
SAT-based Model Checking:
Interpolation, IC3, and Beyond

Orna GRUMBERG a, Sharon SHOHAM b and Yakir VIZEL a

a Computer Science Department, Technion, Haifa, Israel
b School of Computer Science, Academic College of Tel Aviv-Yaffo

Abstract.

SAT-based model checking is currently one of the most successful ap-

proaches to checking very large systems. In its early days, SAT-based
(bounded) model checking was mainly used for bug hunting. The intro-

duction of interpolation and IC3\PDR enable efficient complete algo-
rithms that can provide full verification as well.

In this paper, we survey several approaches to enhancing SAT-based

model checking. They are all based on iteratively computing an over-
approximation of the set of reachable system states. They use different

mechanisms to achieve scalability and faster convergence.

The first one uses interpolation sequence rather than interpolation in
order to obtain a more precise over-approximation of the set of reachable

states. The other approach integrates lazy abstraction with IC3 in order

to achieve scalability. Lazy abstraction, originally developed for software
model checking, is a specific type of abstraction that allows hiding dif-

ferent model details at different steps of the verification. We find the

IC3 algorithm most suitable for lazy abstraction since its state traversal
is performed by means of local reachability checks, each involving only

two consecutive sets. A different abstraction can therefore be applied in
each of the local checks.

The survey focuses on hardware model checking, but the presented

ideas can be extended to other systems as well.

Keywords. Model Checking, SAT-based Model Checking, Interpolation,

Interpolation Sequence, Bounded Model Checking (BMC), IC3, Unbounded
Model Checking, Abstraction, Lazy abstraction, Hardware model

checking

1. Introduction

Computerized systems dominate almost every aspect of our lives and their cor-
rect behavior is essential. Model checking [8, 10, 28] is an automated verification
technique for checking whether a given system satisfies a desired property. The
system is usually described as a finite-state model in a form of a state transition
graph. The specification is given as a temporal logic formula. Unlike testing or
simulation based verification, model checking tools are exhaustive in the sense
that they traverse all behaviors of the system, and either confirm that the system
behaves correctly or present a counterexample.

Model checking has been successfully applied to verifying hardware and soft-
ware systems. Its main limitation, however, is the state explosion problem which
arises due to the huge state space of real-life systems. The size of the model in-
duces high memory and time requirements that may make model checking not
applicable to large systems. Much of the research in this area is dedicated to
increase model checking applicability and scalability.

The first significant step in this direction was the introduction of BDDs [4]
into model checking. BDD-based Symbolic Model Checking (SMC) [5] enabled
model checking of real-life hardware designs with a few hundreds of state ele-
ments. However, current design blocks with well-defined functionality typically
have thousands of state elements and more. To handle designs of that scale, SAT-
based Bounded Model Checking (BMC) [2] has been developed. Its main draw-
back, however, is its orientation towards ”bug-hunting” rather than full verifica-
tion.

Several approaches have been suggested to remedy the problem. Induc-
tion [29], interpolation [22], interpolation sequence [6,32], IC3/PDR [3,12], and L-
IC3 [31] developed different techniques for SAT-based Unbounded Model Checking
(UMC), which provide full verification.

Of these SAT-based unbounded model checking techniques, L-IC3 and [6]
also use Abstraction-refinement [9], which is another well known methodology for
tackling the state-explosion problem. Abstraction hides model details that are not
relevant for the checked property. The resulting abstract model is then smaller,
and therefore easier to handle by model checking algorithms. Lazy abstraction [15,
23], developed for software model checking, is a specific type of abstraction that
allows hiding different model details at different steps of the verification.

In this paper we discuss four of the above mentioned SAT-based approaches
for full verification. These methods all compute an over-approximated set of the
system’s reachable states while checking that the specification is not violated.
The first two approaches we describe are taken from [22] and [32]. They combine
BMC with interpolation [11] or interpolation-sequence [16,23] respectively. These
methods use an unrolling of the model’s transition relation in order to traverse
the system’s state space. The third algorithm we discuss is IC3/PDR [3, 12]. In
contrast to the first two methods, IC3 avoids unrolling of the transition relation.
Instead, the computation of reachable states uses local reachability checks between
consecutive time frames. Last, we present L-IC3 [31] which provides a SAT-based
lazy abstraction-refinement algorithm based on IC3/PDR. L-IC3 uses the visible
variables abstraction [18], which is particularly suitable for hardware systems.
However, the abstraction is used in a lazy manner in the sense that different sets
of visible variables are used in different iterations of the state-space traversal.

The rest of the paper is organized as follows. Section 2 defines some basic
notions. Section 3 presents the Bounded Model Checking (BMC) algorithm. Sec-
tion 4 defines interpolation and interpolation sequence and discusses their com-
putation. Sections 5 and 6 describe how interpolation sequence and interpolation
can be used in model checking, and Section 7 compares between the two methods.
Section 8 gives an overview of the IC3 algorithm. Section 9 presents the visible
(lazy) abstraction. L-IC3 is described in Section 10. We conclude in Section 11.

2. Preliminaries

Temporal logic model checking [10] is an automatic approach to formally verifying
that a given system satisfies a given specification. The system is often modelled
by a finite state transition system and the specification is written in a temporal
logic. Determining whether a model satisfies a given specification is often based
on an exploration of the model’s state space in a search for violations of the
specification.

In this survey we focus on hardware. As such we consider finite state transition
systems defined over Boolean variables, as follows.

Definition 2.1. A finite state transition system (a model) is a tuple M =
(V,U, INIT,TR) where V is a set of Boolean variables, U ⊆ V is a set of state
variables, V \U is a set of input variables, INIT(V) is a propositional formula over
V describing the initial states, and TR(V, V ′) describes a total transition relation
which is defined as a propositional formula over V and the next-state variables
V ′ = {v′ | v ∈ V }.

The transition relation is described using next-state functions for each state
variable. Namely, TR(V, V ′) =

∧
v∈U

(v′ = fv(V, V ′)) where fv(V, V ′) is a proposi-

tional formula that assigns the next value to v ∈ U based on current and next-
state variables. Note that for an input variable v ∈ V \ U , fv is not defined.

The set of Boolean variables of M induces a set of states S = {0, 1}|V |, where
each state s ∈ S is given by a valuation of the variables in V . A formula over
V (resp. V, V ′) represents the set of states (resp. pairs of states) obtained by its
satisfying assignments. With abuse of notation we will refer to a formula η over
V as a set of states and therefore use the notion s ∈ η for states represented by
η. Similarly for a formula η over V, V ′, we will sometimes write (s, s′) ∈ η.

The formula η[V ← V ′], or η′ in short, is identical to η except that each
variable v ∈ V is replaced with v′. In the general case V i is used to denote the
variables in V after i time units (thus, V 0 ≡ V). Let η be a formula over V i, the
formula η[V i ← V j] is identical to η except that for each variable v ∈ V , vi is
replaced with vj .

A path in M is a sequence of states π = s0, s1, . . . such that for all i ≥ 0,
si ∈ S and (si, si+1) ∈ TR. The length of a path is denoted by |π|. If π is infinite
then |π| = ∞. If π = s0, s1, . . . , sn then |π| = n. A path is an initial path when
s0 ∈ INIT. We sometimes refer to a prefix of a path as a path as well.

A formula in Linear Temporal Logic (LTL) [10,27] is of the form Af where f
is a path formula. A model M satisfies an LTL property Af if all infinite initial
paths in M satisfy f . If there exists an infinite initial path not satisfying f , this
path is defined to be a counterexample.

In this paper we consider a subset of LTL formulas of the form AG p, where p
is a propositional formula. AG p is true in a model M if along every initial infinite
path all states satisfy the proposition p. In other words, all states in M that are
reachable from an initial state satisfy p. This does not restrict the generality of
the suggested methods since model checking of liveness properties can be reduced
to handling safety properties [1]. Further, model checking of safety properties can
be reduced to handling properties of the form AG p [17].

The model checking problem is the problem of determining whether a given
model satisfies a given property. For properties of the form AG p this can be
done based on the set of states reachable from the initial states, called reachable
states in short. Let M be a model, Reach be the set of reachable states in M , and
f = AG p be a property. If for every s ∈ Reach, s |= p then the property holds
in M . On the other hand, if there exists a state s ∈ Reach such that s |= ¬p then
there exists an initial path π = s0, s1, . . . , sn such that sn = s. The path π is a
counterexample for the property f .

Model checking has been successfully applied in hardware verification, and is
emerging as an industrial standard tool for hardware design . The main technical
challenge in model checking, however, is the state explosion problem which occurs
if the system is a composition of several components or if the system variables
range over large domains.

Notation Throughout the paper we denote the value false as ⊥ and the value
true as >. For a propositional formula η we use Vars(η) to denote the set
of all variables appearing in η. For a set of formulas {η1, . . . , ηn} we will
use Vars(η1, . . . , ηn) to denote the variables appearing in η1, . . . , ηn. That is,
Vars(η1, . . . , ηn) = Vars(η1) ∪ . . . ∪Vars(ηn).

3. Bounded Model Checking

Many problems, including some versions of model checking, can naturally be
translated into the satisfiability problem of the propositional calculus. The sat-
isfiability problem is known to be NP-complete. Nevertheless, modern SAT-
solvers, developed in recent years, can check satisfiability of formulas with sev-
eral thousands of variables within a few seconds. SAT-solvers such as Grasp [19],
Prover [30], Chaff [26], MiniSAT [13], and many others, are based on sophisticated
learning techniques and data structures that accelerate the search for a satisfying
assignment, if exists.

A SAT-solver is a complete decision procedure that given a propositional for-
mula, determines whether the formula is satisfiable or unsatisfiable. Most SAT-
solvers assume a formula in Conjunctive Normal Form (CNF), consisting of a
conjunction of a set of clauses, each of which is a disjunction of literals, where a
literal is a propositional variable or its negation. A CNF formula is satisfiable if
there exists a satisfying assignment for which every clause in the set is evaluated
to >. If the clause set is satisfiable then the SAT solver returns a satisfying as-
signment for it. If it is not satisfiable (unsatisfiable), meaning, it has no satisfying
assignment, then modern SAT solvers produce a proof of unsatisfiability [24, 33].
The proof of unsatisfiability has many useful applications. We will introduce one
of them in the next section.

Below we describe a simple way to exploit satisfiability for bounded model
checking of properties of the form AG p, where p is a propositional formula.

Bounded model checking (BMC) [2] is an iterative process for checking proper-
ties of a given structure up to a given bound. Let M be a model and f = AG p be
the property to be verified. Given a bound k, BMC either finds a counterexample
of length k or less for f in M , or concludes that there is no such counterexample.

1: function BMC(M ,f ,k)
2: i := 0
3: while i ≤ k do
4: build ϕi

M (f)
5: result = SAT (ϕi

M (f))
6: if result = true then
7: return cex // returning the counterexample
8: else
9: i = i+ 1

10: end if
11: end while
12: return No cex for bound k
13: end function

Figure 1. Bounded model checking

In order to search for a counterexample of length k the following propositional
formula is built:

Formula 1. ϕk
M (f) = INIT(V 0)∧TR(V 0, V 1)∧TR(V 1, V 2)∧. . .∧TR(V k−1, V k)∧

(¬p(V k))

ϕk
M (f) is then passed to a SAT solver which searches for a satisfying assign-

ment. If there exists a satisfying assignment for ϕk
M (f) then the property AG p is

violated, since there exists a path of M of length k violating the property. In order
to conclude that there is no counterexample of length k or less, BMC iterates all
lengths from 0 up to the given bound k. At each iteration a SAT procedure is
invoked.

When M and f are obvious from the context we omit them from the formula
ϕk
M (f) denoting it as ϕk. The BMC algorithm is described in Figure 1.

The main drawback of this approach is its incompleteness. It can only guar-
antee that there is no counterexample of size smaller or equal to k. It cannot
guarantee that there is no counterexample of size greater than k.

Thus, this method is mainly suitable for refutation. Verification is obtained
only if the bound k exceeds the length of the longest path among all shortest
paths from an initial state to some state in M . In practice, it is hard to compute
this bound and even when known, it is often too large to handle. Several meth-
ods for full verification with SAT have been suggested, such as induction [29],
ALL-SAT [7, 14, 21], interpolation [20, 22, 32], and Property Directed Reachabil-
ity (PDR/IC3) [3, 12, 31]. In the rest of the paper we will focus on SAT-based
verification with interpolation and PDR.

4. Interpolation

In this section we introduce two notions, interpolation [11] and interpolation-
sequence [16] that, when combined with BMC, can provide full program verifica-
tion.

Definition 4.1. Let (A,B) be a pair of formulas such that A ∧ B ≡ ⊥. The
interpolant for (A,B) is a formula I such that:

• A⇒ I.

• I ∧B ≡ ⊥.

• Vars(I) ⊆ Vars(A) ∩Vars(B).

The interpolant can be viewed as the part of A that is sufficient to contradict
B. As mentioned above, modern SAT solvers produce a proof of unsatisfiability
if the checked formula is unsatisfiable. An interpolant can be extracted from a
proof of unsatisfiability [22], where different proofs yield different interpolants.

A similar notion can be defined when we have a sequence of formulas whose
conjunction is unsatisfiable.

Definition 4.2. Let Γ = 〈A1, A2, . . . , An〉 be a sequence of formulas such that∧
Γ ≡ ⊥. That is

∧
Γ = A1 ∧ . . . ∧An is unsatisfiable. An interpolation-sequence

for Γ is a sequence 〈I0, I1, . . . , In〉 such that:

1. I0 ≡ > and In ≡ ⊥
2. For every 0 ≤ j < n it holds that Ij ∧Aj+1 ⇒ Ij+1

3. For every 0 < j < n it holds that Vars(Ij) ⊆ Vars(A1, . . . , Aj) ∩
Vars(Aj+1, . . . , An)

Computing an interpolation-sequence for a sequence of formulas is done in
the following way: given a proof of unsatisfiability Π, for each Ii, 0 < i < n,
the sequence of formulas is partitioned in a different way such that Ii is the

interpolant for the formulas A(i) =
i∧

j=1

Aj and B(i) =
n∧

j=i+1

Aj , obtained based

on Π. In fact, all interpolants Ii in the sequence can be computed efficiently at
once, by a single traversal of a given proof of unsatisfiability [32].

Theorem 4.3. Let Γ = 〈A1, A2, . . . , An〉 be a sequence of formulas such that
∧

Γ ≡
⊥ and let Π be a proof of unsatisfiability for

∧
Γ. For every 1 ≤ i < n let us define

A(i) = A1 ∧ . . . ∧ Ai and B(i) = Ai+1 ∧ . . . ∧ An. Let Ii be the interpolant for
the pair (A(i), B(i)) extracted using Π then the sequence 〈>, I1, I2, . . . , In−1,⊥〉
is an interpolation sequence for Γ.

5. Exploiting Interpolation-Sequence in Model Checking

In this section we present a SAT-based algorithm for full verification (some-
times also called unbounded model checking (UMC)), which combines BMC and
interpolation-sequence [32]. BMC is used to search for counterexamples while the
interpolation-sequence is used to produce over-approximated sets of reachable
states and to check for termination.

Interpolation-sequence has been introduced and used in [16] and [23]. In [16]
it is used for computing an abstract model based on predicate abstraction for
software model checking. In [23] interpolation-sequence is used for software model
checking and lazy abstraction and is applied to individual execution paths in the

control flow graph. The method presented in this section exploits interpolation-
sequence in a different manner. In particular, it is applied to the whole model for
imitating symbolic model checking (SMC).

From this point and on, we will use M to denote the finite state transition
system and f = AG p for a propositional formula p, as the property to be verified.

In order to better understand the algorithm and the motivation behind it, we
first review some basic concepts of SMC.

5.1. Symbolic Model Checking

SMC performs forward reachability analysis by computing sets of reachable states
Sj where j is the number of transitions needed to reach a state in Sj when
starting from the initial states. More precisely, S0 = INIT and for every j ≥ 1,
Sj+1(V ′) = ∃V (Sj(V) ∧ TR(V, V ′)). The computation of Sj+1 is referred to as
an image operation on the set Sj . Once Sj is computed, if it contains states
violating p, a counterexample of length j is found and returned. Otherwise, if for

j ≥ 1 Sj ⊆
j−1⋃
i=0

Si then a fixpoint has been reached, meaning that all reachable

states have been found already. If no reachable state violates the property then
the algorithm concludes that M |= f .

5.2. Interpolation-Sequence Based Model Checking (ISB)

The method presented in this section demonstrates how over-approximated sets,
similar to Si in their characteristics, can be extracted from BMC, based on
interpolation-sequences.

As we have seen, BMC alone is only sound and not complete. In order to be
able to determine if M |= f , current SAT-based model checking algorithms are
based on a computation that over-approximates the reachable states of M . We
use the notion of Reachability Sequence:

Definition 5.1. A reachability sequence (RS) of length k + 1 with respect to a
model M and a property AG p, denoted Ω(M,p, k), is a sequence 〈F0, . . . , Fk〉 of
propositional formulas over V such that the following holds:

• F0 = INIT
• Fi ∧ TR⇒ F ′i+1 for 0 ≤ i < k
• Fi ⇒ p for 0 ≤ i ≤ k

A reachability sequence Ω is said to be monotonic (MRS) when Fi ⇒ Fi+1 for
0 ≤ i < k.

Recall that the formula F ′i+1 is equivalent to Fi+1[V ← V ′], and that impli-
cation between formulas corresponds to inclusion between the set of states repre-
sented by the formulas. Thus, for non-monotonic reachability sequence, the set of
states represented by Fi over-approximates the states reachable from INIT in ex-
actly i steps. When Ω is monotonic Fi represents all the states that are reachable
from INIT in at most i steps. We refer to i as time frame (or frame) i. When M ,
p and k are clear from the context we omit them and write Ω.

Informally, we will use the notion of fixpoint when we can conclude that
all reachable states in the model have been visited1. Using a RS enables us to
determine wether a fixpoint has been reached or not.

We now show how we use BMC and interpolation-sequence to compute a
RS. Note that, an interpolation-sequence exists for a bound N only when the
BMC formula ϕN is unsatisfiable, i.e. when there is no counterexample of length
N . In case a counterexample exists, BMC returns a counterexample and the
interpolation-sequence is not needed.

Definition 5.2. A BMC-partitioning for ϕN is the sequence Γ = 〈A1, A2, . . . , AN+1〉
of formulas such that A1 = INIT(V 0) ∧ TR(V 0, V 1), for every 2 ≤ i ≤ N

Ai = TR(V i−1, V i) and AN+1 = ¬p(V N). Note that ϕN =
N+1∧
i=1

Ai (=
∧

Γ).

For a bound N , consider a BMC formula ϕN and its BMC-partitioning
Γ. In case ϕN is unsatisfiable, the interpolation-sequence of Γ is denoted by
ĪN = 〈IN0 , IN1 , . . . , INN+1〉. Note that Γ contains N + 1 elements and therefore the
interpolation-sequence contains N + 2 elements where the first element and the
last one are always > and ⊥, respectively.

Next, we intuitively explain our method. We start with N = 1. Consider
the formula ϕ1 and its BMC-partitioning: 〈A1, A2〉. In case ϕ1 is unsatisfiable,
there exists an interpolation-sequence of the form Ī1 = 〈I10 = >, I11 , I12 = ⊥〉. By
Def. 4.2, > ∧ A1 ⇒ I11 where A1 = INIT(V 0) ∧ TR(V 0, V 1). Therefore S1 ⊆ I11 ,
where S1 is the set of states reachable from the initial states in one transition.
Also, I11 ∧ ¬p(V 1) is unsatisfiable, since I11 ∧ A2 ⇒ ⊥, where A2 = ¬p(V 1).
Therefore, I11 |= p.

In the next BMC iteration, for N = 2, consider ϕ2 and its BMC-partitioning
〈A1, A2, A3〉. In case ϕ2 is unsatisfiable, we get Ī2 = 〈>, I21 , I22 ,⊥〉. Here too,
S1 ⊆ I21 and the states reachable from it in one transition are a subset of I22 since
I21 ∧A2 ⇒ I22 . Also, S2 ⊆ I22 and I22 |= p. Let us define the sets F1 = I11 ∧ I21 and
F2 = I22 . These sets have the following properties, S1 ⊆ F1, S2 ⊆ F2, F1 |= p and
F2 |= p. Moreover, F1[V 1 ← V] ∧ TR(V, V ′)⇒ F2[V 2 ← V ′].

In the general case if ϕN is unsatisfiable then for every 1 ≤ j ≤ N , Sj ⊆ INj .

If we now define Fj =
N∧

k=j

Ikj then for every 1 ≤ j ≤ N we get:

• Fj |= p since Ijj |= p.

• Fj ∧ TR(V, V ′) ⇒ F ′j+1 since Ikj (V j) ∧ TR(V j , V j+1) ⇒ Ikj+1(V j+1) for
every 1 ≤ k ≤ N
• Sj ⊆ Fj since Sj ⊆ Ikj for every 1 ≤ k ≤ N .

As a result, the sequence 〈F0 = INIT, F1, F2, . . . , FN 〉 is a RS and can be used
to determine if M |= f . Intuitively, the sets Ij are similar to the sets Sj computed
by SMC except that they are over-approximations of Sj . Therefore, these sets can

1Since we compute over-approximated sets of reachable states, the computed sets are not
monotonic. Therefore, we cannot define a monotonic function g for which the existence of a

fixpoint is guaranteed.

1: function UpdateReachable(Ω,Īk)
2: j = 1
3: while (j < k) do
4: Fj = Fj ∧ Ikj
5: Ω[j] = Fj

6: j = j + 1
7: end while
8: Ω[k] = Ikk
9: end function

Figure 2. Updating the reachability sequence Ω

be used to imitate the forward reachability analysis of the model’s state-space
by means of an over-approximation. This is done in the following manner. BMC
runs as usual with one extension. After checking bound N , if a counterexample
is found, the algorithm terminates. Otherwise, the interpolation-sequence ĪN is

extracted and the sets Fj for 1 ≤ j ≤ N are updated. If Fj ⇒
j−1∨
i=1

Fi for some

1 ≤ j ≤ N , then we conclude that a fixpoint has been reached and all reachable
states have been visited. Thus, M |= f . If no fixpoint is found, the bound N is
increased and the computation is repeated for N + 1.

Next, we explain why the algorithm uses Fj =
N∧

k=j

Ikj rather than INj in its

Nth iteration. Informally, the following facts are needed in order to guarantee the
correctness of the algorithm. For every 1 ≤ j ≤ N we need the following:

1. Fj should satisfy p.

2. Fj(V) ∧ TR(V, V ′)⇒ Fj+1(V ′) for j 6= N .

3. Sj ⊆ Fj .

This means that the algorithm cannot be implemented using the extracted
interpolation sequence ĪN alone. This is because ĪN does not satisfy condition
(1): while INN |= p, INj for j 6= N , does not necessarily satisfy p. This can be

remedied by conjoining each INj with Ijj . However, now condition (2) no longer

holds. Taking Fj =
N∧

k=j

Ikj results in a sequence with all three properties. By that,

the sequence follows the properties of Def. 5.1.
The algorithms for updating the RS and checking for a fixpoint are described

in Figure 2 and Figure 3, respectively. The complete model checking algorithm us-
ing the method described above is given in Figure 4. We refer to it as Interpolation-
Sequence Based Model Checking (ISB).

It is important to note that a call to UpdateReachability changes all
elements of the RS Ω. Therefore, the function FixpointReached cannot count
on inclusion checks done in previous iterations and needs to search for a fixpoint
at every point in Ω. Moreover, it is not sufficient to check for inclusion of only the

last element IN of Ω. Indeed, if there exists j ≤ N such that Fj ⇒
j−1∨
i=1

Fi then all

1: function FixpointReached(Ω)
2: j = 1
3: while (j ≤ Ω.length) do

4: R =
j−1∨
i=0

Fi

5: ϕ = Fj ∧ ¬R // Negation of Fj ⇒ R
6: if (SAT(ϕ) == false) then return true
7: end if
8: j = j + 1
9: end while

10: return false
11: end function

Figure 3. Checking if a fixpoint has been reached

1: function ISB(M ,f)
2: k := 0
3: result = BMC(M,f, 0)
4: if (result == cex) then
5: return cex
6: end if
7: Ω = 〈INIT〉 // Reachability sequence
8: while (true) do
9: k = k + 1

10: result = BMC(M,f, k)
11: if (result == cex) then
12: return cex
13: end if
14: Īk = 〈>, Ik1 , . . . , Ikk ,⊥〉
15: UpdateReachable(Ω,Īk)
16: if (FixpointReached(Ω) == true) then
17: return true
18: end if
19: end while
20: end function

Figure 4. The ISB Algorithm

reachable states have been found already. However, the implication FN ⇒
N−1∨
i=1

Fi

might not hold due to additional unreachable states in IN . This is because for all

1 ≤ j < N , Fj+1 is an over-approximation of the states reachable from Fj and
not the exact image (that is, Fj(V) ∧ TR(V, V ′) ⇒ Fj+1[V ← V ′] rather than
Fj(V) ∧ TR(V, V ′) ≡ Fj+1[V ← V ′]).

Theorem 5.3. For every model M and property f = AG p there exists a bound N
such that ISB terminates. Moreover,

function CheckReachable(M ,f ,k)
R = M.INIT // Initialize R - initial states of M
if (BMC(M,f, 1, k) == cex) then

return cex
end if
M ′ = M
repeat

A = J(V 0) ∧ TR(V 0, V 1)

B = TR(V 1, V 2) ∧ . . . ∧ TR(V k−1, V k) ∧ (
k∨

j=1

¬p(V j))

J = SAT.getInterpolant(A,B)
if J ⊆ R then

return fixpoint
end if
R = R ∪ J
M ′.INIT = J

until (BMC(M ′, f, 1, k) == cex)
return abort

end function

Figure 5. Computing reachable states using interpolation and BMC with a specific bound k

• M |= f if and only if there exists an index 0 < j ≤ N such that Fj ⇒
j−1∨
i=0

Fi.

• There exists a path π of length N such that π violates f if and only if ISB
returns cex.

6. Interpolation Based Model Checking (IB)

In [22], interpolation has been suggested for the first time in order to obtain a
SAT-based model checking algorithm for full verification.

The algorithm, referred to as Interpolation Based Model Checking (IB), com-
bines BMC and Interpolation [11]. Similarly to the ISB algorithm presented in
the previous section, the interpolant is used to compute a reachability sequence
(Def. 5.1). However, the computation is done differently. As before, the algorithm
concludes that the property holds when a fixpoint is reached during the com-
putation of the reachable states and none of the computed states violates the
property.

The following definition is useful in explaining the interpolation based algo-
rithm. Recall that the verified property is of the form f = AG p.

Definition 6.1. For a set of states X, X is a Sj-approximation w.r.t N , where
1 ≤ j ≤ N , if the following two conditions hold: Sj ⊆ X and there is no path of
length (N − j) or less violating p, starting from a state s ∈ X. We write Sj �N X
to denote that X is a Sj-approximation w.r.t N .

Note that the formula ϕk is used in BMC to represent a counterexample of
length exactly k. This formula can be modified to represent a counterexample of

length l for 1 ≤ l ≤ k. We denote this formula by ϕ1,k and write BMC(M,f, 1, k)
when BMC runs on ϕ1,k.

Formula 2. ϕ1,k = INIT(V 0)∧TR(V 0, V 1)∧TR(V 1, V 2)∧ . . .∧TR(V k−1, V k)∧

(
k∨

j=1

¬p(V j))

Consider the following partitioning for ϕ1,k:

• A = INIT (V 0) ∧ TR(V 0, V 1)

• B =
k−1∧
i=1

TR(V i, V i+1) ∧ (
k∨

j=1

¬p(V j)).

Clearly ϕ1,k ≡ A∧B. Assume that ϕ1,k is unsatisfiable. By the interpolation
theorem [11], there exists an interpolant Jk

1 which, by Def. 4.1, has the following
properties:

• Jk
1 is defined over the variables of Vars(A) ∩Vars(B), namely, V 1.

• A⇒ Jk
1 . Hence, S1 ⊆ Jk

1 .

• Jk
1 (V 1)∧B is unsatisfiable. This means that there is no path of length k−1

or less, starting from Jk
1 , which violates p.

By the above we get that S1 �k J
k
1 . At this point, we get the reachability

sequence 〈INIT, Jk
1 〉. We can now proceed by replacing the initial states of M

with the computed interpolant Jk
1 . BMC is reinvoked with the same bound k and

with the modified model M ′ = (V,U, Jk
1 [V 1 ← V],TR) in which the initial states

are Jk
1 . A new interpolant Jk

2 is then extracted. Jk
2 satisfies S2 �k+1 J

k
2 . The

reachability sequence is then updated and contains a new element 〈INIT, Jk
1 , J

k
2 〉.

It is important to notice that Jk
1 now satisfies S1 �k+1 J

k
1 since the BMC run

on M ′ did not find a counterexample of length k starting from a state in Jk
1 . In the

general case we replace INIT with Jk
i and get Jk

i+1. By that, at the end of the i-th
iteration, for a given bound k, the reachability sequence is 〈INIT, Jk

1 , J
k
2 , . . . , J

k
i 〉.

Figure 5 presents, for a given bound k, the computation of an over-
approximated set of reachable states. Note that after L iterations of the main loop
in CheckReachable we get L interpolants and for every 1 ≤ i ≤ L, Si �k+L J

k
i .

All computed states are collected in R. If at any iteration, the interpolant J is
contained in R, then all reachable states have been found with no violation of f .
CheckReachable then returns “fixpoint”.

On the other hand, if a counterexample is found on a modified model, then
CheckReachable(M ,f ,k) is aborted, the reachability sequence is discarded,
and CheckReachable(M ,f ,k+ 1) is initiated. CheckReachable now tries to
construct a new reachability sequence. Recall that the counterexample has been
obtained on an over-approximated set of states and therefore might not represent
a real counterexample in the original model. In case a real counterexample exists,
it will be found during a BMC run on the original model M for a larger bound.

SMC ISB IB

〈S1, . . . , SN 〉 〈F1, F2, . . . , FN 〉 〈J1
1 , J

1
2 , . . . , J

1
N 〉

Si �N Fi Si �N J1
i

After checking N iterations at

bounds 1 to N bound 1, if possible

〈S1, . . . , SN+L〉 〈F1, . . . , FL, . . . , FN+L〉 〈JN
1 , JN

2 , . . . , JN
L 〉

Si �N+L Fi Si �N+L JN
i , (1 ≤ i ≤ L)

After checking L iterations at

bounds 1 to N + L bound N , if possible

Table 1. The correlation between the interpolants computed by ISB and IB to the sets computed

by SMC

7. Comparing Interpolation-Sequence Based MC to Interpolation Based MC

In the previous sections we presented two model checking algorithms which com-
bine BMC and interpolation: the Interpolation-Sequence Based (ISB) [32] and
the Interpolation Based (IB) [22]. Both algorithms are based on the use of in-
terpolation for computing a reachability sequence. In this section we analyze the
differences between the algorithms.

Both methods compute an over-approximation of the set of reachable states.
However, their state traversals are different. As a result, none is better than the
other in all cases. In specific cases, though, one may converge faster.

Several technical details distinguish ISB from IB. First, the formulas from
which the interpolants are extracted are different. For a given bound N , ISB uses
the formula ϕN while IB uses ϕ1,N .

Second, the approximated sets are computed in different manners. ISB com-
putes the sets Fj incrementally and refines them after each iteration of BMC, as
part of the BMC loop. IB, on the other hand, recomputes the interpolants when-
ever the bound is incremented (that is, whenever CheckReachable is called
with a larger bound).

Third, ISB can be viewed as an addition to the BMC loop. At each appli-
cation of BMC (with a different bound), the addition includes the extraction of
an interpolation-sequence and the check if a fixpoint has been reached. Indeed,
after N iterations of the BMC loop in ISB, there are N over-approximated sets
of states, F1, . . . , FN satisfying, for each 1 ≤ j ≤ N , Sj �N Fj .

On the other hand, IB consists of two nested loops. The outer loop increments
the bounds while the inner loop computes over-approximated sets of reachable
states. If the outer loop is at some bound N > 1 and the inner loop performs L
iterations then there are L sets of states JN

1 , . . . , J
N
L , each satisfying Si �N+L J

N
i

(1 ≤ i ≤ L). Table 1 summarizes the above differences.
In summary, IB can compute, at a given bound N , as many sets as needed

as long as no counterexample is found (not necessarily a real counterexample).
On the other hand, for bound N , ISB can only compute N sets. However, it does
not need recurrent BMC calls for each bound (only one is needed). Thus, we
can conclude that in cases IB can compute all the needed sets at a low bound it
performs better than ISB. However, for examples where the needed sets can only

be computed using higher bounds, ISB has an advantage. This fact is reflected in
the experimental results reported in [32].

As mentioned before, when a counterexample exists the over-approximated
sets of reachable states are not needed. If a property is violated then there exists a
minimal bound N for which a violating path of length N exists. Both algorithms
have to reach this bound in order to find the counterexample. Here, ISB has a
clear advantage over IB. This is because after each BMC run on the original
model, IB executes at least one additional BMC run on a modified model. Thus,
IB invokes at least two BMC runs for each bound from 1 to N − 1. Clearly, the
second BMC run is more demanding than the inclusion check performed by ISB.
In all experiments of [32], falsified properties always favored ISB.

8. SAT-based Reachability via IC3

In this section we describe Property Directed Reachability (PDR), also known
as IC3 [3,12]. The interpolation based algorithms, presented in previous sections,
are based on an unrolling of the model’s transition relation in order to traverse
its state space. IC3, on the other hand, avoids such unrolling.

IC3 is a SAT-based model checking algorithm that, given a model M and a
property AG p, computes a monotonic reachability sequence (MRS) Ω(M,p, k) =
〈F0, . . . , Fk〉 (Def. 5.1) with an increasing k. The algorithm works iteratively,
where at iteration k, the MRS of length k + 1 is extended to an MRS of length
k+ 2 by initializing the set Fk+1 and possibly updating previous sets (with index
i ≤ k + 1) using learned invariants.

Definition 8.1. Let Ω be an MRS. A formula η is inductive up to j, if Fj∧η∧TR⇒
η′. η is an invariant up to level j if Fi ⇒ η holds for each i ≤ j.

Note that if η is inductive up to j then Fi ∧ η∧TR⇒ η′ holds for each i ≤ j.
Due to the properties of an MRS, η is an invariant up to j iff it is inductive up
to level j − 1, and in addition F0 ⇒ η (initialization).

Instead of unrolling the transition relation, IC3 uses local reachability checks
between consecutive sets Fi and Fi+1 to eliminate unreachable states. The com-
putation continues until either a counterexample is found or a fixpoint is reached
(i.e. Fi+1 ⇒ Fi for some i), in which case all reachable states satisfy the desired
property.

We give a brief overview of how IC3 operates. For a complete description we
refer the reader to [3].

IC3 starts by checking if either INIT ∧ ¬p or INIT ∧ TR ∧ ¬p′ is satisfiable,
in which case a counterexample of length zero or one is found and the algorithm
terminates. If both are unsatisfiable, F0 is initialized to INIT and F1 is initialized
to p. 〈F0, F1〉 is an MRS (it satisfies the conditions in Def. 5.1).

IC3 extends and updates Ω, while strengthening the Fi’s. The kth itera-
tion starts from an MRS 〈F0, . . . , Fk〉. Then Fk+1 is initialized to p. Clearly,
Fk ⇒ Fk+1 and Fk+1 ⇒ p hold. Therefore, the purpose of strengthening is to
ensure that Fk ∧ TR ⇒ F ′k+1. This is done by checking that Fk ∧ TR ∧ ¬p′ is

unsatisfiable. If this formula is satisfiable then a state s ∈ Fk is retrieved from the
satisfying assignment. s is a bad state since it reaches ¬p (and by that violates
Fk ∧ TR ⇒ F ′k+1). At this point, either s is reachable from INIT, in which case
a counterexample exists, or s is unreachable and needs to be removed from Fk.
In order to determine if s is reachable, IC3 checks the formula: Fk−1 ∧TR∧ s′. If
this formula is unsatisfiable, then s can be removed from Fk (since the property
Fk−1∧TR⇒ F ′k of an MRS holds without it as well), and the same process is re-
peated for other states in Fk that can reach ¬p (if any). However, if Fk−1∧TR∧s′
is satisfiable, a predecessor t ∈ Fk−1 of s is extracted and handled similarly to
s in order to determine if t (which is also a bad state) is reachable from INIT
or not. IC3 therefore moves back and forth along the Fi’s, while retrieving bad
states b and checking their reachability from INIT via local reachability checks of
the form Fi ∧TR∧ b′. During this process, the Fi’s are strengthened by removing
bad states that are not reachable. In fact, in order to remove a bad state b from
Fi, IC3 finds a clause c that is an invariant up to i and implies ¬b, and adds
c to Fi as a conjunct. If a state in F0 = INIT is reached during the backwards
traversal, then a counterexample is obtained.

Definition 8.2. Satisfiability checks of the form Fi ∧ TR ∧ η (where Vars(η) ⊆
V ∪ V ′) are called i-reachability checks.

9. Abstraction

We consider the “visible variables” abstraction [18]. We start by describing it in
our context. Let Mc = (V,U, INIT,TR) be a model and let Ui ⊆ U be a set of
state-variables. We refer to Ui as the set of “visible variables”.

Given Ui, we define an abstract model Mi = (Vi, Ui,TRi) of Mc where TRi =∧
v∈Ui

(v′ = fv(V, V ′)) is an abstract transition relation, and Vi ⊆ V is defined by

{v ∈ V | v ∈ Vars(TRi) ∨ v′ ∈ Vars(TRi)}. Note that the behavior of invisible
state variables (in U \ Ui) is nondeterministic.

We do not introduce an abstraction of INIT as part of Mi since we always
consider the concrete set of initial states. Mi is an abstraction of Mc, denoted
Mc � Mi, in the sense that both its set of states and its transition relation are
abstractions of the concrete ones, as explained below. Mi induces a set of abstract
states Si which includes all valuations to Vi. Specifically, each concrete state s ∈ S
is abstracted by the abstract state si ∈ Si that agrees with s on the assignment
to the joint variables in Vi. In this case we write s � si. We sometimes refer to si
as the set of concrete states it abstracts: {s ∈ S|s � si}.

In addition, TR is abstracted by TRi in the sense that TR⇒ TRi. Formally,
the relation {(s, si) | s � si} is a simulation relation [25] from Mc to Mi.

Given an MRS Ω(Mc, p, k) = 〈F0, . . . , Fk〉 and an abstract model Mi, we say
that a formula η is inductive up to level j w.r.t. Mi, if Fj ∧ η ∧ TRi ⇒ η′.

Lemma 9.1. Any formula inductive up to j w.r.t. Mi is also inductive up to j
w.r.t. Mc.

The lemma holds since TR ⇒ TRi. When we do not explicitly mention a
model, we refer to inductiveness w.r.t. Mc. The notion of an invariant always
refers to Mc.

9.1. Lazy Abstraction

lazy abstraction [15] allows to use different details of the model at different itera-
tions of the state-space traversal. We adapt the notion of lazy abstraction to ab-
straction based on visible variables [18], and allow different variables to be visible
at different time frames.

Definition 9.2. An abstraction sequence w.r.t. a model Mc is a sequence Ū =
〈U0, . . . , Uk〉 where Ui ⊆ U for 0 ≤ i ≤ k, is a set of visible state-variables. Ū is
monotonic if Ui ⊆ Ui+1 for each 0 ≤ i < k.

An abstraction sequence Ū represents different levels of abstraction of Mc. It
induces a sequence of abstract models 〈M0, . . . ,Mk〉 where Mi is defined as above.
If Ū is monotonic, the induced sequence of abstract models is also monotonic in
the sense that M0 � . . . �Mk �Mc.

Definition 9.3. Let Ū = 〈U0, . . . , Uk〉 be a monotonic abstraction sequence and
Ω(Mc, p, k) = 〈F0, . . . , Fk〉 an MRS. A sequence si, . . . , sj of abstract states where
0 ≤ i < j ≤ k + 1 is an abstract path from i to j if (i) for each i ≤ l < j,
(sl, sl+1) |= TRl, and2 (ii) for each i ≤ l ≤ min{j, k}, sl ∩ Fl 6= ∅.

An abstract path s0, . . . , sj from 0 to j is an abstract counterexample of length
j if sj ∩ ¬p 6= ∅.

Note that the definition above is not standard. It refers to different transition
relations at different steps. Also, it requires the abstract states to be part of the
corresponding Fi.

Definition 9.4. An abstraction sequence 〈U0
r, . . . , Uk

r〉 is a refinement of an ab-
straction sequence 〈U0, . . . , Uk〉 if Ui ⊆ Ui

r for each i.

10. Lazy Abstraction and IC3

In this section we describe the algorithm L-IC3, which adds lazy abstraction to
IC3. The key ingredients of L-IC3 are an abstraction sequence Ū that induces
different abstractions at different time frames as well as an MRS Ω.

L-IC3 starts with an initialization step and then works in stages (Fig. 6).
Its initialization (lines 2-5) is similar to the initialization of IC3 with one excep-
tion. If no counterexample of length 0 or 1 exists, then in addition to initializ-
ing Ω to 〈F0 = INIT, F1 = p〉, it initializes Ū to 〈U0 = Vars(p)〉. Clearly, after
initialization, Ω is an MRS.

2Requirement (ii) dismisses paths that are known to be spurious based on Ω. min{j, k} is

used for the case where j = k + 1, in which nonempty intersection is required only up to k.

1: function L-IC3(p)

2: Ω = 〈INIT, p〉; Ū = 〈Vars(p)〉
3: if Init-IC3(Ω, Ū , p) == cex then

4: return cex

5: end if
6: while A-IC3(Ω, Ū) == abs-cex do

7: if Refine(Ω, Ū) == cex then

8: return cex
9: end if

10: end while

11: return fixpoint
12: end function

Figure 6. L-IC3

Each L-IC3 stage (lines 6-10) consists of an abstract model checking step and
a refinement step, both performed by variations of IC3. Ū and Ω are updated in
both steps.

The abstract model checking extends and updates the MRS Ω until either
a fixpoint is reached, or an abstract counterexample is found (line 6). In the
latter case, the counterexample is abstract since it is computed w.r.t. the abstract
transitions. However, it is also restricted by Ω (see Def. 9.3). A refinement is
then performed (line 7). If the refinement finds a concrete counterexample then
it terminates. Otherwise it refines Ū and updates Ω into an MRS (of the same
length).

A new L-IC3 stage (line 6) of abstraction-refinement then begins, invoking
A-IC3 with the updated Ω and the refined Ū .

An invocation of L-IC3 results in either a fixpoint (in which case the property
is proved), or a concrete counterexample.

10.1. Abstract Model Checking via A-IC3

The abstract model checking algorithm, A-IC3 (Fig. 7), either finds an abstract
counterexample (line 22), or reaches a fixpoint (line 26) by computing an MRS
Ω.

Using different abstractions The computation of Ω is done using a variation of
IC3 which considers a sequence of abstract models, induced by a monotonic ab-
straction sequence Ū = 〈U0 . . . , Uk〉. Both abstract transition relations and ab-
stract states are used. Even though abstract models are used, the obtained MRS
satisfies the requirements of Def. 5.1, which refer to the concrete transition re-
lation TR. To emphasize this, we sometimes refer to the sequence as a concrete
MRS.

Recall that IC3 performs i-reachability checks of the form Fi∧TR∧η. A-IC3
also performs these checks (within Strengthen, line 20), but instead of using
the concrete TR it uses the abstract TRi. This means that when traversing the
model’s state space, A-IC3 uses different abstract transition relations at different
time frames. Further, when Fi ∧TRi ∧ η is satisfiable, A-IC3 retrieves an abstract
state sa ∈ Mi from the satisfying assignment. This abstract state is either used
to strengthen Ω, or it is part of an abstract counterexample.

13: function A-IC3(Ω, Ū)

14: k = |Ω| − 1
15: while Ω.fixpoint() == false do

16: Uk = Uk−1

17: Ū .add(Uk)
18: Fk+1 = p

19: Ω.add(Fk+1)

20: result = Strengthen(Ω, Ū , k)
21: if result == abs-cex then

22: return abs-cex
23: end if

24: k = k + 1

25: end while
26: return fixpoint

27: end function

Figure 7. A-IC3

Incrementality If A-IC3 finds a counterexample at iteration k, it returns it. After
refinement (line 7) A-IC3 is re-invoked with an updated Ω that is an MRS of the
same length. The computation of Ω resumes from iteration k + 1 (line 14)3.

Iterations In iteration k ≥ 1, the MRS 〈F0, . . . , Fk〉 and the abstraction sequence
〈U0, . . . , Uk−1〉 are extended by 1 and updated as follows (see Fig. 7).

1. Check if a fixpoint is reached. If not:

2. Uk is initialized to Uk−1 and added to Ū .

3. Fk+1 is initialized to p and added to Ω.

4. The sets F0, . . . , Fk+1 are strengthened iteratively until 〈F0, . . . , Fk+1〉 be-
comes an MRS, or an abstract counterexample is found.

Below we describe items 2 and 4 in more detail.

(2) Extending Ū: Uk is initialized to Uk−1 (line 16). This is aimed at immediately
eliminating from TRk spurious transitions that lead from states in Fk−1 ⊆ Fk to
¬p and were already removed from TRk−1. Note that this initialization does not
imply that the Ui sets will always be equal, since refinement might change them
in different ways.

(4) Iterative Strengthening of Ω: A-IC3 obtains an MRS of length k + 1 by
strengthening the Fi’s s.t. no abstract counterexample of length k+1 exists w.r.t.
the MRS 〈F0, . . . , Fk〉. This is a sufficient condition to ensure that Ω is an MRS.
For this purpose, A-IC3 finds abstract states that might be a part of an abstract
counterexample at a certain time frame, and attempts to block them by learning
corresponding invariants. Recall that the abstract counterexamples we consider
are restricted not only by the abstract transition relations, but also by the Fi sets
(Def. 9.2). Technically, such states are described by abstract proof obligations
(similarly to the notion of proof obligations used in IC3).

Definition 10.1. An abstract proof obligation, or an obligation in short, is a pair
(sa, n) consisting of a level n ≤ k and an abstract state sa s.t. (1) sa is a “bad

3An abstract counterexample is found w.r.t. Ω = 〈F0, . . . , Fk+1〉 produced in iteration k,

where |Ω| = k + 2. When A-IC3 is re-invoked, k is set to |Ω| − 1 = k + 1.

state” that reaches ¬p along some abstract path, (2) ¬sa is an invariant up until
n, (3) sa ∩ Fn+1 6= ∅, and (4) Fn reaches sa in one step of TRn.

Thus n+1 is the minimal level intersecting sa, and n is the minimal level reaching
sa in one abstract step. Note that it is possible that Fn cannot reach sa along the
concrete transitions. A-IC3 maintains two sets of obligations - may and must.

Definition 10.2. An obligation (sa, n) is a must obligation w.r.t. iteration k if sa
must be shown unreachable from Fn in one step w.r.t. TRn, in order to ensure
that no abstract counterexample of length k + 1 exists. All other obligations are
may obligations w.r.t. k.

If sa can reach ¬p via an abstract path from level n+ 1 to level k + 1, then
(sa, n) is a must obligation: unless sa is blocked from Fn+1 (by removing from
Fn all states that reach sa in one step), an abstract counterexample of length
k+ 1 would exist. The same violation may also be reached from sa in later levels
Fj , n + 1 < j ≤ k + 1, in which case it will be a suffix of a longer abstract
counterexample with a longer prefix up to sa. Therefore, we may also want to
block sa in Fj , n + 1 < j ≤ k + 1. However, since different abstract transition
relations are considered at each level, it is also possible that the same path leading
from sa to ¬p is not valid from level j > n + 1 since, for example, Uj ⊃ Un+1

and hence the first transition along the path does not satisfy TRj . In this case, a
longer counterexample is not a valid abstract path since its suffix is not valid.The
attempt to block a state sa that is known to reach a violation from level n+ 1 in
levels greater than n+ 1 creates may obligations4.

The may obligations are not required to be blocked, but blocking them can
prevent A-IC3 from encountering the same obligations/states in future iterations.
On the other hand, if we report an abstract counterexample based on a may obli-
gation, it is possible that no real abstract counterexample exists, resulting in an
unnecessary refinement step which can damage the efficiency of the algorithm.
A-IC3 therefore greedily tries to handle may obligations and strengthen Ω ac-
cordingly, but refrains from reporting abstract counterexamples based on them.
Note that if a may obligation is in fact a must w.r.t. some greater k, then it will
reappear as a must obligation in the following iterations.

Key procedures used by A-IC3 for strengthening the Fi’s by means of proof
obligations appear in Fig. 8 and Fig. 9. A detailed description of these procedures
can be found in [31]. Below we provide a brief explanation.

At iteration k, initial obligations are derived from satisfying assignments to
the formula Fk ∧TRk ∧ ¬p′, using the procedure BlockState, if the formula is
satisfiable (if it is not, then an MRS is obtained and no strengthening is required).
Obligations are then handled iteratively until no obligation remains. In order
to handle an obligation (sa, n) and show sa to be unreachable from Fn in one
step, A-IC3 attempts to strengthen Fn by extracting predecessors ta of sa that
satisfy Fn∧TRn∧s′a, defining new proof obligations based on them, and handling

4IC3 does not make a distinction between may and must obligations and handles them all
the same since in the concrete case, a longer counterexample is always a valid path (its suffix

reaching a violation is always valid).

28: function Strengthen(Ω,Ū ,k)

29: while Fk ∧ TRk ∧ ¬p′ == SAT do
30: obligations = ∅
31: retrieve abstract predecessor sk
32: if BlockState(Ω,sk,k,k,must) == abs-cex then
33: return abs-cex

34: end if

35: while obligations 6= ∅ do
36: ((sa, n), handleMay) = ChooseNext(obligations)

37: if Fn ∧ TRn ∧ s′a == SAT then
38: retrieve abstract predecessor tn
39: if BlockState(Ω,tn,n,k,must) == abs-cex then

40: if handleMay then
41: obligations.clearAllMust()

42: else

43: return abs-cex
44: end if

45: end if

46: else
47: obligations.removeMust(sa,n)

48: BlockState(Ω,sa,n + 2,k,may)

49: end if
50: end while

51: end while
52: PropagateClauses(Ω)

53: return done

54: end function

Figure 8. Iterative strengthening of A-IC3

these obligations (by the same procedure). If Fn is successfully strengthened s.t.
Fn ∧TRn ∧ s′a becomes unsatisfiable, then ¬sa becomes an invariant up to n+ 1.

Adding Invariants If ¬sa is an invariant up to n + 1, then a stronger invariant
that blocks sa up to Fn+1 is learned based on the abstract model Mn. Namely,
¬sa is strengthened to some sub-clause5 c s.t. F0 ⇒ c and Fn ∧ c ∧ TRn ⇒ c′,
i.e. c is inductive up to n w.r.t. Mn and hence, by Lemma 9.1, also w.r.t. Mc.
Consequently, c is also an invariant up to n+1, but it is a stronger invariant than
¬sa (since c ⇒ ¬sa). The clause c is added as a conjunct to F0, . . . , Fn+1 while
maintaining the properties of a (concrete) MRS6.

10.2. Refinement

If A-IC3 finds an abstract counterexample of length k+1, refinement is invoked by
L-IC3 (line 7). Refinement either finds a concrete counterexample or eliminates all
concrete spurious counterexamples of length k + 1. In the latter case, refinement
also refines Ū to ensure that no abstract counterexample of length k + 1 exists.
Both an updated MRS Ωr = 〈F r

0 , . . . , F
r
k+1〉 and a refined monotonic abstraction

sequence Ūr = 〈Ur
0 , . . . , U

r
k 〉 are returned.

The Refine procedure is described in Fig. 10. Refine first invokes C-
Strengthen, the strengthening procedure of the concrete IC3, on the sequence

5A state sa is represented by a conjunction of literals, which makes its negation ¬sa a clause
(i.e., a disjunction of literals). A sub-clause of ¬sa consists of a subset of its literals.

6c is not necessarily inductive w.r.t. Mi where i < n (in case Ui ⊂ Un).

55: function BlockState(Ω,ta,l,k,type)

56: if l > k + 1 then
57: min = k + 1

58: else

59: min = FindNonInductive(Ω,¬ta,l − 1,k)
60: if min == 0 then

61: return abs-cex

62: end if
63: if min ≤ k then

64: if type == must && min == l-1 then

65: obligations.addMust(ta,min)
66: else

67: obligations.addMay(ta,min)

68: end if
69: end if

70: end if
71: AddInvariant(Ω,¬ta,min)

72: return done

73: end function

Figure 9. BlockState procedure of A-IC3

74: function Refine(Ω,Ū)
75: result = C-Strengthen(Ω)

76: if result == cex then

77: return cex
78: end if

79: RefineAbstraction(Ω,Ū)

80: return done
81: end function

Figure 10. Refine procedure of A-IC3

〈F0, . . . , Fk+1〉 (whose prefix up to Fk is an MRS) obtained from the abstract
model checking. If a concrete counterexample is found the algorithm terminates
(lines 75-78). Otherwise, no concrete counterexample of length k+1 exists. More-
over, the updated (strengthened) sets F r

0 , . . . , F
r
k+1 comprise an MRS. It remains

to refine the abstraction sequence Ū in order to eliminate all abstract counterex-
amples of length k + 1 as well. Thus, RefineAbstraction is invoked (line 79).

RefineAbstraction

A-IC3 found an abstract counterexample since it failed to strengthen the Fi’s.
Meaning, the relevant i-reachability checks Fi ∧ TRi ∧ t′a could not be made
unsatisfiable when using TRi. C-Strengthen, on the other hand, succeeds to do
so. Namely, for each i-satisfiability check Fi∧TRi∧t′a of A-IC3 that was satisfiable,
C-Strengthen manages to make the corresponding check F r

i ∧TR∧ t′ for each
t � ta unsatisfiable, either by strengthening F r

i or simply since it considers TR.
Moreover, once F r

i ∧TR∧ t′ becomes unsatisfiable, C-Strengthen derives from
it a clause c ⇒ ¬t s.t. F r

i ∧ c ∧ TR ⇒ c′ holds. C-Strengthen strengthens Ωr

by adding c (invariant) as a new clause in all sets up to F r
i+1. We consider it a

learned clause at level i + 1. The purpose of RefineAbstraction is to ensure
that for a learned clause c at level i+ 1, F r

i ∧ c ∧TRr
i ⇒ c′ (with TRr

i instead of
TR) also holds. Meaning, c is inductive up to i w.r.t. Mr

i .

Lemma 10.3. Let c be a clause learned by C-Strengthen at level i+ 1. If F r
i ∧

TRr
i ⇒ F r

i+1
′ then F r

i ∧ c ∧ TRr
i ⇒ c′.

Based on the previous lemma, in order to ensure F r
i ∧c∧TRr

i ⇒ c′, it suffices
to ensure unsatisfiability of F r

i ∧TRr
i ∧¬F r

i+1
′ for every level i+1 in which learned

clauses exist.
To ensure unsatisfiability of a formula F r

i ∧ TRr
i ∧ ¬F r

i+1
′, we consider the

same formula over TR, which is clearly unsatisfiable. We derive from it an
unSAT-core. The next-state variables that appear in the unSAT-core, denoted
NS(unSatCore) = {v ∈ V | v′ ∈ Vars(UnSatCore)}, are added to Ui.

Lemma 10.4. Let F r
i ∧TR ∧ η′ be an unsatisfiable formula and let UnSatCore be

its unsat core. Let Ur
i ⊇ NS(UnSatCore). Then F r

i ∧ TRr
i ∧ η′ is unsatisfiable.

Finally, we propagate variables that were added to Ur
i forward in order to

obtain a monotonic abstraction sequence. Since we only add variables to Ur
i , i.e.

make the transition relation TRr
i more precise, then the corresponding formulas

remain unsatisfiable.

10.3. Correctness Arguments

The MRS obtained by L-IC3 is concrete. Specifically, it does not necessarily satisfy
Fi ∧TRi ⇒ Fi+1. This results both from refinement that adds invariants learned
based on the concrete TR, and from A-IC3 that learns an invariant based on some
TRi, but also adds it to Fj+1 for j < i even if it is not inductive w.r.t. TRj . This
complicates the correctness proof.

In particular, in IC3, when a proof obligation (s, n) is handled, then for any
predecessor t of s, ¬t is an invariant up to n − 1, otherwise s would belong to a
lower frame (since Fi ∧ TR ⇒ Fi+1). Now consider an abstract proof obligation
(sa, n). If we assume to the contrary that the predecessor ta intersect some Fi

(for i < n) then we can still deduce that the transition (ta, sa) |= TRn also exists
at a lower frame, i.e. (ta, sa) |= TRi for i < n. This is since TRn ⇒ TRi (recall
that the same does not necessarily hold for i > n). However, if ta ∩ Fi 6= ∅, we
cannot immediately deduce that sa ∩ Fi+1 6= ∅ since Fi ∧ TRi ⇒ Fi+1 might not
hold. It turns out that this property does hold (see [31]), but more complicated
arguments are needed, based on the following:

Lemma 10.5. Let Ω = 〈F0, . . . , Fk+1〉 and Ū = 〈U0, . . . , Uk〉 be the sequences
obtained at the end of a refinement step or at the end of an iteration of A-IC3 in
the case that no counterexample was found. Then

1. Ω is an MRS.

2. For every clause c that was added to some Fi in Ω there exists some j ≥ i−1
s.t. c is inductive up to j w.r.t. Mj.

3. No abstract counterexample of length k+1 exists w.r.t. the prefix 〈F0, . . . , Fk〉
of Ω.

Theorem 10.6. L-IC3 either terminates with a fixpoint, in which case the property
holds, or with a concrete counterexample.

