Model Checking, Abstractions and Reductions

Orna Grumberg Computer Science Department Technion Haifa, Israel

Overview

- Temporal logic model checking
- The state explosion problem
- Reducing the model of the system by abstractions

Program verification

Given a program and a specification, does the program satisfy the specification? Not decidable!

We restrict the problem to a decidable one:

- Finite-state reactive systems
- **Propositional** temporal logics

Model Checking

An efficient procedure that receives

- Description of a finite-state system (model)
- Property written as a formula of propositional temporal logic

It returns **yes**, if the system has the property It returns **no** + **counterexample**, otherwise

Finite state systems

- hardware designs
- Communication protocols
- High level description of non finite state systems

Properties in temporal logic

- mutual exclusion: always $\neg(cs_1 \land cs_2)$
- non starvation:
 always (request ⇒ eventually grant)
- communication protocols:
 (¬ get-message) until send-message

Model of a system Kripke structure / transition system

Model of systems M=<S, I, R, L>

- **S** Set of states.
- $I \subseteq S$ Initial states.
- $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{S}$ **Total** transition relation.
- L: $S \rightarrow 2^{AP}$ Labeling function.
- **AP** Set of **atomic propositions**

 $\pi = s_0 s_1 s_2 \dots$ is a **path** in M from s iff $s = s_0$ and for every $i \ge 0$: $(s_i, s_{i+1}) \in \mathbb{R}$

Propositional temporal logic

In Negation Normal Form

AP – a set of atomic propositions

Temporal operators:

Computation Tree Logic (CTL)

CTL operator: path quantifier + temporal operator

Literals: $p, \neg p$ for $p \in AP$ Boolean operators: $f \land g, f \lor g$

Universal formulas: AX f, A(f U g), AG f, AF f Existential formulas: EX f, E(f U g), EG f, EF f

Semantics for CTL

• For $p \in AP$:

 $\mathbf{s} \models \mathbf{p} \Leftrightarrow \mathbf{p} \in \mathbf{L}(\mathbf{s}) \qquad \mathbf{s} \models \neg \mathbf{p} \Leftrightarrow \mathbf{p} \notin \mathbf{L}(\mathbf{s})$

- $\mathbf{s} \models \mathbf{f} \land \mathbf{g} \Leftrightarrow \mathbf{s} \models \mathbf{f}$ and $\mathbf{s} \models \mathbf{g}$
- $\mathbf{s} \models \mathbf{f} \lor \mathbf{g} \Leftrightarrow \mathbf{s} \models \mathbf{f}$ or $\mathbf{s} \models \mathbf{g}$
- $\mathbf{s} \models \mathbf{EXf} \Leftrightarrow \exists \pi = \mathbf{s}_0 \mathbf{s}_1 \dots \mathbf{from } \mathbf{s} \colon \mathbf{s}_1 \models \mathbf{f}$
- $\mathbf{s} \models \mathbf{E}(\mathbf{f} \ \mathbf{U} \mathbf{g}) \Leftrightarrow \exists \pi = \mathbf{s}_0 \mathbf{s}_1 \dots \mathbf{from} \mathbf{s}$ $\exists \mathbf{j} \ge \mathbf{0} [\mathbf{s}_\mathbf{j} \models \mathbf{g} \text{ and } \forall \mathbf{i} : \mathbf{0} \le \mathbf{i} < \mathbf{j} [\mathbf{s}_\mathbf{i} \models \mathbf{f}]]$
- $\mathbf{s} \models \mathbf{EGf} \Leftrightarrow \exists \pi = \mathbf{s}_0 \mathbf{s}_1 \dots \mathbf{from} \ \mathbf{s} \ \forall \mathbf{i} \ge \mathbf{0} : \mathbf{s}_{\mathbf{i}} \models \mathbf{f}$

Linear Temporal logic (LTL)

Formulas are of the form Af, where f can include any **nesting** of **temporal operators** but **no** path quantifiers

CTL* Includes LTL and CTL and more

ACTL*, ACTL (LTL) Universal fragments of CTL*, CTL

ECTL*, ECTL Existential fragment of CTL*, CTL

Example formulas

CTL formulas:

- mutual exclusion: $AG \neg (cs_1 \land cs_2)$
- **non starvation:** AG (request $\Rightarrow AF$ grant)
- "sanity" check: EF request

LTL formulas:

- **fairness:** $A(GF \text{ enabled} \Rightarrow GF \text{ executed})$
- $A(x=a \land y=b \Rightarrow XXXX z=a+b)$

Property types

	Universal	Existential
Safety	AGp	EGp
Liveness	AFp	EF p

Property types (cont.)

Combination of **universal safety** and **existential liveness**:

"along every possible execution, in every state there is a possible continuation that will eventually reach a reset state" AGEF reset

Model Checking M |= **f**

[Clarke, Emerson, Sistla 83]

- The **Model Checking** algorithm works **iteratively** on subformulas of **f** , from **simpler** subformulas to more **complex** ones
- When checking subformula **g** of **f** we assume that all subformulas of **g** have already been checked
- For subformula **g**, the algorithm returns the set of states that satisfy \mathbf{g} ($\mathbf{S}_{\mathbf{g}}$)
- The algorithm has time complexity: $O(|\mathbf{M}| \times |\mathbf{f}|)$

 $\begin{array}{l} \mbox{Model checking } f = EF \ g \\ \mbox{Given a model } M = < S, I, R, L > \\ \mbox{and } S_g \ \mbox{the sets of states satisfying } g \ \ \mbox{in } M \end{array}$

procedure CheckEF (S_g) $Q := emptyset; Q' := S_g;$ while $Q \neq Q'$ do Q := Q'; $Q' := Q \cup \{ s \mid \exists s' [R(s,s') \land Q(s')] \}$ end while $S_f := Q;$ return (S_f)

