
ABSTRACTIONS ANDREDUCTIONS INMODEL CHECKING

ORNA GRUMBERG

Computer Science Department
The Technion
Haifa �����
Israel

Abstract� We introduce the basic concepts of temporal logic model check�
ing and its state explosion problem� We then focus on abstraction� which
is one of the major methods for overcoming this problem� We distinguish
between weak and strong preservations of properties by a given abstrac�
tion� We show how abstract models preserving ACTL� can be de�ned with
human aid or automatically� When the abstraction is too coarse� we show
how re�nement can be applied to produce a more precise abstract model�
Abstract interpretation is then introduced and applied in order to construct
abstract models that are more precise and allow more ACTL properties to
be proven� Finally� we show how to de�ne abstract models that preserve
ECTL� and full CTL��

Keywords� model checking� temporal logic� abstraction� re�nement� ab�
stract interpretation� bisimulation� simulation preorder

�� Introduction

Temporal logic model checking is a procedure that gets as input a �nite
state model for a system and a property written in propositional temporal
logic� It returns �yes� if the system has the desired property and returns
�no� otherwise� In the latter case it also provides a counterexample that
demonstrates how the system fails to satisfy the property� Model checking
procedures can be quite e�cient in time� However� they su	er from the
state explosion problem
 the number of states in the model grows exponen�
tially with the number of system variables and components� This problem



�

impedes the applicability of model checking to large systems� and much
e	ort is invested in trying to avoid it�

Abstraction is a method for reducing the state space of the checked
system� The reduction is achieved by hiding �abstracting away
 some of the
system details that might be irrelevant for the checked property� Abstract
models are sometimes required to strongly preserve the checked properties�
In this case� a property holds on the abstract model if and only if it holds
on the original one� On the other hand� only weak preservation� may be
required� In that case� if a property is true for the abstract model then
it is also true for the original model� If a property is not true for the
abstract model� then no conclusion can be reached with regards to the
original model� The advantage of weak preservation is that it enables more
signi�cant reductions� However� it also increases the likelihood that we will
be unable to determine the truth of a property in the system�

The decision as to which details are unnecessary for the veri�cation task
is made either manually �by the veri�cation engineer
 or automatically�
In both cases� if the abstract model cannot determine the truth of the
property in the system� then re�nement is applied and additional details
are introduced into the model�

The main goal of abstraction is to avoid the construction of the full sys�
tem model� Thus� we need methods that derive an abstract model directly
from some high�level description of the system �e�g� program text
�

We will de�ne conditions for strong and weak preservations for the tem�
poral logic CTL� and its universal and existential fragments� ACTL� and
ECTL�� We will show how to derive abstract models which preserve ACTL�

from the program text� using nonautomatic and automatic abstractions�
When the abstractions are too coarse� we will show how they can be re�
�ned�

The basic notions of abstract interpretation will be de�ned� and its use
for deriving abstract models will be demonstrated� Abstract interpretation
provides means for constructing more precise abstract models that allow
us to prove more ACTL� properties� Within the framework of abstract
interpretation we also show how to de�ne abstract models that preserve
ECTL� and full CTL��

The rest of the paper is organized as follows� Section � de�nes temporal
logics along with their semantics� It presents a model checking algorithm
for CTL� and de�nes the notions of equivalence and preorder on models�
Section � describes data abstraction� Approximated abstractions are also
de�ned� It then shows how abstractions and approximations can be derived
from a high level description of the program� Section � presents the ideas of
counterexample�guided re�nement in which both the initial abstraction and
the re�nement are constructed automatically� Section � develops abstract



�

models within the abstract interpretation framework� Finally� Section �
reviews the related work and Section � presents some concluding remarks�

�� Preliminaries

���� TEMPORAL LOGICS

We use �nite state transition systems called Kripke models in order to
model the veri�ed systems�

De�nition ��� �Kripke model� Let AP be a set of atomic propositions�
A Kripke model M over AP is a four�tuple M � �S� S�� R� L
� where

� S is the set of states	
� S� � S is the set of initial states	
� R � S�S is the transition relation� which must be total� i�e�� for every

state s � S there is a state s� � S such that R�s� s�
	
� L 
 S � P�AP 
 is a function that labels each state with the set of

atomic propositions true in that state�

A path in M starting from a state s is an in�nite sequence of states � �
s�s�s� � � � such that s� � s� and for every i � �� R�si� si��
� The su�x of �
from state si is denoted �i�

We use propositional temporal logics as our speci�cation languages� We
present several subsets of the temporal logic CTL� ���� over a given �nite set
AP of atomic propositions� We will assume that formulas are expressed in
positive normal form� in which negations are applied only to atomic propo�
sitions� This facilitates the de�nition of universal and existential subsets of
CTL� ����� Since negations are not allowed� both conjunction and disjunc�
tion are required� Negations applied to the next�time operator X can be
�pushed inwards� using the logical equivalence ��X f
 � X�f � The unless
operator R �sometimes called the release operator
� which is the dual of
the until operator U� is also added� Thus� ��f U g
 � �f R �g�

De�nition ��� �CTL�� For a given set of atomic propositions AP � the
logic CTL� is the set of state formulas� de�ned recursively by means of state
formulas and path formulas as follows� State formulas are of the form


� If p � AP � then p and �p are state formulas�
� If f and g are state formulas� then so are f � g and f 	 g�
� If f is a path formula� then A f and E f are state formulas�

Path formulas are of the form


� If f is a state formula� then f is a path formula�
� If f and g are path formulas� then so are f � g� and f 	 g�
� If f and g are path formulas� then so are X f � f U g� and f R g�



�

The abbreviations true� false and implication � are de�ned as usual� For
path formula f � we also use the abbreviations F f 
 trueU f and G f 

falseR f � They express the properties that sometimes in the future f will
hold and that f holds globally�

CTL ���� is a branching�time subset of CTL� in which every tempo�
ral operator is immediately preceded by a path quanti�er� and no nesting
of temporal operators is allowed� More precisely� CTL is the set of state
formulas de�ned by


� If p � AP � then p and �p are CTL formulas�
� If f and g are CTL formulas� then so are f � g and f 	 g�
� If f and g are CTL formulas� then so are AXf �A�fUg
�A�fRg
 and
EX f � E�fUg
� E�fRg
�

ACTL� and ECTL� �universal and existential CTL�
 are subsets of
CTL� in which the only allowed path quanti�ers are A and E� respectively�
ACTL and ECTL are the restriction of ACTL� and ECTL� to CTL�

LTL ���� can be de�ned as the subset of ACTL� consisting of formulas of
the formA f � where f is a path formula in which the only state subformulas
permitted are Boolean combinations of atomic propositions� More precisely�
f is de�ned �in positive normal form
 by

�� If p � AP then p and �p are path formulas�
�� If f and g are path formulas� then f � g� f 	 g� X f � f U g� and f R g

are path formulas�

We will refer to such f as an LTL path formula�
We now consider the semantics of the logic CTL� with respect to a

Kripke model�

De�nition ��	 �Satisfaction of a formula� Given a Kripke model M �
satisfaction of a state formula f by a model M at a state s� denoted M� s j�
f � and of a path formula g by a path �� denoted M�� j� g� is de�ned as
follows �where M is omitted when clear from the context��


� s j� p if and only if p � L�s
	 s j� �p if and only if p �� L�s
�
�� s j� f � g if and only if s j� f and s j� g�

s j� f 	 g if and only if s j� f or s j� g�
�� s j� A f if and only if for every path � from s� � j� f �

s j� E f if and only if there exists a path � from s such that � j� f �
�� � j� f � where f is a state formula� if and only if the �rst state of �

satis�es the state formula�
�� � j� f � g if and only if � j� f and � j� g�

� j� f 	 g if and only if � j� f or � j� g�
�� �a� � j� X f if and only if �� j� f �

�b� � j� fUg if and only if for some n � �� �n j� g and for all i � n�
�i j� f �



�

�c� � j� f R g if and only if for all n � �� if for all i � n� �i �j� f

then �n j� g�

M j� f if and only if for every s � S�� M� s j� f �

In ���� it has been shown that CTL and LTL are incomparable in their
expressive power� and that CTL� is more expressive than each�

Below we present several formulas together with their intended meaning
and their syntactic association with some of the logics mentioned above�

� Mutual exclusion� AG��cs��cs�
 where csi is an atomic proposition
that is true in a state if and only if process i is in its critical section
in that state� The formula means that it is invariantly true �in every
state along every path
 that processes � and � cannot be in their critical
section at the same time�
The formula is in CTL� LTL and CTL��

� Nonstarvation� AG�request �� AF grant
 means that every re�
quest will be granted along every execution�
This formula is in CTL but not in LTL� However� it is equivalent to
the LTL formula AG�request �� F grant
�

� 
Sanity check�� The formula EF request is complementary to the
nonstarvation formula� It excludes the case where the implication in
the nonstarvation formula holds vacuously just because no request has
been presented�
This is a CTL formula that is not expressible in LTL�

� Fairness� A�GF enabled �� GF executed
 describes a fairness re�
quirement that a transition which is in�nitely often enabled �GF enabled

is also in�nitely often executed �GF executed
�
This LTL formula is not expressible in CTL�

� Reaching a reset state� AGEF reset describes a situation where in
every state along every path there is a possible continuation that will
eventually reach a reset state�
The formula is in CTL and is not expressible in LTL�

���� CTL MODEL CHECKING

In this section we brie�y describe an algorithm for CTL model checking�
CTL model checking ���� is widely used due to its e�cient algorithm� LTL
model checking ���� is also commonly used because many useful properties
are easily expressed in LTL� CTL� model checking ���� can be built as a
combination of the algorithms for LTL and CTL� For more details on these
algorithms see �����

The CTL model checking algorithm receives a Kripke model M �
�S� S�� R� L
 and a CTL formula f � It works iteratively on subformulas
of f � from simpler subformulas to more complex ones� For each subformula



�

g of f � it returns the set Sg of all states in M that satisfy g� That is�
Sg � fsj M� s j� g g� An important property of the algorithm is that when
it checks the formula g� all subformulas of g have already been checked�
When the algorithm terminates� it returns True if S� � Sf and returns
False otherwise�

For CTL model checking� positive normal form is not necessary� in which
case every formula can be expressed using the Boolean operators � and
� and the temporal operators EX� EU� and EG� The model checking
algorithm consists of several procedures� each taking care of formulas in
which the main operator is one of the above� Here� we present only the more
complex procedures for formulas of the form f � E�gUh
 and f � EG g�

The procedure CheckEU� presented in Figure �� accepts as input the
sets of states Sg and Sh and iteratively computes the set Sf of states that
satisfy f � E�gUh
� The computation is based on the equivalence

E�gUh
 � h 	 �g � EX�E�gUh

�

At each iteration� Q holds the set of states computed in the previous it�
eration while Q� holds the set of states computed in the current iteration�
Initially� all states that satisfy h are introduced into Q�� At step i� all states
in Sg that have a successor in Q are added� These are exactly the states
that satisfy g and have a successor that satis�es E�gUh
� The computation
stops when no more states can be added� i�e�� a �xpoint is reached �in fact�
this is a least �xpoint
�

procedure CheckEU� Sg� Sh 

Q 
� �� Q� 
� Sh�
while �Q �� Q�
 do

Q 
� Q��
Q� 
� Q 
 fs j �s�� R�s� s�
 � Q�s�
 � Sg�s
 � g�

end while�
Sf 
� Q� return �Sf


Figure �� The procedure CheckEU for checking the formula f � E�gUh�

The procedure CheckEG� presented in Figure �� accepts the set of states
Sg and iteratively computes the set Sf of states that satisfy f � EG g� The
computation is based on the equivalence

EG g � g � EX�EG g
�

Initially� all states that satisfy g are introduced into Q�� At any step� states
that do not have a successor in Q are removed� When the computation
terminates� each state in Q has a successor in Q� Since all states in Q

satisfy g� they all satisfy EG g� In this case� a greatest �xpoint is computed�



�

procedure CheckEG� Sg 

Q 
� S� Q� 
� Sg�
while �Q �� Q�
 do

Q 
� Q��
Q� 
� Q � fs j �s�� R�s� s�
 � Q�s�
 � g�

end while�
Sf 
� Q� return �Sf


Figure �� The procedure CheckEG for checking the formula f � EG g

Theorem ��� �
�� Given a model M and a CTL formula f � there is a
model checking algorithm that works in time O��jSj� jRj
 � jf j
�

���� EQUIVALENCES AND PREORDERS

In this section we de�ne the bisimulation relation and the simulation pre�
order over Kripke models� We will also state the relationships between these
relations and logic preservation� Intuitively� two states are bisimilar if they
are identically labeled and for every successor of one there is a bisimilar
successor of the other� Similarly� one state is smaller than another by the
simulation preorder if they are identically labeled and for every successor
of the smaller state there is a corresponding successor of the greater one�
The simulation preorder di	ers from bisimulation in that the greater state
may have successors with no corresponding successors in the smaller state�

Let AP be a set of atomic propositions and let M� � �S�� S��� R�� L�

and M� � �S�� S��� R�� L�
 be two models over AP �

De�nition ��
 A relation B � S� � S� is a bisimulation relation ����
over M� and M� if the following conditions hold



� For every s� � S�� there is s� � S�� such that B�s�� s�
� Moreover� for
every s� � S�� there is s� � S�� such that B�s�� s�
�

�� For every �s�� s�
 � B�

� L��s�
 � L��s�
 and

� �t�� R��s�� t�
 �� �t�� R��s�� t�
 � B�t�� t�
 ���

� �t�� R��s�� t�
 �� �t�� R��s�� t�
 � B�t�� t�
 ���

We write s� 
 s� for B�s�� s�
� We say that M� and M� are bisimilar
�denoted M� 
 M�
 if there exists a bisimulation relation B over M� and
M��

De�nition ��� A relation H � S�� S� is a simulation relation ��
� over
M� and M� if the following conditions hold



� For every s� � S�� there is s� � S�� such that H�s�� s�
�



�

�� For every �s�� s�
 � H�

� L��s�
 � L��s�
 and

� �t�� R��s�� t�
 �� �t�� R��s�� t�
 � H�t�� t�
 ���

We write s� � s� for H�s�� s�
� M� simulates M� �denoted M� � M�
 if
there exists a simulation relation H over M� and M��

The relation 
 is an equivalence relation on the set of models� while
the relation � is a preorder on this set� That is� 
 is re�exive� symmetric
and transitive and � is re�exive and transitive� Note that if there is a
bisimulation relation over M� and M�� then there is a unique maximal
bisimulation relation overM� and M�� that includes any other bisimulation
relation over M� and M�� A similar property holds also for simulation�

The following theorem relates bisimulation and simulation to the logics
they preserve��

Theorem ���

� ��� Let M� 
M�� Then for every CTL� formula f �with atomic propo�
sitions in AP �� M� j� f if and only if M� j� f �

� Let M� �M��

� ���� For every ACTL� formula f with atomic propositions in AP �
M� j� f implies M� j� f �

� For every ECTL� formula f with atomic propositions in AP �
M� j� f implies M� j� f �

The last part of Theorem ��� is a direct consequence of the previous part of
this theorem� It is based on the observation that for every ECTL� formula
f � there is an ACTL� formula which is equivalent to �f �

	� Data Abstraction

The �rst abstraction that we present is data abstraction ���� ���� In order
to obtain a smaller model for the veri�ed system� we abstract away some of
the data information� At the same time� we make sure that each behavior of
the system is represented in the reduced model� In fact� the reduced model
may contain more behaviors than the concrete �full
 model� Nevertheless�
it is often smaller in size �number of states and transitions
� which makes
it easier to apply model checking�

Data abstraction is done by choosing� for every variable in the system�
an abstract domain that is typically signi�cantly smaller than the original
domain� The abstract domain is chosen by the user� The user also supplies

�Bisimulation and simulation also preserve the ��calculus logic ���	 and its univer�
sal ��
	 and existential subsets� respectively� The discussion of this is beyond the scope
of this paper�



�

a mapping from the original domain onto the abstract one� An abstract
model can then be de�ned in such a way that it is greater by the simulation
preorder than the concrete model of the system� Theorem ��� can now be
used to verify ACTL� properties of the system by checking them on the
abstract model�

Clearly� a property veri�ed for the abstract model can only refer to
the abstract values of the program variables� In order for such a property
to be meaningful in the concrete model we label the concrete states by
atomic formulas of the form bxi � a� These atomic formulas indicate that
the variable xi has some value d that has been abstracted to a�

The de�nition of the abstract model is based on the de�nition of the
concrete model� However� building it on top of the concrete model would
defeat the purpose since the concrete model is often too large to �t into
memory� Instead� we show how the abstract model can be derived directly
from some high�level description of the program� e�g�� from the program
text� As we will see later� extracting a precise abstract model may not be
an easy task� We therefore de�ne an approximated abstract model� This
model may have more behaviors than the abstract model� but it is easier
to build from the program text�

Let P be a program with variables x�� � � � � xn� For simplicity we assume
that all variables are over the same domain D� Thus� the concrete �full

model of the system is de�ned over states s of the form s � �d�� � � � � dn
 in
D � � � ��D� where di is the value of xi in this state �denoted s�xi
 � di
�

The �rst step in building an abstract model for P is choosing an ab�
stract domain A and a surjection h 
 D � A� The next step is to restrict
the concrete model of P so that it re�ects only the abstract values of its
variables� This is done by de�ning a new set of atomic propositions

dAP � f bxi � a j i � �� � � � � n and a � A g�

The notation bxi is used to emphasize that we refer to the abstract value
of the variable xi� The labeling of a state s � �d�� � � � � dn
 in the concrete
model will be de�ned by

L�s
 � f bxi � a j h�di
 � ai� i � �� � � � � n g�

Example 	�� Let P be a program with a variable x over the integers� Let
s� s� be two program states such that s�x
 � � and s��x
 � ��� Following
are two possible abstractions�

Abstraction ��

A� � fa�� a�� a�g and



��

h��d
 �

��� a� if d � �
a� if d � �
a� if d � �

The set of atomic propositions is AP� � f bx � a�� bx � a�� bx � a� g�
The labeling of states in the concrete model induced by A� and h� is

L��s
 � fbx � a�g and L��s

�
 � fbx � a�g�
Abstraction ��

A� � faeven� aoddg and

h��d
 �

�
aeven if even�jdj

aodd if odd�jdj


The set of atomic propositions is AP� � f bx � aeven� bx � aodd g�
The labeling of states in the concrete model induced by A� and h� is

L��s
 � fbx � aeveng and L��s

�
 � fbx � aoddg�

By restricting the state labeling we lose the ability to refer to the actual
values of the program variables� However� many of the states are now in�
distinguishable and can be collapsed into a single abstract state�

Given A and h as above� we can now de�ne the most precise abstract
model� Mr� called the reduced model� First we extend the mapping h 
 D �
A to n�tuples in D � � � ��D


h��d�� � � � � dn

 � �h�d�
� � � � � h�dn

�

An abstract state �a�� � � � � an
 of Mr will represent the set of all states
�d�� � � � � dn
 such that h��d�� � � � � dn

 � �a�� � � � � an
� Concrete states s�� s�
are said to be equivalent �s� � s�
 if and only if h�s�
 � h�s�
� that is� both
states are mapped to the same abstract state� Thus� each abstract state
represents an equivalence class of concrete states�

De�nition 	�� Given a concrete model M � an abstract domain A� and an
abstraction mapping h 
 D � A� the reduced model Mr � �Sr� S�r � Rr� Lr

is de�ned as follows


� Sr � A � � � �� A�
� S�r�sr
� �s � S� 
 h�s
 � sr�
� Rr�sr� tr
� �s� t� h�s
 � sr � h�t
 � tr �R�s� t
 ��
� For sr � �a�� � � � � an
� Lr�sr
 � f bxi � ai j i � �� � � � � n g�

This type of abstraction is called existential abstraction�

Lemma 	�� The reduced model Mr is greater by the simulation preorder
than the concrete model M 	 that is� M �Mr�



��

To see why the lemma is true� note that the relation H � f �s� sr
 j h�s
 �
sr g is a simulation preorder between M and Mr� The following corollary
is a direct consequence of this lemma and Theorem ����

Corollary 	�	 For every ACTL� formula �� if Mr j� � then M j� ��

���� DERIVING MODELS FROM THE PROGRAM TEXT

In the next section we explain how the reduced and approximated model
for the system can be derived directly from a high�level description of the
system� In order to avoid having to choose a speci�c programming lan�
guage� we argue that the program can be described by means of �rst�order
formulas� In this section we demonstrate how this can be done�

Let P be a program� and let x � �x�� � � � � xn
 and x� � �x��� � � � � x
�
n
 be

two copies of the program variables� representing the current and next state�
respectively� The program will be given by two �rst�order formulas� S��x

and R�x� x�
� describing the set of initial states and the set of transitions�
Let d � �d�� � � � � dn
 be a vector of values� The notation S��x� d� indicates
that for every i � �� � � � � n� the value di is substituted for the variable xi in
the formula S�� A similar notation is used for substitution in the formula
R�

De�nition 	�� Let S � D�� � ��D be the set of states in a model M � The
formulas S��x
 and R�x� x�
 de�ne the set of initial states S� and the set
of transitions R in M as follows� Let s � �d�� � � � � dn
 and s� � �d��� � � � � d

�
n


be two states in S�

� S��s
 � S��x
�x� d� is true�
� R�s� s�
 � R�x� x�
�x� d� x� � d�� is true�

The following example demonstrates how a program can be described by
means of �rst�order formulas� A more elaborate explanation can be found
in ����� We assume that each statement in the program starts and ends with
labels that uniquely de�ne the corresponding locations in the program� The
program locations will be represented in the formula by the variable pc �the
program counter
� which ranges over the set of program labels�

Example 	�� Given a program with one variable x that starts at label
l�� in any state in which x is even� the set of its initial states is described
by the formula


S��pc� x
 � pc � l� � even�x
�

The statement l 
 x 
� e l� is described by the formula


R�pc� x� pc�� x�
 � pc � l � x� � e � pc� � l��



��

The statement l 
 if x � � then l� 
 x 
� � else l� 
 x 
� x � � l� is
described by the formula


R�pc� x� pc�� x�
 � �� pc � l � x � � � x� � x � pc� � l�
 	

� pc � l � x �� � � x� � x � pc� � l�
	

�pc � l� � x� � � � pc� � l�
 	

�pc � l� � x� � x� �� pc� � l�

�

Note that checking the condition of the if statement takes one transition�
along which the value of the program variable is checked but not changed�
If the program contains an additional variable y� then y� � y will be added
to the description of each of the transitions above� This captures the fact
that variables that are not assigned a new value keep their previous value�

���� DERIVING ABSTRACT MODELS

Given S� and R that describe a concrete model M � we would like to de�ne
formulas bS� and bR that describe the reduced model Mr� The new formulas
will be de�ned over variables bxi� which range over the abstract domain�
The formulas will determine for abstract states whether they are initial and
whether there is a transition connecting them� For this purpose� we �rst
de�ne a derivation of a formula over variables cx�� � � � �cxk from a formula
over x�� � � � � xk�

De�nition 	�
 Let � be a �rst�order formula over variables x�� � � � � xk�
The formula ��� over cx�� � � � �cxk is de�ned as follows


����cx�� � � � �cxk
 � �x� � � �xk

�
k�
i��

h�xi
 � bxi � ��x�� � � � � xk


�
�

Lemma 	�� Let S� and R be the formulas describing a model M over
states in D � � � ��D� Then the formulas bS� � �S�� and bR � �R� describe
the reduced model Mr over A� � � ��A�

The lemma holds since Mr is de�ned by existential abstraction �see De��
nition ���
� This is directly re�ected in �S�� and �R��

Using bS� and bR allows us to build the reduced model Mr without �rst
building the concrete model M � However� the formulas S� and R might
be quite large� Thus� applying existential quanti�cation to them might be
computationally expensive� We therefore de�ne a transformation T on �rst�
order formulas� The idea of T is to push the existential quanti�cation in�
wards� so that it is applied to simpler formulas�

De�nition 	�� Let � be a �rst�order formula in positive normal form�
Then the following holds




��


� If p is a primitive relation� then T �p�x�� � � � � xk

 � �p��bx�� � � � � bxk
 and
T ��p�x�� � � � � xk

 � ��p��bx�� � � � � bxk
�

�� T ��� � ��
 � T ���
 � T ���
�
�� T ��� 	 ��
 � T ���
 	 T ���
�
�� T ��x�
 � �bxT ��
�
�� T ��x�
 � �bxT ��
�

We can now de�ne an approximated abstract model Ma� It is de�ned over
the same set of states as the reduced model� but its set of initial states
and set of transitions are de�ned using the formulas T �S�
 and T �R
� The
following lemma ensures that every initial state ofMr is also an initial state
of Ma� Moreover� every transition of Mr is also a transition of Ma�

Lemma 	�� For every �rst�order formula � in positive normal form� ���
implies T ��
� In particular� �S�� implies T �S�
 and �R� implies T �R
�

Note that the other direction does not hold� Cases � and � of De�nition ���
result in nonequivalent formulas�

Corollary 	�� M �Mr �Ma�

By allowing Ma to have more behaviors than Mr� we increase the like�
lihood that it will falsify ACTL� formulas that are actually true in the
concrete model and possibly true in Mr� This re�ects the tradeo	 between
the precision of the model and its ease of computation�

In practice� there is no need to construct formulas in order to build the
approximated model� The user should provide abstract predicates �p� and
��p� for every basic action p in the program �e�g� conditions� assignments
of mathematical expressions
� Based on these� the approximated model can
be constructed automatically�

In ���� ��� several data abstractions have been suggested and used to
verify meaningful properties of interesting programs�

�� Counterexample�Guided Abstraction Re�nement

In the previous section we showed how an abstract model can be con�
structed based on an abstract domain and a mapping� both provided by
the user� Unfortunately� choosing a suitable abstraction is not trivial for
large systems and requires considerable creativity�

In this section we describe a technique �presented in ����
 that deter�
mines the required domain and mapping automatically� based on an anal�
ysis of the program text� This technique di	ers from data abstraction in
that the abstract domains and abstract mappings are de�ned for clusters
of variables rather than single variables� The clusters are chosen according



��

to dependencies that are found among the variables in the program� Ab�
stracting clusters of variables results in an abstract model that re�ects the
system behavior more precisely�

As in the previous section� we use existential abstraction� Existential
abstraction guarantees that ACTL� properties true of the abstract model
are also true of the concrete model� However� if a property is false in the
abstract model� then the counterexample produced by the model checking
algorithm may be the result of some behavior that is not present in the
concrete model� In this case� we re�ne the abstraction to eliminate the
erroneous behavior from the abstract model� The re�nement is determined
by information obtained from the counterexample�

The suggested method has the following steps


� Generating an initial abstraction�
This involves the construction of variable clusters for variables which
interfere with each other via conditions in the program�

� Model�checking the abstract model�
If the formula is true� we conclude that the concrete model satis�es the
formula and stop� If a counterexample bT is found� we check whetherbT is a counterexample in the concrete model� If it is� we conclude that
the concrete model does not satisfy the formula and stop� Otherwise�bT is a spurious counterexample� and we proceed to step ��

� Re�ning the abstraction�
This is done by splitting one abstract state so that bT is not included
in the new abstract model� We then go back to step ��

���� ASSUMPTIONS

There are several assumptions that are needed in order to make our method
fully automatic and e	ective�

� The program is �nite�state� i�e�� each variable is over a �nite domain�
� We use BDD�based algorithms� BDD ���� is a data structure for repre�

senting Boolean functions� BDDs are often very concise in their space
requirements� Sets of states and sets of transitions of Kripke models can
easily be represented by BDDs� Moreover� most operations applied in
model checking algorithms can be implemented e�ciently with BDDS�
As a result� BDD�based model checking ���� ��� �called symbolic model
checking
 is very useful in practice�

� The full model is too large to �t into memory� even when represented by
BDDs� However� subsets of the full state space can be held in memory�
In particular� we will maintain as BDDs the sets of concrete states that
are mapped to a speci�c abstract state�



��

� The transition relation of the full model is available� If it is too large�
it is held partitioned� There are known techniques for handling parti�
tioned transition relations in model checking �����

���� GENERATING THE INITIAL ABSTRACTION

Let P be a program over variables x�� � � � � xn� Suppose that each variable
xi is de�ned over domain Dxi� which is �nite� Finiteness of the domains
is necessary in order for the method to be fully automatic� Let � be the
ACTL� formula to be checked on P �

Atomic formulas will be de�ned over program variables� constants and
relation symbols� For instance� x � y and x � � are atomic formulas�
Boolean combinations of atomic formulas are used as conditions in the
program� The logic ACTL� is also de�ned over atomic formulas of this
type� We use Atom to denote the set of all atomic formulas appearing in
P and ��

Given a state s � d � �d�� � � � � dn
 and an atomic formula p over
x�� � � � � xn� we write s j� p if p�x � d� � true� That is� p is evaluated
to true when each variable xi is assigned the value di�

As before� the concrete model M of program P is de�ned over states
S � Dx� � � � � � Dxn � where each state in M is labeled with the set of
atomic formulas from Atom that are true in that state�

We say that two atomic formulas interfere if the sets of variables ap�
pearing in them are not disjoint� Let 
I be that equivalence relation over
Atom which is the re�exive� transitive closure of the interference relation�
The equivalence class of an atomic formula f � Atom is called the cluster
of f and is denoted by �f �� Note that if two atomic formulas f� and f� have
nondisjoint sets of variables� then �f�� � �f��� That is� a variable cannot
occur in formulas that belong to di	erent formula clusters�

Consequently� we can de�ne an equivalence relation 
V on the program
variables as follows


xi 
V xj if and only if xi and xj appear in atomic formulas
that belong to the same formula cluster�

The equivalence classes of
V are called variable clusters� Let fFC�� � � � � FCmg
and fV C�� � � � � V Cmg be the set of formula clusters and variable clus�
ters� respectively� Each variable cluster V Ci is associated with a domain
DV Ci �

Q
x�V Ci

Dx� representing the value of all the variables in this clus�
ter� Note that S � DV C�

� � � ��DV Cm �

Example ��� Let Atom � f x � y� x � �� z � tg� Then there are two
formula clusters� FC� � f x � y� x � � g and FC� � f z � t g� and two
variable clusters� VC� � fx� yg and V C� � fz� tg�



��

The initial abstraction is de�ned by h � �h�� � � � � hm
� where hi is de�ned
over DV Ci as follows� For �d�� � � � � dk
� �e�� � � � � ek
 � DV Ci �

hi��d�� � � � � dk

 � hi��e�� � � � � ek

 ��

�f � FCi 
 �d�� � � � � dk
 j� f � �e�� � � � � ek
 j� f�

Thus� two states are hi�equivalent if and only if they satisfy the same for�
mulas in FCi� They are h�equivalent if and only if they satisfy the same
formulas in Atom�

The reduced model for the abstraction h will be de�ned over abstract
states that are the equivalence classes of the h�equivalence� Each equiva�
lence class will be labeled by all formulas from Atom which are true in all
states in the class� The initial states and transition relation are de�ned by
the existential abstraction� as before�

Example ��� Let P be a program with variables x� y over domain f�� �g
and z� t over domain ftrue� falseg� Let FC� � f x � y� x � � g� FC� �
f z � t g� V C� � fx� yg and V C� � fz� tg� Then� the h��equivalence classes
are


E�� � f��� �
� ��� �
g� E�� � f��� �
g� E�� � f��� �
g�

The h��equivalence classes are


E�� � f�false� false
� �true� true
g� E�� � f�false� true
� �true� false
g�

The reduced model contains six states labeled by


Lr��E��� E��

 � fz � tg

Lr��E��� E��

 � fx � y� x � �� z � tg

Lr��E��� E��

 � fx � �� z � tg

Lr��E��� E��

 � �

Lr��E��� E��

 � fx � y� x � �g

Lr��E��� E��

 � fx � �g

Example ��� shows that abstracting variable clusters rather than single
variables allows smaller abstract domains that are more precise� Valuations
of a whole variable cluster determine the truth of the conditions in the
program� and thus in�uence its control �ow� Abstracting a whole cluster
allows us to identify all states that satisfy the same conditions and then
abstract them together� Thus� the abstract model re�ects more closely the
control �ow of the program�



��

���� IDENTIFYING SPURIOUS PATH COUNTEREXAMPLES

Once the reduced model is built� we can run the model checking algorithm
on it� Suppose the model checking stopped with a path counterexample�
Such a counterexample is produced� for instance� when the checked property
is AG p for some atomic formula p� The path leads from an initial state to
a state that falsi�es p� Our goal is to �nd whether there is a corresponding
path in the concrete model from an initial state to a state that falsi�es p�

Let bT � bs� � � � bsn be the path counterexample in the reduced model�
For an abstract state bs� h���bs
 denotes the set of concrete states that are
mapped to bs� i�e�� h���bs
 � f s j h�s
 � bs g� h���bT
 denotes the set of all
concrete paths from an initial state that correspond to bT � i�e��

h���bT 
 � f s� � � �sn j
n�
i��

h�si
 � bsi � S��s�
 �
n���
i��

R�si� si��
 g�

We say that a path bT � bs� � � � bsn corresponds to a real counterexample
if there is a path � � s� � � �sn such that for all � � i � n� h�si
 � bsi�
Moreover� � starts at an initial state and its �nal state falsi�es p� Note
that if h�si
 � bsi� then si and bsi satisfy the same atomic formulas� Thus�

it immediately follows that bT corresponds to a real counterexample if and
only if h���bT
 is not empty�

The algorithm SplitPATH in Figure � checks whether h���bT
 is empty�
In fact� it computes a sequence S�� � � � � Sn of sets of states� For each i� Si
contains states that correspond to bsi and are also successors of states in
Si��� It starts with S� � h��� bs�
�S�� which includes all initial states that
correspond to bs�� If some Si turns out to be empty� then SplitPATH returns
both the place i where the failure occurred and the last nonempty set Si���

SplitPATH uses the transition relation R of the concrete model M in
order to compute Img�Si��� R
� which is the set of all successors of states
in Si��� All operations in SplitPATH� including Img� are e	ectively im�
plemented with BDDs �symbolic implementation
� The following lemma
proves the correctness of SplitPATH�

Lemma ��� bT corresponds to a real counterexample if and only if for all
� � i � n� Si �� ��

���� IDENTIFYING SPURIOUS LOOP COUNTEREXAMPLES

Suppose that the model checking returns a loop counterexample� This may
occur� for instance� when the propertyAF p is checked� The counterexample
exhibits an in�nite path along which p never holds� A loop counterexample



��

Algorithm SplitPATH�bT 

S 
� h��� bs�
 � S��
j 
� ��
while �S �� � and j � n
 do

j 
� j � ��
Sprev 
� S�
S 
� Img�S�R
� h���bsj
�

end while�
if S �� � then output �counterexample exists�

else output j� Sprev

Figure �� SplitPATH checks if an abstract path is spurious�

will be of the form bT � bs� � � � bsi hdsi�� � � � bsni��
where the sequence dsi�� � � � bsn repeats forever�

Some di�culties arise when trying to determine whether a loop coun�
terexample in the abstract model corresponds to a real counterexample
in the concrete model� First� an abstract loop may correspond to di	er�
ent loops of di	erent sizes in the concrete model� Furthermore� the loops
may start at di	erent stages of the unwinding� Clearly� the unwinding must
eventually result in a periodic path� However� a careful analysis is needed
in order to see that a polynomial number of unwindings is su�cient� More
precisely� let

min � minf jh���dsi��
j� � � � � jh��� bsn
j g�
That is� min is the size of the smallest set of concrete states that cor�
responds to one of the abstract states on the loop� Then min � � un�
windings are su�cient� This is formalized in the following lemma� LetbT � bs� � � � bsi hdsi�� � � � bsni� and bTunwind � bs� � � � bsi hdsi�� � � � bsnimin���
Lemma ��� bT corresponds to a concrete counterexample if and only if
h��� bTunwind
 is not empty�

Following is an intuitive explanation for the correctness of the �if� clause
of the lemma� Assume h���bTunwind
 �� �� For any concrete path � in

h��� bTunwind
� the su�x �i�� of � goes min � � times through each of
the sets h���bsj
� for j � i � �� � � � � n� Suppose min � jh���csM 
j� Then at
least one state in h���csM
 repeats twice along �i��� thus forming a concrete
loop� Replacing �i�� with this loop in � results in a loop counterexample
in the concrete model�



��

From this lemma we conclude that the loop counterexample can be
reduced to a path counterexample� Figure � presents the algorithm Split�
LOOP� which applies SplitPATH to bTunwind in order to check if an ab�
stract loop is spurious� LoopIndex�j
 computes the index in the unwoundbTunwind of the abstract state at position j� That is�

LoopIndex�j
 � if j � n then j else��j � �i� �
mod�n� i

 � �i� �
�

Thus� SplitLOOP returns two indices k and p� which are consecutive on
the loop� and the set Sprev � h��� bsk
� In the re�nement step� the loop
counterexample can now be treated similarly to the path counterexample�

Algorithm SplitLOOP� bT 

min � minf jh���dsi��
j� � � � � jh��� bsn
j g�bTunwind � unwind�bT�min� �
�

Compute j and Sprev as in SplitPATH�bTunwind
�
k 
� LoopIndex�j
�
p 
� LoopIndex�j � �
�
output Sprev� k� p

Figure �� SplitLOOP checks if an abstract loop is spurious

���� REFINING THE ABSTRACTION

Once we have realized that a path or a loop counterexample is spurious�
we would like to eliminate it by re�ning our abstraction� We will only
describe the re�nement process for path counterexamples� The treatment
of loop counterexamples is similar� Let j� Sprev be the output of SplitPATH�
where Sprev � h���dsj��
� We observe that the states in h���dsj��
 can be
partitioned into three subsets


� SD
 dead�end states� which are reachable from an initial state in
h��� bs�
 but have no outgoing transition to states in h���bsj
� Note that
Sprev � SD�

� SB
 bad states� which are not reachable but have outgoing transitions
to states in h���bsj
�

� SI 
 irrelevant states� which are neither reachable nor dead�

Since existential abstraction is used� the dead�end states induce a path todsj�� in the abstract model� The bad states induce a transition from dsj��
to bsj � Thus� a spurious path leading to bsj is obtained�



��

In order to eliminate this path we need to re�ne the abstraction mapping
h so that the dead�end states and bad states do not belong to the same
abstract state�

Recall that each abstract state corresponds to an h�equivalence class
of concrete states� The goal is to �nd a re�nement that keeps the number
of new equivalence classes as small as possible� It turns out that when
irrelevant states are present� the problem of �nding the optimal re�nement
is NP�complete� However� if the set of irrelevant states is empty� the problem
can be solved in polynomial time� A possible heuristic associates SI with SB
and then applies re�nement� which separates them from SD� The resulting
re�nement is not optimal� but gives good results in practice�

We now show how the model is re�ned in case SI � �� Recall that
S � DV C�

� � � � � DV Cm and h � �h�� � � � � hm
� where hi is de�ned over
DV Ci � The equivalence relations 
 �
i
 are the sets of pairs of h�equivalent
� hi�equivalent
 elements� For SD � S� i � f�� � � � � mg� and a � DV Ci � we
de�ne the projection set proj�SD� i� a
 by


Proj�SD� i� a
 � f �d�� � � � � di��� di��� � � � � dm
 j

�d�� � � � � di��� a� di��� � � � � dm
 � SD g�

The re�nement procedure checks� for each i and for each pair �a� b
 in

i� whether proj�SD� i� a
 � proj�SD� i� b
� If not� then �a� b
 is eliminated
from 
i� By eliminating �a� b
 from 
i� we partition the equivalence class
h���dsj��
� Since proj�SD� i� a
 �� proj�SD� i� b
� there are states

sa � �d�� � � � � di��� a� di��� � � � � dm
 and sb � �d�� � � � � di��� b� di��� � � � � dm


such that sa � SD and sb �� SD �or vice versa
� This implies that sb � SB
�since SI is empty
� and therefore sa and sb should not be in the same
equivalence class� Removing �a� b
 from 
i also removes �sa� sb
 from 
� as
required�

The re�nement procedure continues to re�ne the abstraction mapping
by partitioning equivalence classes until a real counterexample is found or
until the ACTL� formula holds� Since each equivalence class is �nite and
nonempty� the process always terminates�

Theorem ��	 Given a model M and an ACTL� formula � whose coun�

terexample is either path or loop� the re�nement algorithm �nds a model cM
such that cM j� � � M j� ��

In ����� several practical improvements are presented� The method is
also experimented on large examples�



��


� Abstract Interpretation

In this section we show how abstractions preserving full CTL� and its uni�
versal and existential subsets can be de�ned within the framework of ab�
stract interpretation� We will see that abstract interpretation can be used to
obtain abstract models which are more precise and therefore preserve more
properties than the existential abstraction presented previously ���� ����
The abstraction suggested in this section abstracts the state space rather
than the data domain and can be applied to in�nite as well as �nite sets�
It actually preserves the full 	�calculus �see ���� for more details
�

Given an abstract domain� abstract interpretation provides a general
framework for automatically �interpreting� systems on the abstract do�
main� The classical abstract interpretation framework ���� was used to prove
safety properties� and does not consider temporal logic or model check�
ing� Hence� it usually abstracts sets of states� Here� on the other hand� we
are interested in properties of computations� We therefore abstract Kripke
models� including their sets of states and transitions�

The models we use in this section are slightly di	erent from the Kripke
models presented in De�nition ���� Instead of using the set AP of atomic
propositions to label states� we use literals from the set

Lit � AP 
 f�p j p � AP g�

The Kripke model M � �S� S�� R� L
 is de�ned as before for S� S�� and R�
The labeling function L 
 S � P�Lit
 is required to satisfy

p � L�s
� �p �� L�s
 and �p � L�s
� p �� L�s
�

Recall that labeling a state with a formula means that the formula is true
in that state� Thus� by the above� p and �p cannot be true together in a
state� It is not required� however� that p � L�s
� �p �� L�s
� Hence� it is
possible that neither p nor �p will be true in s�

It is straightforward to extend the semantics of CTL� formulas for these
models� Only for literals should it be changed� The remaining semantics is
identical to De�nition ���� For literals� we can de�ne the semantics by

�� If p � AP then
s j� p if and only if p � L�s
� s j� �p if and only if �p � L�s
�

As a result of this change� however� the semantics of any CTL� formula
may now be such that neither s j� � nor s j� ���

We will now present some basic notions required for the development of
an abstract interpretation framework in the context of Kripke models and
temporal logic speci�cations� For more details see ���� ����

Abstract interpretation assumes two partially ordered sets� �C�v
 and
�A��
� of the concrete and abstract domains� In addition� two mappings are



��

used
 The abstraction mapping 
 
 C � A and the concretization mapping
� 
 A� C�

De�nition 
�� �
 
 C � A� � 
 A � C
 is a Galois connection from
�C�v
 to �A��
 if and only if

� 
 and � are total and monotonic�
� for all c � C� ��
�c

w c�
� for all a � A� 
���a

 � a�

�
� �
 is a Galois insertion if� in addition� the order � on A is de�ned by
the order w on C as follows


a � a� � ��a
 v ��a�
�

Note that the requirement for Galois insertion is stronger than the require�
ment for monotonicity of �� Assume that � and w are partial orders in
which two elements are equal if and only if each is smaller than the other�
Then� ��a�
 � ��a�
 implies a� � a�� Therefore� for Galois insertion


���a

 � a�

For a � a� we say that a is more precise than a�� or a� approximates a�
Similarly� for c v c��

We now present our framework in which the choice of concrete and
abstract domains is motivated by the goal of model abstraction� Given a
model M � we choose �P�S
��
 as the concrete domain� We choose a set of

abstract states bS and use the Galois insertion so that the partial order forbS is determined by

a � a� � ��a
 � ��a�
�

Since � and 
 are total and monotonic� bS must include a greatest element
top� denoted �� so that 
�S
 � � and ���
 � S� Moreover� for every

S� � S� there must be a � bS such that 
�S�
 � a� However� associating
each subset of concrete states with an abstract state does not imply that
there must be a di�erent abstract state for each subset�

Example 
�� A correct �though uninteresting� abstraction chooses bS �
f�g with ���
 � S and for all S� � S� 
�S�
 � ��

The following abstraction is more interesting�

Example 
�� Let S be the set of all states with one variable x over the
natural numbers� Let bS � f grt �� leq �� � g where ��grt �
 � S�� � f s �
Sjs�x
 � � g and ��leq �
 � S�� � f s � Sjs�x
 � � g� �Also� ���
 � S�
as is always the case��



��

In order to guarantee that 
���a

 � a� we must de�ne 
�S��
 �
grt � and 
�S��
 � leq �� This also guarantees that ��
�S��
 � S�� and
��
�S��
 � S���

Consider now the set S�� � f s � Sjs�x
 � � g� Both 
�S��
 � grt �
and 
�S��
 � � will satisfy ��
�S��
 � S��� However� more precise ab�
straction is desired� Thus� since grt � � �� we choose 
�S��
 � grt ��

On the other hand� for S�� � f s � Sjs�x
 � � g the only correct choice
is 
�S��
 � ��

Remark� The Galois insertion is less restrictive than existential abstrac�
tion in the sense that it allows nondisjoint subsets of states to be mapped
to di	erent abstract states� Furthermore� concrete states mapped to the
same abstract state do not necessarily satisfy the same atomic formulas�
In contrast� existential abstraction partitions the concrete state space into
disjoint equivalence classes� so that all states in the same class satisfy the
same set of atomic formulas�

���� THE ABSTRACT MODEL

The abstraction and concretization mappings de�ned so far determine the
set of abstract states and their relationship with the set of concrete states� In
order to de�ne the abstract model we still need to de�ne the state labeling�
the set of initial states� and the transition relation of the abstract model�
We start with a de�nition that will be used when we present the abstract
transition relation�

De�nition 
�� Let A and B be sets and R � A � B� The relations
R��� R�� � P�A
�P�B
 are de�ned as follows


� R�� � f �X� Y 
 j �x � X �y � Y 
 R�x� y
 g
� R�� � f �X� Y 
 j �x � X �y � Y 
 R�x� y
 g

If R is a transition relation and X and Y are subsets of states� then
R���X� Y 
 if and only if some state in X can make a transition to some
state in Y � R���X� Y 
 if and only if every state in X can make a transition
to some state in Y � Note that the transition relation de�ned by existential
abstraction can be viewed as an R�� relation over the equivalence classes
represented by the abstract states�

Given a set bS of abstract states� our goal is to de�ne a precise abstract

model cM � �bS�cS�� bR� bL
 such that for every ACTL� formula � over atomic

formulas in Lit� and for every abstract state a � bS� the following require�
ment holds
 cM� a j� � �� M� ��a
 j� �� ��




��

������ The Abstract Labeling Function

The abstract labeling function bL is de�ned so that Requirement ��

holds for the literals in Lit� For every p � Lit�

p � bL�a
 �� �s � ��a
 
 p � L�s
�

Thus� an abstract state is labeled by literal p if and only if all states in
its concretization are labeled by p� However� since our abstraction mapping
does not require that all these states be identically labeled� it is possible
that neither p � bL�a
 nor �p � bL�a
�

Explicitly labeling the negation of atomic formulas allows us to distin�
guish between the case in which �all concrete states do not satisfy p� and
the one in which �not all concrete states satisfy p��

The following lemma states that less precise states satisfy fewer literals�
Consequently� it is desirable to map subsets of states to their most precise
abstraction �see Example ���
�

Lemma 
�	 For a� a� � bS� if a� � a then �p � Lit� a� j� p� a j� p�

������ The Abstract Initial states

The set of initial abstract states is de�ned by

cS� � f
�fsg
 j s � S� g�

This guarantees Requirement ��
 on the level of models� That is� cM j�
� � M j� �� To see why this is true� note that

cM j� � �� �a � cS� 
 cM� a j� � ��

�a � cS� 
M� ��a
 j� � �� �s � S� 
M� s j� � �� M j� ��

As alternative de�nition might be cS� � 
�S�
� It also satis�es Require�
ment ��
� However� for each s � S�� 
�fsg
 � 
�S�
� Thus� the alternative
de�nition suggests a single initial state which is less precise and therefore
enables veri�cation of fewer properties�

������ The Abstract Transition Relation

A de�nition that is similar to existential abstraction could work in the
case where ACTL� must be preserved� Using the notation of De�nition ����
the abstract transition relation can be de�ned by
bR�a� b
 � R�����a
� ��b

�



��

However� as for the other components of the abstract model� the abstract
interpretation framework provides the means for a more precise de�nition�
Next we present an abstract transition relation that is more precise� It is

denoted by cRA in order to emphasize that it preserves ACTL��cRA�a� b

 � b � f
�Y 
jY � minfY �jR�����a
� Y �
gg�

The di	erence between bR and cRA can be explained as follows� Given an
abstract state a� consider all Y � � S such that there is a transition from
some state in ��a
 to some state in Y � �i�e��R�����a
� Y �

� Then� bR connects

a to 
�Y �
 for each of these Y �� On the other hand� cRA connects a to all 
�Y 


which are minimal �by the inclusion order
 among these Y �� Clearly� cRA

connects a to fewer states� which are more precise� Note also that minimal
Y �s are always singletons�

Example 
�	 The following example shows the di�erence between cRA

and bR� It also demonstrates the ability of cRA to verify more properties
than bR�
Let M � �S� S�� R� L
 where

� S � fs�� s�� s�g�
� S� � fs�g�
� R � f�s�� s�
� �s�� s�
� �s�� s�
� �s�� s�
g	
� L�s�
 � fpg� L�s�
 � fp� qg� L�s�
 � f�p� qg�cM is de�ned by

� bS � fa�� a����g where

� ��a�
 � fs�g� ��a��
 � fs�� s�g and ���
 � S�

� 
�fs�g
 � a�� 
�fs�g
 � 
�fs�g
 � 
�fs�� s�g
 � a���

�fs�� s�g
 � 
�fs�� s�g
 � 
�S
 � ��

� cS� � fa�g�

� bL�a�
 � fpg� bL�a��
 � fqg and bL��
 � ��

� cRA � f�a�� a��
� �a��� a��
� ��� a��
g andbR � cRA 
 f�a���
� �a����
��� a��
� ����
g�

Suppose we would like to verify the property AXAG q for M � When we
check the property on the model de�ned by bR� we �nd that it is false� and
therefore we do not know whether it holds for M � However� if we check it

on the model de�ned by cRA� since it is true for this model we can conclude
that it is true for M as well�

Lemma 
�� Let M be a model and cM � �bS�cS�� cRA� bL
 be an abstract

model for M � Then M � cM � Thus� for every ACTL� formula � and for

every abstract state a � bS� cM� a j� ��M� ��a
 j� ��



��

To show that M � cM � we de�ne a simulation relation H � S� bS� In order
to enable the simulation to relate abstract and concrete states we need to
change the requirement on the state labeling
 If H�s� a
 then bL�a
 � L�s
�
The relation H�s� a
 � s � ��a
 can now be shown to be a simulation
preorder� For ACTL�� Theorem ��� still holds with the new de�nition of �
and thus implies the lemma�

���� ABSTRACT MODEL PRESERVING ECTL�

Until now we have only been concerned with abstractions preserving ACTL��
In this section we show how to de�ne an abstraction which preserves ECTL��
The abstract model is de�ned in such a way that if an ECTL� formula is true
for that model then it is also true for the concrete model� In the next sec�
tion we show how to combine the abstractions for ACTL� and ECTL� into
one abstraction that weakly preserves all of CTL�� Recall that bisimulation
also preserves full CTL�� However� bisimulation provides strong preserva�
tion and therefore usually allows less reduction in the abstract model�

The ECTL��preserving abstract model is identical to the ACTL��preserving

model cM de�ned above� except that the transition relation cRA is replaced

by a di	erent transition relation� cRE �

The following observation explains the di	erence between cRA and cRE �
In order to preserve ACTL�� the set of abstract transitions should represent
each of the concrete transitions� Additional transitions are also allowed�
The abstract model then includes every behavior of the concrete model�
Hence� every ACTL� property true for the abstract model is also true for
the concrete model�

On the other hand� in order to preserve ECTL�� the set of abstract
transitions must include only representatives of concrete transitions and
nothing else� Thus� any behavior of the abstract model appears also in the
concrete model� As a result� every ECTL� property true for the abstract
model is true for the concrete model as well�

We will therefore have an abstract transition from a to b only if for every
state in ��a
 there is a transition to some state in ��b
 �i�e��R�����a
� ��b


�

However� as for cRA� we suggest a better de�nition that connects a to fewer
abstract states� which are more precise


cRE�a� b

 � b � f
�Y 
jY � minfY �jR�����a
� Y �
gg�

As in the case of cRA and R��� cRE contains less transitions than R��� Still�
it does not allow to prove more ECTL� properties�



��

Lemma 
�
 Let M be a model and cM � �bS�cS�� cRE� bL
 be an abstract

model� Then cM � M � Thus� for every ECTL� formula �� and for every

abstract state a � bS� cM� a j� ��M� ��a
 j� ��

Here we de�ne H�a� s
 � bS � S� However� we relate exactly the same
abstract and concrete states
 H�a� s
 � s � ��a
� As before we require
that if s and a are related �here they are related by H�a� s
 rather than

