
1

Model Checking, Abstractions

and Reductions

Orna Grumberg

Computer Science Department

Technion

Haifa, Israel



2

Overview

• Temporal logic model checking 

• The state explosion problem

• Reducing the model of the system

by abstractions



3

Program verification 

Given a program and a specification,

does the program satisfy the specification?

Not decidable!

We restrict the problem to a decidable one:

• Finite-state reactive systems

• Propositional temporal logics



4

Model Checking

An efficient procedure that receives 

• Description of a finite-state system (model) 

• Property written as a  formula of 

propositional temporal logic

It returns yes, if the system has the property

It returns no + counterexample,  otherwise



5

Finite state systems

• hardware designs

• Communication protocols

• High level description of non finite state 

systems



6

Properties in temporal logic

• mutual exclusion:   

always ( cs1  cs2)

• non starvation:  

always (request  eventually grant)

• communication protocols:  

( get-message) until send-message



7

Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb



8

M=<S, I, R, L>

• S - Set of states.       

• I  S - Initial states.

• R  S x S   - Total transition relation.

• L: S→ 2AP - Labeling function.

AP – Set of atomic propositions

Model of systems



9

=s0s1s2... is a path in M from s iff

s = s0 and  for every i0: (si,si+1)R



10

Propositional temporal logic

In Negation Normal Form

AP – a set of atomic propositions

Temporal operators:

Gp

Fp

Xp

pUq

Path quantifiers: A for all path

E there exists a path



11

Computation Tree Logic

(CTL)

CTL  operator:

path quantifier + temporal operator

Literals: p , p   for  pAP

Boolean operators:   f  g ,  f  g

Universal formulas: AX f,  A(f U g), AG f , AF f

Existential formulas:  EX f,  E(f U g), EG f ,  EF f



12

Semantics for CTL

• For pAP:

s |= p  p  L(s) s |= p  p  L(s)

• s |= fg  s |= f and s |= g

• s |= fg  s |= f or s |= g

• s |= EXf  =s0s1... from s: s1 |= f

• s |= E(f Ug)  =s0s1... from s

j0 [ sj |= g and i : 0 i j [si |= f ] ]

• s |= EGf  =s0s1... from s i  0: si |= f



13

Linear Temporal logic (LTL) 

Formulas are of the form Af ,

where f can include 

any nesting of  temporal operators

but no path  quantifiers



14

CTL*

Includes LTL and CTL and more

ACTL*,  ACTL  (LTL)

Universal fragments of  CTL*,  CTL

ECTL*,  ECTL

Existential fragment of  CTL*,  CTL



15

Example formulas 

CTL formulas:

• mutual exclusion:   AG ( cs1  cs2)

• non starvation:  AG (request AF grant)

• “sanity” check: EF request

LTL formulas:

• fairness:  A(GF enabled  GF executed)

• A(x=a  y=b  XXXX z=a+b)



16

Property types

Universal Existential

Safety AGp EGp

Liveness AFp EFp



17

Property types (cont.)

Combination of universal safety

and existential liveness:

“along every possible execution, in every state

there is a possible continuation that will 

eventually reach a reset state”

AG EF reset



18

Model Checking M |= f

[Clarke, Emerson, Sistla 83]

• The Model Checking algorithm works iteratively
on subformulas of  f , from simpler subformulas to 
more complex ones

• When checking subformula g of f we assume that 
all subformulas of g have already been checked

• For subformula g, the algorithm returns 

the set of states that satisfy g ( Sg )

• The algorithm has time complexity:  O( |M|  |f| )



19

Model checking f = EF g
Given a model M= < S, I, R, L >

and Sg the sets of states satisfying   g   in M

procedure CheckEF (Sg )

Q := emptyset;  Q’ := Sg ;

while Q  Q’  do

Q := Q’;

Q’ := Q  { s |  s' [ R(s,s’)  Q(s’) ]  }

end while

Sf := Q ; return(Sf )