Model checking $\mathbf{f} = \mathbf{E}\mathbf{G}\mathbf{g}$ **CheckEG** gets $M = \langle S, I, R, L \rangle$ and S_{g} and returns S_{f} procedure CheckEG (S_{σ}) $\mathbf{Q} := \mathbf{S}; \mathbf{Q}' := \mathbf{S}_{g};$ while $Q \neq Q'$ do **O** := **O**'; $\mathbf{Q'} := \mathbf{Q} \cap \{ \mathbf{s} \mid \exists \mathbf{s'} [\mathbf{R}(\mathbf{s}, \mathbf{s'}) \land \mathbf{Q}(\mathbf{s'})] \}$ end while $S_f := Q$; return (S_f)

Example: f = EGg

Symbolic model checking [Burch, Clarke, McMillan, Dill 1990] If the model is given explicitly (e.g. by adjacent matrix) then only systems with about ten Boolean variables (~1000 states) can be handled

Symbolic model checking uses
Binary Decision Diagrams (BDDs)
to represent the model and sets of states. It can handle
systems with hundreds of Boolean variables.

Binary decision diagrams (BDDs) [Bryant 86]

- Data structure for representing Boolean functions
- Often **concise** in memory
- Canonical representation
- **Boolean operations** on BDDs can be done in **polynomial time** in the BDD size

BDDs in model checking

- Every set A can be represented by its characteristic function $\int_{A} 1 \quad \text{if } u \in A$ $f_{A}(u) = \int_{0}^{1} u \notin A$
- If the elements of A are encoded by sequences over {0,1}ⁿ then f_A is a Boolean function and can be represented by a BDD

- Assume that states in model M are encoded by {0,1}ⁿ and described by Boolean variables v₁...v_n
- S_f can be represented by a BDD over $v_1...v_n$
- R (a set of pairs of states (s,s'))
 can be represented by a BDD over
 v₁...v_n v₁'...v_n'

BDD for $f(a,b,c) = (a \land b) \lor c$

State explosion problem

- Hardware designs are extremely large: > 10⁶ registers
- state of the art symbolic model checking can handle medium size designs effectively: a few hundreds of Boolean variables

Other solutions for the state explosion problem are needed!

Possible solution

Replacing the system model by a smaller one (**less states and transitions**) that still preserves properties of interest

- Modular verification
- Symmetry
- Abstraction

We define: equivalence between models that strongly preserves CTL*

If
$$\mathbf{M}_1 \equiv \mathbf{M}_2$$
 then for every **CTL*** formula φ ,
 $\mathbf{M}_1 \models \varphi \iff \mathbf{M}_2 \models \varphi$

preorder on models that weakly preserves ACTL*

If $\mathbf{M}_2 \ge \mathbf{M}_1$ then for every **ACTL*** formula φ , $\mathbf{M}_2 \models \varphi \implies \mathbf{M}_1 \models \varphi$

The simulation preorder [Milner]

Given two models $M_1 = (S_1, I_1, R_1, L_1), M_2 = (S_2, I_2, R_2, L_2)$

 $H \subseteq S_1 \times S_2$ is a simulation iff for every $(s_1, s_2) \in H$:

- s₁ and s₂ satisfy the same propositions
- For every successor t_1 of s_1 there is a successor t_2 of s_2 such that $(t_1, t_2) \in H$

Notation: $s_1 \le s_2$

The simulation preorder [Milner]

Given two models $M_1 = (S_1, I_1, R_1, L_1), M_2 = (S_2, I_2, R_2, L_2)$

 $\mathbf{H} \subseteq \mathbf{S}_1 \mathbf{x} \mathbf{S}_2$ is a simulation iff for every $(s_1, s_2) \in \mathbf{H}$:

•
$$\forall p \in AP$$
: $s_2 \models p \implies s_1 \models p$
 $s_2 \models \neg p \implies s_1 \models \neg p$

• $\forall t_1 [(s_1, \mathbf{t_1}) \in \mathbf{R}_1 \Rightarrow \exists t_2 [(s_2, \mathbf{t_2}) \in \mathbf{R}_2 \land (\mathbf{t_1}, \mathbf{t_2}) \in \mathbf{H}]]$

Notation: $s_1 \le s_2$

Simulation preorder (cont.)

- $\mathbf{H} \subseteq \mathbf{S}_1 \ge \mathbf{X} \ge \mathbf{S}_2$ is a **simulation** from \mathbf{M}_1 to \mathbf{M}_2 iff H is a simulation and
- for every $\mathbf{s_1} \in \mathbf{I_1}$ there is $\mathbf{s_2} \in \mathbf{I_2}$ s.t. $(\mathbf{s_1}, \mathbf{s_2}) \in \mathbf{H}$

Notation: $M_1 \le M_2$

Bisimulation relation [Park]

For models M_1 and M_2 , $H \subseteq S_1 \times S_2$ is a **bisimulation** iff for every $(s_1, s_2) \in H$:

- $\forall p \in AP : p \in L(s_2) \Leftrightarrow p \in L(s_1)$
- $\forall \mathbf{t}_1 [(\mathbf{s}_1, \mathbf{t}_1) \in \mathbf{R}_1 \implies \exists \mathbf{t}_2 [(\mathbf{s}_2, \mathbf{t}_2) \in \mathbf{R}_2 \land (\mathbf{t}_1, \mathbf{t}_2) \in \mathbf{H}]]$
- $\forall t_2 [(s_2, t_2) \in \mathbb{R}_2 \implies \exists t_1 [(s_1, t_1) \in \mathbb{R}_1 \land (t_1, t_2) \in \mathbb{H}]]$

Notation: $s_1 \equiv s_2$

Bisimulation relation (cont.)

 $\mathbf{H} \subseteq \mathbf{S}_1 \times \mathbf{S}_2$ is a **Bisimulation** between M_1 and M_2 iff H is a bisimulation and for every $\mathbf{s}_1 \in \mathbf{I}_1$ there is $\mathbf{s}_2 \in \mathbf{I}_2$ s.t. $(\mathbf{s}_1, \mathbf{s}_2) \in \mathbf{H}$ and **for every** $\mathbf{s}_2 \in \mathbf{I}_2$ **there is** $\mathbf{s}_1 \in \mathbf{I}_1$ **s.t.** $(\mathbf{s}_1, \mathbf{s}_2) \in \mathbf{H}$

Notation: $M_1 \equiv M_2$

Bisimulation equivalence

H={ (1,1'), (2,4'), (4,2'), (3,5'), (3,6'), (5,3'), (6,3') }

 $M_1 \leq M_2$

$M_1 \leq M_2$ and $M_1 \geq M_2$ but not $M_1 \equiv M_2$

(bi)simulation and logic preservation

Theorem:

If $M_1 \equiv M_2$ then for every **CTL*** formula φ , $M_1 \mid = \varphi \iff M_2 \mid = \varphi$

If $M_2 \ge M_1$ then for every ACTL* formula φ , $M_2 \models \varphi \implies M_1 \models \varphi$

Abstractions

- They are one of the most useful ways to **fight** the **state explosion problem**
- They should **preserve properties of interest:** properties that hold for the abstract model should hold for the concrete model
- Abstractions should be constructed directly from the program

Data abstraction

Abstracts data information while still enabling to partially check properties referring to data

E. Clarke, O. Grumberg, D. Long.Model checking and abstraction,TOPLAS, Vol. 16, No. 5, Sept. 1994

Data Abstraction

Given a program P with variables $x_1, ..., x_n$, each over domain D, the **concrete model** of P is defined over states $(\mathbf{d}_1, ..., \mathbf{d}_n) \in \mathbf{D} \times ... \times \mathbf{D}$

Choosing

- abstract domain A
- Abstraction mapping (surjection) h: D → A
 we get an abstract model over abstract states

 (a₁,...,a_n) ∈ A×...×A

Example

Given a program P with variable x over the integers **Abstraction 1:**

$$A_{1} = \{ \mathbf{a}_{-}, \mathbf{a}_{0}, \mathbf{a}_{+} \}$$

$$h_{1}(d) = \begin{cases} \mathbf{a}_{-}, \mathbf{a}_{0}, \mathbf{a}_{+} & \text{if } d > 0 \\ \mathbf{a}_{0} & \text{if } d = 0 \\ \mathbf{a}_{-} & \text{if } d < 0 \end{cases}$$

Abstraction 2:

 $A_2 = \{ a_{even}, a_{odd} \}$ $h_2(d) = \text{ if even}(|d|) \text{ then } a_{even} \text{ else } a_{odd}$

Labeling by abstract atomic propositions

We assume that the states of the concrete model M of P are labeled by **abstract atomic propositions** of the form $(\mathbf{x}^{\mathbf{A}} = \mathbf{a})$ for $\mathbf{a} \in \mathbf{A}$

(**x**^A means that we refer to the abstract value of **x**)

for s =
$$(d_1, ..., d_n)$$

L(s) = { $(x_i^A = a_i) | h(d_i) = a_i$ }

State equivalence

Given M, A, $h: D \rightarrow A$ $h((d_1,...,d_n)) = (h(d_1),...,h(d_n))$

States s,s' in S are equivalent (s ~ s') iff h(s) = h(s')

An abstract state $(a_1,...,a_n)$ represents the equivalence class of states $(d_1,...,d_n)$ such that $h((d_1,...,d_n)) = (a_1,...,a_n)$

Reduced abstract model Existential abstraction

Given M, A, $h: D \rightarrow A$ the **reduced model** $M_r = (S_r, I_r, R_r, L_r)$ is

$$\begin{split} \mathbf{S_r} &= \mathbf{A} \times ... \times \mathbf{A} \\ \mathbf{s_r} \in \mathbf{I_r} \Leftrightarrow \exists \mathbf{s} \in \mathbf{I} : \mathbf{h}(\mathbf{s}) = \mathbf{s_r} \\ (\mathbf{s_r}, \mathbf{t_r}) \in \mathbf{R_r} \Leftrightarrow \\ &\exists \mathbf{s, t} \ [\mathbf{h}(\mathbf{s}) = \mathbf{s_r} \wedge \mathbf{h}(\mathbf{t}) = \mathbf{t_r} \wedge (\mathbf{s, t}) \in \mathbf{R}] \\ &\text{For } \mathbf{s_r} = (\mathbf{a_1}, ..., \mathbf{a_n}), \ \mathbf{L_r}(\mathbf{s_r}) = \{ \ (\mathbf{x_i^A} = \mathbf{a_i}) \mid i = 1, ..., n \ \} \end{split}$$

Existential Abstraction

Theorem: $M_r \ge M$ by the simulation preorder

Corollary: For every ACTL* formula φ : If $M_r \models \varphi$ then $M \models \varphi$

Example

Program with one variable **x** over the integers

Initially x may be either **0** or **1**

At any step, x may non-deterministically either **decrease** or **increase** by 1

The concrete model x=0x=1x = -1x=2<u>x</u>=-2 x=3 **Abstraction 2 Abstraction 1** a_{ever} a_{odd}

Representing M by first-order formulas

In order to show how to construct M_r
from the program text,
we assume that the program is given
by first order formulas ?(𝔅) and 𝔅 (𝔅, 𝔅')
where

$$\mathcal{X}=(x_1,...,x_n) \text{ and } \mathcal{X}'=(x_1,...,x_n)$$

Representing M by first-order formulas (cont)

