope to use the results regarding learnability of symbolic automata in program
verification. In Chapter 4 we use L* algorithm to learn assumptions for compositional veri-
fication. In the case of SFAs, the MAT™ algorithm is polynomial in the size of the SFA, and
terminates given that the underlying algebra is learnable. For monotonic algebras, for example
the interval algebra, both MAT™ and our proposed algorithm for identification in the limit are
polynomial in the size of the learned SFA. We hope to find more applications for the learnability

of symbolic automata in different aspects of program verification.

6.1.2 Program Synthesis

After studying different aspects of program verification for systems over infinite data, a natural
next step is to investigate program synthesis. The problem of program synthesis is to construct a
program that is correct-by-construction. That is, given a specification, to automatically construct
a correct program with respect to this specification. Program synthesis is extensively studied
in the verification community, examples are [PR89, Kup12, FS13]. We consider synthesis of
systems over infinite data domains, from different types of temporal logic specifications, as we
describe below. The systems we consider are similar to the ones studied in this thesis, allowing

us to make use of methods from this thesis in order to synthesize such systems.

Synthesis of Universal Properties In the context of program synthesis we consider universal
properties, such as: “all processes are eventually logged-in”, or “every process that is logged-in
is eventually logged-out”. Universal properties are natural as specifications for the synthesis
problem, as we usually aim to construct programs that are correct for all input values. We
suggest to study the synthesis problem of universal VLTL properties. Our preliminary study
shows that this problem is too, in general, undecidable. Moreover, we prove that current
automata models that are used to model LTL and 3*-VLTL, are unable to express universal
properties. Therefore, identification of fragments that are expressible using existing models
(using similar techniques as we used for VLTL presented in Chapter 3) is a natural first step for
understanding these specifications. In the long term, we aim to explore the notion of vacuous
synthesis of universal specifications. For example, consider the specification “every process
that is logged-in is eventually logged-out”. A program with no processes at all, or no logged-in
processes, satisfies this specification. We call such behaviors vacuous satisfaction. We wish to
construct programs that require at least one process to be logged-in, or even require infinitely
many processes to be able to log-in to the system. We aim to look for ways to construct programs

for which we can prove this kind of infinite non-vacuous satisfaction.
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Synthesis of First Order Specifications Continuing with LTL, we consider LTL specification
with first order constraints (FO-LTL). Such specification can reason about the change in program
variables over time. For example, we can say “for every point in the computation in which
the variable x is equal 0, there is a later point in the computation in which = > 0”. This is
an extension of the specifications discussed in Chapter 4 to the setting of ongoing systems,
whose computations are modeled as infinite words. In LTL synthesis [PR89], the propositions
that appear in the formula are used as the alphabet of the synthesized program. The program
is then able to trigger events that are described using the propositions from the specification.
However, in the case of FO-LTL, we wish not only to trigger events, but to construct programs
that can manipulate the variable values. The manipulations applied on the values of the program
variables do not necessarily appear in the specification. In fact, they are usually not part of the
specification as the specification specifies the desired behavior but not how to achieve it. For
example, the specification might contain the requirement = > 0, but usually it does not include
assignments such as x := = + 1. In order to infer these variable manipulations, we need not
only to learn the structure of the program, but also to deduce the program statements.

In order to construct the desired program, we aim to use automata learning methods, derived
from the L* algorithm. The output is a finite automaton, that can be viewed as the control-flow
graph of the program. While in Chapter 4 that discusses compositional verification, the program
statements for the learned abstraction were taken from the components of the system, and
thus known in advance, in this proposed line of research, one of the greatest challenges is to
automatically deduce program statements from the specification. In Chapter 4 we were able to
deduce statements in order to repair the system, and we hope that we will be able to use similar

methods in order to learn program statements in the context of synthesis.
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