
Interpolation-Sequence Based Model Checking
Yakir Vizel1,2 Orna Grumberg1

1. Computer Science Department, The Technion, Haifa, Israel
{yvizel,orna}@cs.technion.ac.il

2. Architecture, System Level and Validation Solutions, Intel Development Center, Haifa, Israel

Abstract—SAT-based model checking is the most widely used
method for verifying industrial designs against their specification.
This is due to its ability to handle designs with thousands of
state elements and more. The main drawback of using SAT-based
model checking is its orientation towards ”bug-hunting” rather
than full verification of a given specification. Previous works
demonstrated how Unbounded Model Checking can be achieved
using a SAT solver. In this work we present a novel SAT-based
approach to full verification. The approach combines BMC with
interpolation-sequence in order to imitate BDD-based Symbolic
Model Checking. We demonstrate the usefulness of our method
by applying it to industrial-size hardware designs from Intel. Our
method compares favorably with McMillan’s interpolation based
model checking algorithm.

I. INTRODUCTION

Model checking [6] is an automatic approach to formally
verifying that a given system satisfies a given specification.
The system to be verified is modelled as a finite state machine
and the specification is described using temporal logic [13].
Model checking algorithms are based on exploration of the
models’ state space while searching for violations of the
specification.

The introduction of BDD-based Symbolic Model Check-
ing (SMC) [5] enabled model checking of real-life designs
with a few hundreds of state elements. However, current
design blocks with well-defined functionality typically have
thousands of state elements and more. SAT-based Bounded
Model Checking (BMC) [4] can handle designs of that scale.
However, BMC is limited to finding a counterexample of a
bounded length. Thus, BMC is usually used for bug hunting.

In this work we present a novel SAT-based approach to full
verification. The approach combines BMC with interpolation-
sequence [8], [11] in order to imitate BDD-based Symbolic
Model Checking. Our method runs BMC iteratively as usual.
However, at each iteration k, if the checked formula is un-
satisfiable, then a sequence of k interpolants {Ik

1 , . . . , I
k
k} is

computed. Ik
j over-approximates the set Sj of states, reachable

from the initial states in j steps. In the next BMC iteration, the
newly obtained interpolant Ik+1

j is conjuncted with Ik
j . The

result, denoted Ij , is itself an over-approximation of Sj , but a
more precise one, since it contains less states which are not in
Sj . Thus, Ij can be viewed as a refinement of the computed

interpolants. Further, Ij is guaranteed to include no violation
of the checked property.

The process terminates with either a counterexample pro-
duced by BMC, or by reaching a fixpoint, indicating that no
more reachable states will be found. In the latter case, since
no violation of the formula has been encountered so far, it is
guaranteed that the property holds.

We emphasize that the setting of combining BMC with
interpolation in order to compute an over-approximation of
the set of reachable states seems similar to McMillan’s in-
terpolation based model checking algorithm [10]. However,
exploiting interpolation-sequence the way we do results in a
different traversal of the sets of reachable states, thus may
converge faster. Furthermore, our algorithm often requires less
calls for BMC. The paper includes a thorough comparison
between the two methods, both on the algorithmic level and
by running experiments. Our comparison identifies important
cases in which our algorithm performs better than the one
in [10].

We implemented our algorithm and the one in [10] within
Intel’s verification tool. All experiments were conducted on
models from Intel’s next generation Microprocessor designs.
The checked properties are real specifications, used to verify
those designs. The experiments compare various parameters of
the two methods. In all our experiments, when a fixpoint could
be reached only at a high bound, our method performed better
than [10]. The algorithm in [10], on the other hand, performed
better when a fixpoint could be reached at a low bound. In
addition, falsified properties always favored our method.

When describing our method we assume a safety property
of the form AGq, where q is a propositional formula. This,
however, does not restrict its generality since model checking
of liveness properties can be reduced to handling safety
properties [2]. Further, model checking of safety properties
can be reduced to handling properties of the form AGq [9].

A. Related Work

SAT-based Bounded Model Checking (BMC) [4] is widely
used for the verification of large systems. BMC can usually
handle much larger designs than other known methods such
as BDD based SMC [5]. However, it is mostly limited to bug
finding.

Several works extend BMC for full verification. [3] defined
a Reachability Diameter, which sets a bound on the number
of BMC iterations needed for full verification. This bound,
however, is usually hard to compute. Moreover, the bound is
very large and therefore the resulting formulas are too large
for a SAT solver to handle.

[14] suggests to use Induction for full verification. This
method uses the BMC check as the induction base. Then,
the induction step is checked by checking a second formula.
Note that induction works automatically only for simple local
properties. For complex properties, the user has to come up
with a good inductive invariant. Proof-Based Abstraction [12]
exploits BMC to determine an abstract model on which BDD-
based model checking can be applied. Interpolation-Based
Model Checking [10] exploits interpolation to compute an
over-approximation of the reachable states. The latter work is
closest to ours. We compare the two works in a later section,
once the details of the methods are presented.