 $\mathcal{P}(\mathcal{X})$ and $\mathcal{R}(\mathcal{X}, \mathcal{X}')$ describe the model M=(S, I, R, L) as follows:

Let
$$s=(d_1,...,d_n)$$
, $s'=(d_1',...,d_n')$
 $s \in I \iff \mathscr{P}[x_i \leftarrow d_i] = true$

 $(s, s') \in \mathbb{R} \Leftrightarrow$ $\mathcal{R}[x_i \leftarrow d_i, x_i' \leftarrow d_i'] = true$

Representing a program by formulas: example

statement: k: x:=e k' Formula \mathbf{R} : pc=k \wedge x'=e \wedge pc'=k'

statement: k: if x=0 then \mathbf{k}_1 : x:=1 else \mathbf{k}_2 : x:=x+1 k' Formula $\mathbf{\mathcal{R}}$:($\mathbf{pc}=\mathbf{k} \land x=0 \land x'=x \land \mathbf{pc'}=\mathbf{k}_1$) \lor ($\mathbf{pc}=\mathbf{k} \land x \neq 0 \land x'=x \land \mathbf{pc'}=\mathbf{k}_2$) \lor ($\mathbf{pc}=\mathbf{k}_1 \land x'=1 \land \mathbf{pc'}=\mathbf{k'}$) \lor ($\mathbf{pc}=\mathbf{k}_2 \land x'=x+1 \land \mathbf{pc'}=\mathbf{k'}$) Given a formula Φ over variables $\mathbf{x}_1, \dots, \mathbf{x}_k$ $[\Phi] (\mathbf{x}_1^A, \dots, \mathbf{x}_k^A) = \exists \mathbf{x}_1, \dots, \mathbf{x}_k (h(\mathbf{x}_1) = \mathbf{x}_1^A \land \dots \land h(\mathbf{x}_k) = \mathbf{x}_k^A \land \Phi(\mathbf{x}_1, \dots, \mathbf{x}_k))$

Let $\mathscr{I}(\mathscr{X})$ and $\mathscr{R}(\mathscr{X}, \mathscr{X}')$ be the formulas describing M. Then $[\mathscr{I}(\mathscr{X})]$ and $[\mathscr{R}(\mathscr{X}, \mathscr{X}')]$ describe M_r

Note: $[?(\mathcal{X})]$ and $[\mathcal{R}(\mathcal{X}, \mathcal{X})]$ are formulas over abstract variables

Problem:

Given $[\mathcal{T}(\mathcal{X})]$ and $[\mathcal{R}(\mathcal{X}, \mathcal{X}')]$,

in order to determine if $\mathbf{s_r} \in \mathbf{I_r}$, we need to find a state $s \in I$ (a **satisfying assignment** for $\mathcal{P}(\mathcal{R})$) so that $h(s) = s_r$. Similarly, for $(\mathbf{s_r}, \mathbf{t_r}) \in \mathbf{R_r}$ we look for

a satisfying assignment for $\mathcal{R}(\mathcal{X}, \mathcal{X}')$

This is a **difficult task** due to the size and complexity of the two formulas

Simplifying the formulas

For Φ in negation normal form over basic predicates \mathbf{p}_i and $\neg \mathbf{p}_i$, $\mathfrak{T}(\Phi)$ simplifies $[\Phi]$ by "pushing" the **existential quantifiers inward:**

$$T(p_i(x_1,...x_n)) = [p_i](x_1^A,...x_n^A)$$

$$T(\neg p_i(x_1,...x_n)) = [\neg p_i](x_1^A,...x_n^A)$$

$$T(\Phi_1 \land \Phi_2) = T(\Phi_1) \land T(\Phi_2)$$

$$T(\Phi_1 \lor \Phi_2) = T(\Phi_1) \lor T(\Phi_2)$$

$$T(\forall x \Phi) = \forall x^A T(\Phi)$$

$$T(\exists x \Phi) = \exists x^A T(\Phi)$$

Approximation model

Theorem: $[\Phi] \Rightarrow T(\Phi)$ In particular, $[?] \Rightarrow T(?)$ and $[\mathcal{R}] \Rightarrow T(\mathcal{R})$

Corollary:

The approximation model M_a , defined by T(?) and $T(\nearrow)$ satisfies: $M_a \ge M_r \ge M$ by the simulation preorder Approximation model (cont.)

- Defined over the **same set** of abstract states as M_r
- Easier to compute since existential quantifiers are applied to simpler formulas
- Less precise: has more initial states an more transitions than M_r

Computing approximation model from the text

- No need to construct formulas. The approximation model can be constructed directly from the program text
- The user should provide abstract predicates
 [p_i] and [¬p_i] for every basic action
 (assignment or condition) in the program

Abstract predicates provided by the user: Example statement: x := y+z predicate p(x',y,z): x' = y+z A = {a_{even}, a_{odd} }

 $[\mathbf{p}](\mathbf{x}^{A}, \mathbf{y}^{A}, \mathbf{z}^{A}) = \{ (\mathbf{a}_{\text{even}}, \mathbf{a}_{\text{odd}}, \mathbf{a}_{\text{odd}}), \\ (\mathbf{a}_{\text{even}}, \mathbf{a}_{\text{even}}, \mathbf{a}_{\text{even}}), (\mathbf{a}_{\text{odd}}, \mathbf{a}_{\text{odd}}, \mathbf{a}_{\text{even}}), (\mathbf{a}_{\text{odd}}, \mathbf{a}_{\text{even}}, \mathbf{a}_{\text{odd}}) \}$

