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Another obvious question is whether it is possible to apply abstraction and compo�
sitional reasoning techniques to branching�time logics with existential path quanti�ers�
The restriction to ACTL can produce misleading results� For example� an ACTL formula
may be vacuously true if there are no fair paths� This is a serious problem� If the theory
that has been developed could be extended to full CTL� this problem might be avoided�

There are several technical problems that should be relatively easy to solve� The
compositional reasoning and abstraction techniques that we have developed apply only
to synchronous systems� Although synchronous systems are probably more common in
hardware design� asynchronous systems are extremely important for reasoning about
distributed systems� We see no inherent reason why the techniques described in this paper
cannot be extended to handle both types of parallel composition� Another important
problem is to develop e�cient algorithms for checking the simulation preorder between
arbitrary structures which may involve fairness constraints� This will make the theory
developed in Sections � and � much more widely applicable�

Perhaps the most exciting problem is to extend the theory that has developed to
in�nite state systems� so that software can be handled as well �	
� 	��� Data values
might be represented as terms in the Herbrand universe determined by the program�
Given an equivalence relation of nite index on these terms� we should be able to derive
abstractions for the primitive relations and use these to produce an abstract version of
the program� However� this will require considerably more thought�
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Fig� ��� Pipeline circuit block diagram

reachable states� The verication required slightly less than six and one half hours of CPU
time� In addition the verication times scale linearly in both the number of registers and
the width of the registers� For comparison� the largest circuit veried by Burch et al� �
��
had � registers� each 	� bits� and the verication required about four and one half hours
of CPU time on a Sun �� In addition the verication times there were growing quadrat�
ically in the register width and cubicly in the number of registers� We also note that
the complexity of verifying systems like this can be further reduced using a technique
that we call symbolic compositions� Symbolic compositions have the same �avor as sym�
bolic abstractions� but are designed to take advantage of the compositional verication
properties of ACTL��see Section ��� By combining symbolic compositions with symbolic
abstractions� we were able to verify the system in less than �� minutes of CPU time on
a Sun 	���� and with verication times that scale polylogarithmically in the number of
registers and linearly in the width of registers� We discuss these techniques in more detail
elsewhere �	���

� Directions for Future Research

There are several directions for future work� Certainly the most important question
is whether symbolic model checking algorithms are always superior to model checking
algorithms that use an explicit representation for the state�transition graph� It appears
that the symbolic algorithms are rarely worse than the explicit state algorithms and in
many cases are signicantly better� However� the denitive answer to this question can
only be determined by additional experimentation�



is essentially saying
AG�a � c� AX b � c��

If the formula turns out to be true for all values of c� we will have proved the desired
specication� The observation now is that by introducing � extra BDD variables to encode
the possible choices for c� we can in fact�


� represent Hc with a BDD �the user will supply just Hc��

�� compile with Hc to get a BDD representing bRc�ba�ba��bb�bb�� c� �the compiler handles
this step automatically��

	� perform the model checking to obtain a BDD representing the parameterized state
set �the model checker does this automatically� it simply views c as an additional
state component that never changes�� and

�� if necessary� choose a specic c and generate a counterexample �also done by the
model checker��

Further note that� in this case� the program behaves identically regardless of the value
of c� so when we compile it� the BDD for bRc will be independent of the extra variables
that we introduced� As a result� doing the model checking will be no more complex than
in the case when we were just verifying

AG�a � ��� AX b � ����

In general� we have found that sharing in the BDDs makes it possible to perform the
abstraction� compilation� and model checking e�ciently� We call abstractions such as hc
�symbolic abstractions��

We used symbolic abstractions to verify a simple pipeline circuit� This circuit is
shown in Figure 

 and is described in detail elsewhere �
�� 
��� It performs three�address
arithmetic and logical operations on operands stored in a register le�

We used two independent abstractions to perform the verication� First� the register
addresses were abstracted so that each address was either one of three symbolic constants
�ra� rb or rc� or some other value� This abstraction made it possible to collapse the entire
register le down to only three registers� one for each constant� The second abstraction
involved the individual registers in the system� In order to verify an operation� say addi�
tion� we create symbolic constants ca and cb and allow each register to be either ca � cb�
ca � cb or some other value� As part of the specication� we veried that the circuit�s
addition operation works correctly� This property is expressed by the temporal formula

AG
�
�srcaddr� � ra� � �srcaddr� � rb� � �destaddr � rc� � �stall

� AXAX��regra � ca� � �regrb � cb�� AX�regrc � ca � cb��
�
�

This formula states that if the source address registers are ra and rb� the destination
address register is rc� and the pipeline is not stalled� then the values in registers ra and rb
two cycles from now will sum to the value in register rc three cycles from now� The reason
for using the values of registers ra and rb two cycles in the future is to account for the
latency in the pipeline�

The largest pipeline example we tried had �� registers in the register le and each
register was �� bits wide� This circuit has more than ����� state bits and nearly 
�����



��� Symbolic abstractions

The use of a BDD�based compiler together with model checker makes it possible to use
abstractions which depend on symbolic values� This idea can greatly increase the power of
a particular type of abstraction� As a simple example� consider the program in Figure 
��
We wish to show that the next state value of b is always equal to the current state value

input a � �
output b � �� 


loop

b� a

wait

endloop

Fig� ��� A simple program

of a� We can express this property for a xed value� say ��� using the formula�

AG�a � ��� AX b � ����

If we wanted to verify just this property� we could use the following abstraction for
a and b

H�i� �

�
�� if i � ���


� otherwise�

When we apply this abstraction and compile the program� we obtain the transition
relation bR�ba�ba��bb�bb�� dened by bb� � ba� Here� the primes denote next�state variables� and
all of the variables range over f�� 
g� Now to check that our program works correctly for
the value ��� we would check the following formula at the abstract level�

AG�ba � �� AXbb � ���

The formula would of course turn out to be satised� Obviously though� we do not want
to have to repeat this process for each possible data value�

Suppose now that we were to modify our abstraction function as follows�

Hc�i� �

�
�� if i � c�


� otherwise�

We have introduced a new symbolic parameter that our abstraction depends on� Imagine
compiling the program with this abstraction� we should get a relation bRc�ba�ba��bb�bb�� c�
that is parameterized by c� Fixing c � �� will give the relation bR that we encountered
above� If we could run the model checking algorithm on our parameterized relation� we
would obtain a parameterized state set representing the states for which our formula is
true� Now our specication

AG�ba � �� AXbb � ��



Single bit and product abstractions For programs involving bitwise logical opera�
tions� the following abstraction is often useful�

h�i� � the jth bit of i�

where j is some xed number�

If H� and H� are abstraction mappings� then

h�i� �
�
H��i��H��i�

�
also denes abstraction mapping� Using this abstraction� it may be possible to verify
properties that it is not possible to verify with either H� or H� alone�

As an example of using these types of abstractions� consider the program shown in
Figure �� This program reads an initial 
� bit input and computes the parity of it� The
output done is set to one when the computation is complete� at that point� parity has
the result� Let �i be true if the parity of i is odd� One desired property of the program
is the following�


� The value assigned to b has the same parity as that of in� and
�� �b � parity is invariant from that point onwards�

We can express the above with the following formula�

��in �AX
�
��b �AG���b � parity�

�
� �in �AX

�
�b �AG��b � parity�

�
To verify this property� we used a combined abstraction for in and b� Namely� we grouped
the possible values for these variables both by the value of their low�order bit and by
their parity� The verication required only a few seconds�

input in � ��
output parity � �� 

output b � ��� 

output done � �� 


b� in

wait

while b �� 

parity � parity � lsb�b�
b � b� �
wait

endwhile

done � �

Fig� �� A parity computation program



The specication we used for the multiplier was a series of formulas of the following
form��

AG
�
waiting � req � �in� modm � i� � �in� mod m � j�

� A��ack U ack � �over�ow � �output modm � ij modm���
�

Here� i and j range from � through m � 
� and waiting is an atomic proposition which
is true when execution is at the program statement labeled 
� The input in� and the
outputs factor� and output were all abstracted modulo m� The output factor� was not
abstracted� since its entire bit pattern is used to control when factor� is added to output �
We performed the verication for m � �� �� �� 

 and 	�� These numbers are relatively
prime� and their product� 

������ is su�cient to cover all ��� possible values of output �
The entire verication required slightly less than 	� minutes of CPU time on a Sun �� We
also note that because the BDDs needed to represent multiplication grow exponentially
with the size of the multiplier� it would not have been feasible to verify the multiplier
directly� Further� even checking the above formulas on the unabstracted multiplier proved
to be impractical�

Representation by logarithmWhen only the order of magnitude of a quantity is
important� it is sometimes useful to represent the quantity by �a xed precision approx�
imation of� its logarithm� For example� suppose i � �� Dene

lg i � dlog��i� 
�e�

i�e�� lg i is � if i is �� and for i � �� lg i is the smallest number of bits needed to write i in
binary� We take h�i� � lg i�

As an illustration of this abstraction� consider again the multiplier of Figure �� Recall
that a program which always indicated an over�ow would satisfy our previous specica�
tion� We note that if lg i � lg j � 
�� then lg ij � 
�� and hence the multiplication of
i and j should not over�ow� Conversely� if lg i� lg j � 
�� then lg ij � 
�� and the multi�
plication of i and j will over�ow� When lg i � lg j � 
�� we cannot say whether over�ow
should occur� These observations lead us to strengthen our specication to include the
following two formulas�

AG
�
waiting � req � �lg in� � lg in� � 
��� A��ack U ack � �over�ow �

�
AG

�
waiting � req � �lg in� � lg in� � 
��� A��ack U ack � over�ow �

�
We represented all the 
� bit variables in the program by their logarithms� Compiling
the program with this abstraction and checking the above properties required less than
a minute of CPU time�

shifted left by one bit� Right shifts are indicated using �� The break statement is used to
exit the innermost loop�

� This speci�cation admits the possibility that the multiplier always signals an over�ow� We
will verify that this is not the case using a di�erent abstraction �see subsection �����



input in� � ��
input in� � ��
input req � �
output factor� � ��� 

output factor� � ��� 

output output � ��� 

output over�ow � �� 

output ack � �� 


procedure waitfor�e�
while �e

wait

endwhile

endproc

loop

�� waitfor�req�
factor� � in�
factor� � in�
output � 

over�ow � 

wait

loop

if �factor� � 
� � �over�ow � �� break endif

if lsb�factor�� � �
�over�ow�output�� �output� ��� � factor�

endif

factor� � factor�� �
wait

if �factor� � 
� � �over�ow � �� break endif

�over�ow� factor��� �factor�� ���� �
wait

endloop

ack � �
wait

waitfor��req�
ack � 


endloop

Fig� �� A �� bit multiplier

added to the accumulating result� The rst factor is then shifted right and the result is
shifted left in preparation for the next step��

� One feature of the language which the program uses is the ability to extend an operand to a
speci�ed number of bits� For example	 x � � extends x to be � bits wide by adding leading 
 bits�
This facility is used to extend output and factor� when adding and shifting so that over�ow
can be detected� The statement �over�ow�output�� �output� ���� factor� sets output to the
�� bit sum of output and factor� and over�ow to the carry from this sum� Also	 x � � is x



��� Example abstractions

In this section� we discuss some abstractions which have proved useful in practice� Each is
illustrated with a small example� The temporal logic formulas in this section are written
with some syntactic sugaring of the atomic propositions in order to make them easier to
read� For example� if x is a variable that is abstracted by�

h�d� �

�
aeven� if d is even�

aodd� if d is odd�

then we will generally write something like even�x� in a formula rather than �bx � aeven��

Congruence modulo an integer For verifying programs involving arithmetic opera�
tions� a useful abstraction is congruence modulo a specied integer m�

h�i� � i modm�

This abstraction is motivated by the following properties of arithmetic modulom��
�i modm� � �j modm�

�
modm 	 i � j �mod m��

�i modm� � �j modm�
�
modm 	 i � j �mod m��

�i mod m��j modm�
�
modm 	 ij �mod m�

In other words� we can determine the value modulom of an expression involving addition�
subtraction and multiplication by working with the values modulo m of the subexpres�
sions�

The abstraction may also be used to verify more complex relationships by applying
the following result from elementary number theory�

Theorem�� Chinese remainder theorem� Let m�� m�� � � � � mn be positive integers
which are pairwise relatively prime� De�ne m � m�m� � � �mn� and let b� i�� i�� � � � � in be
integers� Then there is a unique integer i such that

b � i � b�m and i 	 ij �mod mj� for 
 � j � n�

Suppose that we are able to verify that at a certain point in the execution of a program�
the value of the nonnegative integer variable x is equal to ij modulo mj for each of
the relatively prime integers m�� m�� � � � � mn� Further� suppose that the value of x is
constrained to be less than m�m� � � �mn� Then using the above result� we can conclude
that the value of x at that point in the program is uniquely determined�

We illustrate this abstraction using a 
� bit by 
� bit unsigned multiplier �see Fig�
ure ��� The program has inputs req� in� and in� � The last two inputs provide the factors
to operate on� and the rst is a request signal which starts the multiplication� Some num�
ber of time units later� the output ack will be set to true� At that point� either output
gives the 
� bit result of the multiplication� or over�ow is one if the multiplication over�
�owed� The multiplier then waits for req to become zero before starting another cycle�
The multiplication itself is done with a series of shift�and�add steps� At each step� the
low�order bit �bit �� of the rst factor is examined� if it is one� then the second factor is



and for verication there is a standard transformation of Moore machines into Kripke
structures ���� When abstraction is not used� our compiler produces this Kripke structure
directly� Since the structure may have a large number of states� it is important not to
generate an explicit�state representation� Instead� the compiler directly produces a de�
scription of the structure in the form of a BDD� This is then used as the input to the
model checking program�

To use abstraction� the user species abstractions for some of the variables at the
time of compilation� By using the techniques described in the previous subsections� the
compiler directly generates an abstract structure� There are a number of abstractions
built into the compiler� some of which are described in the following section� In addition�
the user may dene new abstractions by supplying procedures to build the BDDs rep�
resenting them� Abstract versions of the primitive relations are computed automatically
by the compiler�

Figure � is a small example program� a settable countdown timer� written in the
language� The timer has two input variables� set and start � which are one and eight bits
wide respectively� There are also two output variables� count � which is eight bits wide
and is initially zero� and alarm� which is one bit and initially one� At each time step� the
operation of the counter is as follows� If set is one� then the counter is set to the value
of start� Otherwise� if the counter is not zero� it is decremented� The alarm output is set
to one when count is zero� and to zero if count is nonzero�

input set � �
input start � �
output count � �� 

output alarm � �� �

loop

if set � �
count � start

else if count � 

count � count � �

endif

if count � 

alarm � �

else

alarm � 

endif

wait

endloop

Fig� �� An example program



The proof of exactness when the 
xi are congruences with respect to the primitive
relations is based on the following theorem which is the analog of Theorem 
�� This
theorem allows us to show that Mr and Ma are bisimulation equivalent�

Theorem��� If the 
xi are congruences with respect to the primitive relations and �

is a relational expression de�ned over these relations� then ���� C���� In particular �S��
and �R� are equivalent to C�S�� and C�R�� respectively�

This is used to prove bisimulation equivalence between M and Ma�

Theorem��� If 
xi are congruences with respect to the primitive relations� then M 	
Ma�

For the proofs of these theorems� see Long ����� The intuition is that we can lift the
congruence on primitive relations to a congruence on any relational expression built from
these primitives� Now let s� and s� be states of M that have the same labeling� Then
they are related by the 
xi � By the previous observation� if s� and t� satisfy R� then s�
and t� must also satisfy R for every t� that is related by 
xi to t�� Thus s� and s� are
bisimilar� so all states which are collapsed to one state in forming Mr are bisimilar to
each other� and to the state in Mr� This in turn implies that M and Mr are bisimulation
equivalent� The previous theorem is then used to prove that M 	Ma�

��	 A simple language

We now describe a verication system based on the ideas in the previous subsections�
The system consists of a compiler for a nite state language� plus a BDD�based model
checker� In this section� we brie�y describe the language� which is designed for specifying
reactive programs� The main features of this language are�


� It is procedural and contains a variety of structured programming constructs� such
as while loops� Non�recursive procedures are also available�

�� It is nite state� The user must specify a xed number of bits for each input and
output in a program�

	� The model of computation is a synchronous one� At the start of each time step� inputs
to the program are obtained from the environment� All computation in a program
is viewed as instantaneous �i�e�� occurring in zero time�� There is one special state�
ment� wait� which is used to indicate the passage of time� When a wait statement
is encountered� any changes to the program�s outputs become visible to the environ�
ment� and a new time step is initiated� Thus� computation proceeds as follows� obtain
inputs� compute �in zero time� until a wait is encountered� make output changes vis�
ible� obtain new inputs� etc� The wait statements indicate the control points in the
program�

Aside from the wait statement� most of the language features used in the examples in
this paper are self�explanatory�

A program in the language may be compiled into a Moore machine �	�� for imple�
mentation in hardware� A Moore machine is a standard model for synchronous circuits�



above� The relationships between abstract interpretation and the use of abstraction in
model checking are discussed in more detail elsewhere ��� ����

Finally� we show thatMa simulatesM � This is the basis for using abstraction to verify
properties of the program�

Theorem�
� M �Ma�

Proof� We show this by giving a simulation relation between M and Ma� Let s �
�d�� � � � � dn� and sa � �a�� � � � � an�� Dene H�s� sa� if and only if for all i� h�di� � ai�

Assume H�s� sa�� with s � �d�� � � � � dn�� Then sa � �h�d��� � � � � h�dn��� Note rst that
the two states have the same labeling� Recall that the label of s is the set of propositions
�bxi � ai�� where the value of xi is mapped to ai by h� Assume then that �bxi � ai� labels
s� This is true if and only if ai � h�di�� Now sa will be labeled by � bxi � ai� if and only if
the ith component of sa is ai� But the ith component of sa is h�di�� which is equal to ai�

Assume R�s� t�� where t � �e�� � � � � en�� Dene ta � �h�e��� � � � � h�en��� We must show
that Ra�sa� ta�� By the denition of R� we know that s and t correspond to valuations
satisfying R� Now we show that �R��sa� ta�� By denition of ��� we have �R��sa� ta� if and
only if

�x� � � ��xn�x
�

� � � ��x
�

n �
n�
i��

�h�xi� � h�di� � h�x�i� � h�ei�� �R�x�� � � � � xn� x
�

�� � � � � x
�

n���

SinceR�s� t�� we can see that the above formula holds by taking the di as witnesses for the
xi and the ei as witnesses for the x�i� Now that we know �R��sa� ta�� the previous theorem
implies that C�R��sa� ta�� But C�R� denes Ra� so Ra�sa� ta�� Thus� H is a simulation
relation between M and Ma�

Using a similar argument� we see that if s � S�� then sa � Sa� � Thus every initial state
of M has a corresponding initial state of Ma� and so M �Ma�

��� Exact approximations

In the previous section� we showed that M � Ma� thus� every ACTL� formula satised
by Ma also holds in M � In this subsection� we consider some additional conditions that
allow us to showM is bisimulation equivalent toMa� These conditions permit us to verify
any CTL� formula using Ma and conclude that M also satises the formula� When these
conditions are satised� we will call Ma an exact approximation of M �

To begin� we note that each abstraction mapping hx for the program variable x

induces an equivalence relation 
x dened as follows� Let d� and d� be in Dx� Then
d� 
x d� if and only if hx�d�� � hx�d��� The key condition for exact approximations is
that these equivalence relations are congruences for the primitive relations corresponding
to the basic operations used in the program� Recall the denition of congruence� Let
P �x�� � � � � xm� be a relation with xi ranging over Dxi � The equivalence relations 
xi are
a congruence with respect to P if and only if

�d� � � ��dm�e� � � ��em �
m�
i��

di 
xi ei � �P �d�� � � � � dm�� P �e�� � � � � em����




� If � � P �x�� � � � � xm� or � � �P �x�� � � � � xm� where P is a primitive relation then
��� � C��� and the theorem holds�

�� Let ��x�� � � � � xm� � �� � ��� Then� ��� � ��� is identical to the formula

�x� � � ��xm �
�
i

h�xi� � bxi � �� � ����

This formula implies

�x� � � ��xm �
�
i

h�xi� � bxi � ��� � �x� � � ��xm �
�
i

h�xi� � bxi � ����

which is exactly ���� � ����� Now C��� � ��� � C���� � C����� and by the induction
hypothesis we have ���� implies C���� and ���� implies C����� Hence ����� ���� implies
C���� � C����� and so ��� � ��� implies C��� � ����

	� The case where � � �� � �� is similar to the previous case�
�� Let ��x�� � � � � xm� � �x��� Then ��x��� is

�x� � � ��xm �
�
i

h�xi� � bxi � �x���x� x�� � � � � xm���
We can assume without loss of generality that the bound variable x is di erent from
the xi and bxi� so the above formula is equivalent to

�x� � � ��xm�x �
�
i

h�xi� � bxi � ���x� x�� � � � � xm���

This implies

�x�x� � � ��xm �
�
i

h�xi� � bxi � ���x� x�� � � � � xm���

Since h is a surjection� for every abstract element in A� there is some element of D
that maps onto it� Hence the above formula implies

�bx�x��x� � � ��xm �h�x� � bx ��
i

h�xi� � bxi � ���x� x�� � � � � xm����

This is exactly �bx ����� Now by the induction hypothesis� ���� implies C����� and so
�bx ���� implies �bx C����� This latter formula is equal to C��x����

�� The case where � � �x�� is similar to the previous case�

The above idea of �pushing the abstractions inwards� is essentially the same one that
is used in abstract interpretation ��	� ��� 	�� 	��� By dening a suitable abstract domain
of computation and then interpreting a program relative to this domain� it is possible
to extract information about the program� The goal is usually to obtain data that will
be used at compile time to optimize the program� Abstract interpretations have been
dened for applications such as� strictness and reference count analysis for functional
programs� nding linear relationships between variables� and computing live ranges for
variables� The interpretation is done using abstract versions of the language operators�
These abstract operators correspond to the abstract versions of the primitive relations



To produce Ma� we will require a state transition graph over the abstracted state
set A�    � A� First� we note that we can obtain an abstract state transition graph Tr
corresponding to Mr by evaluating the formulas

cS� � �x� � � ��xn �h�x�� �cx� �    � h�xn� � cxn � S��x�� � � � � xn���
and

bR � �x� � � ��xn�x
�

� � � ��x
�

n �h�x�� �cx� �    � h�xn� � cxn
� h�x��� �cx�� �    � h�x�n� � cxn� �R�x�� � � � � xn� x��� � � � � x�n���

For conciseness� we will denote this existential abstraction operation by ��� If � depends
on the free variables x�� � � � � xm� then we dene

����cx�� � � � � cxm� � �x� � � ��xm �h�x�� � cx� �    � h�xm� � cxm � ��x�� � � � � xm���

Note that the free variables of ��� are the abstract versions of x�� � � � � xm� So the abstract

state transition graph corresponding to Mr is given by the formulas cS� � �S�� andbR � �R��
Ideally� we would like to extract Sr� and Rr from �S�� and �R� directly� However�

this is often computationally expensive� Thus� we will now dene a transformation C on
formulas �� The idea of C is to simplify the formulas to which �� is applied� We assume
that � is given in negation normal form� i�e�� negations are applied only to primitive
relations�


� C�P �x�� � � � � xm�� � �P ��cx�� � � � � cxm� and C��P �x�� � � � � xm�� � ��P ��cx�� � � � � cxm� if P
is a primitive relation�

�� C��� � ��� � C���� � C�����
	� C��� � ��� � C���� � C�����
�� C��x�� � �bxC����
�� C��x�� � �bxC����
In other words� C pushes the existential quantications inwards so that the abstraction
operation �� is only applied at the innermost level� Since these inner abstractions are
relatively simple� they can be evaluated easily� Thus� while we may not be able to evaluate
�S�� and �R�� we generally can evaluate C�S�� and C�R�� This will yield the state transition
graph Ta � �Sa� S

a
� � Ra�� We dene Ma using Ta� As when we dened M from T � we take

the state set� initial states� and transition relation directly from Ta� La is dened as
follows� Let sa � �a�� � � � � an� � Sa� Then La�sa� � f�cx� � a��� � � � � �cxn � an�g� Note that
s � �d�� � � � � dn� � S and sa will be identically labeled if for all i� h�di� � ai�

The price that we pay for simplifying the evaluation is that we may add extra initial
states and transitions to the corresponding state transition graph� This is why Ma will
only be an approximation to Mr� On the other hand� in order to know that Ma simulates
Mr� we must show that applying C cannot cause us to lose any initial states or transitions�
This is a consequence of the following theorem�

Theorem��� ��� implies C���� In particular� �S��� C�S�� and �R�� C�R��

Proof� We apply induction on the structure of the formula ��



�PC � 
 � b �� � � p� � p � lsb�b� � b� � b� 
 � PC � � 
� �

�PC � � � p� � p � b� � b � PC � � ���

Now the above expression is written assuming that we have operators in the logic for
all of the operators in the language� that we can use language constants as constants in
the logic� etc� In order to eliminate these� we could instead rewrite the above expression
in terms of primitive relations for the operators and constants� Consider� for example�
the clause p� � p � lsb�b�� This involves two operations� selecting the low�order bit
of b� and then computing the exclusive�or of the result with p� We now assume that we
have primitive relations Plsb and P� for these operators� The former is a two�argument
relation� and the latter is a three�argument relation� the last argument in each case will
be the result produced by the operator� The clause p� � p� lsb�b� can now be expressed
as follows�

�t �Plsb�b� t� � P��p� t� p
����

�Note that we needed to introduce a �temporary� variable t to hold the intermediate
result�� In a similar way� we could rewrite the rest of the transition relation expression to
obtain a relational expression built entirely from primitive relations� This would be the
relational expression R� A relational expression S� describing the initial conditions on p�
b� and PC could be derived in a similar way�

In general� the derivation of S� and R are based on a relational semantics for the
nite�state language� essentially� we write down the meaning of the program under the
semantics� A relational semantics is usually very natural for languages intended to specify
transition systems since their purpose is to describe the transition relation of the system�
We will not give the relational semantics for any particular language in this section�
our goal above is just to motivate the claim that we can take a nite�state program
and produce relational expressions representing the initial states and transitions of the
transition system described by the program�

��� Computing approximations

Throughout this subsection� we assume that �� �� and �� are relational expressions built
up from the primitive relations representing the operations in the program� For simplicity�
we assume that all of the variables x�� x�� � � � � range over the same domainD� We use
a set cx�� cx�� � � � � of variables ranging over the abstract domain A� with bxi representing
the abstract value of xi� We will also assume that there is only one abstraction function
h mapping elements of D to elements of A�

We use S� and R of the previous section to dene the state transition graph T �
�S� S�� R� with state set S � D �    � D� S� is the set of valuations that satisfy the
formula S�� Similarly� the transition relation R is derived from the formula R� Recall
that we use T to produce the Kripke structure M � In particular� we take S� S�� and
R for the Kripke structure to be the same as in T � The labeling function L is dened
as follows� Let s � �d�� � � � � dn�� i�e�� in state s� xi has value di� Dene ai � h�di�� We
introduce an atomic proposition � bxi � ai� to denote that xi has the abstract value ai�
Now L�s� � f�cx� � a��� � � � � �cxn � an�g�



in verifying the temporal behavior of programs� we must know the points where the
state of the variables can be observed� We will call these points control points� and
in the example� the control points are those lines labeled with �� 
� and �� During the
computation of this program� we will observe a transition from control point � to control
point 
 �during which p is set to ��� some transitions from 
 back to 
 �going around the
while loop�� a transition from 
 to � �when b � ��� and nally an innite sequence of
transitions from � to � �when the program is in a terminal state�� Contrast this with the
input�output style semantics of the program� where we would just be interested in the
relationship between the variables at points � and ��


� p� 

�� while b �� 


p� p� lsb�b�
b� b� �

endwhile

�� end

Fig� �� A simple example program

The transition relation specied by this program is obtained by looking at the se�
quences of statements between consecutive control points� First� consider the transition
between control points � and 
� During this transition� p should be set to �� In order to
distinguish the values of the variables at the start of the transition �at control point ��
from the values at the end of the transition �at 
�� we will decorate the latter with primes�
Thus� p will denote the value of the variable p at point �� and p� will denote the value of
the variable p at point 
� We will use a variable PC ��Program Counter�� to denote the
control point� Then the transition from point � to point 
 can be expressed by�

PC � � � p� � � � b� � b � PC � � 
�

This says that PC starts at � and ends at 
� the value of p at the end point is �� and the
value of b does not change during the transition�

The transition from point 
 to point � does not involve any changes in the variables�
but it does require a test to see that b � �� Thus� we get the relation�

PC � 
 � b � � � p� � p � b� � b � PC � � ��

The b � � acts as a guard to eliminate the transition when the condition does not
hold� An expression for the transition relation of the whole program can be derived by
simply taking the disjunction of the expressions for the point�to�point transitions� For
this program� we get the following expression �note that the rst two lines are just the
point to point relations derived above��

�PC � � � p� � � � b� � b � PC � � 
� �

�PC � 
 � b � � � p� � p � b� � b � PC � � �� �
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Fig� 	� Tra�c light controller example

��� Compilation

In order to describe how Ma is produced� we must consider the process of compiling a
program into a state transition graph� To keep the discussion relatively independent of the
particular programming language used� we will argue that a program can be transformed
into relational expressions S� and R that can be evaluated to obtain the initial states S�
and the transition relation R of T � These relational expressions are simply rst�order
formulas that will be built up from a set of primitive relations for the basic operators
and constants in the language� Later� we will use these formulas to obtain an abstract
state transition graph which will give us Ma� There will typically be types associated
with the variables and relation arguments in the relational expressions that we write�
but for notational simplicity� we will leave these implicit�

In the remainder of this subsection� we consider how S� and R can be derived� Since
this is not the main concern of the section� we will just consider an example program
�Figure ��� This program computes the parity p of the variable b by repeatedly computing
the exclusive�or of p and the low�order �rightmost� bit of b �lsb�b�� and then shifting b

to the right by one bit �b� 
�� �The parity of a number is � if the number of one bits
in its binary representation is even� and 
 if this number is odd�� Since we are interested



are referring to abstract rather than actual values� Note that we can no longer express
properties about the exact actual value of x using these atomic propositions� In many
cases though� by judicious choice of the abstraction mapping� knowing just the abstract
value is su�cient� If we apply this abstraction process to some of the program variables�
the Kripke structure obtained has a smaller number of atomic propositions� Let M be
this structure� Now state space reduction techniques may be applicable to reduce the
complexity of verication�

The particular technique that we will use is based on simulation relations� The idea
will be to merge together all states that have the same labeling of �abstract�level� atomic
propositions� Thus� in the reduced structure� every state will have a unique labeling�
Consequently� the labeling can be used to identify the state� In the above example� we
would collapse all states labeled with �bx � a	� into one state� i�e�� all states where x � �
are merged into one� We denote this collapsed state by the label �bx � a	� as well� When
we do the collapsing� we must ensure that the reduced structure simulates the original
one� So� if there is a transition in M between states corresponding to x � � and x � ��
in our reduced system we must add a transition between the states labeled with �bx � a��
and �bx � a	�� Similarly� if the state where x � �� is an initial state� we must make the
state labeled with �bx � a�� an initial state� Formally� we collapse M to the structure Mr

��r� for �reduced state space�� dened as follows�


� Sr � fL�s� j s � S g� That is� Sr is the set of all labelings of states of M �

�� sr � Sr� if and only if there exists s such that sr � L�s� and s � S��

	� AP r � AP �

�� Each sr is just a set of atomic propositions� so we take Lr�sr� � sr�

�� Rr�sr� tr� if and only if there exist s and t such that sr � L�s�� tr � L�t�� and R�s� t��

It is now easy to see that the reduced structure Mr simulates the original structure M �
because we can use H � f �s� sr� j sr � L�s� g as a simulation relation� Thus� whatever
ACTL� properties we can prove about Mr will also hold in M � We think of Mr as an
abstract version of the state transition graph of the program� The states ofMr correspond
to mappings from the program variables to abstract values� Each abstract state represents
a set of concrete states that are merged together during the collapsing process�

Figure � illustrates the abstraction process for a simple tra�c light controller� The
original program has one variable color that can take on the values red � yellow � and
green� The structure M is obtained by mapping red and yellow to stop and green to go�
The reduced structure Mr results from merging together those states ofM with the same
labeling of atomic propositions �

We can use Mr to deduce properties of the program since Mr simulates M � The
di�culty is that building Mr requires constructing M � and this is often impractical�
In the cases where we cannot build M � we use the fact that we do have an implicit
representation ofM � namely� the program text� We will avoid dealing withM by directly
compiling the program to an abstract structure� Unfortunately� we will usually not be
able to produce exactly Mr� but we will produce an approximation Ma that simulates
Mr ��a� for �approximation��� The goal is to have Ma su�ciently close to Mr so that we
can still verify interesting properties of the program�



This specication states that every push operation will be completed� Similarly� using
formulas 
 and 	 as assumptions� we veried

AG
�
pop � A�pop U popped �

�
� ���

The system composed of the access unit and the memory model also satises the for�
mula AGAF�fetchrdy � branch� �at any point� either the access unit will eventually
ll the instruction queue or a branch will occur�� Finally� using this formula and for�
mulas � and � as assumptions� the model checker veried that the execution unit satis�
es AGAF�fetch � fetchrdy�� To complete the verication and conclude that the entire
specication was true of a system� we would have to check that the actual memory was
simulated by the model we used�

� Abstraction

In this section� we discuss techniques for verifying programs with data�dependent behav�
ior� In order to describe such programs� it is convenient to start with a slightly di erent
model of computation in which the data is represented explicitly� Let the variables of the
program be x�� x�� � � � � xn� and let each variable xi have a corresponding domain of values
Dxi � The set of possible program states S is simply the cross product Dx��Dx��  �Dxn �
The state transition graph of the program is a triple T � �S� S�� R�� where S� � S is
a set of initial states� and R � S � S is a transition relation� We could add a fairness
constraint as well� but for simplicity we will ignore fairness throughout this section�

In order to use the theory and specication techniques that we have developed earlier�
we need to convert state transition graphs like the above to Kripke structures� To do this�
we need to decide what information about the program variables should be made visible
in the atomic propositions of the structure� We will only be able to specify and verify
properties concerning the information visible in this way� For example� we could create
an atomic proposition for each program variable xi and value di in Dxi � Denote this
atomic proposition by �xi � di�� Then a state where x� has the value � is labeled by the
proposition �x� � ���

Unfortunately� due to the large �or perhaps even innite� state space of interesting
programs� we cannot directly apply our automated verication techniques� Furthermore�
if the exact values of all the program variables are visible� the state space reduction
techniques described earlier is ine ective� Thus� we must hide some of this information�
For this reason� we map the possible values for each program variable into a small number
of abstract values� For example� suppose x is a variable and the domainDx is all integers�
Assume that we are interested in expressing a property involving the sign of x� We create
a domain Ax of abstract values for x� with Ax � fa�� a	� a�g� and dene a mapping hx
from Dx to Ax as follows�

hx�d� �

��
�
a�� if d � ��

a	� if d � �� and

a�� if d � ��

Now we use just three atomic propositions to express the abstract value of x� We will
denote these propositions by �bx � a��� �bx � a	�� and �bx � a��� where bx indicates that we



unit from having to wait for the memory� For example� when the TS register contains
valid data� a pop operation can proceed immediately� In addition� when a value is pushed
on the stack� it is moved into this register and copied to memory at some later point�
The access unit also loads instructions into a queue when possible so that fetches do not
require waiting for the memory� This queue is �ushed whenever the CPU branches�

We divide the specications that we check into three classes� The rst class consists of
simple safety properties� we omit the description of their verication here� The conditions
in the second class are slightly more complex� These properties are safety properties
which specify what sequences of operations are allowed� They depend on the access unit
asserting the various ready signals at appropriate times and on the memory acknowledge
signal being well�behaved� In order to verify the properties� we made a simple model of
the memory which behaves as follows�


� The memory waits for a read or write request�
�� An arbitrary but nite time later it produces an acknowledgment signal�
	� The acknowledgment signal is removed one cycle later�

By composing this model with the access unit� we were able to verify all of the
properties except one� To verify the exception� an additional assumption AG��push �
�pop� was required� The model checker veried that the property was true under this
assumption by building the tableau for the assumption� composing it with the access
unit and memory model� and checking the property�

The nal class consists of a single liveness property� AGAF�fetch � fetchrdy�� This
formula states that the CPU always fetches another instruction� One way to verify this
property involves making a model of the execution unit� We describe an alternative way
of doing the verication that uses a series of ACTL assumptions�

The idea will be to check the property for the execution unit� In order for the formula
to be true� the access unit must eventually respond to push and pop requests and must ll
the instruction queue when appropriate� We can only guarantee that the access unit meets
these conditions if we know that the execution unit does not try to do two operations
at once and that it will not remove a request before the corresponding operation is
completed� We begin with these properties�

AG
�
��fetch � push� � ��fetch � pop� �    � ��pop � branch�

�
�
�

AG
�
push � A�pushed V push �

�
���

AG
�
pop � A�popped V pop�

�
�	�

The rst of these species that every pair of operations the execution unit can perform are
mutually exclusive� The other two formulas state that if the execution unit makes a push
or pop request� then it does not deassert the request until the operation completes� The
model checker veried that these properties hold in the execution unit alone� and �using
the tableau construction� that the rst property implies the assumption AG��push �
�pop� used above� Now using formulas 
 and � as assumptions� we checked that the
system composed of the access unit and the memory model satised the formula

AG
�
push � A�push U pushed �

�
� ���



htrueiM hAi
hAiM �hgi
hgiM hfi

htrueiM kM �hfi

In the proof� A� M � and M � are nite state models and g and f are ACTL formulas� In
our framework� this corresponds to

M � A

A kM � j� g

Tg kM j� f

M kM � j� f

The soundness of this rule is established by showing that the conclusion must be true if
each of the three hypotheses is true�


� M � A Hypothesis
�� M kM � � A kM � Theorem 
�
	� A kM � j� g Hypothesis
�� A kM � � Tg Theorem 
�
�� M kM � � Tg Transitivity of �
�� M kM kM � � Tg kM Theorem 
�
�� Tg kM j� f Hypothesis
�� M kM kM � j� f Transitivity of �
�� M �M kM Theorem 
	

��M kM � �M kM kM � Theorem 
�


�M kM � j� f Theorem �

��	 Verifying a CPU controller

A symbolic model checker based on the theory developed earlier in this section is de�
scribed in ����� It includes facilities for model checking� temporal reasoning �via the
tableau construction�� and checking if one structure simulates another� The model checker
is used to verify a simple CPU controller� We give only a brief description of the CPU
here� Clarke� Long and McMillan ��
� give details� The CPU is a simple stack�based ma�
chine� i�e�� part of the CPU�s memory contains a stack from which instruction operands
are popped and onto which results are pushed� There are two parts to the CPU controller�
The rst part is called the access unit and is responsible for all the CPU�s memory refer�
ences� The second part� called the execution unit� interprets the instructions and controls
the arithmetic unit� shifter� etc� These two parts operate in parallel� The access unit and
execution unit communicate via a small number of signals� Three of the signals� push � pop
and fetch� are inputs of the access unit and indicate that the execution unit wants to push
or pop something from the stack or to get the next instruction� For each of these signals
there is a corresponding ready output from the access unit� The execution unit must
wait for the appropriate ready signal before proceeding� One additional signal� branch�
is asserted by the execution unit when it wants to jump to a new program location�

In order to increase performance� the access unit attempts to keep the value on the top
of the stack in a special register called the TS register� The goal is to keep the execution



Lemma�	� For all subformulas g of f � if s � sat�g�� then s j� g�

The proof of a similar lemma for a tableau that uses Streett acceptance condition is
given in ����� The main result of this lemma is that the tableau for f satises f � To see
this� note that any initial state of Tf is in sat�f� and therefore every initial state of Tf
satises f �

An important property of this tableau construction is that any structure that satises
f precedes Tf in the preorder �� To show this we must dene a simulation relation
between the tableau and any structure that satises f � This is achieved by dening two
states to be related if and only if they satisfy exactly the same set of subformulas of f �
If we dene H by

H �
	
�s�� s�



 s � f g j g � el�f�� s� j� g g
�

then this property is guaranteed for the set of elementary formulas el�f��

Lemma��� If H�s�� s�� then for every subformula or elementary formula of f � s� j� f

implies s � sat�f��

Lemma��� H is a simulation relation between Tf and the structure M ��

The proof of these lemma also appears in �����

Theorem��� For any structure M �� M � j� f if and only if M � � Tf �

Proof� Suppose M � � Tf � By lemma 
� and the denition of the tableau� every initial
state of Tf satises f � i�e�� Tf j� f � Then since M � � Tf � M � j� f �

If M � j� f � then by denition� every s�� � S�� satises f � Let H be the relation dened
above� By the denition of H� every such s�� is paired with a �unique� s�� Lemma 
�
implies that s� � sat�f�� and by the denition of the tableau� s� � S�� By lemma 
�� H
is a simulation relation� so M � � Tf �

The tableau construction can also be used to reason about formulas� We are typically
interested in whether every model of a formula g is also a model of some other formula f �
Let g j� f denote this semantic relation�

Corollary��� g j� f if and only if Tg j� f �

Proof� If g j� f � then every model of g� in particular Tg� is also a model of f � Assume

Tg j� f � and let M j� g� By the previous theorem� M � Tg � By Theorem �� M j� f �

��� Justifying assumeguarantee proofs

The theory developed earlier in this section can be used to justify assume�guarantee
proofs� We rst consider a formal example given in an extension of Pnueli�s notation �����
The extension allows assumptions and specications to be given either as formulas or
directly as nite state models� whichever is more concise or convenient�



�� el�g� � g�� � el�g� � g�� � el�g�� � el�g���
	� el�AX g�� � fAX g�g � el�g���
�� el�A�g�U g��� � fAX false�AX�A�g�U g���g � el�g�� � el�g���
�� el�A�g�V g��� � fAX false�AX�A�g�V g���g � el�g�� � el�g���

The special elementary subformula AX false denotes the nonexistence of a fair path�
s j� AX false indicates that no fair path begins at s�

The set of states ST of the tableau is P�el�f��� The labeling function LT is dened
so that each state is labeled by the set of atomic propositions contained in the state�
In order to specify the set of initial states and the transition relation RT � we need an
additional function sat that associates with each subformula g of f a set of states in ST �
Intuitively� sat�g� will be the set of states that satisfy g�


� sat�g� � fs j g � sg where g � el�f��
�� sat��g� � fs j g �� sg where g is an atomic proposition�
	� sat�g � h� � sat�g� � sat�h��
�� sat�g � h� � sat�g� � sat�h��
�� sat�A�gU h�� �

�
sat�h� �

�
sat�g� � sat�AX�A�gU h���

��
� sat�AX false��

�� sat�A�gV h�� �
�
sat�h� �

�
sat�g� � sat�AX�A�gV h���

��
� sat�AX false��

The set of initial states of the tableau is ST� � sat�f�� We want the transition relation
to have the property that each elementary formula in a state is true of that state� Clearly�
if AX g is in some state s� then all the successors of s should satisfy g� On the other
hand� if AX g is not in s� then s does not satisfy AX g� Hence� s may have successors
that satisfy g and others that do not� The denition for the transition relation RT is

RT �s�� s�� �
�

AX g�el
f�

s� � sat�AX g�� s� � sat�g��

We must also add an acceptance condition to guarantee that eventuality properties
are fullled� The acceptance condition should restrict the set of �fair� paths so that�

 For every �fair� path �� for every elementary formulaAXA�gUh� of f � and for every
state s on �� if s � sat�AXA�g U h�� then there is a later state t on � such that
t � sat�h��

This can be enforced by a B!uchi acceptance condition because of the following obser�
vation� Let s be a state in sat�AXA�g U h�� and let state t be a successor of s under
RT � then either t � sat�h� or t � sat�AXA�g U h��� Thus� if s � sat�AXA�g U h���
then all succeeding states must also be in sat�AXA�g U h�� unless we reach a state
in sat�h�� The only way s could be in sat�AXA�gU h�� but not satisfy AXA�g U h�
would be for there to exist some path from s where every state on the path was in
the set sat�AXA�g U h�� � �ST � sat�h��� To keep such paths from being fair� we
require that innitely often we reach a state in the complement of this set� which is
�ST � sat�AXA�gU h��� � sat�h�� Thus� we obtain the following acceptance condition�

F �
	 �

�ST � sat�AXA�gU h��� � sat�h�
� 

 AXA�gU h� � el�f�

�
�

The correctness of the tableau construction is guaranteed by the following lemma�



Since L���s��� �AP � L���s���� this expression simplies to

L��s�� � L���s����

Consequently� we have�
L�s� � L���s���

�
� �AP � �AP ��� � L��s�� � L���s����

Let �s�� s
��
���s�� s

��
�� � � � be a fair path in M k M �� from �s� s��� � �s�� s

��
��� Then for

every i � �� we have L�si��AP �� � L���s��i ��AP � By the fair path property� � � s�s� � � �

is a fair path in M starting at s� and ��� � s���s
��
� � � � is a fair path in M �� from s��� Since

H��s� s
��� there is a path �� � s��s

�
� � � � from s� � s�� in M � such that for every i � ��

H��si� s
�
i�� By the denition of a simulation relation�L�si��AP

� � L��s�i� for all i� Arguing
as above� we then have L��s�i� � AP �� � L���s��i � � AP � for each i� and so each �s�i� s

��
i � is

a state in M � kM ��� Now H�

�
�si� s

��
i �� �s

�
i� s

��
i �
�
by the denition of H�� By the fair path

property we see that �s��� s
��
���s

�
�� s

��
�� � � � is a fair path starting in �s

�� s��� and corresponding
to the path �s�� s

��
���s�� s

��
�� � � �

The last theorem is a technical result that is needed in order to use multiple levels of
assume�guarantee reasoning� We will see how it is used in section ��	�

Theorem��� For all M � M �M kM �

Proof� First note that for every state s of M � �s� s� is a state of M kM � Dene H �	 �
s� �s� s�

� 

 s � S
�
� If s� � S�� then by the denition of composition� �s�� s�� is an

initial state of M kM � �s� s� trivially has the same label as s� Using the fair path property
and the denition of composition� we nd that if s�s� � � � is a fair path in M � then
�s�� s���s�� s�� � � � is a fair path in M kM � By the denition of H� we have H

�
si� �si� si�

�
for all i� Hence H is a simulation relation and M �M kM �

��� Tableau construction

In this section� we give a tableau construction for ACTL formulas� A similar construction
for LTL is given in �
��� Other tableau constructions for temporal logics can be found
in �		� ���� We show that the tableau of a formula is a maximal model for the formula
under the relation �� This is the key property of the tableau construction� The tableau
generated by the construction can be used as an assumption by composing it with the
given system before applying the model checking algorithm� Discharging the assumption
is simply a matter of checking that the environment satises the formula�We also indicate
how the tableau can be used to do temporal reasoning� For the remainder of this section�
x an ACTL formula f �

We now describe the construction of the tableau Tf for f in detail� Let APf be the
set of atomic propositions in f � The tableau associated with f is a structure Tf with
APf as its set of atomic propositions� Each state in the tableau is a set of elementary
formulas obtained from f � The set of elementary subformulas of f is denoted by el�f�
and is dened recursively as follows�


� el�p� � el��p� � fpg if p � APf �



The second theorem permits a component of a system to be replaced by an abstraction
of that component� Thus� in order to show that some property is true in the system
M kM ��� we can replace M by an abstraction M � and then verify that the property holds
in M � kM ��� Checking M �M � insures that M � is indeed an abstraction of M �

Theorem��� For all M � M � and M ��� if M �M � then M kM �� �M � kM ���

Proof� Let H� be a simulation relation between M and M �� Dene H� by

H� �
	 �

�s� s���� �s�� s���
� 

 H��s� s

��
�
�

We show that H� is a simulation relation� Let �s�� s���� be an initial state of M kM ��� By
the denition of composition� s� � S� and s��� � S��� � Since M � M �� there exists s�� � S��
such that H��s�� s���� Next we show that �s��� s

��
�� is a state of M � kM ��� We break this

task into several steps�
Since H��s�� s

�
�� we have

L��s��� � L�s�� �AP
��

By intersecting both sides with AP �� we obtain

L��s��� �AP
�� � �L�s�� �AP

�� �AP ���

Using associativity and commutativity of set intersection we get

�L�s�� �AP �� �AP �� � �L�s�� �AP
��� �AP ��

Since �s�� s���� � S��� we have L�s�� �AP �� � L���s���� �AP � this implies

�L�s�� �AP ��� �AP � � �L���s��� � �AP � �AP ��

Since M �M �� AP � AP �� thus�

�L���s��� � �AP � �AP � � L���s��� � �AP ��

Combining the above steps we obtain�

L��s��� �AP �� � L���s��� � �AP ��

Consequently� �s��� s
��
�� is a state of M

�kM ��� Further� �s��� s
��
�� is an initial state of M

�kM ��

by the denition of composition� By denition of H�� we have H�

�
�s�� s

��
��� �s

�
�� s

��
��
�
�

Suppose H�

�
�s� s���� �s�� s���

�
� First we show that the two states �s� s��� and �s�� s���

have the appropriate labeling� By distributivity it follows that�
�L�s� � L���s���

�
� �AP � �AP ���

is the same as �
L�s� �AP �

�
�
�
L�s� �AP ��

�
�
�
L���s��� � �AP � �AP ���

�
�

SinceH��s� s
��� we have L�s��AP � � L��s��� Since �s� s��� �MkM ��� we have L�s��AP �� �

L���s��� �AP � Since L���s��� � AP ��� we have L���s��� � �AP � �AP ��� � L���s���� Thus� the
previous expression is equal to

L��s�� �
�
L���s��� �AP

�
�L���s����



in the preorder� In such a framework� the above reasoning sequence might be expressed
as� T is the tableau of g� M k T j� f � M � � T � and hence M kM � j� f �

��� Composition of structures

Let M � �S� S�� AP� L�R� F � and M � � �S�� S��� AP
�� L�� R�� F �� be two structures� The

parallel composition ofM and M �� denotedMkM �� is the structure M �� dened as follows�


� S�� �
	
�s� s��



 L�s� �AP � � L��s�� �AP
�
�

�� S��� � �S� � S��� � S���
	� AP �� � AP �AP ��
�� L��

�
�s� s��

�
� L�s� � L�s���

�� R��
�
�s� s��� �t� t��

�
if and only if R�s� t� and R��s�� t���

�� F �� �
	
�P � S�� � S��



 P � F
�
�
	
�S � P �� � S��



 P � � F �
�
�

This denition of composition models synchronous behavior� States of the composition
are pairs of component states that agree on the common atomic propositions� Each
transition of the composition involves a joint transition of the two components� The
denition is relatively straightforward with the exception of the fairness constraint� The
constraint is designed to insure the fair path property which states that a path in M kM �

is fair if and only if its restriction to each component results in a fair path� Intuitively�
the rst set of pairs in the constraint	

�P � S�� � S��


 P � F

�
insures that the restriction of a path in M �� to its component in S is a fair path in M �
The second set of pairs 	

�S � P �� � S��


 P � � F � �

insures that the restriction of the path to its component in S� is a fair path in M �� Since
P�S� and S�P � may contain pairs that are not states inM ��� it is necessary to intersect
each with S���

It is straightforward but tedious to prove that parallel composition is commutative
and associative �up to isomorphism�� The next three theorems deal with the connection
between parallel composition and the simulation preorder �� The rst theorem states that
composing M with M � can only restrict the possible behaviors of M � As a consequence
of this theorem� it is su�cient to reason about the structure M rather than arbitrary
systems containing M � Moreover� this theorem and Theorem � imply that a standard
CTL model checker �
�� can be used to determine if a formula of ACTL is true in all
systems containing a given component� This is the key to compositional verication�

Theorem��� For all M and M �� M kM � �M �

Proof� Let S�� be the set of states of M kM �� Dene H by

H �
	 �

�s� s��� s�


 �s� s�� � S��

�
�

If �s�� s
�
�� is an initial state of M kM �� then s� � S�� The label of �s� s

�� is L�s� �L��s���
and

�
L�s� � L��s��

�
� AP � L�s�� If �s�� s

�
���s�� s

�
�� � � � is a fair path in M kM �� then

by the fair path property� s�s� � � � is a fair path in M � By the denition of H� we have
H
�
�si� s

�
i�� si

�
for every i� Hence H is a simulation relation and M kM � �M �



Algorithms for checking fair bisimulation have not been widely investigated� If the
structures are deterministic� then an e�cient algorithm� based on language equivalence�
can also be given in this case� The only change that is necessary is to restrict the language
of a structure to fair paths� With this change it is possible to prove that two structures
are fair bisimulation equivalent if and only if they are language equivalent with respect
to fair paths� Thus� algorithms that check language equivalence for fair structures �
��
can be used to handle this case� A general procedure that also handles nondeterministic
structures is given in �
�� however� it is not clear if it can be implemented e�ciently�

Each of the algorithms mentioned above can be adapted to check the simulation pre�
order between two structures M and M �� Language inclusion replaces language equiva�
lence in the deterministic case� For the general case without fairness� we dene a sequence
of relations H�

� �H
�
� � � � � on S � S� as follows�


� H�
� �s� s

�� if and only if L�s� �AP � � L��s���
�� H�

n	��s� s
�� if and only if

 H�
n�s� s

��� and
 �s��R�s� s�� �� �s���R

��s�� s��� �H�
n�s�� s

�
�����

The procedure is guaranteed to terminate since the structures are nite� We write
H��s� s�� if and only if H�

i �s� s
�� for all i � �� As in the previous case� H� is the largest

simulation relation between the two structures M and M ��

� Compositional Reasoning

Compositional reasoning exploits the natural decomposition of a complex system into
simpler components� Properties of the individual components are veried rst� When a
component is veried it may be necessary to assume that the environment behaves in a
certain manner� If the other components in the system guarantee this behavior� then we
can conclude that the veried properties are true of the entire system� These properties
can be used to deduce additional global properties of the system�

Pnueli�s assume�guarantee paradigm ���� uses this method� A formula in his logic
is a triple hgiM hfi where g and f are temporal formulas and M is a program� The
formula is true if whenever M is part of a system satisfying g� the system must also
satisfy f � A typical proof shows that hgiM hfi and htrueiM �hgi hold and concludes that
htrueiM kM �hfi is true� This proof strategy can also be expressed as an inference rule�

hgiM hfi
htrueiM �hgi

htrueiM kM �hfi

To automate this type of reasoning� we use the simulation preorder and the logic
ACTL� The preorder has the property that if a formula is true for a model� it is true
for any model that precedes it in the preorder� We dene parallel composition so that a
system precedes any component that it contains in the preorder� Moreover� composition
with a xed component preserves the preorder relation between two components� Finally�
we construct a special model of a formula� called a tableau� The tableau has the property
that a structure satises a formula if and only if it precedes the tableau of the formula



��� Algorithms for bisimulations and simulations

We next consider algorithms that determine whether two structures are bisimulation
equivalent or whether one structure precedes another in the simulation preorder� Bisim�
ulation equivalence is easy to check if both structures are deterministic� i�e�� if R�s� t�
and R�s� u�� then L�t� �� L�u� and the initial states of each machine have distinct labels�
For deterministic structures� bisimulation equivalence can be reduced to language equiv�
alence� The language of a structure is the set of sequences of labelings which occur along
all paths that start from initial states� It can be shown that two deterministic structures
are bisimulation equivalent if and only if they have the same language� Extremely e��
cient algorithms are known for checking language equivalence �
��� These algorithms can
be used to check bisimulation equivalence for deterministic structures�

We now present a general algorithm that handles both deterministic and nondetermin�
istic structures that do not include fairness constraints� Let M and M � be two structures
with the same set of atomic propositions AP � we dene a sequence of relations B�� � B

�
� � � � �

on S � S� as follows�


� B�� �s� s
�� if and only if L�s� � L��s���

�� B�n	��s� s
�� if and only if

 B�n�s� s
���

 �s��R�s� s�� �� �s���R
��s�� s��� �B�n�s�� s

�
����� and

 �s���R
��s�� s��� �� �s��R�s� s�� �B�n�s�� s

�
�����

We write B��s� s�� if and only if B�i �s� s
�� for all i � �� Two structures M and M � are

B��equivalent if for every initial state s� � S� in M there is an initial state s�� � S�� in
M � such that B��s�� s���� In addition� for every initial state s�� � S�� in M � there is an
initial state s� � S� in M such that B��s�� s

�
��� It is easy to see that B

� is a bisimulation
between M and M �� In fact� it can be shown that B� is the largest such bisimulation�
i�e�� every bisimulation between M and M � is included in B��

Proposition�
� B� is the largest bisimulation between M and M ��

Proof� It is su�cient to prove that if B is a bisimulation between M and M �� then B is
contained in B�i for every i � �� We show this by induction on i� Clearly� B is contained
in B�� � since any pair of states in B have the same labeling� Assume that B is contained in
B�n and B�s� s��� Let R�s� s�� be a transition inM � Since B is a bisimulation� there exists
a state s�� such that R

��s�� s��� is a transition in M
� and B�s�� s���� Since B is contained in

B�n� we have that B
�
n�s�� s

�
��� The third requirement can be proved in a similar manner�

Thus� B�n	��s� s
���

Since the structures are nite� there exists some n such that B� � B�n� Thus� the
denition gives an algorithm for computing the largest bisimulation between two struc�
tures� If an explicit state representation is used for the transition relations� then the
algorithm is polynomial� A more e�cient polynomial algorithm for this case is given in
����� If OBDDs are used to represent the transition relations� then the denition can be
used directly to compute the largest bisimulation"it just describes the computation of
the greatest xpoint of an appropriate functional�



M ��� Let H� be a simulation between M and M �� and let H� be a simulation between M �

to M ��� Dene H� as the relational product of H� and H�� i�e��

H� �
	
�s� s���



 �s� �H��s� s
�� �H��s

�� s����
�
�

If s� � S�� then by the denition of simulation� there exists s�� � S�� such that H��s�� s����
Similarly� there exists s��� � S��� such that H��s��� s

��
��� and hence H��s�� s�����

Suppose H��s� s
���� and let s� be such that H��s� s

�� and H��s
�� s���� By the denition

of simulation� L�s� �AP � � L��s�� and L��s�� �AP �� � L���s���� Then since AP � � AP ���
we have L�s� � AP �� � L���s���� Let R�s� s�� be a transition in M from s� Then there
exists a transition R�s�� s��� in M

� such that H��s�� s
�
��� Since H� is a simulation� there

exists a transition R���s��� s���� in M
�� such that H��s

�
�� s

��
��� Hence H��s� s

��
� �� and H� is a

simulation between M and M ��� Thus M �M ���

The following lemma is the analog of Lemma 
 for simulation relations� In this case�
we also say that paths � � s�s� � � � in M and �� � s��s

�
� � � � in M � correspond if and only

if for every i� H�si� s�i��

Lemma�� Assume that s and s� are states such that H�s� s��� Then for every path �

starting from s there is a corresponding path �� starting from s��

Theorem�� Suppose M � M �� Then for every ACTL	 formula f 
with atomic propo�
sitions in AP ��� M � j� f implies M j� f �

Intuitively� this theorem is true because formulas in ACTL� describe properties that
are true of all behaviors of a structure� Since every behavior of M is a behavior of M ��
every formula of ACTL� that is true in M � must also be true in M � A formal proof can
be obtained from Lemma � by using an argument similar to the one used to establish
Theorem ��

Simulation can be extended to fair structures in the same way that bisimulation is
extended to fair structures� Let M and M � be two structures with fairness constraints�
Assume that AP � AP �� The relation H � S � S� is a fair simulation relation between
M and M � if and only if for all s and s�� if H�s� s�� then the following conditions hold�


� L�s� �AP � � L��s���
�� For every fair path � � s�s� � � � from s � s� in M � there is a fair path �� � s��s

�
� � � �

from s� � s�� in M � such that for all i � �� H�si� s�i��

We write M �F M � if there exists a fair simulation relation H such that for every initial
state s� � S� inM there is an initial state s�� � S�� inM

� such that H�s�� s
�
��� It is easy to

show that �F determines a preorder on fair structures� When it is clear from the context
that we are dealing with fair simulation� we will sometimes use ��

Every fair behavior of M is a fair behavior of M �� Thus� if the semantics of ACTL�
is given with respect to fair paths then we can prove the following theorem�

Theorem�� If M �F M �� then for every ACTL	 formula f interpreted over fair paths�
M � j� f implies M j� f �



both have the same set of atomic propositions AP � A relation B � S � S� is a fair
bisimulation relation between M and M � if and only if for all s and s�� if B�s� s�� the
following conditions hold�


� L�s� � L��s���
�� For every fair path � � s�s� � � � from s � s� in M there is a fair path �� � s��s

�
� � � �

from s� � s�� in M � such that for all i � �� B�si� s�i��
	� For every fair path �� � s��s

�
� � � � from s� � s�� in M � there is a fair path � � s�s� � � �

from s � s� in M such that for all i � �� B�si� s�i��

In this case� two structures M and M � are fair bisimulation equivalent �denoted M 	F

M �� if there exists a fair bisimulation relation B such that for every initial state s� � S�
in M there is an initial state s�� � S�� in M � such that B�s�� s���� In addition� for every
initial state s�� � S�� in M � there is an initial state s� � S� in M such that B�s�� s���� If
the semantics of CTL� is given with respect to fair paths then we can prove an analog
of Theorem � for fair structures�

Theorem�� If M 	F M �� then for every CTL	 formula f interpreted over fair paths�
M j� f � M � j� f �

The proof of this theorem is similar to the proof of the previous theorem and is omitted�
Sometimes bisimulation equivalence does not result in a signicant reduction in the

number of states� By restricting the logic and relaxing the requirement that the struc�
tures should satisfy exactly the same formulas� a greater reduction can be obtained� In
order to achieve this goal we introduce the notion of a simulation relation� Simulation
is closely related to bisimulation� Bisimulation guarantees that two structures have the
same behaviors� Simulation� on the other hand� relates a structure to an abstraction of
the structure� It guarantees that every behavior of a structure is also a behavior of its
abstraction� However� the abstraction might have behaviors that are not possible in the
original structure� Since the abstraction may hide some of the details of the original
structure� it may have a smaller set of atomic propositions�

Given two structures M andM � with AP � AP �� a relationH � S�S� is a simulation
relation between M and M � if and only if for all s and s�� if H�s� s�� then the following
conditions hold�


� L�s� �AP � � L��s���
�� For every state s� such that R�s� s��� there is a state s�� with the property that

R��s�� s��� and H�s�� s
�
���

We say that M � simulates M �denoted by M �M �� if there exists a simulation relation
H such that for every initial state s� in M there is an initial state s�� in M � for which
H�s�� s����

Lemma�� � is a preorder on the set of structures�

Proof� The relation H � f �s� s�


 s � S g is a simulation between M to M � so � is

re�exive� Thus it only remains to show that � is transitive� Assume M � M � and M � �



�� f � E f�� a state formula� Suppose that s j� f � Then there is a path �� starting from
s such that �� j� f�� By lemma 
� there is a corresponding path ��� in M � starting
from s�� So by the induction hypothesis� �� j� f� if and only if ��� j� f�� Therefore�
s� j� E f�� The same argument can be used to prove that if s� j� f then s j� f �

�� f � A f�� a state formula� The argument for this case is similar to the argument for
f � E f� and will not be given�

�� f � f�� where f is a path formula and f� is a state formula� Although the lengths
of f and f� are the same� we can imagine that f � path�f��� where path is a
special operator which converts a state formula into a path formula� Therefore� we
are simplifying f by dropping this path operator� If s� and s�� are the rst states of
� and ��� respectively� then

� j� f � s� j� f�

� s�� j� f� �induction hypothesis�

� �� j� f

�� f � X f�� a path formula� Suppose � j� f � By the denition of the next time operator�
�� j� f�� Since � and �� correspond� so do �� and ���� Therefore� by the induction
hypothesis� ��� j� f�� and so �� j� f � The same argument can be used to prove that
if �� j� f then � j� f �

�� f � f�U f�� a path formula� Suppose that � j� f�U f�� By the denition of the until
operator� there is a k such that �k j� f� and for all � � j � k� �j j� f�� Since � and
�� correspond� so do �j and ��j for any j� Therefore� by the induction hypothesis�
��k j� f� and for all � � j � k� ��j j� f�� Therefore� �

� j� f � The same argument can
be used to prove that if �� j� f then � j� f �

�� f � f� V f�� a path formula� The argument in this case is similar to the argument
for f � f� U f� and will not be given�

The next theorem is a consequence of the preceding lemma�

Theorem�� If B�s� s�� then for every CTL	 formula f � s j� f � s� j� f �

If two structures are bisimulation equivalent� then every initial state of one is bisimilar
to some initial state of the other� Since a structure satises a formula if and only if each
of its initial states satises the formula� both structures will satisfy the same set of CTL�
formulas�

Theorem	� If M 	M � then for every CTL	 formula f � M j� f � M � j� f �

The converse of this theorem is also true� If two structures satisfy the same set of
CTL� formulas then they are bisimulation equivalent� In fact we can show that if two
structures satisfy the same CTL formulas they are bisimulation equivalent� It follows that
if two structures can be distinguished by a formula of CTL��i�e�� there is a CTL� formula
that is true of one structure and not of the other� then they can also be distinguished by
a formula of CTL� These results are described in �
���

The notion of bisimulation equivalence can be extended to structures with fairness
constraints� Let M and M � be two structures with fairness constraints� Assume that



The structures M and M � are bisimulation equivalent �denoted M 	M �� if there exists
a bisimulation relation B such that for every initial state s� � S� in M there is an initial
state s�� � S�� in M

� such that B�s�� s
�
��� In addition� for every initial state s

�
� � S�� in M �

there is an initial state s� � S� in M such that B�s�� s����
The following lemma is important in establishing the connection between CTL� and

bisimulation equivalence� We say that two paths � � s�s�� � � � in M and �� � s��s
�
�� � � � in

M � correspond if and only if for every i� B�si� s�i��

Lemma�� Let s and s� be two states such that B�s� s��� Then for every path starting
from s there is a corresponding path starting from s�� and for every path starting from s�

there is a corresponding path starting from s�

Proof� Let B�s� s�� and let � � s�s�� � � � be a path from s � s�� We construct a corre�
sponding path �� � s��s

�
�� � � � from s� � s�� by induction� It is clear that B�s�� s

�
��� Assume

B�si� s�i� for some i� We will show how to choose s�i	�� Since B�si� s�i� and R�si� si	���
there must be a successor t� of s�i such that B�si	�� t��� We choose s�i	� to be t

��

The next lemma shows that if two states are bisimilar� then they satisfy the same set of
CTL� state formulas� Furthermore� if two paths correspond� then they satisfy the same
set of path formulas�

Lemma�� Let f be either a state formula or a path formula� Assume that s and s� are
bisimilar states and that � and �� are corresponding paths� Then�

 s j� f � s� j� f if f is a state formula� and
 � j� f � �� j� f if f is a path formula�

Proof� We prove the lemma by induction on the structure of f �
Base� f � p for p � AP � Since B�s� s��� we know that L�s� � L��s��� Thus� s j� p if and
only if s� j� p�
Induction� There are several cases�


� f � �f�� a state formula�

s j� f � s �j� f�

� s� �j� f� �induction hypothesis�

� s� j� f

The same reasoning holds if f is a path formula�
�� f � f� � f�� a state formula�

s j� f � s j� f� or s j� f�

� s� j� f� or s
� j� f� �induction hypothesis�

� s� j� f

We can also use this argument if f is a path formula�
	� f � f� � f�� a state formula� This case is similar to the previous case� Furthermore�

the same argument can be used if f is a path formula�



�� for all fairness constraints hk � H and all states s � S� there is a sequence of states
of length one or greater from s to a state in S satisfying hk such that all states on
the path satisfy f �

It is easy to show that if these conditions hold� each state in the set is the beginning of an
innite computation path on which f is always true� and for which every formula in H
holds innitely often� Thus� the procedure CheckFairEG�f�#v�� will compute the greatest
xpoint

gfpZ�#v�
�
f�#v� �

n�
k��

CheckEX �CheckEU �f�#v�� Z�#v� �Check �hk���

�

The xed point can be evaluated in the same manner as before� The main di erence is
that each time the above expression is evaluated� several nested xed point computations
are done �inside CheckEU ��

Checking EX f and E�fUg� under fairness constraints is simpler� The set of all states
which are the start of some fair computation is

fair�#v� � CheckFairEG�True��

The formula EX f is true under fairness constraints in a state s if and only if there is a
successor state s� such that s� satises f and s� is at the beginning of some fair compu�
tation path� It follows that the formula EX f �under fairness constraints� is equivalent
to the formula EX�f � fair� �without fairness constraints�� Therefore� we dene

CheckFairEX �f�#v�� � CheckEX �f�#v� � fair�#v���

Similarly� the formula E�f U g� �under fairness constraints� is equivalent to the formula
E�f U �g � fair�� �without fairness constraints�� Hence� we dene

CheckFairEU �f�#v�� g�#v�� � CheckEU �f�#v�� g�#v� � fair�#v���

� Equivalences and preorders between structures

To avoid the state explosion problem� we would like to develop techniques that replace a
large structure by a smaller structure that satises the same properties� More specically�
given a logic L and a structure M � we would like to nd a smaller structure M � that
satises exactly the same set of formulas of the logic L as M � In order to accomplish this
goal� we need a notion of equivalence between structures that can be e�ciently computed
and guarantees that two structures satisfy the same set of formulas in L� We rst consider
the logic CTL� and bisimulation equivalence�

Given two structures M and M � with the same set of atomic propositions AP � a
relation B � S � S� is a bisimulation relation between M and M � if and only for all s
and s�� if B�s� s�� then the following conditions hold�


� L�s� � L��s���
�� For every state s� such that R�s� s�� there is s�� such that R��s�� s��� and B�s�� s����
	� For every state s�� such that R��s�� s��� there is s� such that R�s� s�� and B�s�� s

�
���



The procedure for CheckEX is straightforward since the formula EX f is true in a
state if the state has a successor in which f is true�

CheckEX �f�#v�� � �#v�
�
f�#v�� �R�#v� #v��


�

If we have OBDDs for f and R� then we can compute an OBDD for

�#v�
�
f�#v�� �R�#v� #v��


�

by using the techniques described in Section 	�
The procedure for CheckEU is based on the least xpoint characterization for the

CTL operator EU that is given at the beginning of this section�

CheckEU �f�#v�� g�#v�� � lfpZ�#v�
�
g�#v� �

�
f�#v� �CheckEX �Z�#v��

�
�

In this case we use the function Lfp to compute a sequence of approximations

Q�� Q�� � � � � Qi� � � �

that converges to E�fUg� in a nite number of steps� If we have OBDDs for f � g� and the
current approximation Qi� then we can compute an OBDD for the next approximation
Qi	�� Since OBDDs provide a canonical form of boolean functions� it is easy to test for
convergence by comparing consecutive approximations� When Qi � Qi	�� the function
Lfp terminates� The set of states corresponding to E�f U g� will be represented by the
OBDD for Qi�

CheckEG is similar� In this case the procedure is based on the greatest xpont char�
acterization for the CTL operator EG�

CheckEG�f�#v�� � gfpZ�#v�
�
f�#v� �CheckEX �Z�#v��


�

Given a OBDD for f � the function Gfp can be used to compute an OBDD representation
for the set of states that satisfy EG f �

	�� Fairness constraints

In the remainder of this section we describe how to modify model checking algorithm
above to handle fairness constraints� A path is said to be fair with respect to a set
of fairness constraints if each constraint holds in�nitely often along the path� The path
quantiers in CTL formulas are then restricted to fair paths� We assume the fairness con�
straints are given by a set of CTL formulasH � fh�� � � � � hng� We dene a new procedure
CheckFair for checking CTL formulas relative to the fairness constraints in H� We do this
by giving denitions for new intermediate procedures CheckFairEX � CheckFairEU � and
CheckFairEG which correspond to the intermediate procedures used to dene Check �

Consider the formula EGf given fairness constraints H� The formula means that
there exists a path beginning with the current state on which f holds globally �invari�
antly� and each formula in H holds innitely often on the path� The set of such states S
is the largest set with the following two properties�


� all of the states in S satisfy f � and



function Gfp�Tau � PredicateTransformer� � Predicate
begin

Q �� True�
Q� �� Tau�Q��
while �Q �� Q�� do
begin

Q �� Q��
Q� �� Tau�Q��

end�
return�Q�

end

Fig� 
� Procedure for computing greatest �xpoints�

 AF f� � lfpZ
�
f� �AXZ


 EF f� � lfpZ

�
f� �EXZ


 AG f� � gfpZ

�
f� �AXZ


 EG f� � gfpZ

�
f� �EXZ


	�� Symbolic model checking

Next� we describe a symbolic model checking algorithm for CTL which uses OBDDs to
represent the state transition graph� Assume that the behavior of the concurrent system
is determined by n boolean state variables v�� v�� � � � � vn� The transition relation R�#v� #v��
for the concurrent system will be given as a boolean formula in terms of two copies of the
state variables� #v � �v�� � � � � vn� which represents the current state and #v� � �v��� � � � � v

�
n�

which represents the next state� The formula R�#v� #v�� is now converted to an OBDD�
This usually results in a very concise representation of the transition relation�

The symbolic model checking algorithm is implemented by a procedure Check that
takes the CTL formula to be checked as its argument and returns an OBDD that repre�
sents exactly those states of the system that satisfy the formula� Of course� the output of
Check depends on the system being checked� this parameter is implicit in the discussion
below� We dene Check inductively over the structure of CTL formulas� If f is an atomic
proposition vi� then Check �f� is simply the OBDD for vi� Formulas of the form EX f �
E�f U g�� and EG f are handled by the procedures�

Check�EX f� � CheckEX �Check�f���
Check�E�f U g�� � CheckEU �Check�f��Check �g���
Check�EG f� � CheckEG�Check�f���

Notice that these intermediate procedures take OBDDs as their arguments� while Check
takes a CTL formula as its argument� The cases of CTL formulas of the form f � g or
�f are handled using the standard algorithms for computing boolean connectives with
OBDDs� Since AX f � A�f U g� and AGf can all be rewritten using just the above
operators� this denition of Check covers all CTL formulas�



A monotonic predicate transformer 	 on Pred�S� has a least xpoint� lfpZ
�
	 �Z�


�

and a greatest xpoint� gfpZ
�
	 �Z�


�see Tarski ������ It is possible to show lfpZ

�
	 �Z�


�

�fZ j 	 �Z� � Zg if 	 is monotonic and that lfpZ
�
	 �Z�


� �i	 i�False� if 	 is also ��

continuous� It is also possible to show that gfpZ
�
	 �Z�


� �fZ j 	 �Z� � Zg if 	 is

monotonic and that gfpZ
�
	 �Z�


� �i	

i�True� if 	 is also ��continuous�
If 	 is monotonic� its least xpoint can be computed by the program in Figure 	� The

function Lfp�Tau � PredicateTransformer� � Predicate
begin

Q �� False�
Q� �� Tau�Q��
while �Q �� Q�� do
begin

Q �� Q��
Q� �� Tau�Q��

end�
return�Q�

end

Fig� �� Procedure for computing least �xpoints�

invariant for the while loop in the body of the procedure is given by the assertion

�Q� � 	 �Q��� �Q� � lfpZ
�
	 �Z�


�

It is easy to see that at the beginning of the i�th iteration of the loop� Q � 	 i���False�
and Q� � 	 i�False�� Note� that by monotonicity�

False � 	 �False� � 	��False� � � � � �

If the loop terminates� we will have that Q � 	 �Q� and that Q � lfpZ
�
	 �Z�


� It follows

directly that Q � lfpZ
�
	 �Z�


and that the value returned by the procedure is the

required least xpoint� The loop must terminate because S is nite and each iteration
always increases the number of states in Q� The greatest xpoint of 	 may be computed
in a similar manner by the program in Figure �� Essentially the same argument can be
used to show that the procedure terminates and that the value it returns is gfpZ

�
	 �Z�


�

If we identify each CTL formula f with the predicate fs j M� s j� fg in Pred�S��
then each of the basic CTL operators may be characterized as a least or greatest xpoint
of an appropriate predicate transformer�

 A�f� U f�� � lfpZ
�
f� � �f� �AXZ�


 A�f� V f�� � gfpZ

�
f� � �f� �AXZ�


 E�f�U f�� � lfpZ

�
f� � �f� �EXZ�


 E�f�V f�� � gfpZ

�
f� � �f� �EXZ�
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Fig� �� OBDD for �a 	 b� � �c 	 d�

OBDD for the formula �xf as f jx�� �f jx��� All 
� two�argument logical operations
can also be implemented e�ciently on boolean functions that are represented as OB�
DDs� The complexity of these operations is linear in the size of the argument OBDDs
�

�� Furthermore equivalence checking of two boolean functions can be done in constant
time by using a hash table ����

OBDDs are extremely useful for obtaining concise representations of relations over
nite domains �
�� 	��� If R is n�ary relation over f�� 
g then R can be represented by
the OBDD for its characteristic function

fR�x�� � � � � xn� � 
 i R�x�� � � � � xn��

If R is an n�ary relation over a nite domain D� then R can be represented by an OBDD
by using an appropriate binary encoding of D�

� Model checking

Let M � �S� S�� AP� L�R� F � be an arbitrary nite Kripke structure� We use Pred�S� to
denote the lattice of predicates over S where each predicate is identied with the set of
states in S that make it true and the ordering is set inclusion� Thus� the least element
in the lattice is the empty set� denoted by False� and the greatest element in the lattice
is the set of all states� denoted by True� A functional F that maps Pred�S� to Pred�S�
will be called a predicate transformer� Let 	 � Pred�S� �� Pred�S� be such a functional�
then


� 	 is monotonic provided that P � Q implies 	 �P � � 	 �Q��
�� 	 is ��continuous provided that P� � P� � � � � implies 	 ��iPi� � �i	 �Pi��
	� 	 is ��continuous provided that P� � P� � � � � implies 	 ��iPi� � �i	 �Pi��

Note that both ��continuity and ��continuity imply montonicity� Furthermore� if the
domain of 	 is nite� then monotonicity implies continuity�



Some typical CTL formulas that might arise in verifying a nite state concurrent
program are given below�

 EF�Started��Ready�� It is possible to get to a state where Started holds but Ready
does not hold�

 AG�Req� AFAck�� If a request occurs� then it will be eventually acknowledged�
 AG�AFDeviceEnabled�� The proposition DeviceEnabled holds innitely often on
every computation path�

 AG�EFRestart�� From any state it is possible to get to the Restart state�
 AG�Req� A�ReqUAck��� If a request occurs� then it continues to hold� until it is
eventually acknowledged� �Note that the acknowledgment must always occur��

 AG�Req � A�AckV Req��� Once a request occurs� then it continues to hold� until
an acknowledgment occurs� �Note that the acknowledgment may never occur��

We sometimes want to restrict the logics CTL� and CTL so that they cannot express
the existence of a specic path in some Kripke structure� We do this by eliminating the
existantial path quantier from the logic� Thus� a formula may include only the universal
quantiers over paths� However� nesting of these quantiers is allowed� To ensure that
existential path quantiers do not arise via negation� we will assume that formulas are
expressed in negation normal form� In other words� negations are applied only to atomic
propositions� The logics obtained in this manner are called Universal CTL	 �or ACTL��
and Universal CTL �or ACTL�� respectively�

� Binary decision diagrams

Ordered binary decision diagrams �OBDDs� are a canonical form for boolean formulas
described by Bryant �

�� They are often substantially more compact than traditional
normal forms such as conjunctive normal form and disjunctive normal form� and they
can be manipulated very e�ciently� Hence� they have become widely used for a variety of
CAD applications� including symbolic simulation� verication of combinational logic and�
more recently� verication of sequential circuits� An OBDD is similar to a binary decision
tree� except that its structure is a directed acyclic graph rather than a tree� and there
is a strict total order placed on the occurrence of variables as one traverses the graph
from root to leaf� Consider� for example� the OBDD in Figure �� It represents the formula
�a�b���c�d�� using the variable ordering a � b � c � d� Given an assignment of boolean
values to the variables a� b� c and d� it is possible to decide whether the assignment makes
the formula true by traversing the graph beginning at the root and branching at each
node based on the value assigned to the variable that labels the node� For example�
the assignment ha � 
� b � �� c � 
� d � 
i leads to a leaf node labeled 
� hence the
formula is true for this assignment� Bryant showed that given a variable ordering� there
is a canonical OBDD for every formula� The size of the OBDD depends critically on the
variable ordering�

Most logical operations can be implemented very e�ciently using OBDDs� The func�
tion that restricts some argument xi of the boolean function f to a constant value b�
denoted by f jxi�b� can be performed in time which is linear in the size of the original
binary decision diagram �

�� By using the restriction algorithm we can compute the



path quantier� More precisely� CTL is the subset of CTL� that is obtained if the following
rule is used to specify the syntax of path formulas�

 If f and g are state formulas� then X f � f U g� f V g are path formulas�

Each of the CTL operators can be expressed in terms of three operators EX� EG�
and EU� For example�

 AX f � �EX��f�
 AG f � �EF��f�
 AF f � �EG��f�
 EF f � E�trueU f �
 A�f U g� 	 �E��gU �f � �g� � �EG�g
 A�f V g� � �E��f U �g�
 E�f V g� � �A��f U �g�

The four operators that are used most widely are illustrated in Figure 
� Each computa�
tion tree has the state s� as its root�
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Fig� �� Basic CTL Operators



In this paper nite�state systems are modeled by Kripke structures with fairness
constraints� A Kripke structure M � �S� S�� AP� L�R� F � is a ��tuple of the following
form�


� S is a nite set of states�
�� S� � S is a set of initial states�
	� AP is a nite set of atomic propositions�
�� L � S � P�AP � is a function that labels each state with the set of atomic propositions

true in that state�
�� R � S � S is a transition relation�
�� F � P�S� is a set of fairness constraints given as B!uchi acceptance conditions�

A path in M is an innite sequence of states � � s�s�s� � � � such that for all i � ��
R�si� si	��� Dene inf��� � f s j s � si for innitely many i g� A path � in M is fair if
and only if for every P � F � inf��� � P �� �� We will use the notation �n for the su�x
of � which begins at sn� Unless otherwise stated� all of our results apply only to �nite
Kripke structures�

If f is a state formula� the notation M� s j� f means that f holds at state s in the
Kripke structure M � Similarly� if f is a path formula�M�� j� f means that f holds along
path � in Kripke structure M � When the Kripke structure M is clear from context� we
will usually omit it� The relation j� is dened inductively as follows �assuming that f�
and f� are state formulas and g� and g� are path formulas��


� s j� p � p � L�s��
�� s j� �f� � s �j� f��
	� s j� f� � f� � s j� f� and s j� f��
�� s j� f� � f� � s j� f� or s j� f��
�� s j� E�g�� � there exists a fair path � starting with s such that � j� g��
will �� s j� A�g�� � for all fair paths � starting with s� � j� g��
�� � j� f� � s is the rst state of � and s j� f��
�� � j� �g� � � �j� g��
�� � j� g� � g� � � j� g� and � j� g��

�� � j� g� � g� � � j� g� or � j� g��


� � j� X g� � �� j� g��

�� � j� g�U g� � there exists a k � � such that �k j� g� and for all

� � j � k� �j j� g��

	� � j� g�V g� � for every k � �� if �j �j� g� for all � � j � k�

then �k j� g��

We will normally be interested in the truth of a CTL� state formula f in a particular
state or set of states� When f is true in all initial states of M � we will write M j� f �

The following abbreviations are used in writing CTL� formulas�

 F f 	 trueU f

 G f 	 �F�f

CTL �	� 
�� is a restricted subset of CTL� that permits only branching�time operators�
Each of the linear�time operators G� F� X� and U must be immediately preceded by a



manipulation� but the complexity of verication is often high� This approach is based
on the observation that the specications of systems that include data paths usually
involve fairly simple relationships among the data values in the system� For example� in
verifying the addition operation of a microprocessor� we might require that the value in
one register is eventually equal to the sum of the values in two other registers� In such
situations abstraction can be used to reduce the complexity of model checking ���� 	���
The abstraction is usually specied by giving a mapping between the actual data values
in the system and a small set of abstract data values� By extending the mapping to
states and transitions� it is possible to produce an abstract version of the system under
consideration� The abstract system is often much smaller than the actual system� and as
a result� it is usually much simpler to verify properties at the abstract level�

Our paper is organized as follows� Section � describes the propositional temporal logic
that is used for specications� The properties of OBDDs that are needed to understand
the paper are brie�y discussed in Section 	� The next section gives the basic model
checking algorithm and shows how it can be extended to handle fairness constraints�
Section � describes various simulation relations between reactive systems that are used for
both compositional reasoning and abstraction� Section � shows how model checking can
extended to permit compositional reasoning based on the assume�guarantee paradigm�
The use of abstraction to reduce the size of the state space that must be searched is
discussed in Section �� Several key abstractions are given and illustrated by example�
The paper concludes in Section � with some directions for future research�

� Computation tree logics

The computation tree logic CTL� �
�� 
�� ��� combines both branching�time and linear�
time operators� a path quantier� either A ��for all computation paths�� or E ��for some
computation paths�� can prex an assertion composed of arbitrary combinations of the
usual linear�time operatorsG ��always���F ��sometimes���X ��nexttime���U ��until���
and V ��unless��� The remainder of this section gives a precise description of the syntax
and semantics of these logics�

There are two types of formulas in CTL� � state formulas �which are true in a specic
state� and path formulas �which are true along a specic path�� Let AP be the set of
atomic proposition names� The syntax of state formulas is given by the following rules�

 If p � AP � then p is a state formula�
 If f and g are state formulas� then �f � f � g and f � g are state formulas�
 If f is a path formula� then E�f� is a state formula�
 If f is a path formula� then A�f� is a state formula�

Two additional rules are needed to specify the syntax of path formulas�

 If f is a state formula� then f is also a path formula�
 If f and g are path formulas� then �f � f � g� f � g� X f � f U g� and f V g are path
formulas�

CTL� is the set of state formulas generated by the above rules�



a reactive system is determined by n boolean state variables v�� v�� � � � � vn� Then the
transition relation of the system can be expressed as a boolean formula

R�v�� v�� � � � � vn� v
�

�� v
�

�� � � � � v
�

n�

where v�� v�� � � � � vn represents the current state and v��� v
�
�� � � � � v

�
n represents the next

state� By converting this formula to a BDD� a very concise representation of the transition
relation may be obtained�

The original model checking algorithm� together with the new representation for tran�
sition relations� is called symbolic model checking �
�� 
�� 
��� By using this combination�
it is possible to verify extremely large reactive systems� In fact� some examples with more
than than 
���� states have been veried �
	� 
��� This is possible because the number of
nodes in the OBDDs that must be constructed no longer depends on the actual number
of states or the size of the transition relation� Because of this breakthrough it is now
possible to verify reactive systems with realistic complexity� and a number of major com�
panies including Intel� Motorola� Fujitsu� and ATT have started using symbolic model
checkers to verify actual circuits and protocols� In several cases errors have been found
that were missed by extensive simulation�

While symbolic representations have greatly increased the size of the systems that can
be veried� many realistic systems are still too large to be handled� Thus� it is important
to nd techniques that can be used in conjunction with the symbolic methods to extend
the size of the systems that can be veried� In this paper we discuss two such techniques�
compositional reasoning and abstraction�

The rst technique exploits the modular structure of complex circuits and protocols�
Many nite state systems are composed of multiple processes running in parallel� The
specications for such systems can often be decomposed into properties that describe the
behavior of small parts of the system� An obvious strategy is to check each of the local
properties using only the part of the system that it describes� If it is possible to show
that the system satises each local property� and if the conjunction of the local properties
implies the overall specication� then the complete system must satisfy this specication
as well ���� 	���

For instance� consider the problem of verifying a communications protocol that is
modeled by three nite state processes� a transmitter� some type of network� and a re�
ceiver� Suppose that the specication for the system is that data is eventually transmitted
correctly from the sender to the receiver� Such a specication might be decomposed into
three local properties� First� the data should eventually be transferred correctly from the
transmitter to the network� Second� the data should eventually be transferred correctly
from one end of the network to the other� Finally� the data should eventually be trans�
ferred correctly from the network to the receiver� We might be able to verify the rst of
these local properties using only the transmitter and the network� the second using only
the network� and the third using only the network and the receiver� By decomposing the
verication in this way� we never have to compose all of the processes and therefore avoid
the state explosion phenomenon�

The second technique involves using abstraction� This technique appears to be es�
sential for reasoning about reactive systems that involve data paths� Traditionally� nite
state verication methods have been used mainly for control�oriented systems� The sym�
bolic methods make it possible to handle some systems that involve nontrivial data



��
 Composition of structures � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��� Tableau construction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��	 Justifying assume$guarantee proofs � � � � � � � � � � � � � � � � � � � � � �	

��� Verifying a CPU controller � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Abstraction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Compilation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Computing approximations � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��	 Exact approximations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		

��� A simple language � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Example abstractions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

Congruence modulo an integer � � � � � � � � � � � � � � � � � � � � � � � � 	�

Representation by logarithm � � � � � � � � � � � � � � � � � � � � � � � � � 	�

Single bit and product abstractions � � � � � � � � � � � � � � � � � � � � � 	�

��� Symbolic abstractions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Directions for Future Research � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Introduction

Model checking is an automatic technique for verifying nite�state reactive systems� such
as sequential circuit designs and communication protocols� Specications are expressed
in a propositional temporal logic� and the reactive system is modeled as a state�transition
graph� An e�cient search procedure is used to determine automatically if the specica�
tions are satised by the state�transition graph� The technique was originally developed
in 
��
 by Clarke and Allen Emerson �
�� 
��� Quielle and Sifakis ��	� independently
discovered a similar verication technique shortly thereafter� An alternative approach
based on showing inclusion between 
�automata was later devised by Robert Kurshan
at ATT Bell Laboratories �	�� 	���

This technique has several important advantages over mechanical theorem provers or
proof checkers for verication of circuits and protocols� The most important is that the
procedure is highly automatic� Typically� the user provides a high level representation of
the model and the specication to be checked� The model checker will either terminate
with the answer true� indicating that the model satises the specication� or give a coun�
terexample execution that shows why the formula is not satised� The counterexamples
are particularly important in nding subtle errors in complex reactive systems�

The rst model checkers were able to nd subtle errors in small circuits and protocols
����� ���� ���� ���� �
��� ����� �	���� However� they were unable to handle very large examples
due to the state explosion problem� Because of this limitation�many researchers in formal
verication predicted that model checking would never be useful in practice�

The possibility of verifying systems with realistic complexity changed dramatically in
the late 
����s with the discovery of how to represent transition relations using ordered
binary decision diagrams 
OBDDs� �

�� This discovery was made independently by three
research teams �
�� ��� �
� and is basically quite simple� Assume that the behavior of
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ABSTRACT� Model checking is an automatic technique for verifying nite�state
reactive systems� such as sequential circuit designs and communication protocols� Speci�
cations are expressed in temporal logic� and the reactive system is modeled as a state�
transition graph� An e�cient search procedure is used to determine whether or not the
state�transition graph satises the specications�

This paper describes the basic model checking algorithm and shows how it can be
used with binary decision diagrams to verify properties of large state�transition graphs�
Abstraction and compositional reasoning techniques are also discussed that signicantly
extend the power of model checking techniques by exploiting the hierarchical structure
of complex circuit designs and protocols�
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