In this work we use interpolation-sequence rather than
the usual interpolation. Interpolation-sequence has been intro-
duced and used in [8] and [11].

In [8] it is used for computing an abstract model based
on predicate abstraction, for software model checking. In [11]
interpolation-sequence is used for software model checking
and lazy abstraction. While this work uses the interpolation-
sequence to compute over-approximations of reachable states
and predicates, the computation considers a specific possible
execution of the verified software. Our work, on the other
hand, uses the interpolation-sequence to gain information on
the entire model. Clearly, the two works use different criteria
for convergence.

B. Outline

The rest of the paper is organized as follows. In section II
we present some background, including interpolation (II-A),
model checking (II-B) and bounded model checking (II-C).
Our algorithm is described in section III. In section IV we
compare our method to the one of [10]. Section V presents
our experimental results. Finally, we conclude in section VI.

II. PRELIMINARIES

In this section we present a short description of Interpola-
tion, Model Checking and Bounded Model Checking.

A. Interpolation

Throughout the paper we will denote the value false as ⊥
and the value true as >. For a formula X , L(X) is the set of
variables appearing in X . For a set of formulas {X1, . . . , Xn}
we will use L(X1, . . . , Xn) to denote the variables appearing
in X1, . . . , Xn.

Definition 2.1. Let (A,B) be a pair of formulas such that
A ∧ B ≡ ⊥. The interpolant for (A,B) is a formula I such
that:

• A⇒ I .
• I ∧B ≡ ⊥.

• L(I) ⊆ L(A) ∩ L(B).

A SAT solver is a complete decision procedure that given a
set of clauses, determines whether the clause set is satisfiable
or unsatisfiable. A clause set is said to be satisfiable if there
exists a satisfying assignment such that every clause in the
set is evaluated to >. If the clause set is satisfiable then
the SAT solver returns a satisfying assignment for it. If it
is not satisfiable (unsatisfiable), meaning, it has no satisfying
assignment, then modern SAT solvers produce a proof of
unsatisfiability [12]. An interpolant can be produced out of
a proof of unsatisfiability [10].

Definition 2.2. Let Γ = {A1, A2, . . . , An} be a set of
formulas such that

∧
Γ ≡ ⊥. That is

∧
Γ = A1 ∧ . . . ∧ An

is unsatisifiable. An interpolation-sequence for Γ is a set
{I0, I1, . . . , In} such that:

1) I0 ≡ > and In ≡ ⊥
2) For every 0 ≤ j < n it holds that Ij ∧Aj+1 ⇒ Ij+1

3) For every 0 < j < n it holds that L(Ij) ⊆
L(A1, . . . , Aj) ∩ L(Aj+1, . . . , An)

Computing an interpolation-sequence for a sequence of
formulas is done in the following way: for each Ii, 0 < i < n,
the sequence of formulas is partitioned in a different way such

that Ii is the interpolant for the formulas A(i) =
i∧

j=1

Aj and

B(i) =
n∧

j=i+1

Aj .

Theorem 2.3. Let Γ = {A1, A2, . . . , An} be a set of formulas
such that

∧
Γ ≡ ⊥ and let Π be a proof of unsatisfiability for∧

Γ. For every 1 ≤ i < n let us define A(i) = A1 ∧ . . . ∧Ai

and B(i) = Ai+1 ∧ . . . ∧ An. If Ii is the interpolant
for the pair (A(i), B(i)) extracted using Π then the set
{>, I1, I2, . . . , In−1,⊥} is an interpolant sequence for Γ.

B. Model Checking

Model checking [6] is an automatic approach to formally
verifying that a given system satisfies a given specification.
The system is modelled by a Kripke structure and the spec-
ification is written in temporal logic. Determining whether a
model satisfies a given specification is based on exploration
of the model’s state space in a search for violations of the
specification.

Definition 2.4. Given a set of atomic propositions AP , a
Kripke structure M is the quadruple M = (S, INIT,TR, L)
where S is a finite set of states, INIT ⊆ S is a set of initial
states and TR ⊆ S×S is a total transition relation. That is, for
every s ∈ S there exists s′ ∈ S such that (s, s′) ∈ TR. Finally,
L : S −→ P(AP) is the labeling function which associates
with every state s ∈ S the set L(s) of atomic propositions that
hold in s.

A path in a Kripke structure M is a sequence of states π =
(s0, s1, . . .) such that for all i > 0, si ∈ S and (si, si+1) ∈ TR.

The length of a path is denoted by |π|. If π is infinite then
|π| = ∞. If π = (s0, s1, . . . , sn) then |π| = n. A path is an
initial path when s0 ∈ INIT.

A formula in Linear Temporal Logic (LTL) [13] is of the
form Af where f is a path formula. A model M satisfies
an LTL property Af if all paths in M satisfy f . If there
exists a path not satisfying f , this path is defined to be a
counterexample.

We consider a subset of LTL properties called safety prop-
erties since Liveness checking can be achieved by the method
presented in [2]. In addition, only safety properties of the form
AGq are considered where q is a propositional formula. This
does not restrict the applicability of our results, since safety
properties can be verified using invariance checking [9].

Given a property AGq, the model checking problem can
then be described as exploring the state space of a model M
while checking that q holds for all states.

Let M be a model, Reach be the set of reachable states and
let f = AGq be a property. If for every s ∈ Reach, L(s) |= q
then the property holds in M . On the other hand, if there exist
a state s ∈ Reach such that L(s) |= ¬q then there exists an
initial path π = s0, s1, . . . , sn such that sn = s. The path π
is a counterexample for the property f .

We would sometimes like to represent a Kripke structure
by means of propositional formulas. In order to do so, we
define the set of state variables, denoted V . Given V where
|V | = n, a state s ∈ S is represented by a vector in the set
{0, 1}n and by that s is a valuation of the state variables in
V . A set of states can be represented by a formula over V
where the truth assignments represent the states. With abuse
of notation we will refer to a formula η over V as a set of
states and therefore use the notion s ∈ η for states represented
by η. For some variable v, v′ is used to denote the value of
v after one time unit. The set of these variables is denoted by
V ′. In the general case V i is used to denote the variables in
V after i time units (thus, V 0 ≡ V). Let η be a formula over
V i, the formula η[V i ← V j] is identical to η except that for
each variable v ∈ V , vi is replaced with vj .

C. Bounded Model Checking

Bounded model checking (BMC) [4] is an iterative process
for checking properties up to a given bound. Let M be a
Kripke structure and f = AGq be the property to be verified.
Given a bound k, BMC either finds a counterexample of length
k or less for f in M , or concludes that there is no such
counterexample. In order to search for a counterexample of
length k the following propositional formula is built:

Formula 1. ϕk
M (f) = INIT(V 0)∧TR(V 0, V 1)∧TR(V 1, V 2)∧

. . . ∧ TR(V k−1, V k) ∧ (¬q(V k))

ϕk
M (f) is then passed to a SAT solver which searches for a

satisfying assignment. If there exists a satisfying assignment
for ϕk

M (f) then the property is violated, since there exists a
path of length k violating the property. In order to conclude
that there is no counterexample of length k or less, BMC

1: function BMC(M ,f ,k)
2: i := 0
3: while i ≤ k do
4: build ϕi

M (f)
5: result = SAT (ϕi

M (f))
6: if result = true then
7: return cex // returning the counterexample
8: else
9: i = i+ 1

10: end if
11: end while
12: return No cex for bound k
13: end function

Fig. 1: Bounded model checking

iterates all lengths from 0 up to a given threshold bound k.
At each iteration a SAT procedure is invoked.

When M and f are obvious from the context we omit
them from the formula ϕk

M (f) denoting it as ϕk. The BMC
algorithm is described in Fig 1.

The main drawback of this approach is the fact that it is not
complete. It can only guarantee that there is no counterexample
of size smaller or equal to k. It cannot guarantee that there is
no counterexample of size greater than k.

III. A NOVEL SAT-BASED MODEL CHECKING APPROACH

In this section we present our novel SAT-based algorithm for
unbounded model checking (UMC). The proposed algorithm
explores the state space of the model by means of an over-
approximation using BMC and interpolation-sequence. The in-
novation lies in the way BMC is combined with interpolation-
sequence to extract the needed information.

From this point and on, we will use M to denote the
Kripke structure representing the model and f = AGq for
a propositional formula q, as the property to be verified.

In order to better understand our work and the motivation
behind it, we will first review some basic concepts of SMC.

A. Revisiting Symbolic Reachability Analysis

SMC performs forward reachability analysis by computing
sets of reachable states Sj where j is the number of transitions
needed to reach a state in Sj when starting from the initial
states. Further, for every j ≥ 1, Sj ∧ TR(V, V ′) ≡ Sj+1.
Once Sj is computed, if it contains states violating q, a
counterexample of length i is found and returned. Otherwise,

if Sj ⊆
j−1⋃
i=1

Si then a fixpoint has been reached, meaning that

all reachable states have been found already. If none violates
the property then the algorithm concludes that M |= f .

The method presented in this section demonstrates how
over-approximated sets, similar to Si in their characteristics,
can be extracted from BMC using an interpolation-sequence
generated after each iteration of the BMC loop. These sets
will be used to gain knowledge about the reachable states

even though the sets are actually an over-approximation of
the reachable states. Informally, we will use the notion of
fixpoint when we can conclude that all reachable states in the
model have been visited. Note that, the interpolation-sequence
exists for a bound N only when there is no counterexample
of length N . In case a counterexample exists, BMC returns a
counterexample and the interpolation-sequence is not needed.

B. Interpolation-Sequence Based Model Checking

Definition 3.1. A BMC-partitioning for ϕN is the set Γ =
{A1, A2, . . . , AN+1} of formulas such that A1 = INIT(V 0)∧
TR(V 0, V 1), for every 2 ≤ i ≤ N Ai = TR(V i−1, V i) and

AN+1 = ¬q(V N). Note that ϕN =
k+1∧
i=1

Ai (=
∧

Γ).

For a bound N , consider a BMC formula ϕN and its BMC-
partitioning Γ. In case ϕN is unsatisfiable, its interpolation-
sequence is denoted by ĪN = (IN

0 , I
N
1 , . . . , I

N
N+1). Note that

the BMC-partitioning for ϕN contains N + 1 elements and
therefore the interpolation-sequence contains N + 2 elements
where the first element and the last one are always > and ⊥,
respectively.

Next, we intuitively explain our method. Consider the
formula ϕ1 and its BMC-partitioning: A1, A2. In case that this
formula is unsatisfiable there exists an interpolation-sequence
of the form Ī1 = (I1

0 = >, I1
1 , I

1
2 = ⊥). By Definition 2.2,

S1 ⊆ I1
1 since >∧A1 ⇒ I1

1 . Also, I1
1∧¬q(V 1) is unsatisfiable,

since I1
1 ∧ A2 ⇒ ⊥. Therefore, I1

1 |= q. In the next BMC
iteration, consider ϕ2 and its BMC-partitioning A1, A2, A3.
In case that ϕ2 is unsatisfiable, we get Ī2 = (>, I2

1 , I
2
2 ,⊥).

Here too, S1 ⊆ I2
1 and the states reachable from it in one

transition are a subset of I2
2 since I2

1 ∧ A2 ⇒ I2
2 . Also,

S2 ⊆ I2
2 and I2

2 |= q. Let us define the sets I1 = I1
1 ∧ I2

1

and I2 = I2
2 . These sets have the following properties,

S1 ⊆ I1, S2 ⊆ I2, I1 |= q and I2 |= q. Moreover,
I1[V 1 ← V] ∧ TR(V, V ′)⇒ I2[V 2 ← V ′].

In the general case if ϕN is unsatisfiable then for every

1 ≤ j ≤ N , Sj ⊆ IN
j . If we now define Ij =

N∧
k=j

Ik
j then for

every 1 ≤ j ≤ N we get:
• Ij |= q since Ij

j |= q.
• Ij ∧TR(V, V ′)⇒ Ij+1 since Ik

j ∧TR(V j , V j+1)⇒ Ik
j+1

for every 1 ≤ k ≤ N
• Sj ⊆ Ij since Sj ⊆ Ik

j for every 1 ≤ k ≤ N .
As a result, the sets I1, I2, . . . , IN can be used to determine

if M |= f . Intuitively, the sets Ij are similar to the sets Sj

computed by SMC except that they are over-approximations
of Sj . Therefore, these sets can be used to imitate the forward
reachability analysis of the model’s state-space by means of
an over-approximation. This is being done in the following
manner. BMC runs as usual with one extension. After checking
bound N , if a counterexample is found, the algorithm termi-
nates. Otherwise, the interpolation-sequence ĪN is extracted

and the sets Ij for 1 ≤ j ≤ N are updated. If Ij ⇒
j−1∨
i=1

Ii

for some 1 ≤ j ≤ N , then we conclude that a fixpoint has

1: function UPDATEREACHABLE(Ī ,Īk)
2: j = 1
3: while (j < k) do
4: Ij = Ij ∧ Ik

j

5: Ī[j] = Ij
6: j = j + 1
7: end while
8: Ī[k] = Ik

k

9: end function

Fig. 2: Updating the reachability vector

been reached and all reachable states have been visited. Thus,
M |= f . If no fixpoint is found, the bound N is increased and
the computation is repeated for N + 1.

Informally, the following facts are needed in order to
guarantee the correctness of the algorithm described above
for checking M |= f . For every 1 ≤ j ≤ N we need:

1) Ij should satisfy q.
2) Ij ∧ TR(V, V ′)⇒ Ij+1 for j 6= N .
3) Sj ⊆ Ij .
This means that the algorithm cannot be implemented using

ĪN alone. This is because ĪN does not satisfy condition (1):
while IN

N |= q, IN
j for j 6= N , does not necessarily satisfy

q. This can be remedied by conjuncting each IN
j with Ij

j .
However, now condition (2) no longer holds. Taking Ij =
N∧

k=j

Ik
j results in set with all three properties.

Definition 3.2. If no counterexample of length N or less

exists in M , then Ij =
N∧

k=j

Ik
j [V j ← V] where Ik

j is the j-th

element in the interpolation-sequence extracted for the BMC-
partitioning of ϕk. The reachability vector is defined to be
Ī = (I1, I2, . . . , IN).

The algorithms for updating the reachablility vector and
checking for a fixpoint are described in Fig 2 and Fig 3,
respectively. The complete model checking algorithm using
the method described above is given in Fig 4.