 $[p](a_{even}, a_{odd}, a_{odd}) \text{ iff}$ $\exists x', y, z (h(x') = a_{even} \land h(y) = a_{odd} \land h(z) = a_{odd} \land x' = y + z)$ Useful abstractions Modulo an integer m

Abstraction: h(i) = i mod m Properties of modulo: ((i mod m) + (j mod m)) mod m = i + j mod m ((i mod m) - (j mod m)) mod m = i - j mod m ((i mod m) × (j mod m)) mod m = i × j mod m Specification:

AG(waiting \land req \land (in₁ mod m = i) \land (in₂ mod m = j) \rightarrow A(\neg ack U (ack \land (overflow \lor

(output mod $m = i + j \mod m$))))

Useful abstractions logarithm Abstraction: $h(i) = \lceil \log_2(i+1) \rceil$ (smallest number of bits to represent i>0) **Specification**: AG (waiting \wedge req \wedge ($h(in_1) + h(in_2) \leq 16$) $\rightarrow A (\neg ack U (ack \land \neg overflow)))$ AG (waiting \land req \land ($h(in_1) + h(in_2) \ge 18$) $\rightarrow A (\neg ack U (ack \land overflow)))$

Counterexample-guided refinement

Goal:

- To produce abstraction **automatically**
- To use **counter example** in order to refine the abstraction

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction Refinement, CAV'00

Traffic Light Example

Property: φ =**AG AF** ¬ (state=red) Abstraction function h maps green, yellow to go.

 $M \mid = \phi \Leftarrow M_h \mid = \phi$

M

Traffic Light Example (Cont)

If the abstract model invalidates a specification, the actual model may still satisfy the specification.

• M |=
$$\phi$$
 but M_h /= ϕ

 Spurious Counterexample: (red,go,go, ...)

Our Abstraction Methodology

Generating the Initial Abstraction

Basic Idea

- Extract atomic formulas from control flow
- Group formulas into formula clusters
- Generate abstraction for each cluster

Intuition : We consider the correlation between variables only when they appear in control flow.

Formula Cluster Example

FC1 = {x < y, x = y, y=2}, FC2 = {reset=TRUE} VC1 = {x, y}, VC2 = {reset} Assume x, $y \in \{0, 1, 2\}$ reset $\in \{$ true, false $\}$

Formulas in FC₁ cannot distinguish {x=0,y=0} and {x=1,y=1}, therefore, {x=0,y=0} and {x=1,y=1} have the same effect on the control flow

Initial abstraction: $\mathbf{h}(0,0) = \mathbf{h}(1,1) = \boldsymbol{\alpha}$ Valuations { 0,1,2} × { 0,1,2} of (x,y) are partitioned into five equivalence classes: $h_1(0,0) = h_1(1,1) = \alpha$ $h_1(0,1) = \beta$ $h_1(0,2) = h_1(1,2) = \gamma$ $h_1(1,0) = h_1(2,0) = h_1(2,0) = \delta$ $h_1(2,2) = \varepsilon$

Valuations {true, false} of reset have two equivalence classes: $h_2(true) = true$ $h_2(false) = false$

Programs and specifications

atoms(**P**) is the set of **conditions** in the program **P** and **atomic formulas** in the specification φ . **atoms**(**P**) are defined over program variables. **Example:** x+3 < y

φ is an ACTL* formula over atoms(P)

A state s in the model of P is **labeled** with $f \in atoms(P)$ iff $s \models f$

Initial abstraction

Let $\{FC_1,...,FC_m\}$ be a set of formula clusters Let $\{VC_1,...,VC_m\}$ be a set of variable clusters The initial abstraction $h=(h_1,...,h_m)$ is defined by

 $\mathbf{h}_{\mathbf{i}}(\mathbf{d}_{1}...\mathbf{d}_{k}) = \mathbf{h}_{\mathbf{i}}(\mathbf{e}_{1}...\mathbf{e}_{k})$ iff for all $\mathbf{f} \in \mathbf{FC}_{\mathbf{i}}$, $(\mathbf{d}_{1}...\mathbf{d}_{k}) \models \mathbf{f} \iff (\mathbf{e}_{1}...\mathbf{e}_{k}) \models \mathbf{f}$

Model Check The Abstract Model

Given a generated abstraction function **h**,

- M_h is built by using existential abstraction
- If not $(\mathbf{M}_{\mathbf{h}} \models \boldsymbol{\varphi})$, then the model checker generates a **counterexample** trace $(\mathbf{T}_{\mathbf{h}})$
- Current model checkers generate **paths** or **loops**.
- **Question** : is **T_h** spurious?

Path Counterexample

Assume that we have four abstract states $\{1,2,3\} \leftrightarrow \alpha \quad \{4,5,6\} \leftrightarrow \beta$ $\{7,8,9\} \leftrightarrow \gamma \quad \{10,11,12\} \leftrightarrow \delta$

Abstract counterexample $T_h = \langle \alpha, \beta, \gamma, \delta \rangle$

 T_h is not spurious, therefore, $M \not\models \phi$

Spurious Path Counterexample

 T_h is spurious

The concrete states mapped to the failure state are partitioned into 3 sets

states	dead-end	bad	irrelevant
reachable	yes	no	no
out edges	no	yes	no

Refining The Abstraction

- **Goal** : refine **h** so that the dead-end states and bad states do **not** belong to the same abstract state.
- For this example, two possible solutions.