H�s� a

 then bL�a
 � L�s
� With these changes� Theorem ��� holds for
ECTL� and thus the lemma holds�

Note that because of the minimality requirements in cRA� cRE may not

be included in cRA�

Example 
�� Consider the model of Example ���� in which the transi�
tion �s�� s�
 is replaced by �s�� s�
� resulting in a new transition relation

R�� Then� cRA
�
� f�a�� a��
� �a��� a��
� �a��� a�
� ����
g� On the other hand�cRE

�
� f�a�� a��
� �a����
� ����
g� Note that the transition �a����
 � cRE

�

is not in cRA
�
since � is not minimal in the set of states connected to a���

Using the model with the cRE
�
transition relation� we can verify for the

concrete model the ECTL� property EFEG q�

���� ABSTRACT MODELS PRESERVING FULL CTL�

In order to �weakly
 preserve full CTL�� we now de�ne an abstract model

with a mixed transition relation
 cM � �bS�cS�� cRA� cRE� bL
� This model has

two types of paths
 A�paths� de�ned along cRA transitions� and E�path� de�

�ned along cRE transitions� The semantics of CTL� with respect to this
model di	ers from the semantics in De�nition ��� only in item ��

� s j� A f if and only if for every A�path � from s� � j� f �
� s j� E f if and only if there exists an E�path � from s such that � j� f �

Theorem 
�� Let M be a model and cM � �bS�cS�� cRA� cRE� bL
 be a mixed
abstract model� Then for every CTL� formula � and for every abstract state

a � bS� cM� a j� ��M� ��a
 j� ��

This theorem can be proved by induction of the formula structure� It can

also be proved based on a mixed simulation over M and cM � For details
see �����

In ���� approximations were de�ned in the context of abstract interpre�
tation� Similarly to the framework of data abstraction� approximations here
allow di	erent levels of precision� It has also been shown how an approxi�
mation can be extracted from the program text�



��

�� Related Work

Several works have applied data abstraction in order to reduce the state
space� Wolper and Lovinfosse ���� characterize a class of data�independent
systems in which the data values never a	ect the control �ow of the com�
putation� Therefore� the datapath can be abstracted away entirely� Van
Aelten et al� ��� have discussed a method for simplifying the veri�cation of
synchronous processors by abstracting away the datapath� Abstracting the
datapath using uninterpreted function symbols is very useful for verifying
pipeline systems ��� ��� ����

In this paper we present a methodology for automatic construction of
an initial abstract model� based on atomic formulas extracted from the
program text� The atomic formulas are similar to the predicates used for
abstraction by Graf and Saidi ����� However� predicates are used to gen�
erate an abstract model� while atomic formulas are used to construct an
abstraction mapping�

The use of counterexamples to re�ne abstract models has been inves�
tigated by a number of researchers� The localization reduction by Kur�
shan ���� is an iterative technique in which both the initial abstraction and
the counterexample�guided re�nements are based on the variable depen�
dency graph� The localization reduction either leaves a variable unchanged
or replaces it by a nondeterministic assignment� A similar approach has
been described by Balarin et al� in ��� and by Lind�Nielson and Ander�
sen ����� The method presented here� on the other hand� applies abstraction
mapping that makes it possible to distinguish many degrees of abstraction
for each variable�

Lind�Nielson and Andersen ���� also suggest a model checker that uses
upper and lower approximations in order to handle all of CTL� Their ap�
proximation techniques avoid the need to recheck the entire model after
each re�nement� yet still guarantee completeness�

A number of other papers ���� ��� ��� have proposed abstraction re�
�nement techniques for CTL model checking� However� these papers do
not use counterexamples to re�ne the abstraction� The methods described
in these papers are orthogonal to the techniques presented here and may
be combined with them in order to achieve better performance� The tech�
nique proposed by Govindaraju and Dill ���� is a �rst step in this direction�
The paper only handles safety properties and path counterexamples� it uses
random choice to extend the counterexample it constructs�

Many abstraction techniques can be viewed as applications of the ab�
stract interpretation framework ���� ��� ���� Bjorner� Browne and Manna
use abstract interpretation to automatically generate invariants for general
in�nite state systems ���� Abstraction techniques for the 	�calculus have



��

been suggested in ���� ��� ����

Abstraction techniques for in�nite state systems have been proposed
in ��� �� ��� ���� The predicate abstraction technique� suggested by Graf and
Saidi ����� is also aimed at abstracting an in�nite state system into a �nite
state system� Later� a number of optimization techniques were developed
in ��� ��� ���� Saidi and Shankar have integrated predicate abstraction into
the PVS system� which could easily determine when to abstract and when
to model check ����� Variants of predicate abstraction have been used in
the Bandera Project ���� and the SLAM project ����

Col�on and Uribe ���� have presented a way to generate �nite state ab�
stractions using a decision procedure� As in predicate abstraction� their
abstraction is generated using abstract Boolean variables�

A number of researchers have modeled or veri�ed industrial hardware
systems using abstraction techniques ���� ��� ��� ���� In many cases� their
abstractions are generated manually and combined with theorem�proving
techniques ���� ���� Dingel and Filkorn have used data abstraction and
assume�guarantee reasoning� combined with theorem�proving techniques�
in order to verify in�nite state systems ����� Recently� McMillan has incor�
porated a new type of data abstraction� along with assume�guarantee rea�
soning and theorem�proving techniques� into his Cadence SMV system �����

�� Conclusion

In this work� three notions of abstraction have been introduced� They are
all based on the idea that in order to check a speci�c property� some of
the system states are in fact indistinguishable and can be collapsed into an
abstract state that represents them�

Several concepts are common to all of these abstractions� Even though
they were introduced within the framework of one of the abstractions� they
are applicable with some changes to the other notions


� The abstractions are derived from a high�level description of the pro�
gram�

� Since deriving precise abstraction is usually di�cult� the notion of
approximations that are easier to compute is introduced�

� Re�nement is required in case the abstraction is too coarse to enable
the veri�cation or the falsi�cation of a given property�

� The abstractions provide weak preservation� Most of the discussion in
this paper has been devoted to the preservation of ACTL�� However�
preservation of ECTL� and full CTL� can be de�ned for each of the
abstractions�



��

References


� P� A� Abdulla� A� Bouajjani� B� Jonsson� and M� Nilsson� Veri�cation of in�nite�
state systems by combining abstraction and reachability analysis� In Computer�
Aided Veri�cation� July 
����

�� F� Van Aelten� S� Liao� J� Allen� and S� Devadas� Automatic generation and veri�ca�
tion of su�cient correctness properties for synchronous processors� In International
Conference of Computer�Aided Design� 
����

�� F� Balarin and A� L� Sangiovanni�Vincentelli� An iterative approach to language
containment� In Computer�Aided Veri�cation� volume 
�� of LNCS� pages ������

����

�� T� Ball� R� Majumdar� T� Millstein� and S� K� Rajamani� Automatic predicate
abstraction of C programs� In ACM SIGPLAN �		� Conference on Programming
Language Design and Implementation 
PLDI�� ���
�

�� S� Bensalem� A� Bouajjani� C� Loiseaux� and J� Sifakis� Property preserving simu�
lations� In Computer�Aided Veri�cation� July 
����


� S� Bensalem� Y� Lakhnech� and S� Owre� Computing abstractions of in�nite state
systems compositionally and automatically� In Computer�Aided Veri�cation� June

����

�� S� Berezin� A� Biere� E� Clarke� and Y� Zhu� Combining symbolic model check�
ing with uninterpreted functions for out�of�order processor veri�cation� In Formal
Methods in Computer�Aided Design� pages �
����
� 
����

�� N� S� Bjorner� A� Browne� and Z� Manna� Automatic generation of invariants and
intermediate assertions� Theoretical Computer Science� 
���
�������� 
����

�� M� C� Browne� E� M� Clarke� and O� Grumberg� Characterizing �nite kripke struc�
tures in propositional temporal logic� Theor�Comp�Science� ���
���� July 
����


�� R� E� Bryant� Graph�based algorithms for boolean function manipulation� IEEE
Transactions on Computers� C�������
���
�
� August 
��
�



� J� Burch and D� Dill� Automatic veri�cation of pipelined microprocessor control�
In Computer�Aided Veri�cation� volume �
� of LNCS� pages 
����� 
����


�� J� R� Burch� E� M� Clarke� and D� E� Long� Symbolic model checking with parti�
tioned transition relations� In A� Halaas and P� B� Denyer� editors� Proceedings of
the ���� International Conference on Very Large Scale Integration� August 
��
�


�� J� R� Burch� E� M� Clarke� K� L� McMillan� D� L� Dill� and L� J� Hwang� Symbolic
model checking� 
��� states and beyond� Information and Computation� ������
���

��� June 
����


�� E� M� Clarke and E� A� Emerson� Synthesis of synchronization skeletons for branch�
ing time temporal logic� In D� Kozen� editor� Logic of Programs
 Workshop� York�
town Heights� NY� May ����� volume 
�
 of Lecture Notes in Computer Science�
Springer�Verlag� 
��
�


�� E� M� Clarke� O� Grumberg� and D� E� Long� Model checking and abstraction� In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Program�
ming Languages� Association for Computing Machinery� January 
����



� E�M� Clarke� O� Grumberg� S� Jha� Y� Lu� and H� Veith� Counterexample�guided
abstraction re�nement� In ��th International Conference on Computer Aided Ver�
i�cation 
CAV �		�� LNCS� Chicago� USA� July �����


�� E�M� Clarke� O� Grumberg� and D�A� Peled� Model Checking� MIT press� December

����


�� M� A� Col�on and T� E� Uribe� Generating �nite�state abstraction of reactive systems
using decision procedures� In Computer�Aided Veri�cation� pages �������� 
����


�� P� Cousot and R� Cousot� Abstract interpretation � A uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints� ACM
Symposium of Programming Language� pages �������� 
����

��� P� Cousot and R� Cousot� Re�ning model checking by abstract interpretation�
Automated Software Engineering� 
�
����� 
����



��

�
� D� Dams� Abstract Interpretation and Partition Re�nement for Model Checking�
PhD thesis� Technical University of Eindhoven� Eindhoven� The Netherlands� 
����

��� D� Dams� R� Gerth� and O� Grumberg� Abstract interpretation of reactive systems�
ACM Transactions on Programming Languages and System 
TOPLAS�� 
����� 
����

��� D� Dams� O� Grumberg� and R� Gerth� Abstraction interpretation of reactive sys�
tems� The preservation of CTL�� In Programming Concepts� Methods and Calculi

ProCoMet�� North Holland� 
����

��� Dennis Dams� Abstract Interpretation and Partition Re�nement for Model Checking�
PhD thesis� Eindhoven university� Holland� July 
��
�

��� S� Das and D� L� Dill� Successive approximation of abstract transition relations�
In Proc� of the Sixteenth Annual IEEE Symposium on Logic in Computer Science

LICS�� ���
�

�
� S� Das� D� L� Dill� and S� Park� Experience with predicate abstraction� In Computer�
Aided Veri�cation� volume 

�� of LNCS� pages 

��
�
� Springer Verlag� July

����

��� J� Dingel and T� Filkorn� Model checking for in�nite state systems using data
abstraction� assumption�commitment style reasoning and theorem proving� In P�
Wolper� editor� Proceedings of the �th International Conference On Computer Aided
Veri�cation� volume ��� of Lecture Notes in Computer Science� pages ���
�� Liege�
Belgium� July 
���� Springer Verlag�

��� M� B� Dwyer� J� Hatcli�� R� Joehanes� S� Laubach� C� S� Pasareanu� Robby�
W� Visser� and H� Zheng� Tool�supported program abstraction for �nite�state veri��
cation� In Proceedings of the ��rd International Conference on Software Engineering

ICSE�� ���
�

��� E� A� Emerson and E� M� Clarke� Characterizing correctness properties of parallel
programs using �xpoints� In Lecture Notes in Computer Science ��� pages 

��
�
�
Automata� Languages and Programming� July 
����

��� E� A� Emerson and J� Y� Halpern� �Sometimes� and �Not Never� revisited� On
branching time versus linear time� J� ACM� ���
��
�
�
��� 
��
�

�
� E�A� Emerson and Chin Laung Lei� Modalities for model checking� Branching time
strikes back� Twelfth Symposium on Principles of Programming Languages� New
Orleans� La�� January 
����

��� D�A� Fura� P�J� Windley� and A�K� Somani� Abstraction techniques for modeling
real�world interface chips� In J�J� Joyce and C��J�H� Seger� editors� International
Workshop on Higher Order Logic Theorem Proving and its Applications� volume ���
of Lecture Notes in Computer Science� pages �
����
� Vancouver� Canada� August

���� University of British Columbia� Springer Verlag� published 
����

��� S� G� Govindaraju and D� L� Dill� Veri�cation by approximate forward and backward
reachability� In Proceedings of International Conference on Computer�AidedDesign�
November 
����

��� S� Graf� Veri�cation of distributed cache memory by using abstractions� In David L�
Dill� editor� Proceedings of the sixth International Conference on Computer�Aided
Veri�cation CAV� volume �
� of Lecture Notes in Computer Science� pages �����
��
Standford� California� USA� June 
���� Springer Verlag�

��� S� Graf and H� Saidi� Construction of abstract state graphs with PVS� In Computer�
Aided Veri�cation� volume 
��� of LNCS� pages ������ June 
����

�
� O� Grumberg and D�E� Long� Model checking and modular veri�cation� ACM
Trans� on Programming Languages and Systems� 

����������
� 
����

��� P��H� Ho� A� J� Isles� and T� Kam� Formal veri�cation of pipeline control using
controlled token nets and abstract interpretation� In International Conference of
Computer�Aided Design� pages ������
� 
����

��� R� Hojati and R� K� Brayton� Automatic datapath abstraction in hardware systems�
In P� Wolper� editor� Proceedings of the �th International Conference On Computer
Aided Veri�cation� volume ��� of Lecture Notes in Computer Science� pages ���

��
Liege� Belgium� July 
���� Springer Verlag�



��

��� R� B� Jones� J� U� Skakkebak� and D� L� Dill� Reducing manual abstraction in
formal veri�cation of out�of�order execution� In Formal Methods in Computer�Aided
Design� pages ��
�� 
����

��� D� Kozen� Results on the propositional ��calculus� TCS� ��� 
����
�
� R� P� Kurshan� Computer�Aided Veri�cation of Coordinating Processes� Princeton

University Press� 
����
��� W� Lee� A� Pardo� J� Jang� G� Hachtel� and F� Somenzi� Tearing based abstraction

for CTL model checking� In International Conference of Computer�Aided Design�
pages �
��
� 
��
�

��� D� Lesens and H� Sadi� Automatic veri�cation of parameterized networks of pro�
cesses by abstraction� In International Workshop on Veri�cation of In�nite State
Systems 
INFINITY�� Bologna� July 
����

��� O� Lichtenstein and A� Pnueli� Checking that �nite state concurrent programs sat�
isfy their linear speci�cation� In Proceedings of the Twelfth Annual ACM Symposium
on Principles of Programming Languages� pages ���
��� Association for Computing
Machinery� January 
����

��� J� Lind�Nielsen and H� R� Andersen� Stepwise CTL model checking of state�event
systems� In Computer�Aided Veri�cation� volume 

�� of LNCS� pages �

�����
Springer Verlag� 
����

�
� C� Loiseaux� S� Graf� J� Sifakis� A� Bouajjani� and S� Bensalem� Property preserving
abstractions for the veri�cation of concurrent systems� Formal Methods in System
Design� 
�

���� 
����

��� D� E� Long� Model Checking� Abstraction� and Compositional Reasoning� PhD
thesis� Carnegie Mellon University� 
����

��� Z� Manna� M� Colon� B� Finkbeiner� H� Sipma� and T� Uribe� Abstraction and
modular veri�cation of in�nit�state reactive systems� In Requirements Targeting
Software and Systems Engineering 
RTSE�� 
����

��� K� L� McMillan� Symbolic Model Checking
 An Approach to the State Explosion
Problem� PhD thesis� Carnegie Mellon University� 
����

��� K� L� McMillan� Veri�cation of in�nite state systems by compositional model check�
ing� In Correct Hardware Design and Veri�cation Methods� September 
����

�
� R� Milner� An algebraic de�nition of simulation between programs� In Proceedings
of the Second Internation Joint Conference on Arti�cial Intelligence� pages ��
�����
September 
��
�

��� A� Pardo� Automatic Abstraction Techniques for Formal Veri�cation of Digital
Systems� PhD thesis� University of Colorado at Boulder� Dept� of Computer Science�
August 
����

��� A� Pardo and G�D� Hachtel� Incremental CTL model checking using BDD subset�
ting� In Design Automation Conference� pages �����
�� 
����

��� D� Park� Concurrency and automata on in�nite sequences� In �th GI�Conference on
Theoretical Computer Science� pages 

��
��� Springer�Verlag� 
��
� LNCS 
���

��� A� Pnueli� The Temporal Semantics of Concurrent Programs� Theor�Comp�Science�

�����
�� 
��
�

�
� J� Rushby� Integrated formal veri�cation� using model checking with automated
abstraction� invariant generation� and theorem proving� In Theoretical and practical
aspects of SPIN model checking
 �th and �th international SPIN workshops� pages

�

� 
����

��� V� Rusu and E� Singerman� On proving safety properties by integrating static anal�
ysis� theorem proving and abstraction� In Intl� Conference on Tools and Algorithms
for the Construction and Analysis of Systems� pages 
���
��� 
����

��� H� Saidi and N� Shankar� Abstract and model checking while you prove� In
Computer�Aided Veri�cation� number 

�� in LNCS� pages �������� July 
����

��� J� Sifakis� Property preserving homomorphisms of transition systems� In �th Work�
shop on Logics of Programs� June 
����


�� P� Wolper and V� Lovinfosse� Verifying properties of large sets of processes with net�



��

work invariants� In Proceedings of the ���� International Workshop on Automatic
Veri�cation Methods for Finite State Systems� volume ��� of LNCS� 
����


