
Verifying Parameterized Networks using
Abstraction and Regular Languages �

E� M� Clarke� and O� Grumberg� and S� Jha�

� Carnegie Mellon University� Pittsburgh� PA �����
� Computer Science Dept� The Technion� Haifa ������ Israel

Abstract� This paper describes a technique based on network grammars and abstraction to
verify families of state�transition systems	 The family of state�transition systems is represented
by a context�free network grammar	 Using the structure of the network grammar our tech�
nique constructs an invariant which simulates all the state�transition systems in the family	 A
novel idea used in this paper is to use regular languages to express state properties	 We have
implemented our techniques and veri
ed two non�trivial examples	

� Introduction

Automatic veri�cation of state�transition systems using temporal logic model checking has been
investigated by numerous authors ��� �� 	� 
�� 
�� The basic model checking problem is easy to state

Given a state�transition system P and a temporal formula f � determine whether P satis�es f �

Current model checkers can only verify a single state�transition system at a time� The ability to reason
automatically about entire families of similar state�transition systems is an important research goal�
Such families arise frequently in the design of reactive systems in both hardware and software� The
in�nite family of token rings is a simple example� More complicated examples are trees of processes
consisting of one root� several internal and leaf nodes� and hierarchical buses with di�erent numbers
of processors and caches�

The veri�cation problem for a family of similar state�transition systems can formulated as follows�

Given a family F � fPig
�

i�� of systems Pi and a temporal formula f � verify that each state�
transition system in the family F satis�es f �

In general the problem is undecidable �
� However� for speci�c families the problem may be solvable�
This possibility has been investigated by ��� They consider the problem of verifying a family of token
rings� In order to verify the entire family� they establish a bisimulation relation between a ��process
token ring and an n�process token ring for any n � �� It follows that the ��process token ring and the
n�process token ring satisfy exactly the same temporal formulas� The drawback of their technique is
that the bisimulation relation has to be constructed manually�

Induction at the process level has also been used to solve problems of this nature by two research
groups ��� 
�� They prove that for rings composed of certain kinds of processes there exists a k such
that the correctness of the ring with k processes implies the correctness of rings of arbitrary size�

� This research was sponsored in part by the Avionics Laboratory� Wright Research and Development Center�
Aeronautical Systems Division �AFSC�� U	S	 Air Force� Wright�Patterson AFB� Ohio ������� under
Contract F���������C����� ARPA Order No	 ���� and in part by the National Science Foundation under
Grant no	 CCR�������� and in part by the Semiconductor Research Corporation under Contract ���DJ���	
The second author was partially supported by grant no	 ������� from The United States�Israel Binational
Science Foundation �BSF�� Jerusalem� Israel	
The views and conclusions contained in this document are those of the authors and should not be

interpreted as representing the o�cial policies� either expressed or implied� of the U	S	 government	



In ��� an alternative method for checking properties of parametrized systems is proposed� In this
framework there are two types of processes� Gs �slave processes� and Gc �control processes�� There
can be many slave processes with type Gs� but only one control process with type Gc� The slave
processes Gs can only communicate with the control process Gc�

Our technique is based on �nding network invariants �

� �
� Given an in�nite familyF � fPig�i��
this technique involves constructing an invariant I such that Pi � I for all i� The preorder � preserves
the property f we are interested in� i�e� if I satis�es f � then Pi satis�es f � Once the invariant I is
found� traditional model checking techniques can be used to check that I satis�es f � The original
technique in �

� �
 can only handle networks with one repetitive component� Also� the invariant I
has to be explicitly provided by the user�

In �
�� 
� context�free network grammars are used to generate in�nite families of processes with
multiple repetitive components� Using the structure of the grammar they generate an invariant I
and then check that I is equivalent to every process in the language of the grammar� If the method
succeeds� then the property can be checked on the invariant I� The requirement for equivalence
between all systems in F is too strong in practice and severely limits the usefulness of the method�
Our goal is to replace equivalence with a suitable preorder while still using network grammars�

We �rst address the question of how to specify a property of a global state of a system consisting
of many components� Such a state is a n�tuple� �s�� � � � � sn� for some n� Typical properties we may
want to describe are �some component is in a state si�� �at least �at most� k components are in state
si�� �if some component is in state si then some other component is in state sj�� These properties are
conveniently expressed in terms of regular languages� Instead of n�tuple �s�� � � � � sn� we represent a
global state by the word s� � � � � � sn that can either belong to a given regular language L� thus having
the property L� or not belong to L� thus not having the property� As an example� consider a mutual
exclusion algorithm for processes on a ring� Let nc be the state of a process outside of the critical
section and let cs be the state inside the critical section� The regular language nc� cs nc� speci�es
the global states of rings with any number of processes in which exactly one process is in its critical
section�

After deciding the types of state properties we are interested in� we can partition the set of global
states into equivalence classes according to the properties they possess� Using these classes as abstract
states and de�ning an abstract transition relation appropriately� we get an abstract state�transition

system that is greater in the simulation preorder � than any system in the family� Thus given a
�CTL��� formula� de�ned over this set of state properties� if it is true of the abstract system� then
it is also true of the systems in the family�

Following �
� and �
� we restrict our attention to families of systems derived by network gram�

mars� The advantage of such a grammar is that it is a �nite �and usually small� representation of
an in�nite family of �nite�state systems �referred to as the language of the grammar�� While �
�� 
�
use the grammar in order to �nd a representative that is equivalent to any system derived by the
grammar� we �nd a representative that is greater in the simulation preorder than all of the systems
that can be derived using the grammar�

In order to simplify the presentation we �rst consider the case of an unspeci�ed composition
operator� The only required property of this operator is that it must be monotonic with respect
to the simulation preorder� At a later stage we apply these ideas to synchronous models �Moore
machines� that are particularly suitable for modeling hardware designs� We use a simple mutual
exclusion algorithm as the running example to demonstrate our ideas� Two realistic examples are
given in a separate section�

Our paper is organized as follows� In Section � we de�ne the basic notions� including network
grammars and regular languages used as state properties� In Section � we de�ne abstract systems�
Section � presents our veri�cation method� In Section 	 we describe a synchronous model of com�
putation and show that it is suitable for our technique� In Section � we apply our method to two
non�trivial examples� Section � concludes with some directions for future research�



� De�nitions and Framework

De�nition� �LTS�� A Labeled Transition System or an LTS is a structure M � �S�R�ACT� S��
where S is the set of states� S� � S is the set of initial states� ACT is the set of actions� and
R � S � ACT � S is the total transition relation� such that for every s � S there is some action a

and some state s� for which �s� a� s�� � R� We use s
a
	 s� to denote that �s� a� s�� � R�

Let LACT be the class of LTSs whose set of actions is a subset of ACT � Let L�S�ACT � be the class
of LTSs whose state set is a subset of S and the action set is the subset of ACT �

De�nition� �Composition�� A function k � LACT�LACT 
	 LACT is called a composition function

i� given two LTSs M� � �S��R�� ACT� S
�
�� and M� � �S�� R��ACT�S

�
� � in the class LACT � M�kM�

has the form �S� � S�� R
�� ACT� S�� � S���� Notice that we write the composition function in in�x

notation�

Our veri�cation method handles a set of LTSs referred to as a network� Intuitively� a network consists
of LTSs is obtained by composing any number of LTSs from L�S�ACT �� Thus� each LTS in a network
is de�ned over the set of actions ACT � and over a set of states in Si� for some i�

De�nition� �Network�� Given a state set S and a set of actionsACT � any subset of
S
�

i�� L�Si�ACT �

is called a network on the tuple �S�ACT ��

��� Network grammars

Following �
�� �
�� we use context�free network grammars as a formalism to describe networks� The
set of all LTSs derived by a network grammar �as �words� in its language� constitutes a network�
Let S be a state set and ACT be a set of actions� Then� G � hT�N�P�Si is a grammar where�

	 T is a set of terminals� each of which is a LTS in L�S�ACT �� These LTSs are sometimes referred
to as basic processes�

	 N is a set of non�terminals� Each non�terminal de�nes a network�
	 P is a set of production rules of the form

A	 BkiC

where A � N � and B�C � T � N � and ki is a composition function� Notice that each rule may
have a di�erent composition function�

	 S � N is the start symbol that represents the network generated by the grammar�

Example �� We clarify the de�nitions on a network consisting of LTSs that perform a simple mutual
exclusion using a token ring algorithm� The production rules of a grammar that produces rings with
one process Q and at least two processes P are given below� P and Q are terminals� and A and S
are nonterminals where S is the start symbol�

S 	 QkA

A 	 PkA

A 	 PkP

P and Q are LTSs de�ned over the set of states fnc� csg and the set of actions
ACT � f�� get�token�send�tokeng� They are identical� except for their initial state� which is cs
for Q and nc for P � Their transition relation is shown in Figure 
�

For this example we assume a synchronous model of computation in which each process takes a
step at any moment� We will not give a formal de�nition of the model here� In Section 	 we suggest
a suitable de�nition for a synchronous model� Informally� a process can always perform a � action�



However� it can perform a get�token action if and only if the process to its left is ready to perform
a send�token action� We refer to the rightmost process P as being to the left of process Q� We can
apply the following derivation S � QkA � QkPkP to obtain the LTS QkPkP � The reachable
states with their transitions are shown in Figure �� Here� as well� we leave the precise de�nition of
the composition operator unspeci�ed�

get-token

send-token
nc cs

τ τ

Fig� �� Process Q� if S� � fcsg� process P if S� � fncg

τ τ τ

τ τ

τ

cs,nc,nc nc,cs,nc nc,nc,cs

Fig� �� Reachable states in LTS QkP kP

��� Speci�cation language

Let S be a set of states� From now on we assume that we have a network de�ned by a grammar G
on the tuple �S�ACT �� The automaton de�ned below has S as its alphabet� Thus� it accepts words
which are sequences of state names�

De�nition
 Speci�cation� D � �Q� q�� ��F � is a deterministic automaton over S� where


� Q is the set of states�
�� q� � Q is the initial state�
�� � � Q� S �Q is the transition relation�
�� F � Q is the set of accepting states�

L�D� � S� is the set of words accepted by D�

Our goal is to specify a network of LTSs composed of any number of components �i�e�� of basic
processes�� We will use �nite automata over S in order to specify atomic state properties� Since a
state of a LTS is a tuple from Si� for some i� we can view such a state as a word in S�� Let D be
an automaton over S� We say that s � S� satis�es D� denoted s j� D� i� s � L�D�� Our speci�cation
language is a universal branching temporal logic �e�g�� �CTL� �CTL� ��� with �nite automata over
S as the atomic formulas� The relation j� for other formulas of the logic is de�ned in the standard
way �with respect to the temporal logic under consideration� and is omitted here�

Example �� Consider again the network of Example 
� Let D be the automaton of Figure �� de�ned
over S � fcs�ncg� with L�D� � fncg�csfncg�� The formula AGD speci�es mutual exclusion� i�e� at
any moment there is exactly one process in the critical section� Let D� be an automaton that accepts
the language csfncg�� then the formula AGAFD� speci�es non�starvation for process Q� Note that�
for our simple example non�starvation is guaranteed only if some kind of fairness is assumed�



cs cs

nc nc nc, cs

q0 q1 q2

Fig� �� Automaton D with L�D� � fncg�csfncg�

� Abstract LTSs

In the following sections we de�ne abstract LTSs and abstract composition in order to reduce the
state space required for the veri�cation of networks� The abstraction should preserve the logic under
consideration� In particular� since we use �CTL�� there must be a simulation preorder � such that
the given LTS is smaller by � than the abstract LTS� We also require that composing two abstract
states will result in an abstraction of their composition� This will allow us to replace the abstraction of
a composed LTS by the composition of the abstractions of its components� For the sake of simplicity�
we assume that the speci�cation language contains a single atomic formula D� In Appendix A we
extend the framework to a set of atomic formulas Di�

��� State equivalence

We start by de�ning an equivalence relation over the state set of an LTS� The equivalence classes will
then be used as the abstract states of the abstract LTS� Given a LTS M � we de�ne an equivalence
relation on the states of M � such that if two states are equivalent then they both either satisfy or
falsify the atomic formula� This means that the two states are either both accepted or both rejected
by the automaton D� We also require that our equivalence relation is preserved under composition�
This means that if s� is equivalent to s�� and s� is equivalent to s

�

� then �s�� s�� is equivalent to �s��� s
�

���
We will use h�M � to denote the abstract LTS of M � The straightforward de�nition that de�nes

s and s� to be equivalent i� they belong to the language L�D� has the �rst property� but does not
have the second one� To see this� consider the following example�

Example �� Consider LTSs de�ned by the grammar of Example 
� Let D be the automaton in Fig�
ure �� i�e�� L�D� is the set of states that have exactly one component in the critical section� Let
s�� s

�

�� s�� s
�

� be states such that s�� s
�

� � L�D�� and s�� s
�

� � L�D�� Further assume that� the number of
components in the critical section are � in s� and � in s��� Clearly� �s�� s�� � L�D� but �s

�

�� s
�

�� � L�D��
Thus� the equivalence is not preserved under composition�

We therefore need a more re�ned equivalence relation� Our notion of equivalence is based on the idea
that a word w � S� can be viewed as a function on the set of states of an automaton� We de�ne two
states to be equivalent if and only if they induce the same function on the automaton D�

Formally� given an automaton D � �Q� q�� ��F � and a word w � S�� fw � Q 
	 Q� the function

induced by w on Q is de�ned by
fw�q� � q� i� q

w
�	 q��

Note that w � L�D� if and only if fw�q�� � F � i�e�� w takes the initial state to a �nal state�
Let D � �Q�q�� ��F � be a deterministic automaton� Let fw be the function induced by a word w

on Q� Then� two states s� s� in S� are equivalent� denoted s � s�� i� fs � fs� � It is easy to see that � is
an equivalence relation� The function fs corresponding to the state s is called the abstraction of s and
is denoted by h�s�� Let h�s� � f� and h�s�� � f ��� Then� the abstraction of �s� s�� is h��s� s��� � f� �f

�

�

where f� � f �� denotes composition of functions�
Note that s � s� implies that s � L�D� � s� � L�D�� Thus� we have s j� D i� s� j� D� We also

have�



Lemma�� If h�s�� � h�s�� and h�s�
�
� � h�s�

�
� then h��s�� s���� � h��s�� s�����

In order to interpret speci�cations on the abstract LTSs� we extend j� to abstract states so that
h�s� j� D i� fs�q�� � F � This guarantees that s j� D i� h�s� j� D�

Example �� Consider again the automaton D of Figure 	 over S � fcs� ncg� D induces functions
fs 
 Q �� Q� for every s � S�� Actually� there are only three di�erent functions� each identifying an
equivalence class over S�� f� � f�q�� q��� �q�� q��� �q�� q��g represents all s � nc� �i�e�� fs � f� for all s �
nc��� f� � f�q�� q��� �q�� q��� �q�� q��g represents all s � nc� cs nc�� and f� � f�q�� q��� �q�� q��� �q�� q��g
represents all s � nc� cs nc� cs fcs� ncg��

��� Abstract Process and Abstract Composition

Let FD be the set of functions corresponding to the deterministic automaton D� Let Q be the set of
states in D� In the worst case jFDj � jQjjQj� but in practice the size is much smaller� Note that FD is
also the set of abstract states for s � S� with respect to D� Subsequently� we will apply abstraction
both to states s � S� and to abstract states fs for s � S�� To unify notation we �rst extend the
abstraction function h to FD by setting h�f � � f for f � FD� We further extend the abstraction
function h to �S �FD�� in the natural way� i�e� h��a�� a�� � � � � an�� � h�a�� � � � � �h�an�� From now on
we will consider LTSs in the network N on the tuple �S � FD�ACT ��

Next we de�ne abstract LTSs over abstract states� The abstract transition relation is de�ned as
usual for an abstraction that should be greater by the simulation preorder than the original structure
��� If there is a transition between one state and another in the original structure� then there is a
transition between the abstract state of the one to the abstract state of the other in the abstract
structure� Formally�

De�nition�� Given a LTS M � �S�R�ACT� S�� in the network N � the corresponding abstract LTS

is de�ned by h�M � � �Sh� Rh�ACT�Sh
�
�� where

� Sh � fh�s� j s � Sg is the set of abstract states�
� Sh

�
� fh�s� j s � S�g�

� The relation Rh is de�ned as follows� For any h�� h� � Sh� and a � ACT

�h�� a� h�� � Rh � 	s�� s��h� � h�s�� and h� � h�s��and �s�� a� s�� � R�

We say that M simulates M � ��� �denoted M 
 M �� if and only if there is a simulation preorder E
� S � S� that satis�es
 for every s� � S� there is s�

�
� S�

�
such that �s�� s��� � E� Moreover� for every

s� s�� if �s� s�� � E then

�� We have that h�s� � h�s���

�� For every s� such that s
a
� s� there is s�

�
such that s�

a
� s�

�
and �s�� s��� � E�

Lemma	� M 
 h�M �� i�e� M simulates h�M ��

Recall that the abstraction h guarantees that a state and its abstraction agree on the atomic
property corresponding to the automaton D� Based on that and on the previous lemma� the following
theorem is obtained� A proof of a similar result appears in ���

Theorem
� Let � be a formula in CTL� over an atomic formula D� Then� h�M � j� � implies
M j� ��

Let M and M � be two LTSs in the network N � and let k be a composition function� The abstract
composition function corresponding to k �denoted by kh� is de�ned as follows


MkhM
� � h�MkM ��

De�nition�� A composition k is called monotonic with respect to a simulation preorder 
 i� given
LTSs such that M� 
 M� and M �

�

 M �

�
it should be true that M�kM �

�

M�kM �

�
�



� Veri�cation method

Given a grammar G� we associate with each terminal and nonterminal A of the grammar an abstract
structure rep�A� that represents all LTSs derived from A by the grammar� Thus for every LTS �a�
derived from A we have that rep�A� � a� This implies that for every network t� derived from the
initial symbol S � rep�S� � t and therefore� any property of rep�S�� expressed in the logic CTL� is
also a property of t� We require that the composition functions used in the grammarG are monotonic
with respect to 
 when applied to ordinary LTSs and to abstract LTSs�
Our veri�cation method is as follows


� �� For every terminal A� choose rep�A� � h�A� ��
�� Given a rule A� BkC of the grammar� if rep�A� is not de�ned yet� and if rep�B� and rep�C�

are de�ned� then de�ne rep�A� � rep�B�khrep�C��
If every symbol of the grammar is reachable by some derivation from the initial symbol� and
if each symbol derives at least one LTS then the algorithm will terminate and rep�A� will be
de�ned for every symbol A� In particular� when rules of the form A � AkC are encountered�
rep�A� is already de�ned�

� For every rule A� BkC in G show
 rep�A� � rep�B�khrep�C��

Theorem�� Assume that the veri�cation method has been successfully applied to the grammar G�
Let A be a symbol in G and let a be a LTS derived from A in G� then rep�A� � a�

� Synchronous model of computation

In this section we develop a synchronous framework that will have the properties required by our
veri�cation method� We de�ne a synchronous model of computation and a family of composition
operators� We show that the composition operators are monotonic with respect to 
�

Our models are a form of LTSs� M � �S�R� I�O�S��� that represent Moore machines� They have
an explicit notion of inputs I and outputs O that must be disjoint� In addition� they have a special
internal action denoted by � �called silent action in the terminology of CCS ����� The set of actions is
ACT � f�g��I�O � where each non�internal action is a set of inputs and outputs� In standard Moore
machine the outputs are usually associated with the states while the inputs are associated with the
transitions� Here� we associate both inputs and outputs with the transitions while maintaining the
distinction between inputs and outputs� A transition s

�
� s� in a machine M can always be executed�

It has not e�ect on other machines� It is used to hide wires once they are connected� in order to
avoid the output signal from being connected to other input wires� Refer to the use of � in the hiding
function de�ned later�

The composition of two LTSs M and M � is de�ned to re�ect the synchronous behavior of our
model� It corresponds to standard composition of Moore machines� To understand how this compo�
sition works we can think of the inputs and outputs as �wires�� If M has an output and M � has an
input both named a� then in the composition the output wire a will be connected to the input a�
Since an input can accept signal only from one output� MkM � will not have a as input� On the other
hand� an output can be sent to several inputs� thus MkM � still has a as output� Consequently� the
set of outputs of MkM � is O �O� while the set of inputs is �I � I �� n �O �O���

A transition s
a
� t from s in a machine M with a � i � o such that i � I and o � O occurs only

if the environment supplies inputs i and the machine M produces the outputs o� Assume transitions

s
a
� t in M and s�

a�

� t� in M �� There will be a joint transition from �s� s�� to �t� t�� i� the outputs
provided by M agree with the inputs expected by M � and the outputs provided by M � agree with
the inputs expected by M �

� Actually� for a terminal A it is su�cient to choose any abstract LTS �de�ned over FD� that satis�es
rep�A� � A



Formally� let O �O� � �� The synchronous composition of M and M �� M �� � M k M � is de�ned
by


�� S�� � S � S��
�� S��

�
� S� � S�

�
�

	� I�� � �I � I �� n �O �O���
�� O�� � O �O���

�� �s� s��
a��

� �s�� s
�
�
� is a transition in R�� i� the following holds
 s

a
� s� is a transition in R and

s�
a�

� s�
�
is a transition in R� for some a� a� such that either a � � and a�� � a or a� � � and

a�� � a or a � �I � �O�� � a� � �I �O� and a�� � �a � a�� � �I�� �O����

Lemma��� The composition k is monotonic with respect to 
�

��� Network grammars for synchronous models

Only a few additional de�nitions are required in order to adapt our general de�nition of network gram�
mars to networks of synchronous models� Like before a network grammar is a tuple G � hT�N�P �Si�
but now� every terminal and nonterminal A in T �N is associated with a set of inputs IA and a set
of outputs OA�

In G we allow di�erent composition operators ki for the di�erent production rules� In order to
de�ne the family of operators to be used in this framework we need the following de�nitions�

A renaming function R is an injection� When applied to A� it maps inputs to inputs and outputs
to outputs such that R�IA� �R�OA� � �� Applying R to a LTS M results in an LTS M � � R�M �
with S � S�� S� � S�

�
� I � � R�I�� O� � R�O�� and �s� a� s�� � R i� �s�R�a�� s�� � R��

A hiding function Ract for act � I � O� is a function that maps each element in act to � � Let
M � � Ract�M � then S� � S� S�

�
� S�� I� � I n act� and O� � O n act� Moreover� s

a
� s� is a transition

in M i� a n act �� � and s
anact
� s� is a transition in M � or a n act � � and s

�
� s� is a transition in M ��

A typical composition operator in this family is associated with two renaming functions� Rleft�
Rright and a hiding function Ract� in the following way�

MkiM
� � Ract�Rleft�M �kRright�M

����

where k is the synchronous composition de�ned before�
To be used in our framework� we need to show that every such operator is monotonic� i�e�� ifM� 


M� andM
�
�

M �

�
thenM�kiM �

�

M�kiM �

�
� The latter means thatRact�Rleft�M��kRright�M

�
�
�� 


Ract�Rleft�M��kRright�M
�
�
���

The following lemma� together with monotonicity of the synchronous composition k imply the
required result�

Lemma��� Let M � M � be synchronous LTSs and let R be a renaming function and let Ract be a
hiding function� If M 
M �� then R�M � 
 R�M �� and Ract�M � 
 Ract�M ���

Corollary��� The composition operators ki� de�ned as above are monotonic�

Example �� We return to Example � and reformulate it within the synchronous framework� Doing so
we can describe more precisely the processes and the network grammar that constructs rings with any
number of processes� The processes P and Q will be identical to those described in Figure � except
that now we also specify for both processes I � f get�tokeng and O � fsend�tokeng�

The derivation rules in the grammar apply two di�erent composition operators


� Note that� ACT �� � �I
��
�O��

is not identical to ACT and ACT �	 This is a technical issue that can be
resolved by de�ning some superset of actions from which each LTS takes its actions	



S � Qk�A
A � Pk�A
A � Pk�P

k� is de�ned as follows �see also Figure � in appendix B�


� R�

left maps send�token to some new action cr �stands for connect right� and get�token to
cl �stands for connect left��

� R�

right maps send�token to cl and get�token to cr�

� The hiding function hides both cr and cl by mapping them to � �

Thus� the application of this rule results in a network with one terminal Q and one nonterminal A�
connected as a ring�
k� is de�ned by �see Figure � in appendix B�


� R�

left maps send�token to cr and leaves get�token unchanged�

� R�

right maps get�token to cr and leaves send�token unchanged�

� The hiding function hides cr

The application of the third rule� for instance� results in a network in which the nonterminal A
is replaced by a LTS consisting of two processes P � such that the send�token of the left one is
connected to the get�token of the right one� The get�token of the left process and send�token

of the right one will be connected according to the connections of A �see Figure � and Figure � in
Appendix B�� Note that� in the derivation of an LTS by the grammar� the derivation is completed
before the renaming and the hiding functions are applied� These functions are applied to LTSs and
not to the non�terminals representing them�

� Examples

We implemented the algorithm for network veri�cation for the synchronous model and applied it to
two examples of substantial complexity� These examples were veri�ed with the aid of our veri�cation
tool�

��� Dijkstra�s Token Ring

The �rst is the famous Dijkstra�s token ring algorithm ��� This algorithm is signi�cantly more com�
plicated than the one used as a running example along the paper� There is a token t which passes
in the clockwise direction� To avoid the token from passing unnecessarily� there is a signal s which
passes in the counter�clockwise direction� Whenever a process wishes to have the token� it sends the
signal s to its left neighbor� The states of the processes have the following three properties


� It is either n �in the neutral state�� d �the process is delayed waiting for the token� or c �the
process is in the critical section�

� It is either b �black�an interest in the token exists to the right�� w �white�no one is interested in
the token�

� It is either t �with the token�� or e �empty�without the token��

The name of a state is a combination of its properties� Thus wne is a neutral state with no request on
the right and no token� Each process has get�token and get�signal as inputs and send�token and

send�signal as outputs� The notation x�
���
� x� means that on the input � a transition is made from

the state x� to the state x� producing output �� If the input is missing� it means that on any input
the transition is made� If the output is missing� it means that no output is produced on that transi�
tion� The list of transitions for a process that performs the token ring protocol is shown in the table



below� The symbol s stands for either get�signal or send�signal and t stands for either get�token
or send�token� Each state has also a self loop on the internal transition � � These transitions are
omitted from the table� Note that� when a process makes a � transition it does not communicate with
its neighbors� Thus� its neighbors have to be involved in some other transition�either internal or a
communication with another process�

wne
s�s
� bne wne

�s
� wde bne� bde

bne
t�t
� wne wde

s�
� bde wde

t�
� wct

bde
t�
� bct wnt

s�t
� wde wnt� wct

wct
s�
� bct wct� wnt bct

�t
� wne

Let Q be the process with wnt as the initial state and the transition relation shown above� Let P be
the process with wne as the initial state and with the same transition relation as Q� The network
grammar generating a token�ring of arbitrary size is similar to that of Example �� where get�signal
or send�signal are treated similarly to get�token or send�token� It turns out that LTSs consisting
of less than three processes of type P have di�erent behaviors than the LTSs composed of three or
more P processes� We exclude such LTSs by replacing the last rule in the grammar by


A� PkPkP�

Let S be the set of states in a basic process of the token ring� Let t be the subset of states which
has the token� Let not�t be the set S n t� The automaton D is the same as the automaton in Figure 	
with t substituted for cs and not�t substituted for nc� The automaton accepts strings S� such that
the number of processes with the tokens is exactly one� Let h be the abstraction function induced
by the automaton� We choose rep�P � � h�P ��and rep�Q� � h�Q� and rep�A� � h�P �khh�P �khh�P ��
Using the �rst rule of the grammar we have that rep�S� � h�Q�khh�A�� Using our veri�cation tool
we were automatically able to check that rep�A� � rep�A�khrep�P �� By Theorem �� we conclude
that rep�S� simulates all the LTSs generated by the grammar G� Notice that if rep�S� satis�es
the property AGD� then Theorem � implies that every LTS generated by the grammar G satis�es
AGD� Using our veri�cation tool we established that rep�S� is a model for AGD�

��� Parity tree

We consider a network of binary trees� in which each leaf has a bit value� We describe an algorithm
that computes the parity of the leaves values� The algorithm is taken from ���� A context�free gram�
mar G generating a binary tree is given below� where root� inter and leaf are terminals �basic
processes� and S and SUB are nonterminals�

S � rootkSUBkSUB
SUB� interkSUBkSUB
SUB� interkleafkleaf

The algorithmworks as follows� The root process initiates a wave by sending the readydown signal to
its children� Every internal node that gets the signal sends it further to its children� When the signal
readydown reaches a leaf process� the leaf sends the readyup signal and its value to its parent� An
internal node that receives the readyup and value from both its children� sends the readyup signal
and the � of the values received from the children to its parent� When the readyup signal reaches
the root� one wave of the computation is terminated and the root can initiate another wave� This
description is somewhat informal� Actually� at any step of the computation each process outputs its



relevant state variables to its neighbors� It also gets inputs from its neighbors and updates its state
variables accordingly� Thus saying that a process gets a signal actually means that at the current step�
the value of this signal �received by the process as input� is �� The semantics of the composition used
in the grammar G should be clear from Figure �� For example� the inputs readyup l and value l of
an internal node are identi�ed with the outputs readyup and value of its left child� Next� we describe
the various signals in detail� First we describe the process inter� The process inter is the process