General Refinement Problem

- The **optimal** refinement is hard to find
- **Coarser** refinements are **safer**
 - the refined abstract machine is still small
- **Theorem:** Finding the coarsest refinement is NP-hard.
- Heuristic : Treat all the irrelevant states as bad states
 - in practice, this works very well

Loop Counterexample

length of loop = 4

Loop Counterexample (cont)

Important observations

- The size of a concrete loop may be **different** from the abstract loop
- An abstract loop may correspond to **several** concrete loops
- Naïve unwinding may be **exponential**

Spurious Loop Counterexample

Restrict original model M to $S_1 \cup S_2$, i.e., $\mathbf{K} = \mathbf{M} \downarrow (S_1 \cup S_2)$, then

There is a loop counterexample if and only if K |= EG TRUE Spurious Loop Counterexample

- If an abstract loop counterexample is **spurious**, loop unwinding will reach **empty** set
- Let \mathbf{T}_{unwind} be the unwound loop by $|\mathbf{S}_1|$ times.
- Theorem: The loop counterexample is spurious iff T_{unwind} is spurious.

Use refinement algorithm for path counterexample!

Completeness

- Our methodology refines the abstraction until either the property is proved or counterexamples are found
- Theorem: Given a model M and an ACTL* specification ϕ whose counterexample is either path or loop, our algorithm will find a model M_a such that

 $\mathbf{M}_{\mathbf{a}} \models \boldsymbol{\varphi} \iff \mathbf{M} \models \boldsymbol{\varphi}$

Experiment : Fujitsu Design

The multimedia processor is very complicated

- Description includes 61,500 lines of Verilog code
- Manual abstraction by Fujitsu engineers reduces the code to 10,600 lines with 500 registers
- We translated this abstracted code into 9,500 lines of SMV code

Experiment (cont.)

We tried to verify this using state-of-art model checkers

- NuSMV+COI cannot verify the design
- Bwolen Yang's SMV cannot verify the design
- Our approach abstracted 144 symbolic variables, used 3 refinement steps, and found a bug

Abstract Interpretation

We show how abstractions preserving temporal logics can be defined within the framework of **abstract interpretation**

D. Dams, R. Gerth, O. Grumberg,Abstract interpretation of reactive systems,TOPLAS Vol. 19, No. 2, March 1997.

Abstract interpretation (cont.)

We define abstractions that preserve:

- -Existential properties (ECTL*)
- Universal properties (ACTL*)
- -Both (CTL*)

We define:

- **Canonical abstraction** that preserves maximum number of temporal properties
- Approximations

Abstract interpretation (cont.)

Using abstract interpretation we can obtain abstract models which are more precise (and therefore preserve more properties) than the existential abstraction presented before

The Abstract Interpretation Framework

- Developed by Cousot & Cousot for compiler optimization
- Constructs an abstract model directly from the **program text**
- Classical abstract interpretations preserve properties of states. Here we are interested in properties of computations

Model

M = (S, I, R, L) where S, I, R - as before

Lit = AP $\cup \{\neg p \mid p \in AP \}$ L : S $\rightarrow 2^{\text{Lit}}$ - labeling function so that $p \in L(s) \Rightarrow \neg p \notin L(s)$ and $\neg p \in L(s) \Rightarrow p \notin L(s)$

But not required: $p \in L(s) \iff \neg p \notin L(s)$

Galois connection ($\alpha: C \rightarrow A, \gamma: A \rightarrow C$) is a Galois connection from (C, \leq) to (A, \leq) iff

- α and γ are total and monotonic
- for all $c \in C$, $\gamma(\alpha(c)) \ge c$
- for all $a \in A$, $\alpha(\gamma(a)) \le a$

If \leq on A is defined by: $a \leq a' \Leftrightarrow \gamma(a) \leq \gamma(a')$

then for all a, $\alpha(\gamma(a)) = a$ and (α, γ) is a **Galois insertion**

For the partially ordered sets (C, \leq) and (A, \leq) : the concrete and abstract domains

 $a \le a' - a$ is more precise than a' a' approximates a $c \le c' - c$ is more precise than c' c' approximates c

 $\alpha: C \rightarrow A$ maps each c to its most precise (least) abstraction

 $\gamma: A \rightarrow C$ maps each **a** to the most general (greatest) **c** that is abstracted by **a**

Our abstract Interpretation For model M with state set S

• Choose an abstract domain S_A

- S_A must contain the **top** element **T**

• Define:

abstraction mapping $\alpha: 2^S \rightarrow S_A$ concretization mapping $\gamma: S_A \rightarrow 2^S$

We use Galois insertion

Remarks

For every set of concrete states $\mathbf{C} \subseteq \mathbf{S}$, $\gamma(\alpha(\mathbf{C})) \supseteq \mathbf{C}$. Therefore, for every \mathbf{C} there is an abstract state **a** with $\gamma(\mathbf{a}) \supseteq \mathbf{C}$. In particular, $\mathbf{S}_{\mathbf{A}}$ must contain a "top" state **T** so that $\gamma(\mathbf{T}) = \mathbf{S}$.

Not necessarily, for every set **C** there is a **different** abstract state **a**.

For example : $S_A = \{ T \}$ with $\gamma (T) = S$ and for every $C \subseteq S$, $\alpha(C) = T$ is a correct abstraction (even though meaningless)

Example

Abstract states:

 $A = \{ grt_5, leq_5, T \}$ $\gamma(grt_5) = \{ s \in S \mid s(x) > 5 \}$ $\gamma(leq_5) = \{ s \in S \mid s(x) \le 5 \}$

The set $\{s \in S \mid s(x) > 6\}$ could be mapped to either grt_5 or T, but grt_5 is **more precise**, and therefore a better choice

 $\{s \in S \mid s(x) > 0\}$ must be mapped to T

Relation transformers

Given sets A and B and a relation $R \subseteq A \times B$, the relations $R^{\exists \exists}$, $R^{\forall \exists} \subseteq 2^A \times 2^B$ are defined

 $\mathbf{R}^{\exists\exists} = \{ (\mathbf{X}, \mathbf{Y}) \mid \exists_{\mathbf{x} \in \mathbf{X}} \exists_{\mathbf{y} \in \mathbf{Y}} \mathbf{R}(\mathbf{x}, \mathbf{y}) \}$

 $\mathbf{R}^{\forall \exists} = \{ (\mathbf{X}, \mathbf{Y}) \mid \forall_{\mathbf{x} \in \mathbf{X}} \exists_{\mathbf{y} \in \mathbf{Y}} \mathbf{R}(\mathbf{x}, \mathbf{y}) \}$

If R is a transition relation

 $R^{\exists\exists}(X,Y)$ iff there exists **some** state in X that makes a transition to **some** state in Y

R^{∀∃}(X,Y) iff **every** state in X makes a transition to **some** state in Y

Goal

Given a set of abstract states S_A , to construct the **most precise** model $M_A = (S_A, I_A, R_A, L_A)$ such that for every **CTL*** formula φ and abstract state $\mathbf{a} \in S_A$,

 $M_A, a \models \phi \Rightarrow M, \gamma(a) \models \phi$

L_A

For $p \in Lit$: $p \in L_A(a) \Leftrightarrow \forall s \in \gamma(a): p \in L(s)$

Note: it is possible that $p \notin L_A(a)$ and $\neg p \notin L_A(a)$

The definition guarantees for every $p \in Lit$: $\mathbf{a} \models \mathbf{p} \Rightarrow \gamma(\mathbf{a}) \models \mathbf{p}$

 $I_A = \{ \alpha(s) | s \in I \}$ (\alpha(s) means \alpha({s}))

Guarantees that $\mathbf{M}_{\mathbf{A}} \models \phi \Rightarrow \mathbf{M} \models \phi$

Explanation: $M_A \models \phi \Rightarrow \forall a \in I_A: M_A, a \models \phi \Rightarrow$ $\forall a \in I_A: M, \gamma(a) \models \phi \Rightarrow \forall s \in I: M, s \models \phi \Rightarrow M \models \phi$

More on I_A An alternative definition: $I_A = \alpha(I)$ is less precise. Example:

 $\mathbf{M} \models \mathbf{A}(\neg \mathbf{p} \lor \mathbf{A}\mathbf{X} \mathbf{q})$ but not $(\mathbf{M}_{\mathbf{A}} \models \mathbf{A}(\neg \mathbf{p} \lor \mathbf{A}\mathbf{X} \mathbf{q}))$

We define **two** abstract transition relations: **R**^A preserves **A**CTL* **R**^E preserves **E**CTL*

Putting them together in the same model will preserve **full CTL***

RA

In order to preserve ACTL* we may **add** more transitions, but **never lose** one.

Possible definition: $R^{A}(a, b) \Leftrightarrow R^{\exists \exists} (\gamma(a), \gamma(b))$

R^A (cont.)

A more precise definition:

adds less transitions to more precise abstract states

 $\begin{aligned} R^{A}(a, b) \Leftrightarrow \\ \exists \mathbf{Y} \subseteq \mathbf{S} \quad [\ \alpha(\mathbf{Y}) = b \ \wedge \\ \mathbf{Y} \text{ is a minimal set that satisfies } R^{\exists \exists} \ (\gamma(a), \mathbf{Y})] \end{aligned}$

Note: Y is always a **singleton**

 $\alpha(s_1) = \alpha(s_2) = a_{12} \quad \alpha(s_3) = \alpha(s_5) = a_{35} \alpha(s_4) = a_4$

RE

In order to preserve ECTL* we may **eliminate** some transitions, but **never add** non-real ones.

Possible definition: $R^{E}(a, b) \Leftrightarrow R^{\forall \exists}(\gamma(a), \gamma(b))$

R^E (cont.)

A more precise definition:

keeps **more** transitions to **more precise** abstract states

 $\begin{aligned} R^{E}(a, b) \Leftrightarrow \\ \exists \mathbf{Y} \subseteq \mathbf{S} \ [\alpha(\mathbf{Y}) = b \land \\ [\mathbf{Y} \text{ is a minimal set that satisfies } R^{\forall \exists}(\gamma(a), \mathbf{Y})] \end{aligned}$

$\mathbf{R}^{\mathbf{A}}$ and $\mathbf{R}^{\mathbf{E}}$

• Because of minimality, not necessarily $R^E \subseteq R^A$

• Minimality is not necessary for correctness of abstraction. We will later give it up in order to compute abstract models more easily.

Mixed model

 $\mathbf{M}_{\mathbf{A}} = (\mathbf{S}_{\mathbf{A}}, \mathbf{I}_{\mathbf{A}}, \mathbf{R}^{\mathbf{A}}, \mathbf{R}^{\mathbf{E}}, \mathbf{L}_{\mathbf{A}})$

A-path is a path over **R**^A-transitions **E-path** is a path over **R**^E-transitions

 $M_{A}, a \models \mathbf{A}X f \Leftrightarrow \forall b [(a,b) \in \mathbf{R}^{\mathbf{A}} \to M_{A}, b \models f]$ $M_{A}, a \models \mathbf{E}X f \Leftrightarrow \exists b [(a,b) \in \mathbf{R}^{\mathbf{E}} \land M_{A}, b \models f]$

Model checking on mixed models

CTL model checking works iteratively, from simpler subformulas to more complex ones. Each subformula will be checked on either \mathbb{R}^{A} or \mathbb{R}^{E} , according to the main operator of the formula a_{1}

We have constructed M_A , which given $S_{A,}$, is the best model satisfying for every φ in CTL* $M_A \models \varphi \Rightarrow M \models \varphi$

If not ($\mathbf{M}_{A} \models \boldsymbol{\phi}$) then we can check whether $\mathbf{M}_{A} \models \neg \boldsymbol{\phi}$. If neither holds then S_{A} is too coarse to give the answer.