20

g

g

g

f

f

f

f

f

f

f

Example:   f = EF g



21

Model checking f = EG g

CheckEG gets M= < S, I, R, L > and Sg

and returns Sf

procedure CheckEG (Sg)

Q := S ;  Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q { s |  s' [ R(s,s’)  Q(s’) ] }

end while

Sf := Q ;  return(Sf )



22

g

g

g

g

g

g

Example: f = EG g



23

Symbolic model checking
[Burch, Clarke, McMillan, Dill 1990]

If the model is given explicitly (e.g. by adjacent 

matrix) then only systems with about ten Boolean

variables  (~1000 states) can be handled

Symbolic model checking uses 

Binary Decision Diagrams  ( BDDs )

to represent the model and sets of  states. It can handle 

systems with hundreds of Boolean variables.



24

Binary decision diagrams 

(BDDs) [Bryant 86]

• Data structure for representing 

Boolean functions

• Often concise in memory

• Canonical representation

• Boolean operations on BDDs can be done in 

polynomial time in the BDD size



25

BDDs in model checking

• Every set A can be represented by its 

characteristic function

1 if uA

fA(u) =       0 if u A

• If the elements of A are encoded by 

sequences over {0,1}n then fA is a Boolean

function and can be represented by a BDD



26

• Assume that states in model M are encoded 

by {0,1}n and described by Boolean 

variables  v1...vn

• Sf can be represented  by a BDD over v1...vn

• R (a set of pairs of states (s,s’) ) 

can be represented by a BDD over 

v1...vn v1’...vn’



27

a

b

c

10

c

1 1

b
c

1 1

b

cc

b

0 11 0

a

b

cc

1 1 10

c c c

BDD for  f(a,b,c) = (a  b )  c

Decision tree

a

b

c

10

BDD



28

State explosion problem

• Hardware designs are extremely large: 
> 106 registers

• state of the art symbolic model checking 
can handle medium size designs effectively:
a few hundreds of Boolean variables

Other solutions for the state explosion 
problem are needed!



29

Possible solution

Replacing the system model by a smaller one

(less states and transitions) that still preserves

properties of interest

• Modular verification

• Symmetry

• Abstraction



30

We define:

equivalence between models that  strongly 

preserves CTL*

If M1  M2 then for every CTL* formula ,

M1 |=   M2 |= 

preorder on models that weakly preserves ACTL*

If M2  M1 then for every ACTL* formula , 

M2 |=   M1 |= 



31

The simulation preorder [Milner]

Given two models M1 = (S1,I1,R1,L1),   M2 = (S2,I2,R2,L2)

H  S1 x S2 is a simulation iff

for every (s1, s2 )  H : 

• s1 and s2 satisfy the same propositions

• For every successor t1 of s1 there is a successor t2 of s2

such that (t1,t2) H

Notation:    s1  s2



32

The simulation preorder [Milner]

Given two models M1 = (S1,I1,R1,L1),   M2 = (S2,I2,R2,L2)

H  S1 x S2 is a simulation iff

for every (s1, s2 )  H : 

• p AP:  s2 |= p   s1 |= p
s2 |= p   s1 |= p 

• t1 [ (s1,t1)  R1  t2 [ (s2,t2)  R2  (t1,t2) H ] ]

Notation:    s1  s2



33

Simulation preorder (cont.)

H  S1 x S2 is a simulation from M1 to M2 iff  

H is a simulation and 

for every s1  I1 there is s2  I2 s.t. (s1, s2)  H

Notation:   M1  M2



34

Bisimulation relation [Park]

For models M1 and M2, H  S1 x S2 is a bisimulation 

iff  for every (s1, s2 )  H :

• p AP :  p L(s2)  p L(s1)

• t1 [ (s1,t1)  R1  t2 [ (s2,t2)  R2  (t1,t2) H ] ]

• t2 [ (s2,t2)  R2  t1 [ (s1,t1)  R1  (t1,t2) H ] ]

Notation:    s1  s2



35

Bisimulation relation (cont.)

H  S1 x S2 is a Bisimulation between  M1 and M2

iff  H is a bisimulation and 

for every s1  I1 there is s2  I2 s.t. (s1, s2 )  H and

for every s2  I2 there is s1  I1 s.t. (s1, s2 )  H

Notation:   M1  M2



36

H={ (1,1’), (2,4’), (4,2’), (3,5’), (3,6’), (5,3’), (6,3’) }

a b aa
b

b

Bisimulation equivalence

M1  M2

a
b b

d dc

1
4

3 6

2

5

M1
a

b b

c cd

1’

2’

3’

4’

5’ 6’

M2



37

M1 M2

Simulation preorder

M1  M2

wait

coin coin

pepsicoke

wait

coin

coke pepsi



38

M1 M2

a

b

cdd dc

a

bb

M1  M2



39

M1 M2

a

b

cdd dc

a

bb

M1  M2 and M1  M2 but not M1 M2



40

(bi)simulation and logic 

preservation

Theorem:

If M1  M2 then for every CTL* formula ,

M1 |=   M2 |= 

If M2  M1 then for every ACTL* formula , 

M2 |=   M1 |= 



41

Abstractions

• They are one of the most useful ways to fight the 
state explosion problem

• They should preserve properties of interest:
properties that hold for the abstract model should 
hold for the concrete model

• Abstractions should be constructed directly from
the program



42

Data abstraction

Abstracts data information while still enabling 

to partially check properties referring to data

E. Clarke, O. Grumberg, D. Long.

Model checking and abstraction,

TOPLAS, Vol. 16, No. 5, Sept. 1994



43

Data Abstraction

Given a program P with variables x1,...xn , 

each over domain D,

the concrete model of P is defined over states 
(d1,...,dn)  D...D

Choosing

• abstract domain A

• Abstraction mapping (surjection) h: D →A

we get an abstract model over abstract states 
(a1,...,an) A...A



44

Example
Given a program P with variable x over the integers

Abstraction 1:

A1 = { a–, a0, a+ }

a+ if  d>0

h1(d) =       a0 if  d=0

a– if d<0

Abstraction 2:

A2 = { aeven, aodd }

h2(d) =  if even( |d| ) then aeven else aodd



45

Labeling by abstract atomic propositions

We assume that the states of the concrete model M

of P are labeled by abstract atomic propositions

of the form (xA = a) for a A

(xA means that we refer to the abstract value of x)

for s = (d1,...,dn)

L(s) = { (xi
A = ai) | h(di) = ai }



46

State equivalence

Given M,  A,  h : D →A

h((d1,...,dn)) = (h(d1),...,h(dn))

States s,s’ in S are equivalent (s ~ s’) iff  h(s) = h(s’)

An abstract state (a1,...,an) represents the

equivalence class of states (d1,...,dn)  such that 

h((d1,...,dn))  = (a1,...,an) 



47

Reduced abstract model
Existential abstraction

Given M,  A,  h : D →A

the reduced model Mr = ( Sr, Ir, Rr, Lr ) is

Sr = A  ... A

sr  Ir   s  I : h(s) = sr

(sr,tr)  Rr 

 s,t [h(s) = sr  h(t) = tr   (s,t)R]

For sr = (a1,...,an),  Lr(sr) = { (xi
A = ai) | i = 1, ..., n }



48

h h h

Existential Abstraction

M

Mr

M < Mr



49

Theorem:

Mr  M by the simulation preorder

Corollary:

For every ACTL* formula :

If  Mr |=  then  M |= 



50

Example

Program with one variable x over the integers

Initially x may be either 0 or 1

At any step, x may non-deterministically 

either decrease or increase by 1



51

The concrete model

x=0 x=1

x=-1

x=-2 x=3

x=2

aeven aodd

Abstraction 2

xA= a0

xA= a+xA= a–

Abstraction 1



52

Representing M by first-order formulas

In order to show how to construct Mr

from the program text,

we assume that the program is given 

by first order formulas I (X) and R (X, X’ )

where

X=(x1,...xn) and X'=(x1’,...xn’)



53

Representing M by first-order formulas (cont)

I (X) and R (X, X’) describe the

model M=(S, I, R, L) as follows:

Let  s=(d1,...dn), s’=(d1’,...,dn’)

s  I  I [xidi] = true

(s, s’)  R 

R [xi di, xi’ di’ ] = true



54

Representing a program by formulas: 

example

statement: k:  x:=e k’

Formula R : pc=k x’=e pc’=k’

statement: k: if x=0 then k1: x:=1 else k2: x:=x+1  k’

Formula R:( pc=k  x=0  x’=x pc’ = k1)

( pc=k x 0  x’=x pc’ = k2)

( pc=k1 x’=1 pc’=k’) 

( pc=k2 x’=x+1 pc’=k’)



55

Given a formula  over variables  x1, ...,xk

[] (x1
A, ..., xk

A) =

x1,...,xk ( h(x1)= x1
A  ...  h(xk)= xk

A 

(x1, ...,xk) )

Let I (X) and R (X, X’) be the formulas describing M.

Then [I (X) ] and [R (X, X’)] describe Mr

Note: [I (X) ] and [R (X, X’)] are

formulas over abstract variables



56

Problem:

Given [I (X) ] and [R (X, X’)],

in order to determine if sr  Ir, we need to find 

a state s  I (a satisfying assignment for I (X))

so that h(s) = sr.

Similarly, for (sr, tr)  Rr we look for

a satisfying assignment for R (X, X’)

This is a difficult task due to the size and complexity

of the two formulas



57

Simplifying the formulas

For  in negation normal form over basic predicates

pi and pi,   T() simplifies [] by “pushing” the 

existential quantifiers inward:

T(pi(x1,...xn)) =  [pi](x1
A,...xn

A)

T(pi(x1,...xn)) = [pi](x1
A,...xn

A)

T(1  2) = T(1)  T(2)

T(1  2) = T(1)  T(2)

T(x) = xA T()

T(x) = xA T()



58

Approximation model

Theorem:

[]   T()

In particular, [I ]   T(I ) and [R ]   T(R )

Corollary:

The approximation model Ma,

defined by T(I ) and T(R ) satisfies:

Ma   Mr  M by the simulation preorder



59

Approximation model (cont.)

• Defined over the same set of abstract states 

as Mr

• Easier to compute since existential 

quantifiers are applied to simpler formulas

• Less precise: has more initial states an 

more transitions than Mr



60

Computing approximation model from 

the text

• No need to construct formulas. The 

approximation model can be constructed 

directly from the program text

• The user should provide abstract predicates

[pi] and [pi] for every basic action 

(assignment or condition) in the program



61

Abstract predicates provided 

by the user:    Example
statement: x := y+z

predicate p(x’,y,z): x’ = y+z

A = {aeven, aodd }

[p](x’A,yA,zA) = { (aeven, aodd, aodd),

(aeven, aeven, aeven), (aodd, aodd, aeven), (aodd, aeven, aodd) }

[p](aeven, aodd, aodd) iff

x’,y,z ( h(x’) = aeven  h(y) = aodd 

h(z)= aodd  x’=y+z )



62

Useful abstractions
Modulo an integer m

Abstraction: h(i) = i mod m

Properties of modulo:

((i mod m) + (j mod m)) mod m = i + j  mod m

((i mod m) - (j mod m)) mod m = i - j  mod m

((i mod m)  (j mod m)) mod m = i  j  mod m

Specification:

AG( waiting  req  (in1 mod m = i )  (in2 mod m = j )

→A(ack U ( ack  (overflow 

(output mod m = i + j  mod m)))))



63

Useful abstractions
logarithm

Abstraction:  h(i) = log2(i+1)

(smallest number of bits to represent i>0 )

Specification:

AG ( waiting  req  ( h(in1) + h(in2)  16)

→A (ack U ( ack  overflow)))

AG ( waiting  req  ( h(in1) + h(in2)  18)

→A (ack U ( ack  overflow)))



64

Counterexample-guided 

refinement

Goal:

• To produce abstraction automatically

• To use counter example in order to refine 
the abstraction

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 

Counterexample-guided abstraction Refinement, 

CAV’00



65

Traffic  Light  Example

red

yellow

green

M

Property:
 =AG AF ¬ (state=red)

Abstraction function h
maps green, yellow to
go.

red

go

Mh

Mh |= M |=  



66

Traffic Light Example (Cont)

If the abstract model invalidates a specification, 
the actual model may still satisfy the specification.

▪ Property:
 =AG AF (state=red)

▪ M |=  but Mh |= 

red

yellow

green

red

go

M Mh
▪ Spurious Counterexample:

red,go,go, ...



67

Our Abstraction Methodology

Th is not spurious
check spurious
counterexample

Th

stop

Mh |= 

generate
counterexample Th

Mh |= 

model check

Mh

generate initial
abstraction

M and 

refinement

Th
is spurious



68

Generating the Initial Abstraction

Basic Idea

• Extract atomic formulas from control flow

• Group formulas into formula clusters

• Generate abstraction for each cluster

Intuition : We consider the correlation between variables only 

when they appear in control flow.



69

Formula Cluster Example

init(x) := 0
next(x) := case

: 0;
: x + 1;
: 0;

else : x;
esac;

init(y) := 1;
next(y) := case

: 0;

 ¬ : y + 1;
: 0;

else : y;
esac;

FC1 = { ,        ,        }, FC2 = { }

reset=TRUE reset=TRUE
x < y y=2x=y

x = yx = y

VC1 = {x, y}, VC2 = {reset}

x < y x = y y=2

reset=TRUE reset=TRUE

reset=TRUE

x < y x=y
x = yx = y

y=2



70

Assume x, y  { 0, 1, 2 } 

reset  { true, false }

Formulas in FC1 cannot distinguish

{x=0,y=0} and {x=1,y=1},

therefore, {x=0,y=0} and {x=1,y=1}

have the same effect on the control flow

Initial abstraction: 

h(0,0) = h(1,1) = 



71

Valuations { 0,1,2}  { 0,1,2} of (x,y) are 

partitioned into five equivalence classes:

h1(0,0) = h1(1,1) =  

h1(0,1) = 

h1(0,2) = h1(1,2) = 

h1(1,0) = h1(2,0) = h1(2,0) = 

h1(2,2) = 

Valuations {true, false} of  reset

have two equivalence classes:

h2(true) = true h2(false) = false 



72

Programs and specifications

atoms(P) is the set of conditions in the program P and 

atomic formulas in the specification .  atoms(P) are

defined over program variables.

Example: x+3<y

 is an ACTL* formula over atoms(P)

A state s in the model of P is labeled

with f atoms(P) iff   s |= f



73

Initial abstraction

Let {FC1,…,FCm} be a set of formula clusters

Let {VC1,…,VCm} be a set of variable clusters

The initial abstraction h=(h1,…,hm) is defined by

hi(d1…dk) = hi(e1…ek)

iff  for all  fFCi , 

(d1…dk) |= f  (e1…ek) |= f 



74

Model Check The Abstract 

Model

Given a generated abstraction function h,

• Mh is built by using existential abstraction 

• If not (Mh |= ), then the model checker generates a 

counterexample trace (Th)

• Current model checkers generate paths or loops.

• Question : is Th spurious?



75

Path Counterexample

Assume that we have four abstract states
{1,2,3}   {4,5,6}  

{7,8,9}   {10,11,12}  

Abstract counterexample Th= , , , 

   

therefore, M |= Th is not spurious,



76

Spurious Path Counterexample

Th is spurious

failure state The concrete states mapped 

to the failure state are 

partitioned into 3 sets

dead-end bad irrelevant

yes no no

no yes no

states

reachable

out edges



77

Refining The Abstraction

• Goal : refine h so that the dead-end states and bad 

states do not belong to the same abstract state.

