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Abstract. In this paper we describe the development of model check-

ing from BDD-based verification, through SAT-based bug finding, to

Interpolation-based verification.
Model checking is an automatic approach to formally verifying that a

given system satisfies a given specification. BDD-based Symbolic Model

Checking (SMC) was the first to enable model checking of real-life de-
signs with a few hundreds of state elements. Currently, SAT-based model

checking is the most widely used method for verifying industrial designs.

This is due to its ability to handle designs with thousands of state ele-
ments and more. Its main drawback, however, is its orientation towards

”bug-hunting” rather than full verification.
In this paper we present two SAT-based approaches to full verifica-

tion. The approaches combine BMC with interpolation or interpolation-

sequence in order to compute an over-approximated set of the system’s
reachable states while checking that the specification is not violated. We

compare the two methods both algorithmically and experimentally and

conclude that they are incomparable.
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1. Introduction

Computerized systems dominate almost every aspect of our lives and their correct
behavior is essential. Model checking [15] is an automated verification technique
for checking whether a given system satisfies a desired property. Unlike testing
or simulation based verification, model checking tools are exhaustive in the sense
that they traverse all behaviors of the system, and either confirm that the system
behaves correctly or present a counterexample.

Model checking has been successfully applied to verifying hardware and soft-
ware systems. However, with the rapid increase in size and complexity of com-
puterized systems, there is a constant need for a similar increase in verification
capabilities.

In this paper we will survey several model checking techniques which can
improve model checking applicability and scalability. We will start with the “old
fashion” techniques of BDD-based Symbolic Model Checking (SMC) [9] and SAT-



based Bounded Model Checking (BMC) [7]. We will then proceed to using inter-
polation and interpolation-sequence for SAT-based model checking.

One of the main limitations of model checking is the state explosion problem
which arises due to the huge state space of the checked systems. The size of the
model induces high memory and time requirements that may make model check-
ing infeasible. Traditionally, BDD-based methods are known to suffer from high
memory requirements while SAT-based methods have high time requirements.
Much research efforts have been invested along the years in trying to solve this
problem.

The first significant solution was the introduction of BDDs [8] into model
checking. BDD-based Symbolic Model Checking (SMC) [9] enabled model checking
of real-life hardware designs with a few hundreds of state elements. However,
current design blocks with well-defined functionality typically have thousands of
state elements and more. To handle designs of that scale, SAT-based Bounded
Model Checking (BMC) [7] has been developed. BMC is currently the most widely
used method for formal verification of industrial designs. Its main drawback,
however, is its orientation towards ”bug-hunting” rather than full verification.

Several works extend BMC for full verification. [6] defines a Reachability Di-
ameter, which sets a bound on the number of BMC iterations needed for full ver-
ification. This bound, however, is usually hard to compute. Moreover, the bound
is often very large and therefore the resulting formulas are too large for a SAT
solver to handle.

[35] suggests to use Induction for full verification. This method uses the
BMC check as the induction base. Then, the induction step is determined by
checking a second formula. The induction method works automatically mainly
for simple local properties. For complex properties, the user has to come up with
a good inductive invariant. A completely different approach is the Proof-Based
Abstraction [32] which exploits BMC to determine an abstract model on which
BDD-based model checking can be applied.

In this paper we present two SAT-based approaches to full verification which
combine BMC with interpolation [17] or interpolation-sequence [24,31]. The pro-
posed methods compute an over-approximated set of the system’s reachable states
while checking that the specification is not violated. The process terminates with
either a counterexample produced by BMC, or by reaching a fixpoint, indicating
that no more reachable states will be found. In the latter case, since no violation
of the formula has been encountered so far, it is guaranteed that the property
holds.

The two approaches result in different traversals of the sets of reachable states,
thus their convergence may differ. We compare them both on the algorithmic level
and by running experiments. As is often the case with model checking techniques
and tools, none is overall superior to the other.

In order to compare the methods experimentally we implemented them within
Intel’s verification tool. All experiments were conducted on models from Intel’s
Sandy Bridge micro-architecture. The checked properties are real specifications,
used to verify those designs. The experiments compare various parameters of the
two methods. In all our experiments, when a fixpoint could be reached only at a
high bound, the interpolation-sequence based (ISB) algorithm performed better



than the interpolation based (IB) algorithm. The IB algorithm, on the other
hand, performed better when a fixpoint could be reached at a low bound. Falsified
properties always favored the ISB algorithm.

When describing the two methods we assume a safety property of the form
AGq, where q is a propositional formula. This, however, does not restrict their
generality since model checking of liveness properties can be reduced to handling
safety properties [4]. Further, model checking of safety properties can be reduced
to handling properties of the form AGq [25].

2. Model Checking

Temporal logic model checking [15] is an automatic approach to formally verifying
that a given system satisfies a given specification. The system is often modelled
by a finite state transition graph called Kripke structure and the specification
is written in a temporal logic. Determining whether a model satisfies a given
specification is often based on an exploration of the model’s state space in a search
for violations of the specification.

Definition 2.1. Given a set of atomic propositions AP , a Kripke structure M is the
quadruple M = (S, INIT,TR, L) where S is a finite set of states, INIT ⊆ S is a
set of initial states and TR ⊆ S×S is a total transition relation. That is, for every
s ∈ S there exists s′ ∈ S such that (s, s′) ∈ TR. Additionally, L : S → P(AP )
is the labeling function which associates with every state s ∈ S the set L(s) of
atomic propositions true in s.