It is important to note that a call to UPDATEREACHABIL-
ITY changes the reachability vector. Therefore, the function
FIXPOINTREACHED searches for a fixpoint at any point in Ī .
Moreover, it is not sufficient to check for inclusion of only

the last element of Ī . Indeed, if for any j ≤ N , Ij ⇒
j−1∨
i=1

Ii

then all reachable states have been found already. However,

the implication IN ⇒
N−1∨
i=1

Ii might not hold due to additional

unreachable states in IN . This is because for all 1 ≤ j < N ,
Ij+1 is an approximation of the sets reachable from Ij and
not the exact image (Ij ∧ TR(V, V ′) ⇒ Ij+1[V ← V ′] rather
than Ij ∧ TR(V, V ′) ≡ Ij+1[V ← V ′]).

The following lemmas and definition formalize the above
and prove the correctness of the algorithm.

1: function FIXPOINTREACHED(Ī)
2: j = 2
3: while (j ≤ Ī .length) do

4: R =
j−1∨
k=1

Ik

5: φ = Ij ∧ ¬R // Negation of Ij ⇒ R

6: if (SAT(φ) == false) then return true
7: end if
8: j = j + 1
9: end while

10: return false
11: end function

Fig. 3: Checking if a fixpoint has been reached

Lemma 3.3. If M does not have a counterexample of length
N , then Sj ⊆ IN

j for every 1 ≤ j ≤ N and IN
N |= q.

Proof: M does not have a counterexample of length N .
Therefore, the formula ϕN is unsatisfiable. Let ĪN be the
interpolation-sequence for the BMC-partitioning of ϕN . By
Definition 2.2, for j = 1, >∧ INIT(V 0) ∧ TR(V 0, V 1)⇒ I1

1 .
For each 2 ≤ j ≤ N , IN

i ∧ TR(V j , V j+1) ⇒ IN
j+1. Hence,

Sj ⊆ IN
j . Definition 2.2 also state that IN

N ∧ ¬q(V N) ⇒ ⊥
and therefore IN

N |= q.

Lemma 3.4. If M does not have a counterexample of length
N , then Sj ⊆ Ij and Ij |= q for every 1 ≤ j ≤ N .

Proof: For every j ≤ k ≤ N by Lemma 3.3 Sj ⊆ Ik
j and

Ii
j |= q. Since Ij is the conjunction of Ik

j for every j ≤ k ≤ N ,
Sj ⊆ Ij and Ij |= q.

Lemma 3.5. Let Ī = (I1, I2, . . . , IN) be the reachability vec-
tor. For every 1 ≤ j < N , Ij ∧ TR(V, V ′)⇒ Ij+1[V ← V ′].

Proof: By Definition 3.2, Ij =
N∧

k=j

Ik
j [V j ← V]. Def-

inition 2.2 implies that for every j ≤ k ≤ N , Ik
j−1 ∧

TR(V j−1, V j)⇒ Ik
j we get Ij∧TR(V, V ′)⇒ Ij+1[V ← V ′].

Theorem 3.6. Assume there is no path of length N or less
violating f in M . If there exist 1 < j ≤ N such that Ij ⇒
j−1∨
i=1

Ii, then M |= f .

Proof: By assumption, there is no path in M of length
N or less that violates f . We now show that given Ij ⇒
j−1∨
i=1

Ii we can conclude that there is no path of any length

violating f . Let R =
j−1∨
i=1

Ii. By assumption, Ij ⇒ R and by

Lemma 3.5, for every 1 ≤ i < j, Ii ∧ TR(V i, V i+1)⇒ Ii+1.
Thus, R(V) ∧ TR(V, V ′) ⇒ R(V ′) (1). Moreover, for every
1 ≤ i ≤ j the formula Ii ∧ ¬q is unsatisfiable (since Ii |= q
by Lemma 3.4). Hence, R ∧ ¬q is unsatisfiable (2).

By induction we can show that all reachable states are in

1: function ISB(M ,f)
2: k := 0
3: result = BMC(M,f, 0)
4: if (result == cex) then
5: return cex

6: end if
7: Ī = ∅ // the reachability vector
8: while (true) do
9: k = k + 1

10: result = BMC(M,f, k)
11: if (result == cex) then
12: return cex

13: end if
14: Īk = (>, Ik

1 , . . . , I
k
i ,⊥)

15: UPDATEREACHABLE(Ī ,Īk)
16: if (FIXPOINTREACHED(Ī) == true) then
17: return true

18: end if
19: end while
20: end function

Fig. 4: ISB Algorithm

R∗ = R ∨ INIT. The base case handles an initial state. This
holds trivially by the definition of R∗. Now let us assume it
holds for all states reachable in k steps. It should be proved for
states reachable in k+ 1 steps. Let sk+1 be a set reachable in
k + 1 steps from an initial state. Let π = s0, s1, . . . , sk, sk+1

be an initial path to sk+1. By the induction hypothesis sk ∈
R∗. From (1) we know that R[V ← V k] ∧ TR(V k, V k+1)⇒
R[V ← V k+1]. Therefore, sk+1 ∈ R∗.

By assumption, INIT |= q since there is no path of length
N or less violating f . By that and (2), R∗ |= q. Thus, the set
of reachable states satisfy q which implies that M |= f .

Lemma 3.7. Suppose M |= f then there exists a bound N

such that Ī = {I1, I2, . . . , IN} and there exists an index 1 <

j < N such that Ij ⇒
j−1∨
i=1

Ii.

Proof: The set of states S is finite. Let us define N =
j = |S| + 1. M |= f hence for every 0 ≤ k ≤ N , ϕk is
unsatisfiable. Thus, the interpolation-sequence Īk exists for
every 0 ≤ k ≤ N and by that the reachability vector Ī =

{I1, I2, . . . , IN} exists. Since |S| <∞ we get Ij ⇒
j∨

i=1

Ii.

Theorem 3.8. There exists a path π of length N such that π
violates f if and only if ISB terminates and returns cex.

Proof: Assume that the minimal violating path is of
length N . For N − 1 there is no path in M violating f . By
Theorem 3.6 we get that for every j such that 1 ≤ j < N ,

Ij ⇒
j−1∨
i=1

Ii does not hold. Therefore, the algorithm cannot

terminate by returning true in the first N−1 iterations. When
the algorithm reaches the N -th iteration, BMC(M,f,N) will
return a counterexample and the algorithm terminates. The
other direction is immediate.

Theorem 3.9. For every model M and a property f = AGq

there exists N such that ISB terminates.

Proof: If M |= f it follows by Theorem 3.6 and
Lemma 3.7 that the algorithm terminates and returns true. If
there is a path in M that violates f , it follows by Theorem 3.8
that the algorithm terminates and returns cex.

IV. COMPARING INTERPOLATION-SEQUENCE BASED MC
TO INTERPOLATION BASED MC

In the previous section we presented a new method for
model checking, the Interpolation-Sequence Based MC (ISB)
which combines BMC and interpolation-sequence. The closest
work to this one is the Interpolation Based MC (IB) described
in [10]. Thus, a comparison between the two works is im-
perative. Other SAT-based methods for full verification have
been surveyed in the related work section. Moreover, the work
presented in [1] shows a clear advantage to IB over other
known methods for verification. We first describe IB, then,
we compare the two methods.

The following definition will help us to better describe the
differences between the two methods. Recall that the verified
property is of the form f = AGq.

Definition 4.1. For every 1 ≤ j ≤ N , let Sj be the set of
states reachable in j steps from the initial states. For a set of
states T , if Sj ⊆ T and there is no path of length (N − j) or
less violating q, starting from a state s ∈ T , then T is said to
be Sj-approximation w.r.t N . It is denoted by Sj �N T .

A. Interpolation Based Model Checking (IB)

In [10] McMillan presents a SAT-based model checking
algorithm for full verification by combining BMC and Craig’s
Interpolation [7]. The interpolant is used to compute an over-
approximation of the set of reachable states. The algorithm
concludes that the property holds and no counterexample exists
when a fixpoint is reached during the computation of reachable
states and none of the computed states violate the property.

The formula ϕk is used in BMC to represent a counterex-
ample of length exactly k. This formula can be modified
to represent a counterexample of length l for 1 ≤ l ≤ k.
We denote this formula by ϕ1,k. Consider the following
partitioning for ϕ1,k:
• A = INIT (V 0) ∧ TR(V 0, V 1)

• B =
k−1∧
i=1

TR(V i, V i+1) ∧ (
k∨

j=1

¬q(V j)).

Clearly ϕ1,k ≡ A ∧ B. Assume that ϕ1,k is unsatisfiable.
By the interpolation theorem [7], there exists an interpolant
Jk

1 that follows Definition 2.1:
• Jk

1 is over the variables of L(A) ∩ L(B), namely, V 1.
• A =⇒ Jk

1 . By that, S1 ⊆ Jk
1 .

function CHECKREACHABLE(M ,f ,k)
R = M.INIT // Initialize R - initial states of M
if (BMC(M,f, 1, k) == cex) then

return cex

end if
M ′ = M

repeat
A = J(V 0) ∧ TR(V 0, V 1)
B = TR(V 1, V 2) ∧ . . . ∧ TR(V k−1, V k) ∧

(
j=k∨
j=1

¬q(V j))

J = SAT.getInterpolant(A,B)
if J ⊆ R then

return fixpoint

end if
R = R ∪ J
M ′.INIT = J

until (BMC(M ′, f, 1, k) == cex)
return abort

end function

Fig. 5: Calculating the reachable states using a specific bound

• Jk
1 (V1) ∧ B is unsatisfiable. This means that for every

0 ≤ i ≤ k − 1, there is no path of length k − 1 or less
starting from Jk

1 and violating q.
By the above we get that S1 �k Jk

1 . This procedure is
iterated by replacing the initial states in M with the computed
interpolant Jk

1 . BMC is reinvoked with the same parameters
for the modified model M ′ = (S, Jk

1 [V 1 ← V],TR, L). A new
interpolant Jk

2 is then extracted. Jk
2 satisfies S2 �k+1 Jk

2 .
It is important to notice that Jk

1 now satisfies S1 �k+1 Jk
1

since the BMC run on M ′ could not find a counterexample
of length k starting from a state in Jk

1 . In the general case
we replace INIT with Jk

i and get Jk
i+1. For a given bound k,

the computation of over-approximated reachable states appears
in Fig 5. Note that after L iterations of the main loop in
CHECKREACHABLE we get L interpolants and for every
1 ≤ i ≤ L, Si �k+L Jk

i . If at any point, a counterexample is
found on a modified model, CHECKREACHABLE is reinvoked
with k+ 1. Recall that the counterexample has been obtained
on an over-approximated set of states and therefore might not
represent a real counterexample in the original model. In case
that a real counterexample exists, it will be found during the
BMC check on the original model M . A complete description
of the algorithms for this method appears in [10].

B. Comparing ISB to IB

The sets of reachable states computed by each method are
over-approximated and are different in their characteristics.
Therefore, determining which one converges faster is not
applicable. A few technical differences exist for ISB and IB.
First, the formulas used for the interpolants extraction are
different. For a given bound N , ISB uses the formula ϕN while

SMC ISB IB
{S1, S2, . . . , SN} {I1, I2, . . . , IN} {J1

1 , J1
2 , . . . , J1

N}
Si �N Ii Si �N J1

i
After checking bounds 1 to N N iterations at bound 1

if possible
{S1, . . . , SL, . . . , SN+L} {I1, . . . , IL, . . . , IN+L} {JN

1 , JN
2 , . . . , JN

L }
Si �N+L Ii Si �N+L JN

i , (1 ≤ i ≤ L)
After checking bounds 1 to N + L L iterations at bound N

if possible

TABLE I: The correlation between the interpolants computed
by ISB and IB to the sets computed using SMC

IB uses ϕ1,N . Second, the way the interpolants are computed
is different. While ISB computes the sets Ij incrementally
and refines them after each iteration of BMC as part of the
BMC loop, IB recomputes the sets whenever the bound is
increased regardless of previous runs using a different BMC
call for each iterpolant. ISB can be viewed as an addition to
BMC’s loop. The addition is the extraction of an interpolation-
sequence at each iteration and the check for a fixpoint. Indeed,
after N iterations of the BMC loop in ISB, there are N sets
of reachable states I1, . . . , IN and Sj �N Ij . On the other
hand, IB consists of two nested loops. The outer loop iterates
through the bounds while the inner loop calculates the sets
of reachable states. If the outer loop is at a higher bound,
N > 1 and the inner loop performs L iterations then there are
L sets of states JN

1 , . . . , J
N
L such that each has the property

Si �N+L JN
i (1 ≤ i ≤ L). Table I summarizes the above.

Having said that, clearly IB can compute, at a given bound,
as many sets as needed as long as no counterexample is found
(not necessarily a real counterexample). On the other hand,
for a bound N , ISB can only compute N sets but it does
not require recurrent BMC calls for each bound (only one
is needed). By that, we can conclude that in cases IB can
compute all the needed sets at a low bound it performs better
than ISB. However, for examples where the needed sets can
only be computed using higher bounds, ISB has the advantage.
This fact is reflected in the results.

As was mentioned before, when a counterexample exists the
over-approximated sets of reachable states are not needed. For
properties that can be falsified there exists a minimal bound
N such that for this bound there exists a path that violates the
property. Both algorithms have to hit that bound in order to
find the counterexample. Here, ISB has a clear advantage over
IB. After each BMC run on the original model, IB executes
BMC runs on modified models. This means that there are at
least two BMC runs for each bound from 1 to N −1. Clearly,
the second BMC run is more demanding than the inclusion
check performed by ISB. In all our experiments, these kind of
properties always favored ISB.

V. EXPERIMENTAL RESULTS

The proposed algorithm has been checked on various
models taken from two of Intel’s future CPU designs. The
characteristics of the checked models appear in Table II. The
136 properties chosen for the experiments were all real safety
properties used to verify the correctness of the designs. The

Fig. 6: Runtime on Intel’s next micro-architecture releases

Fig. 7: Runtime of falsified properties.

cone of influence for the properties contains thousands of
state variables and tens of thousands of gates and signals.
The properties vary in that some are true and some are false.
During all checks, a timeout of 10,000 seconds has been set.
If after the given timeout the property cannot be verified nor
falsified, the process terminates. If the process terminates with
no conclusive answer (Verified or Falsified), it reports that
the result is Bounded with the highest bound at which the
property is known to be non-violated. Both algorithms were
implemented within Intel’s verification system using a SAT-
based model checker using Intel’s in-house SAT solver Eureka.
Experiments were conducted on systems with a dual core
Xeon 5160 processors (Core 2 micro-architecture) running

Fig. 8: Runtime of verified properties.