• For this example, two possible solutions.



78

General Refinement Problem

• The optimal refinement is hard to find

• Coarser refinements are safer

• the refined abstract machine is still small

• Theorem: Finding the coarsest refinement

is NP-hard.

• Heuristic : Treat all the irrelevant states as 
bad states

• in practice, this works very well



79

Loop Counterexample

length of loop = 4



80

Loop Counterexample (cont)

Important observations

• The size of a concrete loop may be different

from the abstract loop

• An abstract loop may correspond to several

concrete loops

• Naïve unwinding may be exponential



81

Spurious Loop Counterexample

S1 S2

Restrict original model M to S1  S2, 

i.e., K = M  (S1  S2), then 

There is a loop counterexample if and only if

K |= EG TRUE



82

Spurious Loop Counterexample

• If an abstract loop counterexample is spurious, 

loop unwinding will reach empty set

• Let Tunwind be the unwound loop by |S1| times.

• Theorem: The loop counterexample is spurious iff 
Tunwind is spurious.

Use refinement algorithm for path counterexample!



83

Completeness

• Our methodology refines the abstraction until 
either the property is proved or counterexamples 
are found

• Theorem: Given a model M and an ACTL* 
specification  whose counterexample is either 
path or loop, our algorithm will find a model Ma

such that

Ma |=  M |= 



84

Experiment : Fujitsu Design

The multimedia processor is very complicated 

• Description includes 61,500 lines of Verilog code

• Manual abstraction by Fujitsu engineers reduces the 

code to 10,600 lines with 500 registers

• We translated this abstracted code into 9,500 lines of 

SMV code



85

Experiment (cont.)

We tried to verify this using state-of-art model 

checkers

• NuSMV+COI cannnot verify the design

• Bwolen Yang’s SMV cannot verify the design

• Our approach abstracted 144 symbolic variables, 

used 3 refinement steps, and found a bug



86

Abstract Interpretation

We show how abstractions preserving temporal 

logics can be defined within the framework of 

abstract interpretation

D. Dams, R. Gerth, O. Grumberg,

Abstract interpretation of reactive systems, 

TOPLAS Vol. 19, No. 2,  March 1997.



87

Abstract interpretation (cont.)

We define abstractions that preserve:

– Existential properties (ECTL*)

– Universal properties (ACTL*)

– Both (CTL*)

We define:

• Canonical abstraction that preserves 
maximum number of temporal properties

• Approximations



88

Abstract interpretation (cont.)

Using abstract interpretation we can obtain 

abstract models which are more precise

(and therefore preserve more properties)

than  the existential abstraction presented

before



89

The Abstract Interpretation Framework

• Developed by Cousot & Cousot for 

compiler optimization

• Constructs an abstract model directly from 

the program text

• Classical abstract interpretations

preserve properties of states. Here we are 

interested in properties of computations



90

Model

M = ( S, I, R, L ) where  S, I, R – as before

Lit = AP { p | p AP }

L : S → 2Lit - labeling function so that

p L(s) p  L(s) and

 p L(s)  p  L(s) 

But  not  required: p L(s)    p  L(s) 



91

Galois connection
( : C→A,  : A →C) is a  Galois connection

from (C, ) to  (A, ) iff

•  and   are total and monotonic

• for all  c  C,    ( (c))  c

• for all  a A,    ( (a))  a

If  on A is defined by:    a  a’  (a) (a’) 

then for all a, ( (a)) =a and

(, ) is a Galois insertion



92

For the partially ordered sets 

(C, ) and  (A, ): the concrete and abstract domains 

a  a’  - a is more precise than a’

a’ approximates a

c  c’  - c is more precise than c’

c’ approximates c

: C→A maps each c to its most precise (least) 
abstraction

: A →C maps each a to the most general (greatest) c
that is abstracted by a



93

Our abstract Interpretation
For model M with state set S

• Choose  an abstract domain SA

– SA must contain the top element T

• Define:

abstraction mapping

 : 2S  → SA

concretization mapping

 : SA → 2S

We use Galois insertion



94

Remarks

For every set of concrete states C  S, ((C) ) C. 