N]Vars Laziness - Time Frames and Number of Vars

]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV

f1 11866 [0-0] 323 [1-1] 647 [2-2] 686 [3-3] 699 [4-4] 705 [5-5] 713 [6-6] 714

[7-7] 728 [8-8] 743 [9-9] 752 [10-10] 755 [11-11] 761 [12-12] 767 [13-13] 777

[14-14] 783 [15-15] 789 [16-18] 811

f2 5693 [0-7] 12

f3 5693 [0-0] 8 [1-1] 56 [2-2] 64 [3-3] 74 [4-4] 82 [5-7] 91

f4 5693 [0-6] 31 [7-7] 42 [8-8] 51 [9-13] 54

f5 5773 [0-0] 260 [1-1] 381 [2-2] 401 [3-3] 419 [4-34] 430

f6 1183 [0-0] 185 [1-1] 248 [2-2] 255 [3-3] 259 [4-4] 262 [5-5] 268 [6-8] 270

[9-9] 273 [10-30] 274

f7 1247 [0-0] 57 [1-1] 62 [2-2] 73 [3-7] 76

f8 1247 [0-0] 63 [1-1] 64 [2-2] 72 [3-6] 83

f9 1277 [0-0] 263 [1-1] 303 [2-2] 318 [3-3] 321 [4-4] 322 [5-5] 323 [6-26] 347

f10 1389 [0-0] 253 [1-1] 304 [2-2] 324 [3-3] 341 [4-4] 351 [5-5] 355 [6-7] 363

[8-9] 399 [10-10] 409 [11-12] 415 [13-13] 419 [14-16] 429 [17-18] 431

f11 1183 [0-0] 79 [1-1] 113 [2-9] 114

f12 1204 [0-0] 58 [1-1] 67 [2-2] 75 [3-7] 76

f13 3844 [0-0] 470 [1-1] 504 [2-2] 528 [3-3] 533 [4-4] 534 [5-11] 650

f14 3832 [0-0] 333 [1-1] 365 [2-2] 386 [3-5] 391 [6-6] 442 [7-10] 446

f15 3854 [0-0] 428 [1-1] 453 [2-2] 495 [3-3] 499 [4-4] 503 [5-5] 560 [6-6] 574

[7-7] 576 [8-10] 577

f16 3848 [0-0] 432 [1-1] 462 [2-2] 487 [3-3] 498 [4-4] 501 [5-5] 634 [6-6] 650

[7-13] 658

f17 3854 [0-0] 426 [1-1] 480 [2-2] 525 [3-3] 539 [4-4] 540 [5-5] 559 [6-11] 570

f18 3848 [0-0] 469 [1-1] 547 [2-2] 551 [3-3] 553 [4-4] 635 [5-5] 672 [6-10] 674

Table 2. Lazy abstraction. N stands for the name of the verified property.]Vars stands for the

number of state variables in the concrete model Mc.]TF stands for the time frames and]AV

represents the number of variables (defining the abstract TRi) in the abstract model Mi at the
given time frame i (appearing in the column]TF).

10.4. Lazy IC3 In Practice

The laziness of the abstraction-refinement algorithm used by L-IC3 is demon-
strated in Table 2. The table shows how the abstraction is refined along increasing
time frames. Different frames contain different variables that are needed in order
to prove or disprove the given property. This demonstrates the fact that L-IC3
indeed takes advantage of the lazy abstraction framework.

11. Conclusion

We presented four methods for SAT-based unbounded model checking. The first
two, ISB and IB, are based on interpolation-sequence and interpolation, respec-
tively. The other two, IC3 and L-IC3, are based on local reachability checks. All
approaches are based on an overapproximate computation of the set of reachable
states of a given system. The computation continues until either a fixpoint is
reached or a counterexample is generated. They differ in the way this computa-
tion is conducted. In particular, ISB and IB require unrolling of the transition
relation and use interpolants to overapproximate sets of reachable states, whereas
IC3 and L-IC3 conduct only local reachability checks, which involve consecutive
time frames and require no unrolling. As is often the case with model checking
techniques and tools, none of the approaches is overall superior to the other.

References

[1] A. Biere and C. Artho. Liveness checking as safety checking. In FMICS02.

[2] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking Without BDDs.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99),

LNCS. Springer.
[3] A. R. Bradley. SAT-based model checking without unrolling. In VMCAI, 2011.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE transac-

tions on Computers, C-35(8):677–691, 1986.
[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142–170, June

1992.
[6] Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Interpolation sequences revisited. In

DATE, pages 316–322, 2011.

[7] P. Chauhan, E. M. Clarke, and D. Kroening. Using SAT based image computation for
reachability analysis. Technical Report CMU-CS-03-151, Carnegie Mellon University,

School of Computer Science, 2003.

[8] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming

Languages and Systems (TOPLAS), 8(2):244–263, 1986.
[9] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstrac-

tion refinement. Journal of the ACM, 50(5):752–794, 2003.

[10] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December 1999.
[11] W. Craig. Linear reasoning. a new form of the herbrand-gentzen theorem. Journal of

Symbolic Logic, 22(3):250–268, 1957.

[12] N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of property directed
reachability. In FMCAD, 2011.

[13] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2003.

[14] O. Grumberg, A. Schuster, and A. Yadgar. Reachability Using a Memory-Efficient All-
Solutions SAT Solver. In Fifth Inernation Conference on Formal Methods in Computer-

Aided Design (FMCAD’04), November 2004.

[15] T.A. Henzinger, R. Jhala, and R. Majumdar. Lazy abstraction. In POPL’02.
[16] R. Jhala and K.L. McMillan. Interpolant-Based Transition Relation Approximation. In

17th International Conference on Computer Aided Verification (CAV’05), LNCS 3576,
Edinburgh, July 2005.

[17] O. Kupferman and M.Y. Vardi. Model checking of safety properties. In Computer-Aided

Verification (CAV’99), Lecture Notes in Computer Science. Springer-Verlag.
[18] R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-

theoretic approach. Princeton University Press, 1994.

[19] J.P. Marques-Silva and K.A. Sakallah. Conflict analysis in search algorithms for propo-
sitional satisfiability. In IEEE International Conference on Tools with Artificial Intelli-

gence, 1996.
[20] K. McMillan. Applications of craig interpolation to model checking. In 11th Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Lecture Notes in Computer Science, pages 1–12, Edinburgh, Scotland, April

2005. Springer.
[21] Ken L. McMillan. Applying SAT methods in unbounded symbolic model checking. In

Computer Aided Verification, 2002.
[22] K.L. McMillan. Interpolation and SAT-based Model Checking. In Proceedings of the

15th International Conference on Computer Aided Verification (CAV’03), volume 2725
of LNCS, Bolder, Colorado, 2003.

[23] K.L. McMillan. Lazy Abstraction with Interpolants. In 18th International Conference on

Computer Aided Verification (CAV’06), LNCS 4144, Seattle, August 2006.

[24] K.L. McMillan and N. Amla. Automatic abstraction without counterexamples. In Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03),

volume 2619 of LNCS, pages 331–346, Warsaw, Poland, April 2003.

[25] R. Milner. An algebraic definition of simulation between programs. In In proceedings of the

2nd International Joint Conference on Artificial Intelligence, pages 481–489, September

1971.
[26] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an

efficient SAT solver. In 39th Design Aotomation Conference (DAC’01), 2001.
[27] A. Pnueli. The temporal logic of programs. In Proceedings of the Eighteenth Annual

Symposium on Foundations of Computer Science (FOCS’77), 1977.

[28] J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proceedings of the 5th International Symposium on programming, 1982.

[29] M. Sheeran, S. Singh, and G. Staalmarck. Checking safety properties using induction and

a SAT-solver. In Third International Conference on Formal methods in Computer-Aided
Design (FMCAD’00), Austin, Texas, November 2000.

[30] M. Sheeran and G. Staalmarck. A tutorial on stalmarck’s proof procedure for propositional

logic. Formal Methods in System Design, 16(1), January 2000.
[31] Y. Vizel, O. Grumberg, and S. Shoham. Lazy abstraction and SAT-based reachability in

hardware model checking. In FMCAD, 2012.

[32] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In FM-
CAD, pages 1–8, 2009.

[33] Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In 2003 Design, Au-

tomation and Test in Europe Conference and Exposition (DATE 2003), 3-7 March 2003,

Munich, Germany, pages 10880–10885. IEEE Computer Society, 2003.