A path in a Kripke structure M is a sequence of states π = (s0, s1, . . .) such
that for all i ≥ 0, si ∈ S and (si, si+1) ∈ TR. The length of a path is denoted by
|π|. If π is infinite then |π| =∞. If π = (s0, s1, . . . , sn) then |π| = n. A path is an
initial path when s0 ∈ INIT. We sometimes refer to a prefix of a path as a path
as well.

A formula in Linear Temporal Logic (LTL) [15,34] is of the form Af where f
is a path formula. A model M satisfies an LTL property Af if all infinite initial
paths in M satisfy f . If there exists an infinite initial path not satisfying f , this
path is defined to be a counterexample.

In this paper we consider a subset of LTL formulas of the form AG q, where
q is a propositional formula. As mentioned before, this does not restrict the gen-
erality of the suggested methods since model checking of liveness properties can
be reduced to handling safety properties [4]. Further, model checking of safety
properties can be reduced to handling properties of the form AG q [25].

The model checking problem is the problem of determining whether a given
model satisfies a given property. Let M be a model, Reach be the set of reachable
states in M , and f = AG q be a property. If for every s ∈ Reach, L(s) |= q then
the property holds in M . On the other hand, if there exists a state s ∈ Reach
such that L(s) |= ¬q then there exists an initial path π = s0, s1, . . . , sn such that
sn = s. The path π is a counterexample for the property f .

We would sometimes like to represent a Kripke structure by means of propo-
sitional formulas (or, equivalently, Boolean functions). In order to do so, we de-



fine a set of Boolean state variables, denoted V . When |V | = n, a state s ∈ S
is represented by a vector in the set {0, 1}n. Thus, s is a valuation of the state
variables in V . A set of states S′ can be represented by a formula η over V , where
the satisfying assignments of η represent the states in S′. By abuse of notation
we will refer to a formula η over V as a set of states and use the notion s ∈ η
for states represented by η. For some variable v, v′ is used to denote the value of
v after one time unit. The set of these variables is denoted by V ′. In the general
case V i is used to denote the variables in V after i time units (thus, V 0 ≡ V ).
Let η be a formula over V i, the formula η[V i ← V j ] is identical to η except that
for each variable v ∈ V , vi is replaced with vj .

Model checking has been successfully applied in hardware verification, and is
emerging as an industrial standard tool for hardware design . A partial list of tools
for hardware verification includes SMV [28] and NuSMV [13], FormalCheck [21],
RuleBase [2], and Forecast [19]. In recent years, several tools for model checking
of software have been developed and applied to non-trivial examples. A partial
list consists of SPIN [23], Bandera [16], Java PathFinder [22], SLAM, Bebop, and
Zing [1], Blast [3], Magic [11], and CBMC [14]. An extensive overview of model
checking algorithms can be found in [15].

The main technical challenge in model checking is the state explosion problem
which occurs if the system is a composition of several components or if the system
variables range over large domains.

An explicit state model checker is a program which performs model check-
ing directly on a Kripke structure. SPIN [23] is an example of a successful tool
of that kind. Large models are often handled implicitly, based on a symbolic
representation of the Kripke structure by means of Boolean functions or propo-
sitional formulas. Two widely used such approaches are the BDD-based model
checking [10,28] and the SAT-based bounded model checking [5], described in the
following sections.

3. BDD-Based Model Checking

Ordered Binary Decision Diagrams (BDDs) [8] are canonical representations of
Boolean functions. They are often concise in their memory requirements. Fur-
thermore, most operations needed for model checking can be defined in terms of
Boolean operations on Boolean functions and can be implemented efficiently with
BDDs.

In BDD-based (also called symbolic) model checking (SMC) sets of states
are represented by Boolean functions over the set of Boolean state variables V ,
as explained in the previous section. Those functions are represented by BDDs.
The transition relation of the Kripke structure is also represented by a Boolean
function (and thus by a BDD), over the sets V and V ′ of variables representing
current and next states, respectively.

BDDs are sometimes, but not always, exponentially smaller than explicit
representation of the corresponding Boolean functions. In such cases, symbolic
verification is successful.

Since BDDs are particularly suitable for representing set of states, BDD-based
algorithms are based on operations on sets, which are implemented by means of



operations on BDDs (or the corresponding Boolean function). For example, union
and intersection of sets correspond to disjunction and conjunction of the BDDs
representing those sets.

Two special operations are central to model checking. Given a set of states
Q, the image computation computes the set of successors of states in Q:

Image(Q) := {t | ∃s[TR(s, t) ∧ Q(s)]}.

The preimage computation computes the set of the predecessors of states in Q:

Preimage(Q) := {s | ∃t[TR(s, t) ∧ Q(t)]}.

Unfortunately, in contrast to pure Boolean operations, these operations are not
efficiently computable [28], and their computation is a major bottleneck in sym-
bolic model checking.

We conclude this section by demonstrating a BDD-based algorithm for model
checking the property AG q, for some atomic proposition q. The algorithm ma-
nipulates sets of states represented as BDDs. It checks whether M |= AG q by
computing the set of reachable states starting from the set of initial states. It
iteratively applies the image computation in order to find the set of successors of
the current set of states. If a reachable state that does not satisfy q is found, then
the procedure returns “M 6|= AG q”. Otherwise, when all reachable states have
been found, the procedure returns “M |= AG q”. We assume that the structure M
is given by the following BDDs: TR(V, V ′) is the BDD representing the transition
relation, INIT(V ) represents the set of initial states, and for each p ∈ AP , Sp(V )
represents the set of states in M that satisfy p. Figure 1 presents the algorithm.

1: procedure CheckAG(Sq)
2: Reach := INIT
3: New := INIT
4: while New 6= ∅ do
5: if New ∩ Sq 6= ∅ then return “M 6|= AG q” // New 6⊆ Sq

6: end if
7: New := Image(New)
8: New := New \Reach
9: Reach := Reach ∪New

10: end while
11: return “M |= AG q”
12: end procedure

Figure 1. The procedure CheckAG for checking the formula f = AG q

4. Bounded Model Checking

Many problems, including some versions of model checking, can naturally be
translated into the satisfiability problem of the propositional calculus. The satisfi-



ability problem is known to be NP-complete. Nevertheless, modern SAT-solvers,

developed in recent years, can handle formulas with several thousands of variables

within a few seconds. SAT-solvers such as Grasp [26], Prover [36], Chaff [33], Min-

iSAT [18], and many others, are based on sophisticated learning techniques and

data structures that accelerate the search for a satisfying assignment, if exists.

A SAT solver is a complete decision procedure that given a propositional

formula, determines whether the formula is satisfiable or unsatisfiable. Most SAT

solvers assume a formula in Conjunctive Normal Form (CNF), consisting of a

conjunction of a set of clauses, each of which is a disjunction of propositional

variables or their negation. A CNF formula is satisfiable if there exists a satisfying

assignment for which every clause in the set is evaluated to >. If the clause set is

satisfiable then the SAT solver returns a satisfying assignment for it. If it is not

satisfiable (unsatisfiable), meaning, it has no satisfying assignment, then modern

SAT solvers produce a proof of unsatisfiability [32,39]. The proof of unsatisfiability

has many useful applications. We will introduce one of them in the next section.

Below we describe a simple way to exploit satisfiability for bounded model

checking of properties of the form AG q, where q is a Boolean formula.

Bounded model checking (BMC) [7] is an iterative process for checking prop-

erties of a given structure up to a given bound. Let M be a Kripke structure and

f = AGq be the property to be verified. Given a bound k, BMC either finds a

counterexample of length k or less for f in M , or concludes that there is no such

counterexample. In order to search for a counterexample of length k the following

propositional formula is built:

Formula 1. ϕk
M (f) = INIT(V 0)∧TR(V 0, V 1)∧TR(V 1, V 2)∧. . .∧TR(V k−1, V k)∧

(¬q(V k))

ϕk
M (f) is then passed to a SAT solver which searches for a satisfying assign-

ment. If there exists a satisfying assignment for ϕk
M (f) then the property is vio-

lated, since there exists a path of M of length k violating the property. In order

to conclude that there is no counterexample of length k or less, BMC iterates all

lengths from 0 up to the given bound k. At each iteration a SAT procedure is

invoked.

When M and f are obvious from the context we omit them from the formula

ϕk
M (f) denoting it as ϕk. The BMC algorithm is described in Figure 2.

The main drawback of this approach is its incompleteness. It can only guar-

antee that there is no counterexample of size smaller or equal to k. It cannot

guarantee that there is no counterexample of size greater than k.

Thus, this method is mainly suitable for refutation. Verification is obtained

only if the bound k exceeds the length of the longest path among all shortest

paths from an initial state to some state in M . In practice, it is hard to compute

this bound and even when known, it is often too large to handle. Several methods

for full verification with SAT have been suggested, such as induction [35], ALL-

SAT [12,20,29], and interpolation [27,30,38]. In the rest of the paper we will focus

on SAT-based verification with interpolation.



1: function BMC(M ,f ,k)
2: i := 0
3: while i ≤ k do
4: build ϕi

M (f)
5: result = SAT (ϕi

M (f))
6: if result = true then
7: return cex // returning the counterexample
8: else
9: i = i+ 1

10: end if
11: end while
12: return No cex for bound k
13: end function

Figure 2. Bounded model checking

5. Interpolation

In this section we introduce two notions, interpolation [17] and interpolation-
sequence [24] that, when combined with BMC can provide full program verifica-
tion.

Throughout the paper we denote the value false as ⊥ and the value true as >.
For a formula X, L(X) is the set of variables appearing in X. For a set of formulas
{X1, . . . , Xn} we will use L(X1, . . . , Xn) to denote the variables appearing in
X1, . . . , Xn. That is, L(X1, . . . , Xn) = L(X1) ∪ . . . ∪ L(Xn).

Definition 5.1. Let (A,B) be a pair of formulas such that A ∧ B ≡ ⊥. The
interpolant for (A,B) is a formula I such that:

• A⇒ I.
• I ∧B ≡ ⊥.
• L(I) ⊆ L(A) ∩ L(B).

The interpolant can be viewed as the part of A that is sufficient to contradict
B. As mentioned above, modern SAT solvers produce a proof of unsatisfiability
if the checked formula is unsatisfiable. An interpolant can be extracted from a
proof of unsatisfiability [30], where different proofs yield different interpolants.

A similar notion can be defined when we have a sequence of formulas whose
conjunction is unsatisfiable.

Definition 5.2. Let Γ = {A1, A2, . . . , An} be a set of formulas such that
∧

Γ ≡ ⊥.
That is

∧
Γ = A1 ∧ . . . ∧An is unsatisfiable. An interpolation-sequence for Γ is a

set {I0, I1, . . . , In} such that:

1. I0 ≡ > and In ≡ ⊥
2. For every 0 ≤ j < n it holds that Ij ∧Aj+1 ⇒ Ij+1

3. For every 0 < j < n it holds that L(Ij) ⊆ L(A1, . . . , Aj)∩L(Aj+1, . . . , An)

Computing an interpolation-sequence for a sequence of formulas is done in
the following way: for each Ii, 0 < i < n, the sequence of formulas is partitioned



in a different way such that Ii is the interpolant for the formulas A(i) =
i∧

j=1

Aj

and B(i) =
n∧

j=i+1

Aj . In fact, all interpolants Ii in the sequence can be computed

efficiently at once, by a single traversal of a given proof of unsatisfiability [38].

Theorem 5.3. Let Γ = {A1, A2, . . . , An} be a set of formulas such that
∧

Γ ≡ ⊥
and let Π be a proof of unsatisfiability for

∧
Γ. For every 1 ≤ i < n let us define

A(i) = A1 ∧ . . . ∧ Ai and B(i) = Ai+1 ∧ . . . ∧ An. Let Ii be the interpolant for
the pair (A(i), B(i)) extracted using Π then the set {>, I1, I2, . . . , In−1,⊥} is an
interpolant sequence for Γ.

6. Exploiting Interpolation-Sequence in Model Checking

In this section we present a SAT-based algorithm for full verification (some-
times also called unbounded model checking (UMC)), which combines BMC and
interpolation-sequence [38]. BMC is used to search for counterexamples while the
interpolation-sequence is used to produce over-approximated sets of reachable
states and to check for termination.

Interpolation-sequence has been introduced and used in [24] and [31]. In [24]
it is used for computing an abstract model based on predicate abstraction for
software model checking. In [31] interpolation-sequence is used for software model
checking and lazy abstraction and is applied to individual execution paths in the
control flow graph. The method presented in this section exploits interpolation-
sequence in a different manner. In particular, it is applied to the whole model for
imitating SMC.

From this point and on, we will use M to denote the Kripke structure repre-
senting the model and f = AGq for a propositional formula q, as the property to
be verified.

In order to better understand the algorithm and the motivation behind it, we
first review some basic concepts of symbolic model checking (SMC).

6.1. Revisiting Symbolic Reachability Analysis

SMC performs forward reachability analysis by computing sets of reachable states
Sj where j is the number of transitions needed to reach a state in Sj when starting
from the initial states. Further, for every j ≥ 1, Sj(V ) ∧ TR(V, V ′) ≡ Sj+1(V ′).
Once Sj is computed, if it contains states violating q, a counterexample of length i

is found and returned. Otherwise, if Sj ⊆
j−1⋃
i=1

Si then a fixpoint has been reached,

meaning that all reachable states have been found already. If no reachable state
violates the property then the algorithm concludes that M |= f .

6.2. Interpolation-Sequence Based Model Checking (ISB)

The method presented in this section demonstrates how over-approximated sets,
similar to Si in their characteristics, can be extracted from BMC, based on
interpolation-sequences.



Informally, we will use the notion of fixpoint when we can conclude that all
reachable states in the model have been visited1.

Note that, the interpolation-sequence exists for a bound N only when there
is no counterexample of length N . In case a counterexample exists, BMC returns
a counterexample and the interpolation-sequence is not needed.

Definition 6.1. A BMC-partitioning for ϕN is the set Γ = {A1, A2, . . . , AN+1}
of formulas such that A1 = INIT(V 0) ∧ TR(V 0, V 1), for every 2 ≤ i ≤ N Ai =

TR(V i−1, V i) and AN+1 = ¬q(V N ). Note that ϕN =
N+1∧
i=1

Ai (=
∧

Γ).

For a bound N , consider a BMC formula ϕN and its BMC-partitioning
Γ. In case ϕN is unsatisfiable, its interpolation-sequence is denoted by ĪN =
(IN0 , I

N
1 , . . . , I

N
N+1). Note that the BMC-partitioning for ϕN contains N + 1 el-

ements and therefore the interpolation-sequence contains N + 2 elements where
the first element and the last one are always > and ⊥, respectively.

Next, we intuitively explain our method. We start with N = 1. Consider
the formula ϕ1 and its BMC-partitioning: {A1, A2}. In case ϕ1 is unsatisfiable,
there exists an interpolation-sequence of the form Ī1 = (I10 = >, I11 , I12 = ⊥). By
Definition 5.2, S1 ⊆ I11 , where S1 is the set of states reachable from the initial
states in one transition. This is because > ∧ A1 ⇒ I11 where A1 = INIT(V 0) ∧
TR(V 0, V 1). Also, I11 ∧ ¬q(V 1) is unsatisfiable, since I11 ∧ A2 ⇒ ⊥, where A2 =
¬q(V 1). Therefore, I11 |= q.

In the next BMC iteration, for N = 2, consider ϕ2 and its BMC-partitioning
{A1, A2, A3}. In case ϕ2 is unsatisfiable, we get Ī2 = (>, I21 , I22 ,⊥). Here too,
S1 ⊆ I21 and the states reachable from it in one transition are a subset of I22 since
I21 ∧ A2 ⇒ I22 . Also, S2 ⊆ I22 and I22 |= q. Let us define the sets I1 = I11 ∧ I21 and
I2 = I22 . These sets have the following properties, S1 ⊆ I1, S2 ⊆ I2, I1 |= q and
I2 |= q. Moreover, I1[V 1 ← V ] ∧ TR(V, V ′)⇒ I2[V 2 ← V ′].

In the general case if ϕN is unsatisfiable then for every 1 ≤ j ≤ N , Sj ⊆ INj .

If we now define Ij =
N∧

k=j

Ikj then for every 1 ≤ j ≤ N we get:

• Ij |= q since Ijj |= q.

• Ij∧TR(V, V ′)⇒ Ij+1 since Ikj ∧TR(V j , V j+1)⇒ Ikj+1 for every 1 ≤ k ≤ N
• Sj ⊆ Ij since Sj ⊆ Ikj for every 1 ≤ k ≤ N .

As a result, the sets I1, I2, . . . , IN can be used to determine if M |= f . In-
tuitively, the sets Ij are similar to the sets Sj computed by SMC except that
they are over-approximations of Sj . Therefore, these sets can be used to imitate
the forward reachability analysis of the model’s state-space by means of an over-
approximation. This is done in the following manner. BMC runs as usual with one
extension. After checking bound N , if a counterexample is found, the algorithm
terminates. Otherwise, the interpolation-sequence ĪN is extracted and the sets Ij

1Since we compute over-approximated sets of reachable states, the computed sets are not
monotonic. Therefore, we cannot define a monotonic function g for which the existence of a

fixpoint is guaranteed.



for 1 ≤ j ≤ N are updated. If Ij ⇒
j−1∨
i=1

Ii for some 1 ≤ j ≤ N , then we conclude

that a fixpoint has been reached and all reachable states have been visited. Thus,
M |= f . If no fixpoint is found, the bound N is increased and the computation is
repeated for N + 1.

Next, we explain why the ISB algorithm uses Ij =
N∧

k=j

Ikj rather than INj in

its Nth iteration. Informally, the following facts are needed in order to guarantee
the correctness of the algorithm. For every 1 ≤ j ≤ N we need:

1. Ij should satisfy q.
2. Ij(V ) ∧ TR(V, V ′)⇒ Ij+1(V ′) for j 6= N .
3. Sj ⊆ Ij .

This means that the algorithm cannot be implemented using the extracted
interpolation sequence ĪN alone. This is because ĪN does not satisfy condition
(1): while INN |= q, INj for j 6= N , does not necessarily satisfy q. This can be

remedied by conjuncting each INj with Ijj . However, now condition (2) no longer

holds. Taking Ij =
N∧

k=j

Ikj results in a set with all three properties.

Definition 6.2. If no counterexample of length N or less exists in M , then

Ij =
N∧

k=j

Ikj [V j ← V ] where Ikj is the j-th element in the interpolation-sequence

extracted for the BMC-partitioning of ϕk. The reachability vector is defined to
be Ī = (I1, I2, . . . , IN ).

The algorithms for updating the reachablility vector and checking for a fix-
point are described in Figure 3 and Figure 4, respectively. The complete model
checking algorithm using the method described above is given in Figure 5.

It is important to note that a call to UpdateReachability changes all
elements of the reachability vector. Therefore, the function FixpointReached
cannot count on inclusion checks done in previous iterations and needs to search
for a fixpoint at every point in Ī. Moreover, it is not sufficient to check for inclusion

of only the last element IN of Ī. Indeed, if for any j ≤ N , Ij ⇒
j−1∨
i=1

Ii then all

reachable states have been found already. However, the implication IN ⇒
N−1∨
i=1

Ii

might not hold due to additional unreachable states in IN . This is because for
all 1 ≤ j < N , Ij+1 is an over-approximation of the states reachable from Ij
and not the exact image (That is, Ij ∧ TR(V, V ′) ⇒ Ij+1[V ← V ′] rather than
Ij ∧ TR(V, V ′) ≡ Ij+1[V ← V ′]).

6.3. Correctness of the ISB algorithm

The following lemmas and definition formalize the above explanation and prove
the correctness of the algorithm.



1: function UpdateReachable(Ī,Īk)
2: j = 1
3: while (j < k) do
4: Ij = Ij ∧ Ikj
5: Ī[j] = Ij
6: j = j + 1
7: end while
8: Ī[k] = Ikk
9: end function

Figure 3. Updating the reachability vector

1: function FixpointReached(Ī)
2: j = 2
3: while (j ≤ Ī .length) do

4: R =
j−1∨
k=1

Ik

5: ϕ = Ij ∧ ¬R // Negation of Ij ⇒ R
6: if (SAT(ϕ) == false) then return true
7: end if
8: j = j + 1
9: end while

10: return false
11: end function

Figure 4. Checking if a fixpoint has been reached

Lemma 6.3. If M does not have a counterexample of length N , then Sj ⊆
INj [V j ← V ] for every 1 ≤ j ≤ N and INN |= q.

Proof. M does not have a counterexample of length N . Therefore, the formula ϕN

is unsatisfiable. Let ĪN be the interpolation-sequence for the BMC-partitioning
of ϕN . By Definitions 5.2 and 6.1, for j = 1, > ∧ INIT(V 0) ∧ TR(V 0, V 1) ⇒ I11 .
For each 2 ≤ j ≤ N , INj ∧ TR(V j , V j+1)⇒ INj+1. Hence, Sj ⊆ INj . Definition 5.2

also state that INN ∧ ¬q(V N )⇒ ⊥ and therefore INN |= q.

Lemma 6.4. If M does not have a counterexample of length N or less, then Sj ⊆ Ij
and Ij |= q for every 1 ≤ j ≤ N .

Proof. For every j ≤ k ≤ N by Lemma 6.3 Sj ⊆ Ikj and Ijj |= q. Since Ij is the

conjunction of Ikj for every j ≤ k ≤ N , Sj ⊆ Ij and Ij |= q.