Therefore, for every C there is an abstract state a

with  (a)  C. In particular, SA must contain

a “top” state T so that   ( T ) = S.

Not necessarily, for every set C there is a different

abstract state a.

For example : SA = { T } with   ( T ) = S and  for 

every C  S, (C) = T is a correct abstraction 

(even though meaningless)



95

Example
Abstract states:

A = { grt_5, leq_5, T }

(grt_5 ) = {s  S | s(x) > 5 }

(leq_5 ) = {s  S | s(x)  5 }

The set {s  S | s(x) > 6 } could be mapped to either 

grt_5 or T, but grt_5 is more precise, and therefore 

a better choice 

{s  S | s(x) >0 } must be mapped to  T



96

Relation transformers

Given sets A and B and a relation R A x B, 

the relations  R , R  2A x 2B are defined 

R = {(X,Y) |  xX yY R(x,y)}

R= {(X,Y) |  xX yY R(x,y) }



97

If R is a transition relation

R(X,Y) iff there exists some state in X that 

makes a transition to some state in Y

R (X,Y) iff every state in X makes a 

transition to some state in Y



98

Goal

Given a set of abstract states SA, to construct  

the most precise model MA = (SA, IA, RA, LA)

such that for every CTL* formula  and

abstract state a  SA,

MA, a |=   M, (a) |= 



99

LA

For p  Lit :  

p  LA(a) s  (a): p  L(s)

Note: it is possible that p  LA(a)  and  p  LA(a) 

The definition guarantees for every p  Lit :

a |= p  (a) |= p



100

IA

IA = { ( s ) | s  I }

( ( s ) means ({s}) )

Guarantees that  MA |=   M |= 

Explanation: 

MA |=   aIA:  MA, a |=  

aIA:  M, (a) |=   sI : M, s |=   M |= 



101

More on IA
An alternative definition: IA = (I) is less precise.

Example:

M |= A(p AX q ) but  not ( MA |= A(p AX q ) ) 

pp

q q

s1 s2
a12

q q

M MA



102

RA

We define two abstract transition relations: 

RA preserves ACTL*

RE preserves ECTL*

Putting them together in the same

model will preserve full CTL*



103

RA

In order to preserve ACTL* we may add

more transitions, but never lose one.

Possible definition:

RA (a, b)  R ((a), (b))



104

RA (cont.)
A more precise definition:

adds less transitions to more precise abstract states

RA(a, b) 

Y  S  [ (Y)=b 

Y is a minimal set that satisfies R ((a), Y)]

Note: Y is always a singleton



105

RA (cont.)

p,q p,q p

s1

s3

s2

s5s4

a12 |= AX (pq)a12

a4 a35a345

p,q p

T

(s1)=(s2)=a12 (s3)=(s5)=a35 (s4)=a4



106

RE

In order to preserve ECTL* we

may eliminate some transitions, 

but never add non-real ones.

Possible definition:

RE  (a, b)  R ((a), (b))



107

RE (cont.)

A more precise definition:

keeps more transitions to 

more precise abstract states

RE(a, b) 

 Y  S [(Y)=b 

[Y is a minimal set that satisfies R ((a), Y)]



108

RA and RE

• Because of  minimality, not necessarily  RE   RA

• Minimality is not necessary for correctness of  

abstraction. We will later give it up in order

to compute abstract models more easily.

p

q q

s1 s2

a12

q q

p

s4
s3 a3 a4

a34



109

Mixed model

MA = (SA, IA, RA, RE, LA)

A-path is a path over RA-transitions

E-path is a path over RE-transitions

MA, a |= AX f  b [ (a,b) RA → MA, b |=  f  ]

MA, a |= EX f  b [ (a,b) RE  MA, b |=  f  ]



110

Model checking on mixed 

models

CTL model checking works iteratively, from 

simpler subformulas to more complex ones.