Name] Latches] Inputs] Gates
M1 3611 3 84570
M2 4968 2079 133255
M3 12806 402 89392
M4 1672 459 11195
M5 19213 305 146717

TABLE II: Models used for testing

Name] Vars ISB B IB B ISB] I IB] I ISB]BMC IB]BMC ISB Time [s] IB Time [s]
f1 3406 16 15 136 80 16 80 970 5518
f2 1753 9 8 45 40 9 40 91 388
f3 1753 7 6 28 28 7 28 49 179
f4 1753 16 15 136 94 16 94 473 1901
f5 3406 6 5 21 13 6 13 68 208
f6 1761 2 1 3 2 2 2 5 4
f7 3972 3 1 6 3 3 3 19 14
f8 2197 3 1 6 3 3 3 10 7
f9 1629 23 6 276 39 23 39 2544 1340
f10 4894 5 1 15 3 5 3 635 101

TABLE III: Verified properties and their running parameters.
] Vars stands for the number of state variables in the cone
of influence. B - bound at convergence,] I - number of
interpolants computed,]BMC - number of calls to BMC
algorithm and Time [s] - the runtime in seconds

at 3.0GHz (4MB L2 cache) with 32GB of main memory.
Operating system running on the system is Linux SUSE.

Fig 6 shows the runtime in seconds of running two interpo-
lation based methods. Each point represents a property from
the set of chosen properties. The X axis represents runtime
for IB while the Y axis represents the runtime using ISB.
We can see that the results vary. All falsified properties (total
of 67) favor ISB. Fig 7 shows the runtime for the falsified
properties. Fig 8 shows runtime for true properties. There are
five properties that can be verified by ISB and not by IB (due
to timeout) and two properties that can be falsified using ISB
while cannot be falsified using IB. On the other hand, there
are seven properties that cannot be verified by ISB but can
be verified by IB. The rest of the properties (57 total) are all
verified by both algorithms.

A more accurate analysis of the algorithms is shown in
Table III that presents running parameters (number of state
variables in the cone of influence, bound at convergence,
number of interpolants computed, number of calls to BMC
and runtime) on various properties for both IB and ISB. For
some cases, even though IB converges at a lower bound, and
computes less interpolants than ISB, ISB still converges faster
by means of runtime. This is due to the fact that BMC calls are
computationally heavier than the extraction of the interpolants.
Since IB issues more calls to BMC than ISB in these cases,
the influence on its runtime is noticeable. Through all our
experiments, when convergence for IB could be achieved
only at high bounds, ISB always performed better while for
convergence at lower bounds, IB is the better performer. This
result is supported by the analysis presented in the previous
section.

The overall performance, when summarized, are in favor for
ISB with 30% improvement in runtime. The total runtime for
ISB was 128491 seconds while for IB it was 168745 seconds.

VI. CONCLUSION

We presented a method that uses interpolation-sequence
for SAT-based unbounded model checking. Unlike the
interpolation-based model checking algorithm presented
in [10], our method does not require successive BMC runs
in order to compute an over-approximation of the reachable
states. Instead, it is part of the original BMC loop with
the addition of interpolation-sequence extraction. It uses a
single BMC run for a given bound N to extract information
about the reachable states after N transitions or less. The
experiments show a clear advantage to ISB when the properties
are falsified. In case of true properties, the results vary such
that some favor our methods while others favor the method
of [10]. The overall performance favored our algorithm.

Further investigation can be made in order to characterize
the type of properties (when the properties are true) suitable for
each method and by that obtain a better understanding of the
difference between the two methods. In addition, we believe
that the over-approximated sets of reachable states computed
using our method at the N -th iteration can be used to simplify
the BMC run for bound N + 1.

REFERENCES

[1] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. Mcmillan.
An analysis of sat-based model checking techniques in an industrial
environment. In CHARME’05.

[2] A. Biere and C. Artho. Liveness checking as safety checking. In
FMICS02.

[3] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded
Model Checking, volume 58 of Advances in Computers. Elsevier, 2003.

[4] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model
Checking Without BDDs. In TACAS’99.

[5] Jerry R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In LICS’90.

[6] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT
press, 1999.

[7] William Craig. Linear reasoning. a new form of the herbrand-gentzen
theorem. J. Symb. Log., 22(3), 1957.

[8] R. Jhala and K.L. McMillan. Interpolant-Based Transition Relation
Approximation. In CAV’05.

[9] O. Kupferman and M.Y. Vardi. Model checking of safety properties. In
CAV’99.

[10] K.L. McMillan. Interpolation and SAT-based Model Checking. In
CAV’03.

[11] K.L. McMillan. Lazy Abstraction with Interpolants. In CAV’06.
[12] K.L. McMillan and N. Amla. Automatic abstraction without counterex-

amples. In TACAS’03.
[13] Amir Pnueli. The temporal logic of programs. In FOCS’77.
[14] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties

using induction and a sat-solver. In FMCAD’00.