Lemma 6.5. Let Ī = (I1, I2, . . . , IN ) be the reachability vector. For every 1 ≤ j <
N , Ij ∧ TR(V, V ′)⇒ Ij+1[V ← V ′].

Proof. Definition 6.2 and 5.2 imply that Ij =
N∧

k=j

Ikj [V j ← V ] and that for every

j ≤ k ≤ N , Ikj−1 ∧ TR(V j−1, V j) ⇒ Ikj . We get Ij ∧ TR(V, V ′) ⇒ Ij+1[V ←
V ′].



1: function ISB(M ,f)
2: k := 0
3: result = BMC(M,f, 0)
4: if (result == cex) then
5: return cex
6: end if
7: Ī = ∅ // the reachability vector
8: while (true) do
9: k = k + 1

10: result = BMC(M,f, k)
11: if (result == cex) then
12: return cex
13: end if
14: Īk = (>, Ik1 , . . . , Ikk ,⊥)
15: UpdateReachable(Ī,Īk)
16: if (FixpointReached(Ī) == true) then
17: return true
18: end if
19: end while
20: end function

Figure 5. The ISB Algorithm

Theorem 6.6. Assume there is no path of length N or less violating f in M . If

there exist 1 < j ≤ N such that Ij ⇒
j−1∨
i=1

Ii, then M |= f .

Proof. By assumption, there is no path in M of length N or less that violates f .

We now show that given Ij ⇒
j−1∨
i=1

Ii we can conclude that there is no path of any

length violating f . Let R =
j−1∨
i=1

Ii. By assumption, Ij ⇒ R and by Lemma 6.5,

for every 1 ≤ i < j, Ii ∧TR(V i, V i+1)⇒ Ii+1. Thus, R(V )∧TR(V, V ′)⇒ R(V ′)
(1). Moreover, for every 1 ≤ i ≤ j the formula Ii∧¬q is unsatisfiable (since Ii |= q
by Lemma 6.4). Hence, R ∧ ¬q is unsatisfiable (2).

We can show by induction that all reachable states are in R∗ = R∨INIT. The
base case handles initial states. This holds trivially by the definition of R∗. Now let
us assume it holds for all states reachable in k steps. It should be proved for states
reachable in k+1 steps. Let sk+1 be a state reachable in k+1 steps from an initial
state. Let π = s0, s1, . . . , sk, sk+1 be an initial path to sk+1. By the induction
hypothesis sk ∈ R∗. From (1) we know that R[V ← V k] ∧ TR(V k, V k+1) ⇒
R[V ← V k+1]. Therefore, sk+1 ∈ R∗.

By assumption, INIT |= q since there is no path of length N or less violating
f . By that and (2), R∗ |= q. Thus, the set of reachable states satisfy q which
implies that M |= f .



Lemma 6.7. Suppose M |= f then there exists a bound N such that Ī =

(I1, I2, . . . , IN ) and there exists an index 1 < j ≤ N such that Ij ⇒
j−1∨
i=1

Ii.

Proof. The set of states S is finite. Let us define N = j = |S|+ 1. M |= f hence
for every 0 ≤ k ≤ N , ϕk is unsatisfiable. Thus, the interpolation-sequence Īk

exists for every 0 ≤ k ≤ N and by that the reachability vector Ī = (I1, I2, . . . , IN )

exists. Since |S| <∞ we get Ij ⇒
j−1∨
i=1

Ii.

Theorem 6.8. There exists a path π of length N such that π violates f if and only
if ISB terminates and returns cex.

Proof. Assume that the minimal violating path is of length N . For N − 1 there
is no path in M violating f . By Theorem 6.6 we get that for every j such that

1 ≤ j < N , Ij ⇒
j−1∨
i=1

Ii does not hold. Therefore, the algorithm cannot terminate

by returning true in the first N − 1 iterations. When the algorithm reaches the
N -th iteration, BMC(M,f,N) will return a counterexample and the algorithm
terminates. The other direction is immediate.

Theorem 6.9. For every model M and a property f = AGq there exists N such
that ISB terminates.

Proof. If M |= f it follows by Lemma 6.7 that the algorithm terminates and
returns true. If there is a path in M that violates f , it follows by Theorem 6.8
that the algorithm terminates and returns cex.

7. Interpolation Based Model Checking (IB)

In [30], interpolation has been suggested for the first time in order to obtain a
SAT-based model checking algorithm for full verification.

The algorithm combines BMC and Craig’s Interpolation [17]. Similarly to
the ISB algorithm presented in the previous section, the interpolant is used to
compute an over-approximation of the set of reachable states. However, the com-
putation is done differently. As before, the algorithm concludes that the property
holds when a fixpoint is reached during the computation of the reachable states
and none of the computed state violates the property.

The following definition is useful in explaining the interpolation based algo-
rithm. Recall that the verified property is of the form f = AGq.

Definition 7.1. For a set of states T , T is a Sj-approximation w.r.t N , where
1 ≤ j ≤ N , if the following two conditions hold: Sj ⊆ T and there is no path of
length (N − j) or less violating q, starting from a state s ∈ T . We write Sj �N T
to denote that T is a Sj-approximation w.r.t N .