Approximations

As in other abstractions:

- We would like to construct the abstraction directly from the program text
- Best abstraction is too **difficult** to compute
- We therefore construct **approximation** to the abstraction

Mixed simulation

 $\mathbf{H}_{\mathbf{A}} \subseteq \mathbf{S}_{\mathbf{A}} \times \mathbf{S}_{\mathbf{A}}$ is defined over mixed abstract models, each with state set $\mathbf{S}_{\mathbf{A}}$

Mixed simulation is similar to simulation, except that the condition on $(s_1, s_2) \in H$ saying that s_2 has "more" successors than s_1 is replaced for $(a_1, a_2) \in H_A$ by

- **a₂ has "more" A-successors** than **a₁**
- **a**₂ has "less" E-successors than a₁

 $a_2 \ge a_1$ by the mixed simulation $a_2 \models AXp \Rightarrow a_1 \models AXp$ $a_2 \models Exq \Rightarrow a_1 \models EXq$

Theorem: If A' and A'' are mixed models and $A'' \ge A'$ by the mixed simulation then for every CTL* formula φ $A'' \models \varphi \implies A' \models \varphi$

Corollary: If $A \ge M_A$ by the mixed simulation then $A \models \phi \implies M \models \phi$

Computing abstraction from the program text

Assume a **program** that repeatedly computes a set of transitions:

 $\{ c_i(x) \rightarrow t_i(x,x') \mid i \in J \}.$

Being in state s, it chooses nondeterministically a transition i for which $c_i(s)$ is true. The transition results in state s' for which $t_i(s, s')$ is true. $\begin{array}{l} \mathbf{c_i}^{\mathbf{A}}(\mathbf{a}) \Leftrightarrow \exists s \in \gamma(\mathbf{a}): \ \mathbf{c_i}(s) \\ \mathbf{t_i}^{\mathbf{A}}(\mathbf{a}, \mathbf{b}) \Leftrightarrow \exists \mathbf{Y} \subseteq \mathbf{S} \ \left[\alpha(\mathbf{Y}) = \mathbf{b} \land \right. \\ \mathbf{Y} \text{ is a minimal set that satisfies } \mathbf{t_i}^{\exists \exists} \ \left(\gamma(\mathbf{a}), \mathbf{Y}\right) \right] \end{array}$

 $\mathbf{c_i^{E}(a) \Leftrightarrow \forall s \in \gamma(a): c_i(s)}$ $\mathbf{t_i^{E}(a, b) \Leftrightarrow \exists \mathbf{Y} \subseteq S \ [\alpha(\mathbf{Y})=b \land$ $\mathbf{V} \text{ is a minimal set that satisfies } \mathbf{t} \forall \exists (u(a), \mathbf{V})]$

Y is a **minimal** set that satisfies $\mathbf{t_i}^{\forall \exists}$ ($\gamma(a), \mathbf{Y}$)]

Approximation for $\mathbf{R}^{\mathbf{A}}$ and $\mathbf{R}^{\mathbf{E}}$ $\mathbf{R'}^{\mathbf{A}} = \{ (a,b) \mid \exists i \in J: c_i^{\mathbf{A}}(a) \land t_i^{\mathbf{A}}(a, b) \}$ $\mathbf{R'}^{\mathbf{E}} = \{ (a,b) \mid \exists i \in J: c_i^{\mathbf{E}}(a) \land t_i^{\mathbf{E}}(a, b) \}$

Example Program: { $x=4 \rightarrow x' := x/4$ } $S_A = \{ \text{ even, odd, T }$ $\mathbf{R}^{\mathbf{A}} = \{ (\text{even, odd}), (\mathsf{T}, \text{ odd}) \}$ $\mathbf{R}^{\mathbf{A}} = \{ (\text{even, odd}), (\mathsf{T}, \text{ odd}), (\text{even, even}) \}$

Example Program: { even(x) \rightarrow x' := x/2 even(x) \rightarrow x' := x+1 } S_A = { even, odd, T } R^E = { (even, odd) } R'^E = { (even, odd), (even, T) }

Lemma

- $R^{A} \subseteq R'^{A}$
- For all $a, b \in S_A [R'^E(a,b) \Rightarrow \exists b'' \leq b [R^E(a,b'')]]$

Further approximation

Give up minimality in the definition of t_i^A and t_i^E : Replace transition (a, b) by transition (a, b') with $b \le b'$ by the mixed simulation.

- Easier to compute from the program text.
- Still preserves (possibly less) CTL* formulas.

State-of-the-art Abstraction

Abstract interpretation

(Cousot & Cousot 77, Loiseaux & Graf & Sifakis & Bouajjani & Bensalem 95, Graf 94)

- (Bi)-simulation reduction
 (Bouajjani & Fernandez & Halbwachs 90, Lee & Yannakakis 92, Fisler & Vardi 98, Bustan & Grumberg 00)
- Formula-dependent equivalence (Aziz & Singhal & Shiple & Sangiovanni-Vincentelli 94)
- Compositional minimization (Aziz & Singhal & Swamy & Brayton 94)

State-of-the-art Abstraction (Cont)

Uninterpreted functions (Burch & Dill 94, Berzin & Biere & Clarke & Zhu 98, Bryant & German & Velve 99)

Abstraction and refinement (Dams & Gerth & Grumberg 93, Kurshan94, Balarin & Sangiovanni-Vincentelli 93, Lind-Nielsen & Andersen 99)

Predicate abstraction and Theorem proving (Das & Dill & Park 99, Graf & Saidi 97, Uribe 99)

The End