Each subformula will be checked on either RA

or RE, according to the main operator of the 

formula

a1 |=AX EXp

p p

a1



111

We have constructed MA, which given SA,, is the

best model satisfying for every  in CTL* 

MA |=   M |= 

If not ( MA |=  ) then we can check whether 

MA |=  .

If neither holds then SA is too coarse to give the 

answer. 



112

Approximations

As in other abstractions:

• We would like to construct the abstraction 

directly from the program text

• Best abstraction is too difficult to compute

• We therefore construct approximation

to the abstraction



113

HA  SASA is defined over mixed abstract models, 

each with state set SA

Mixed simulation is similar to simulation, except that 

the condition on (s1, s2) H saying that

s2 has “more” successors than s1 is replaced for

(a1, a2) HA by

• a2 has  “more” A-successors than a1

• a2 has  “less” E-successors than a1

Mixed simulation



114

a1

p p q

a2

q p p p

a2  a1 by the mixed simulation

a2 |= AXp  a1 |= AXp

a2 |= Exq  a1 |=EXq



115

Theorem:

If A’ and A’’ are mixed models and

A’’ A’ by the mixed simulation

then for every CTL* formula 

A’’ |=   A’ |= 

Corollary:

If A  MA by the mixed simulation

then A |=   M |= 



116

Computing abstraction from the 

program text

Assume a program that repeatedly computes 

a set of  transitions:

{ ci(x)→ ti(x,x') | i J }.

Being in state s, it chooses nondeterministically 

a transition i for which ci(s) is true. 

The transition results in state s' for which

ti(s, s') is true. 



117

ci
A(a)  s  (a):  ci(s)

ti
A(a, b)  Y  S [(Y)=b 

Y is a minimal set that satisfies ti
 ((a), Y)]

ci
E(a) s  (a): ci(s)

ti
E(a, b)  Y S [(Y)=b 

Y is a minimal set that satisfies ti
 ((a), Y)]



118

Approximation for RA and RE

R'A = { (a,b) |  iJ: ci
A(a)  ti

A(a, b) }

R'E = { (a,b) |  iJ: ci
E(a)  ti

E(a, b) }

Example

Program: { x=4 → x' := x/4 }

SA = { even, odd, T }

RA = { (even, odd), (T, odd) }

R'A = { (even, odd), (T, odd), (even, even) }



119

Example

Program: { even(x) → x' := x/2

even(x) → x' := x+1 }

SA = { even, odd, T }

RE = { (even, odd) }

R'E = { (even, odd ), (even, T) }

Lemma

• RA  R'A

• For all a, b  SA [ R'E(a,b)  b'' b [ RE(a, b'') ]]



120

Further approximation

Give up minimality in the definition of 

ti
A and ti

E :

Replace transition (a, b) by transition (a, b')

with b  b' by the mixed simulation.

• Easier to compute from the program text.

• Still preserves (possibly less) CTL* formulas.



121

State-of-the-art Abstraction

Abstract interpretation 
(Cousot & Cousot 77, 
Loiseaux & Graf & Sifakis & Bouajjani & Bensalem 95,
Graf 94)

(Bi)-simulation reduction 
(Bouajjani & Fernandez & Halbwachs 90,
Lee & Yannakakis 92, Fisler & Vardi 98,
Bustan & Grumberg 00)

Formula-dependent equivalence
(Aziz & Singhal & Shiple & Sangiovanni-Vincentelli  94)

Compositional minimization
(Aziz & Singhal & Swamy & Brayton  94)



122

State-of-the-art Abstraction (Cont)

Uninterpreted functions
(Burch & Dill 94, Berzin & Biere & Clarke & Zhu 98, 
Bryant & German & Velve 99)

Abstraction and refinement
(Dams & Gerth & Grumberg 93, Kurshan94, 
Balarin & Sangiovanni-Vincentelli 93, 
Lind-Nielsen & Andersen 99)

Predicate abstraction and Theorem proving
(Das & Dill & Park 99, Graf & Saidi 97, Uribe 99)



123

The End