The formula ϕk is used in BMC to represent a counterexample of length
exactly k. This formula can be modified to represent a counterexample of length



function CheckReachable(M ,f ,k)
R = M.INIT // Initialize R - initial states of M
if (BMC(M,f, 1, k) == cex) then

return cex
end if
M ′ = M
repeat

A = J(V 0) ∧ TR(V 0, V 1)

B = TR(V 1, V 2) ∧ . . . ∧ TR(V k−1, V k) ∧ (
k∨

j=1

¬q(V j))

J = SAT.getInterpolant(A,B)
if J ⊆ R then

return fixpoint
end if
R = R ∪ J
M ′.INIT = J

until (BMC(M ′, f, 1, k) == cex)
return abort

end function

Figure 6. Computing reachable states using interpolation and BMC with a specific bound k

l for 1 ≤ l ≤ k. We denote this formula by ϕ1,k and write BMC(M,f, 1, k) when
BMC runs on ϕ1,k.

Formula 2. ϕ1,k = INIT(V 0)∧TR(V 0, V 1)∧TR(V 1, V 2)∧ . . .∧TR(V k−1, V k)∧

(
k∨

j=1

¬q(V j))

Consider the following partitioning for ϕ1,k:

• A = INIT (V 0) ∧ TR(V 0, V 1)

• B =
k−1∧
i=1

TR(V i, V i+1) ∧ (
k∨

j=1

¬q(V j)).

Clearly ϕ1,k ≡ A∧B. Assume that ϕ1,k is unsatisfiable. By the interpolation
theorem [17], there exists an interpolant Jk

1 which, by Definition 5.1, has the
following properties:

• Jk
1 is defined over the variables of L(A) ∩ L(B), namely, V 1.

• A⇒ Jk
1 . Hence, S1 ⊆ Jk

1 .
• Jk

1 (V1)∧B is unsatisfiable. This means that there is no path of length k−1
or less, starting from Jk

1 , which violates q.

By the above we get that S1 �k J
k
1 . We can now proceed by replacing the

initial states of M with the computed interpolant Jk
1 . BMC is reinvoked with

the same bound k and with the modified model M ′ = (S, Jk
1 [V 1 ← V ],TR, L)

in which the initial states are Jk
1 . A new interpolant Jk

2 is then extracted. Jk
2

satisfies S2 �k+1 J
k
2 . It is important to notice that Jk

1 now satisfies S1 �k+1 J
k
1



since the BMC run on M ′ did not find a counterexample of length k starting from
a state in Jk

1 . In the general case we replace INIT with Jk
i and get Jk

i+1.
Figure 6 presents, for a given bound k, the computation of an over-

approximated set of reachable states. Note that after L iterations of the main loop
in CheckReachable we get L interpolants and for every 1 ≤ i ≤ L, Si �k+L J

k
i .

All computed states are collected in R. If at any iteration, the interpolant J is
contained in R, then all reachable states have been found with no violation of f .
CheckReachable then returns “fixpoint”.

On the other hand, if a counterexample is found on a modified model,
then CheckReachable(M ,f ,k) is aborted and CheckReachable(M ,f ,k+ 1)
is initiated. Recall that the counterexample has been obtained on an over-
approximated set of states and therefore might not represent a real counterexam-
ple in the original model. In case a real counterexample exists, it will be found
during a BMC run on the original model M for a larger bound.

In [37], an optimization for CheckReachable is suggested. If the current
bound is k and at the L-th iteration a counterexample is found, then Check-
Reachable is reinvoked with bound k + L (rather than k + 1). This is possible
since M is known not to have a counterexample of length k + L − 1. The use-
fulness of this heuristic highly depends on the type of property that is checked.
On the one hand, if the property is false, this heuristic indeed results in a bet-
ter performance. On the other hand, for true properties, this approach may hurt
performance since a fixpoint could have been found at a lower bound than k+L
(e.g. k + 1).

8. Comparing Interpolation-Sequence Based MC to Interpolation Based MC

In the previous sections we presented two model checking algorithms which com-
bine BMC and interpolation: the Interpolation-Sequence Based (ISB) [38] and the
Interpolation Based (IB) [30]. In this section we analyze the differences between
the algorithms. In the next section we compare them experimentally.

Both methods compute an over-approximation of the set of reachable states.
However, their state traversal is different. As a result, none is better than the
other in all cases. In specific cases, though, one may converge faster.

Several technical details distinguish between ISB and IB. First, the formulas
from which the interpolants are extracted are different. For a given bound N , ISB
uses the formula ϕN while IB uses ϕ1,N .

Second, the approximated sets are computed in different manners. ISB com-
putes the sets Ij incrementally and refines them after each iteration of BMC, as
part of the BMC loop. IB, on the other hand, recomputes the interpolants when-
ever the bound is incrememnted (that is, whenever CheckReachable is called
with a greater bound).

Third, ISB can be viewed as an addition to the BMC loop. At each appli-
cation of BMC (with a different bound), the addition includes the extraction of
an interpolation-sequence and the check if a fixpoint has been reached. Indeed,
after N iterations of the BMC loop in ISB, there are N over-approximated sets
of states, I1, . . . , IN satisfying, for each 1 ≤ j ≤ N , Sj �N Ij .



SMC ISB IB

{S1, . . . , SN} {I1, I2, . . . , IN} {J1
1 , J

1
2 , . . . , J

1
N}

Si �N Ii Si �N J1
i

After checking N iterations at

bounds 1 to N bound 1, if possible

{S1, . . . , SN+L} {I1, . . . , IL, . . . , IN+L} {JN
1 , JN

2 , . . . , JN
L }

Si �N+L Ii Si �N+L JN
i , (1 ≤ i ≤ L)

After checking L iterations at

bounds 1 to N + L bound N , if possible

Table 1. The correlation between the interpolants computed by ISB and IB to the sets computed

by SMC

On the other hand, IB consists of two nested loops. The outer loop increments
the bounds while the inner loop computes over-approximated sets of reachable
states. If the outer loop is at some bound N > 1 and the inner loop performs L
iterations then there are L sets of states JN

1 , . . . , J
N
L , each satisfying Si �N+L J

N
i

(1 ≤ i ≤ L). Table 1 summarizes the above differences.
In summary, IB can compute, at a given bound N , as many sets as needed

as long as no counterexample is found (not necessarily a real counterexample).
On the other hand, for bound N , ISB can only compute N sets. However, it does
not need recurrent BMC calls for each bound (only one is needed). Thus, we
can conclude that in cases IB can compute all the needed sets at a low bound it
performs better than ISB. However, for examples where the needed sets can only
be computed using higher bounds, ISB has an advantage. This fact is reflected in
the experimental results.

As mentioned before, when a counterexample exists the over-approximated
sets of reachable states are not needed. If a property is violated then there exists a
minimal bound N for which a violating path of length N exists. Both algorithms
have to reach this bound in order to find the counterexample. Here, ISB has a
clear advantage over IB. This is because after each BMC run on the original
model, IB executes at least one additional BMC run on a modified model. Thus,
IB invokes at least two BMC runs for each bound from 1 to N − 1. Clearly, the
second BMC run is more demanding than the inclusion check performed by ISB.
In all our experiments, this kind of properties always favored ISB.

9. Implementation Details and Experimental Results

9.1. Implementation Details

Both the ISB and the IB algorithms were implemented within Intel’s verification
system using a SAT-based model checker which is based on Intel’s in-house SAT
solver Eureka. The interpolants are represented by a data-structure similar to an
And-Inverter Graph (AIG) and are simplified and optimized using known methods
such as constant propagation and sharing of redundant expressions.



Figure 7. Runtime of falsified properties on Intel’s recent micro-architecture.

Figure 8. Runtime of verified properties on Intel’s recent micro-architecture.

9.2. Experimental Results

The two algorithms have been checked on various models taken from two of Intel’s
recent CPU designs. The characteristics of the checked models appear in Table 3.
The 136 properties chosen for the experiments were all real safety properties used
to verify the correctness of the designs. The cone of influence for the properties



Name ]Vars B BIB ]I ]IIB ]BMC ]BMCIB Time [s] TimeIB [s]

f1 3406 16 15 136 80 16 80 970 5518

f2 1753 9 8 45 40 9 40 91 388

f3 1753 7 6 28 28 7 28 49 179

f4 1753 16 15 136 94 16 94 473 1901

f5 3406 6 5 21 13 6 13 68 208

f6 1761 2 1 3 2 2 2 5 4

f7 3972 3 1 6 3 3 3 19 14

f8 2197 3 1 6 3 3 3 10 7

f9 1629 23 6 276 39 23 39 2544 1340

f10 4894 5 1 15 3 5 3 635 101

Table 2. Verified properties and their running parameters.
Unindexed columns refer to the ISB algorithm; columns indexed with IB refer to the IB al-

gorithm. ]Vars stands for the number of state variables in the cone of influence. B - bound

at convergence, ]I - number of interpolants computed, ]BMC - number of calls to the BMC
algorithm, and Time[s] - the runtime in seconds.

contains thousands of state variables and tens of thousands of gates and signals.

The properties vary in that some are true and some are false. During all checks, a

timeout of 10,000 seconds has been set. Experiments were conducted on systems

with a dual core Xeon 5160 processors (Core 2 micro-architecture) running at

3.0GHz (4MB L2 cache) with 32GB of main memory. Operating system running

on the system is Linux SUSE.

Figure 7 and Figure 8 show the runtime in seconds for the two algorithms.

Each point represents a property from the set of chosen properties. The X axis

represents runtime for IB while the Y axis represents the runtime using ISB.

We can see that the results vary. Figure 7 shows the runtime for the falsified

properties. Figure 8 shows the runtime for the verified properties. All falsified

properties (total of 67) favor ISB. There are five properties that can be verified

by ISB and not by IB (due to timeout) and two properties that can be falsified

using ISB while cannot be falsified using IB. On the other hand, there are seven

properties that cannot be verified by ISB but can be verified by IB. The rest of

the properties (57 total) are all verified by both algorithms.

A more accurate analysis of the algorithms is shown in Table 2 that presents

running parameters (number of state variables in the cone of influence, bound

at convergence, number of interpolants computed, number of calls to BMC and

runtime) on various properties for both IB and ISB. For some cases, even though

IB converges at a lower bound, and computes less interpolants than ISB, ISB

still converges faster by means of runtime. This is due to the fact that BMC

calls are computationally heavier than the extraction of the interpolants. Since

IB issues more calls to BMC than ISB in these cases, the influence on its runtime

is noticeable. Through all our experiments, when convergence for IB could be

achieved only at high bounds, ISB always performed better while for convergence

at lower bounds, IB performs better. This result is supported by the analysis

presented in the previous section.



Name ] Latches ] Inputs ] Gates

M1 3611 3 84570

M2 4968 2079 133255

M3 12806 402 89392

M4 1672 459 11195

M5 19213 305 146717

Table 3. Models used for testing

10. Conclusion

We presented two methods which use interpolation for SAT-based unbounded
model checking. The experiments show a clear advantage of ISB when the prop-
erties are falsified. In case of verified properties, the results vary: some favor ISB
while others favor IB.

Further investigation in needed in order to obtain a better understanding of
the difference between the methods and to characterize the type of properties
(when the properties are true) suitable for each of the methods.
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