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Abstract. This work presents a first-order model checking procedure that veri-
fies systems with large or even infinite data spaces with respect to first-order CTL
specifications. The procedure relies on a partition of the system variables into
control and data. While control values are expanded into BDD-representations,
data values enter in form of their properties relevant to the verification task. The
algorithm is completely automatic. If the algorithm terminates, it has generated
a first-order verification condition on the data space which characterizes the sys-
tem’s correctness. Termination can be guaranteed for a class that properly in-
cludes the data-independent systems, defined in [10].

This work improves [5], where we extended explicit model checking algorithms.
Here, both the control part and the first-order conditions are represented by BDDs,
providing the full power of symbolic model checking for control aspects of the
design.

1 Introduction

Symbolic model checking is currently one of the most successful formal methods for
hardware verification. It can be applied to verify or debug designs from industrial prac-
tice, in particular when it is combined with techniques for abstraction and composi-
tional reasoning. However, the majority of designs will escape even those combined
approaches if detailed reasoning about the data path is required. This is because the
data part is often too large (or even infinite) and too complicated.

To reduce the data-induced complexity, we combine symbolic model checking for
the control part of a design with a generation of first-order verification conditions on
data in an algorithm we call first-order model checking. Thereby, we achieve a sepa-
ration of the verification task, where the verification conditions on the data which are
computed by our algorithm may be handled afterwards by any appropriate means, for
instance by a theorem prover. The algorithm behaves like a symbolic model checker if
all system variables are treated as control variables, offering the verification condition
generation as an option if the data complexity turns out to be too high.

The algorithm is intended to be applied to a class of applications which permit a
clear separation between control and data. Examples of such systems are embedded
control applications, where the control part governs the interaction between the con-
troller and the controlled system, depending in its actions only on some flags derived
from the data, and generating data output by finitely many computations. Others are
processors with nontrivial data paths.

For such applications, the algorithm will terminate, while in general it will not.
The class of systems for which it works properly includes Wolper’s data-independent
systems [10], where there is neither testing nor computing on data values. Either testing
or computing can be permitted, but unrestricted use of both may lead to nontermination
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of our procedure. Due to space limitations, an extensive discussion of the termination
issue is not given in this paper.

On a technical level, we take FO-CTL, a first-order version of CTL, as our specifi-
cation logic. Programs appear in an abstract representation as first-order Kripke struc-
tures. These extend “ordinary” Kripke structures by transitions with conditional assign-
ments, capturing the effect of taking a transition on an underlying possibly infinite state
space induced from a set of typed variables.

Our algorithm incrementally computes for each state of the first-order Kripke struc-
ture and each control valuation a first-order predicate over the data variables which
characterizes validity of the FO-cTL formula to be proven. The algorithm is developed
from a standard CTL symbolic model-checking procedure, not the automata-theoretic
approach from [2], as that one does not permit an extension which generates the anno-
tations along the way.

The work presented here extends the previous paper [5] in two respects. First, we
now represent and generate first-order annotations symbolically as BDDs. Due to this
representation, we can avoid intermediate calls to a theorem prover, as we get, for in-
stance, propositional simplifications "for free”. Also, the control valuations are not ex-
panded explicitly, enabling us to cope with much larger control parts. Second, the pro-
cedure can now cope with unboundedly many inputs. The addition necessary for that
will be pointed out during the description of the algorithm in Sec. 3.

The paper contains a description of our core algorithm, and demonstrates its oper-
ation for a simple example problem. There are extensions and optimizations of which
we present only one, control pruning, which is one of the most important amendments.

Related work: Approaches based on abstraction like the ones in [4, 7] and, to some
extent, in [6] try to reduce the state space to a small, resp., finite one, where the proof
engineer is required to find suitable abstractions for program variables. In our approach,
the verifier’s main involvement is in deciding which variables to consider as control.

Using uninterpreted functions in order to model non-finite aspects of the system is
more closely related to our work. In such approaches, uninterpreted functions represent
terms or quantifier-free first-order formulas, whereas in our work a notion similar to
uninterpreted functions represents first-order formulas with quantification.

In [8], systems with infinite memory are verified. States are represented as a com-
bination of an explicit part for data variables and a symbolic part for control variables.
Their algorithm, if it terminates, computes the set of reachable states. Thus, they can
check only safety properties.

In [9], designs are described by quantifier-free formulas with equality, over uninter-
preted functions. A BDD representation of the formulas enables symbolic satisfiability
checking. This approach is used for checking design equivalence. No temporal spec-
ification logic is considered. There are similar approaches to check the uninterpreted
equivalence step functions, e.g. [3].

In [11], data operations on abstract data variables are represented by uninterpreted
functions. They check a restricted subset of a first-order linear-time temporal logic with
fairness. Their logic allows limited nesting of temporal operators, thus, it is incompa-
rable to our FO-CTL. FO-CTL, on the other hand, allows any nesting of CTL operators,
and includes both existential and universal path quantifiers.



In [1], symbolic model checking with uninterpreted functions is used to verify an
algorithm for out-of-order execution. They use a reference file (which is similar to
our proposition table) to represent system behaviors. Their method is aimed at prov-
ing partial and total correctness of out-of-order executions while we verify general
FO-CTLproperties.

2 Semantical Foundation

2.1 First-Order Kripke Structures

The basic semantical domain is a Kripke structure, although we will assume that the
programming language has its semantics in the more abstract domain of first-order
Kripke structures.

A Kripke structure is a quintuple (S, R, A, L, I') where S is a not necessarily finite
set of states, R C 5 x S is the transition relation, A is a set of atoms, L : S — P(A)
is the labeling functionand I C S'is the set of initial states.

We write s — ¢’ for (s, s') € R. K, is the structure with the set of initial states set
to {s}. The set Tr(K') of paths of a Kripke structure is the set of maximal sequences
m = (S0, 81,...) With sg € T and s; — s;41. We use m; to denote s;. |«| will denote
the number of states in the path =, if = is finite. It will be oo otherwise.

We now prepare the definition of first-order Kripke structures. A data structure on
which a program operates is given by a signature S, which introduces typed symbols
for constants and functions, and by an interpretation Z which assigns a meaning to
symbols, based on an interpretation Z () of types = by domains. We assume that the set
of types include type bool and that there is an equality symbol “=." for each type .

For a signature & and a typed set of variables v, we denote by T (V) the set of terms
and by B(V) the set of boolean expressions over V. If we enrich the set T(V) with a
specific constant 7, for each type 7, we get the set of random terms T+ (V). For each
set V of typed variables a set of type-respecting valuations V(V) is defined. If o € V(V)
and an interpretation Z are given, we get interpretations o (t) of terms.

To model inputs we consider random (or nondeterministic) assignments of the form
v:=7, and call v:=t with t#7? regular assignments. Let Z(v:=t) be the semantics of
an assignment as a binary relation on V(V), i.e.,

a'(v) = o(t), t € T(V)
(0,0 €L(vi=t) &y S o/ (v) €L(T),t =7,
odw)=cw),w#v

A set of assignments is well-formed, if the variables on the left-hand sides are pair-
wise distinct. The semantics of a well-formed set of assignments is the parallel execu-
tion of the single assignments. Let WFA(V) denote the set of well-formed assignment
sets over a set of variables V. For a pair (b,a) of a conditionb € B(V) and a well-
formed assignment set a € WFA(V), we set

I(b,a) =4 {o|o(b) =tt} x V(V)) NZ(a).
Afirst-order Kripke structureover a signature S isatuple K = (S, V, R, A, L, I) where
S'is a finite set of states, V is a set of typed variables, R C S x B(V) x WFA(V) x S'is
the transitionrelation, .4 is a set of atoms, L : S — P(.A) is the labeling function, and
1 C S x B(V) is the set of initial states.



In this paper we use first-order Kripke structures as our programming language.
Intuitively, S is used to describe the (rather small set of) program locations, while the
valuations V' (V) might become rather big, or even infinite. For example, the following
first-order structure K describes a controller that sets an alarm if a frequently read input
value grows too fast.

S =« {517 52}

V =4 {alarm:bool, k,1:int}

R =4 {(s1,tt, {alarm:=ff, k:=1, 1:=7},s3),

(s2,1-k>80, {alarm:=tt}, s1),

(527 —1-k>80, {}7 51)}

A =4 {in} alarm:=ff| 17k>80 —
{in]) if s = 51 k:=1 alarm:=tt 1-k<80
L(s) :‘”{{} if s = sy 1:=7 — skip
I =4 {(s1,alarm=£f)} s9 in

A first-order structure is called finite if all its components are finite sets. Finiteness
of a first-order structure does not imply that it necessarily represents a finite Kripke
structure. Depending on the interpretation, data domains may be infinite, in which case
we have a finite description of an infinite-state Kripke structure. We define the semantics
of a first-order Kripke structure by means of a regular Kripke structure.
Given an interpretation Z of S, a first-order structure K over § induces the Kripke
structure K’ = Z(K) with the components
S =4 S xV(V)
(s1,01) = (82,03) Sy S1 22 89 A (01,02) € Z(b,a)
A = AU{V=d | vev,d EI(T(V))}
L'(s,0) =4 L(s)U{v=0c(v)|veV}
I' =« Z(N=4{(s,0) € S xV(V) | (s,b) € I Ao(b) =t}
By K 1 x we denote the first-order structure resulting from K if the variable x is added
to the variable set, after renaming a possibly already present x € V. Since the added x

does not appear in conditions or assignments, its value is arbitrary in initial states and
never gets changed.

2.2 First-Order Temporal Logic
To specify properties of first-order structures, we use first-order computation tree logic,
FO-CTL. It has the following negation-free syntax.

¢pu=AlA|b|6AG[oVe|ax.¢[Qy
bu=Xo|oUg oW

where A€ A, beB(V), xeV, ge {V,3}and Q € {A,E}.

First-order quantifiers are interpreted rigidly, i.e. the value is fixed for the evaluation
of the formula in its scope, it does not change over time.

The semantics of a formula ¢ depends on an interpretation Z of S and a first-order
Kripke structure whose variables include all free variables of ¢. The formula is inter-
preted over a pair (s, o) € Z(K). For example, we define



(s,0) Exx) AJA &4 A€ L(s,0)/]A ¢ L(s,0)
(5,0) Fz(x) b &g o(b) =t
(s,0) Fz(x) %-¢ ©u qd € Z(7(x)). (s,0{d/x}) Fz(xrx) ¢ q€{V,3}
(5,0) Ez(r) AY S VT € THI(K) (5,0))- T Ez(x) ¥
T ':I(K) Xopoglr|>1Am ':I(K) 0]
T Ezk) 01 W 2 &y forall i < |n|, m; =z(x) ¢1, Orthereis j < [n|,
T 1K) 02, andforall i < j, m k) ¢1
If o € V(V), we denote by o{d/x} the valuation of V U {x} which maps x to d and

agrees further with o on the valuation of v\ {x}. Formally, we lift the standard definition
of correctness of a Kripke structure wrt. a cTL formula to the first-order case :

Given an interpretation Z of S, a first-order structure K satisfiesa Fo-cTL formula
¢, denoted K |= ¢, if for every (s, o) € Z(1), (s,0) Fz(x) ¢-
As in the following example ¢, we use standard abbreviations in specifications. Ex-
panding logical implication requires moving negation through a formula down to atoms.
AG ¢4 is defined by A[¢; Wff] asin CTL.

¢ =x VX AG (in Al =x > AXAX (in A l-x > 100 — AX (alarm=tt)))

Note that we use the first-order variable x to “store” the value of 1 through two next-
steps such that a comparison between new and old input values becomes possible. In
Section 4.3 we check the previously introduced first-order structure against this ¢.

3 First-Order Model Checking

Model checking of Fo-cTL formulas can be described as an iterative computation on
the cross product of the first-order Kripke structure with a tableau of the formula. After
defining this product structure, we will first describe a semantical version of this com-
putation. Afterwards, we will define a syntactic procedure, and finally show how it may
be realized by a symbolic, i.e., BDD-based, model checker.

3.1 TheProduct Structure

The model checking algorithm operates on a product of a first-order Kripke structure
with a tableau Taby of a FO-cTL formula ¢ . Taby captures the dependencies between
the validity of subformulas of ¢ as known from cTL. In the first-order case here, the
subformulas are accompanied by the set of variables which are quantified within the
contextin ¢.

Formally, let Tab,, be the smallest set of nodes /V which contains (¢, #) and is closed
with respect to the relations —= { ((QX ¢1, W), (¢1, ")) } and — defined by

—Ifn= (qf)l A / vV qf)g,W), thenn — (¢1,W) and n — (¢)2,W).
— Ifn = (Q[¢1 U/ W ¢2],W), then n — (¢2,W), n — (¢1,W) and
n = QX Q[é1 U/ W ps]), ).
— Ifn = (gx. ¢1,W), thenn — (¢, WU {x}).
Given a finite first-order structure K = (S,V, R, A, I, ) and a FO-CTL formula ¢ with
tableau Taby = (N, -, —), we build the product structure K xTab, = (M, —', =)
as follows. We are assuming w.l.0.g. that no variable from v gets quantified within ¢.



M:deXN QS

51
(s,n) = (s,n) Sy n—n 1‘

(8, n) b’—a>/ (8/, n/) g N — n’ s1: AG ¢)1 - AG
and s 25 o/ ‘ \ 521 AG o
Let ¢ be the example specification from Sec. s1: S9 1 b1
2.2, ¢ = Vx AG (¢1), with subspecifications PG '
O1 =a 01,1 = 91,2 / \ / \
511011 521 P12

¢171 =—df in A 1=x

¢1,2 =4 AXAX (92,1 — b2,2) / \ /

¢271 =4 in A l-x > 100 ) 1= .

¢272 _ AX (alarmztt) §1:1n s1:1=x sl.AX (¢)271 — ¢)272)
A ske'ich of the product: strucr;[ure ii1n our 52t da1— baa
example is given on the right. The re- e '
lation — is drawn as a line, the condi- / \
tional assignments labeling the arrows (—) $2: g2 $2 1 ¢2.2
are missing, as well as the sets of quanti-
fied variables. Also, intermediate nodes have
been removed from the cycle induced by
AG (¢1) = Afgs WHf].

Our model-checking procedures will operate on such cross products. The reader
will note the similarity between cross products and the information flow in standard
cTL model checking, which is opposite to the direction of the arrows.

The nodes labeled by a W (or G, as in the example) formula are called maximal
nodes, those labeled by a U formula are minimal nodes. Nodes without successors are
called terminal nodes. We will say that a node ' in the product structure is below some

- - - - . ,a /
m, if m’ is reachable from m via the union of the relations —’ and =5 .

So:in  s9:1-x>100 s1:alarm=tt

3.2 First-Order Model Checking, Semantically

Let the cross product between a first-order Kripke structure and the tableau of an
Fo-cTL formula ¢ be given. To each pair (s, (¢1,W)) in the product structure the set
of valuations o of v U W can be assigned s.t. (s, o) =z(x) ¢1. Below, we describe a
model-checking like procedure which, if it terminates, annotates each node with the
correct set of variable valuations. The procedure works iteratively, starting with an ini-
tial annotation, and computing the new annotation of a node (s, n) from the annotations
of its successor nodes (s', n').

The process starts by initializingall pairs with minimal nodes to () and all those with
maximal nodes (¢4, W) to V(VUW). Pairs with terminal nodes are initialized with the set
of valuations satisfying the boolean formula after taking the state labeling into account,
ie.ifn = (¢1,W) then

ann(s,n) =4 {c € V(VUW) | o(¢]) =tt},
where ¢/ results from ¢, by replacing atomic formulas A by tt iff A € L(s) and by
ff otherwise. In our example this means that ann(sy, (in,x)) = @, ann(sz, (in,x)) =
V(v U {x}), ann(s;, (term,x)) = {o | o(term) = tt} fori = 1,2 and term =



alarm=tt, 1=x, 1-x>100. Nodes which are neither terminal nor maximal or minimal
are not initialized.

After each step of the procedure, nodes for which the final annotation has been
computed are identified. Initially, this set of nodes consists of the terminal nodes. The
criterion for a node to have got its final annotation is that the annotations of all the nodes
below it have been stable in the previous step.

It is an invariant of the process of annotation computation, that each annotation
computed intermediately, satisfies that for maximal nodes it stays above the semanti-
cally correct annotation, and for minimal nodes, it stays below.

A step of the computation consists of updating the annotation of each node which
has not yet got its final annotation. No update is done if some direct successor of a node
is not yet annotated or if it is of a different mode (maximal/minimal) and not yet finally
annotated. Otherwise, the update anrf (s, n) is computed from the current annotations
ann(s’, n’) of the successors as follows (n = (EX ¢1, W) omitted).

—Ifn={(¢1 A/ V¢, W), then ann'(s,n) =, ann(s, (¢1,W)) N/ Uann(s, (¢2,W)).
— Ifn = (AX ¢1,W), then

/ —
ann’(s, n) =g ﬂ(sm)b_i}/(qu
— Ifn = (Q[¢1 U/ W 2], W), and (s, n') is the successor node of (s, n), then
ann'(s, n) =4 ann(s,n’) .

— If n = (V/3x. ¢1,W), and (s, n') is the successor node of (s, n), then
ann'(s,n) =« {oc € V(VUW) | V/3d.o{x/d} € ann(s,n’) }.

Proposition 1 states that this (semantical) annotation process is semantically sound.

Proposition 1. If the annotation computation for K x Tab 4 terminates, each node is
annotated with the correct valuations, i.e., ccann(s, (¢1,W)) iff (s, o) =k ¢1.

{o|Yo'(0,0') €Z(b,a) = ¢ €ann(s’,n’) }.

Proof (Sketch). Correctness for nodes which do not lie on cycles, i.e., ones which are
neither minimal nor maximal, follows by induction (on the formula size, for instance).
Using the invariant that minimal nodes are approximated from below and maximal
nodes from above, we see that once a fixed point is reached for one such node, it is
the minimal, resp., max., fixed point as required by the characterization of the operator.

Note, however, that while the procedure is sound, it need not terminate if the data
domain is infinite. If the data domains are finite, though, it will terminate for the well-
known monotonicity reasons.

As a consequence of Proposition 1, we see that a terminating annotation process
yields a characterization of the correctness of the system.

Proposition 2. If the semantical annotation process terminates, then K | ¢ if and
onlyif for every state s, if (s, o) € Z(I) then o € ann(s, (¢, #)) (meaning, by Proposi-
tion 1 that (8, O') ':I(K) ¢)

3.3 First-Order Model Checking, Syntactically

To turn the semantic procedure described above into a syntactic one, we replace the
valuation sets ann(s, n) by first-order formulas fo-ann(s, ») describing them. We have
to check that indeed each step of the computation has a syntactic counterpart.



The initialization of terminal nodes with the formula in the node directly gives us
a first-order formula. In analogy to the semantical initialization, minimal nodes are
initialized to ff and maximal nodes are initialized to tt. Disjunction, conjunction and
first-order quantification are modeled by the respective formula operators. It remains
to define the next-step computations. Starting with a finite first-order Kripke structure,
we will have only finitely many successors to each (s,n). Let n = (QX¢,W) and
(s,n) ALN (s',n'), where a = {v;,:=7,...v;, :=7,v;, :=t;,,...v;:=t;, }, and let
fo-ann(s’, n’) be a first-order description of ann(s’, »’). Then

; -bV (Vvil, ey Vi fo-ann(s’, n’)) [tj1/vj17 ceey tjz/vjz] forQ=A

P { b A (Elvil, ey V. fo-ann(s’, n’)) [tj1/vj17 ceey tjl/le] forQ=E

describes the contribution of that successor to fo-ann'(s,n). Now, if Q = A then
fo-ann' (s, ) is the conjunction of all p’ and if Q = E then fo-ann'(s, n) is the dis-
junction of all p’. The quantification over the input values stored in the variables v,
enables us, differing from [5], to cope with verification tasks where unboundedly many
inputs are relevant.

The first-order description provides us with a syntactic procedure for first-order
model checking that performs the same steps as the semantical process, except that ter-
mination may be harder to detect. To detect stabilization, we permit any kind of formula
rewriting. If syntactic equality was the criterion for stabilization, a syntactic procedure
would not even terminate for trivial problem instances. On the other hand, capturing
propositional reasoning already seems to be sufficient for interesting applications. This
is the case in our example.

Proposition 3. If the syntactic model checking terminatesthen K = ¢ if and only if
for every initial state (s, b) € I, the condition b impliesfo-ann(s, (¢, #)).

Note that, Proposition 3 is independent of any particular interpretation Z. We call the
generated result of the syntactic model checking for K and ¢ to be the verification

condition, which is
ve(K, @)=« \ (s p)er b = fo-ann(s, (¢, 0)).

Thus, K = ¢ iff | ve(K, ¢). Termination of the syntactic annotation process is dif-
ficult to characterize. It depends on properties of the cycles in the product structure. In
case of a data-independent system, the procedure can easily be seen to behave well, but
there are far more interesting examples. If a cycle does not contain input, [5] provides
a sufficient criterion. Even inputs are not harmful if tests do not interfere unrestricted,
as for instance our running example shows. A more thorough treatment of this question
must be deferred to a full version of this paper.

4 First-Order Model Checking, BDD-Based

First-order explicit model checking is time-consuming and only partly automatic. Thus
the syntactic model-checking procedure above would not be terribly efficient if imple-
mented. Our approach is based on the idea of combining BDD procedures for finite
(small) data domains with first-order representations for infinite or large data domains.
We assume that the variables v of the Kripke structure and quantified variables w from
the FO-CTL specification are split accordingly into two classes : Control variables €
whose valuations will be represented by BDDs, and data variables D whose valuations
will be represented by first-order predicates.



First-order data predicates enter the BDD representation of an annotation in the
form of propositions, which are atomic for the BDD. I.e., the BDD refers via proposition
names to first-order formulas. Thus, one part of an annotation BDD B represents sets
of control valuations, as an ordinary BDD would do. The rest describes what is left of
fo-ann(s, n) after partial evaluation w.r.t. control values : first-order formulas, which are
viewed as boolean combinations of data propositions. The meaning of the proposition
names are kept in a separate proposition table. A more detailed description is given in

the following subsection.

) To the left, the general BDD form with con- P
7N trol variables and proposition variables is
/N . o . q 1
S e N\ depicted. A specific example BDD is shown
NGy

to the right. It represents the first-order for-
mula ¢; — (g3 V alarm=tt) that is the an-
notation of node sy : ¢2,1 — ¢2,2 in oOUr

AN
it ff example below. @

4.1 Representing and Manipulating Data-Dependent For mulas

N
E
w

The propositiontable includes, for each proposition variable ¢;, the syntactical descrip-
tion of the first-order formula it represents and the set of data variables appearing free in
that formula. Note that a proposition does not contain any control variables. The syntax
of a proposition may include propositions which are defined earlier in the table. We say
that a set of propositions covers a first-order formula, if the formula can be written as a
boolean combination of these.

Operations: Assignments to be performed along transitions are reflected during model
checking by changes to the annotations fo-ann(s, n). The effect of taking a transition
on control variables is captured canonically using (functional) BDDs.

Assignments of data terms affect the annotations and hence the proposition table.
Substitutions can be distributed to single propositions. They may lead to the introduc-
tion of new entries in the proposition table, if the result is not already covered by the
present set. In our example (see Section 4.3) we apply the data assignment k:=1 and
the random assignment 1 : =7 to a proposition ¢ which represents 1-k>>80. Substituting
1’ for 1 and 1 for k yields the new proposition ¢’ = 1’-1>80. Quantifications have
to be applied to whole boolean combinations, and they may enforce new propositions,
too, e.g. ¢” = V1. 1’-1>80. Technically, we maintain a substitution table to manage
the transformation which is induced on propositions by data assignments. E.g. it would
contain ¢” /¢ to represent the substitution and quantification effect on q.

Restriction: separate control and data terms We will restrict ourselves to the simple
case of a restricted interaction between control and data. This restriction concerns terms
in the first-order Kripke structure and specification, but not the dynamically generated
formulas fo-ann(s, n). We say that control and data are separated, if

— right-hand sides of assignments to data variables depend only on data variables,
— right-hand sides of assignments to control variables, conditions and boolean sub-
formulas of the specification are control terms, which are generated by the rules:

ctrl = A€ A|ceC|b(D)|flctrl,...,ctrl)



Intuitively, this means that we may derive a boolean value from data to influence control.
Similarly, control can of course influence data via conditions in the first-order structure
which enable or disable transitions. The restriction ensures that we are able to represent
formulas that are generated during the syntactic annotation process as described above.
We conjecture that it is not strictly necessary to impose that restriction. Removing it
would complicate our procedure, while its practical merits are debatable.

4.2 Execution

In this section we follow the syntactic model-checking procedure described in Section
3.3, except that now the annotations fo-ann(s, n) are represented by BDDs and the
annotating process is done partially symbolically.

Initialization: As described in Section 3.3, terminal, minimal and maximal nodes of
the product structure are initialized. Node annotations that contain pure control terms
(without data variables) are stored as BDDs. In contrast, data dependencies are intro-
duced into the proposition table together with a name ¢ and a link to a single BDD node.
This node represents the data proposition in the annotation.

Executing a step: If the annotation fo-ann(s, n) that has to be computed for some
node (s,n) is a boolean combination of (already represented) subformulas then the
representation of fo-ann(s, n) is the result of standard operations on BDDs.

Next-step computations of the model checker can be represented as purely boolean
operations if no extensions to the proposition table are necessary and no quantifications
have to be performed. Otherwise, we can carry out the substitution step symbolically,
by enriching the proposition set on demand.

To compute the contribution of a transition s — s’ inan AX or EX evaluation we
proceed as follows: we check whether the substitution table is defined for all proposi-
tions occurring in the BDD for the successor state. If not, we extend the proposition and
substitution table accordingly. Also, there have to be propositions covering the boolean
data terms in b and in assignments to control variables. The control transformations are
captured in a second BDD, which has to be computed only once for the action.

Then, we compute the effect of the assignments as in a conventional symbolic model
checker. If random assignments to data do occur in a, we have to perform the quantifi-
cation afterwards. To that end, we extend, if necessary, the proposition table by new
propositions with quantified variables and replace the affected parts in the BDDs by the
new proposition variables. Finally, we can add the effect of the condition b. As a result,
we get a BDD which represents the first-order formula fo-ann(s, n) from the syntactic
model-checking procedure.

4.3 Application tothe Example
In the running example, the only control variable is alarm, whereas k, 1 and x are data.
The proposition table is initialized by ¢1, ¢2 and ¢s while the other rows in the table
below are filled during a run of the algorithm. Starting the model checking bottom-up
with the atomic propositions yields the annotation £f for node s;:in and therefore —
after some steps — the annotation tt for the left subtableau node s;:¢;. This annotation
can be found quickly by performing control pruning as described in Section 5.

The right side of the product structure (on page 6) needs some more attention. \We
initialize the atoms s : in with tt, so : 1-x > 100 with ¢; and s; : alarm=tt with



alarm=tt. The annotation of node s, : ¢35 is computed according to the definition in
Section 3.3 along both transitions s, — s;. The first transition yields —¢3 V tt=tt and
the second one yields g3 V alarm=tt. Their conjunction simplifies to g3 V alarm=tt.
Quantification is not necessary here, because both assignments are regular. Thus we get
for the node s, : @21 — ¢2 2 the annotation ¢; — (g3 V alarm=tt).

name proposition data var| lname proposition data var
g1 1-x>100 1 ds V1. (ga —q5) 1
g2 1=x 1 qr q2[1°°/1°] = 1’°=x 1
g3 1-k>80 1,k ||gs qs[17°/1] 1
qs q1[1°/1]1 = 1°-x>100 1’ q9 V1. (g7 — gs)

g5 ¢q3[(1’,1)/(1,k)] = 1°-1>80 1°,1||lqi0 V x. g9

In the next step of the algorithm the transition s; — s5 is used to manipulate this
formula. alarm is replaced by ££. ¢; and g3 depend on that is substituted by the fresh
variable I’ while & is substituted by /. Afterwards !’ is quantified. Note how we omit
name clashes when substituting and quantifying /. The generated terms are stored in
the proposition table, the substitutions are stored in the substitution table. Finally this
step yields ¢ as annotation for node s, : AX (¢2,1 — ¢2,2). The formula ¢¢ does not
change in the next bottom-up step of the model checking algorithm and also annotates
st ¢1,2. Thisyields g2 — ¢ for the node s, : ¢4.

When we start the fixed point computation with annotations tt and ¢ — ¢s and
then step through both nodes in the loop we reach after some steps the stable description
(g2 = gs) A go for node s; : AG ¢ and g for node s; : AG ¢1.

The last step computes V. go as proof obligation for node s : ¢. Slightly simplified,
this obligation states Va, 1.l — 2« > 100 — [ — 2 > 80. Since this formula is a tautology,
the first-order Kripke structure fulfills the specification.

5 Optimization: Control Pruning

Control pruning is an optimization method that allows us to reduce the size of the prod-
uct structure before the annotation procedure is applied speeding up this procedure. To
this end, we will modify the procedure of computing annotations by permitting approx-
imate computations for nodes, whose descendants are not yet stable.

In the simple version discussed here, we introduce a specific proposition ” L which
replaces all data conditions. L represents uncertainty. A BDD B depending on it yields
a lower approximation of the correct annotation for L= ff (i.e., B[ff/ L] implies the
annotation), and an upper approximation for 1 = tt. In favorable cases, some annota-
tions can be computed to a value not depending on L even if some annotations below
still contain it. This permits us to reduce the size of the product structure to be annotated
in the accurate procedure, so it also helps to keep the number of propositions small. The
process of eliminating all irrelevant nodes after the simple approximation computation
where all data propositions are replaced by _L is called control pruning, because it uses
only control information to simplify the verification problem.

The approximation of annotations of the left part of the product structure of our
example (the part below node s; : AG ¢, in the picture on page 6) is presented on the
next page. The approximation proves that the annotations below node s; : ¢1 need not
be considered again during a detailed model checking process, because the annotation



of this node already yields tt. ..
Applying approximation to the tree be- |

low the node s; : ¢1 (right side in the 5101

product structure on page 6) yields L for

this node. Thus no optimization is possi-

ble there. 51% ¢11 51: 01,2

6 Conclusion

tt
s1:in  sp:1=x  s9: AX ((|;5271 — ¢2,2)
tt

The most attractive aspect of our proce- & | [ L |

dure is its closeness to standard symbolic l

model checking. It is an extension which

permits to treat a selected set of variables 51: 92,1 = 02,2
differently. In fact, the first-order proper-

ties can be viewed as abstractions of the

data values which are precise wrt. anal- $1: ¢21 $1: P
ysed property. In contrast to other frame-
works of abstraction, they are computed

automatically. Furthermore, they are tai- s1:in 51:1-x>100 s,:alarm=tt
lored to the specification to be checked [ ff | [ L |

and allow partial evaluation of control to

reduce the analysis effort. The method is currently implemented on top of a standard
BDD package at OFFIS and will be employed in the context of verification of hybrid
ECUs in automotive applications.
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