readyup readydown readyup readydown
value value

readydownreadyup
value

Parent

left child right child

Fig� �� Internal node of the tree

in the internal node of the tree� The various variables for the process are shown in the table


state vars output vars input vars
root or leaf readydown readydown

readydown readyup readyup l

readyup l value readyup r

readyup r value l

value value r

readyup

The following equations are invariants for the state variables


root or leaf � �

readyup � readyup l � readyup r

The output variables have the same value in each state as the corresponding state variable� e�g� the
output variable readydown has the same value as the state variable readydown� The equations given
below show how the input variables a�ect the state variables� In the equations given below the primed
variables on the left hand side refer to the next state variables and the right hand side refers to the
input variables�

readydown� � readydown

readyup l� � readyup l

readyup r� � readyup r

value� � �readyup l � value l�� �readyup r � value r�



Since the root process does not have a parent� it does not have the input variable readydown� The
invariant root or leaf � � is maintained for the root and the leaf process� Since the leaf process
does not have a child� the output variable readydown is absent� The leaf process has only one input
variable readydown and the following equation between the next state variables and input variables
is maintained


readyup� � readydown

For each leaf process the assignment for the state variable value is decided non�deterministically in
the initial state and then kept the same throughout�

A state in the basic processes �root�leaf�inter� is a speci�c assignment to the state variables�
We call this state set S� Notice that the state set S �� f���g� because there are � state variables� The
automata we describe accept strings from S�� Let value�� � � � � valuen be the values in the n leaves�
Let value be the value calculated at the root� Since at the end of the computation the root process
should have the parity of the bits valuei �� � i � n�� the following equation should hold at the end
of the computation


value �
nM

i��

valuei � ��

Let p be de�ned by the following equation


p � fs � Sjs satis�es root or leaf � valueg�

Let not�p� � S�p� The automaton Dpar given in Figure � accepts the strings in S� which satisfy the
equation given above� Since root or leaf � � for internal nodes� the automaton essentially ignores the
values at the internal nodes� We also want to assert that everybody is �nished with their computation�

q0

p

p

not(p)

not(p)

q1

Fig� �� Automaton �Dpar� for parity

This is signaled by the fact that readyup � � for each process� The automaton Dter given in Figure �
accepts strings in S� i� readyup � � in each state� i�e� all processes have �nished their computation�
The property Dter � Dpar says that if the computation is �nished in a state� then the parity is
correct at the root� We want to check that every reachable state of an LTS in the network has the
desired property� i�e� AG�Dter � Dpar� is true� We use as our atomic formula the union of Dpar and
D�ter �the complement of Dter�� Let h be the abstraction function induced by this automaton �see
Section 	 for the de�nition of h�� Let kh be the abstract composition operator and 
 the simulates
relation� Let I�� I� be abstract processes de�ned as follows


I� � h�inter�khh�leaf �khh�leaf �

I� � h�inter�khI�khI�



m0 m1
not(readyup)

readyup

S

Fig� �� Automaton �Dter� for ready

The following equations were veri�ed automatically by our veri�cation tool


h�inter�khI�khI� �
 I�

I� 
 I�

h�inter�khI�khI� 
 I�

From the �rst equation given above it is clear the I� cannot be used as a representative for the
non�terminal SUB� i�e if we set rep�SUB� � I�� the induction corresponding to the second rule
of the grammar does not hold� Notice that I� was derived from the second rule of the grammar
by substituting I� for SUB� Suppose we use rep�SUB� � I� and rep�S� � h�root�khI�khI� as the
representatives for the non terminals� From the equations given above the following inequalities can
be derived


rep�SUB� � h�inter�khrep�SUB�khrep�SUB�

rep�SUB� � h�inter�khh�leaf�khh�leaf�

Now using Theorem �� we can conclude that H � h�root�khI�khI� simulates all the networks gen�
erated by the context free grammar G� After we constructed H� we veri�ed automatically� that all
reachable states in H have the desired property� Now by Theorem � we have the result that every
LTS derived by G has the desired property� i�e� when the computation is �nished the root process
has the correct parity�

� Direction for future research

In this paper we have described a new technique for reasoning about families of �nite�state systems�
This work combines network grammars and abstraction with a new way of specifying state properties
using regular languages� We have implemented our veri�cation method and used it to check two
non�trivial examples� In the future we intend to apply the method to even more complex families of
state�transition systems�

There are several directions for future research� The context�free network grammars can be re�
placed by context�sensitive grammars� Context�sensitive grammars can generate networks like square
grids and complete binary tree which cannot be generated by the context�free grammars� The speci�
�cation language can be strengthened by replacing regular languages by more expressive formalisms�
We might also consider adding fairness to our models �LTSs�� Finally� we intend to extend the
techniques described in this paper to asynchronous models of computation�



References


	 K	 Apt and D	 Kozen	 Limits for automatic veri�cation of �nite�state systems	 IPL� 
��������� 
���	
�	 M	 Browne� E	 Clarke� and O	 Grumberg	 Reasoning about networks with many identical �nite�state

processes	 Inf� and Computation� �
�
�
���
� Apr	 
���	
�	 J	 Burch� E	 Clarke� K	 McMillan� D	 Dill� and L	 Hwang	 Symbolic model checking 
��� states and

beyond	 Inf� and Computation� �����
���
��� June 
���	
�	 E	 M	 Clarke and E	 A	 Emerson	 Synthesis of synchronization skeletons for branching time temporal

logic	 In Logic of Programs� Workshop� Yorktown Heights� NY� May ����� volume 
�
 of LNCS	 Springer�
Verlag� 
��
	

�	 E	 M	 Clarke� E	 A	 Emerson� and A	 P	 Sistla	 Automatic veri�cation of �nite�state concurrent systems
using temporal logic speci�cations	 ACM Trans� Prog� Lang� Syst�� ������������ 
���	

�	 E	 M	 Clarke� O	 Grumberg� and D	 E	 Long	 Model checking and abstraction	 In Proc� ��th Ann� ACM
Symp� on Principles of Prog� Lang�� Jan	 
���	

�	 D	 Dams� O	 Grumberg� and R	 Gerth	 Abstract interpretation of reactive systems Abstractions pre�
serving ACTL��ECTL�� and CTL�	 In IFIP working conference and Programming Concepts� Methods
and Calculi �PROCOMET	�
�� San Miniato� Italy� June 
���	

�	 E	 Dijkstra	 Invariance and non�determinacy	 In C	 Hoare and J	 Sheperdson� editors� Mathematical
Logic and Programming Languages	 
���	

�	 E	 Emerson and K	 S	 Namjoshi	 Reasoning about rings	 In Proc� ��nd Ann� ACM Symp� on Principles
of Prog� Lang�� Jan	 
���	


�	 S	 German and A	 Sistla	 Reasoning about systems with many processes	 J� ACM� ���������� 
���	


	 R	 P	 Kurshan and K	 L	 McMillan	 A structural induction theorem for processes	 In Proc� �th Ann�

ACM Symp� on Principles of Distributed Computing	 ACM Press� Aug	 
���	

�	 O	 Lichtenstein and A	 Pnueli	 Checking that �nite state concurrent programs satisfy their linear speci�

�cation	 In Proc� ��th Ann� ACM Symp� on Principles of Prog� Lang�� Jan	 
���	

�	 R	 Marelly and O	 Grumberg	 GORMEL�Grammar ORiented ModEL checker	 Technical Report ����

The Technion� Oct	 
��
	

�	 R	 Milner	 An algebraic de�nition of simulation between programs	 In In proceedings of the �nd Inter

national Joint Conference on Arti�cial Intelligence� pages ��
����� 
��
	

�	 R	 Milner	 A Calculus of Communicating Systems� volume �� of LNCS	 Springer�Verlag� 
���	

�	 J	 Quielle and J	 Sifakis	 Speci�cation and veri�cation of concurrent systems in CESAR	 In Proc� Fifth

Int� Symp� in Programming� 
��
	

�	 Z	 Shtadler and O	 Grumberg	 Network grammars� communication behaviors and automatic veri�cation	

In Sifakis �
��	

�	 J	 Sifakis� editor	 Proc� ���� Int� Workshop on Automatic Veri�cation Methods for Finite State Systems�

volume ��� of LNCS	 Springer�Verlag� June 
���	

�	 J	 D	 Ullman	 Computational Aspects of VLSI	 Computer Science Press� 
���	
��	 I	 Vernier	 Parameterized evaluation of CTL�X formulae	 In Workshop accompanying the Internation

Conference on Temporal Logic �ICTL	�
�� 
���	
�
	 P	 Wolper and V	 Lovinfosse	 Verifying properties of large sets of processes with network invariants	 In

Sifakis �
��	

A Appendix� Extension to multiple atomic formulas

Our framework can easily be extended to any set of atomic formulas	 The restriction to one atomic formula
was done in order to simplify presentation	 However� in practice we may want to have several such formulas�
related by boolean and temporal operators	

The notion of equivalence can be extended to any set of atomic formulas	 Let AF � fD�� 	 	 	 �Dkg be a set
of atomic formulas� where Di � �Qi� q

i
�� �i� Fi�	 Let f

i
s be the function induced by s on Qi	 Then� two states

s� s� are equivalent if and only if for every i� f is � f is�	

The abstraction of s is now h�s� �� f�s � 	 	 	 � f
k
s �� and we have that� if s � s� then for every i� s �

L�Di�� s� � L�Di�	 Abstract LTSs are de�ned as before	

The relation j� is extended for abstract states by de�ning h�s� j� Di i� f is�q
i
�� � Fi	 Thus� we again have

that for every Di � AF� s j� Di i� h�s� j� Di	



B Appendix� Figures explaining derivation rules

get Q get A send
cr

cl

S send

A
get P send get A send

crget send

get P send get P send
sendgetA cr

Fig� �� Derivation rules with renaming

S
Q A

Q P

τ

τ

τ

τ

τ
P

Fig� �� Derivation of a ring of size �

This article was processed using the LaTEX macro package with LLNCS style


