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Abstract. We introduce the basic concepts of temporal logic model check-
ing and its state explosion problem. We then focus on abstraction, which
is one of the major methods for overcoming this problem. We distinguish
between weak and strong preservations of properties by a given abstrac-
tion. We show how abstract models preserving ACTL* can be defined with
human aid or automatically. When the abstraction is too coarse, we show
how refinement can be applied to produce a more precise abstract model.
Abstract interpretation is then introduced and applied in order to construct
abstract models that are more precise and allow more ACTL properties to
be proven. Finally, we show how to define abstract models that preserve

ECTL* and full CTL".
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1. Introduction

Temporal logic model checking is a procedure that gets as input a finite
state model for a system and a property written in propositional temporal
logic. It returns “yes” if the system has the desired property and returns
“no” otherwise. In the latter case it also provides a counterexample that
demonstrates how the system fails to satisfy the property. Model checking
procedures can be quite efficient in time. However, they suffer from the
state explosion problem: the number of states in the model grows exponen-
tially with the number of system variables and components. This problem



impedes the applicability of model checking to large systems, and much
effort is invested in trying to avoid it.

Abstraction is a method for reducing the state space of the checked
system. The reduction is achieved by hiding (abstracting away) some of the
system details that might be irrelevant for the checked property. Abstract
models are sometimes required to strongly preserve the checked properties.
In this case, a property holds on the abstract model if and only if it holds
on the original one. On the other hand, only weak preservation, may be
required. In that case, if a property is true for the abstract model then
it is also true for the original model. If a property is not true for the
abstract model, then no conclusion can be reached with regards to the
original model. The advantage of weak preservation is that it enables more
significant reductions. However, it also increases the likelihood that we will
be unable to determine the truth of a property in the system.

The decision as to which details are unnecessary for the verification task
is made either manually (by the verification engineer) or automatically.
In both cases, if the abstract model cannot determine the truth of the
property in the system, then refinement is applied and additional details
are introduced into the model.

The main goal of abstraction is to avoid the construction of the full sys-
tem model. Thus, we need methods that derive an abstract model directly
from some high-level description of the system (e.g. program text).

We will define conditions for strong and weak preservations for the tem-
poral logic CTL* and its universal and existential fragments, ACTL* and
ECTL*. We will show how to derive abstract models which preserve ACTL*
from the program text, using nonautomatic and automatic abstractions.
When the abstractions are too coarse, we will show how they can be re-
fined.

The basic notions of abstract interpretation will be defined, and its use
for deriving abstract models will be demonstrated. Abstract interpretation
provides means for constructing more precise abstract models that allow
us to prove more ACTL* properties. Within the framework of abstract
interpretation we also show how to define abstract models that preserve
ECTL* and full CTL*.

The rest of the paper is organized as follows. Section 2 defines temporal
logics along with their semantics. It presents a model checking algorithm
for CTL, and defines the notions of equivalence and preorder on models.
Section 3 describes data abstraction. Approximated abstractions are also
defined. It then shows how abstractions and approximations can be derived
from a high level description of the program. Section 4 presents the ideas of
counterexample-guided refinement in which both the initial abstraction and
the refinement are constructed automatically. Section 5 develops abstract



models within the abstract interpretation framework. Finally, Section 6
reviews the related work and Section 7 presents some concluding remarks.

2. Preliminaries

2.1. TEMPORAL LOGICS

We use finite state transition systems called Kripke models in order to
model the verified systems.

Definition 2.1 (Kripke model) Let AP be a set of atomic propositions.
A Kripke model M over AP is a four-tuple M = (S, So, R, L), where

— S is the set of states;

— S0 C S is the set of initial states;

— R C S5 is the transition relation, which must be total, i.e., for every
state s € S there is a state s' € S such that R(s,s');

— L S — P(AP) is a function that labels each state with the set of
atomic propositions true in that state.

A path in M starting from a state s is an infinite sequence of states 7 =
S0S1Sz . .. such that sg = s, and for every ¢ > 0, R(s;, S;41). The suffix of ©
from state s; is denoted 7*.

We use propositional temporal logics as our specification languages. We
present several subsets of the temporal logic CTL* [30] over a given finite set
AP of atomic propositions. We will assume that formulas are expressed in
positive normal form, in which negations are applied only to atomic propo-
sitions. This facilitates the definition of universal and existential subsets of
CTL* [36]. Since negations are not allowed, both conjunction and disjunc-
tion are required. Negations applied to the nezt-time operator X can be
“pushed inwards” using the logical equivalence =(X f) = X —f. The unless
operator R (sometimes called the release operator), which is the dual of
the until operator U, is also added. Thus, =(f Ug) =-f R —g.

Definition 2.2 (CTL*) For a given set of atomic propositions AP, the
logic C'TL* is the set of state formulas, defined recursively by means of state
Jormulas and path formulas as follows. State formulas are of the form:

— Ifpe AP, then p and —p are state formulas.
— If f and g are state formulas, then so are f AN g and fV g.
— If f is a path formula, then A f and E f are state formulas.

Path formulas are of the form:

— If f is a state formula, then f is a path formula.
— If f and g are path formulas, then so are f AN g, and fV g.
— If f and g are path formulas, then so are X f, f Ug, and fR g.
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The abbreviations true, false and implication — are defined as usual. For
path formula f, we also use the abbreviations F f = trueU f and G f =
false R f. They express the properties that sometimes in the future f will
hold and that f holds globally.

CTL [14] is a branching-time subset of CTL* in which every tempo-
ral operator is immediately preceded by a path quantifier, and no nesting
of temporal operators is allowed. More precisely, CTL is the set of state
formulas defined by:

— If p € AP, then p and —p are CTL formulas.

— If f and g are CTL formulas, then so are f A g and fV g.

— If f and g are CTL formulas, then so are AX f, A(fUg), A(fRg) and
EX f, E(fUyg), E(fRy).

ACTL* and ECTL* (universal and ezistential CTL*) are subsets of
CTL* in which the only allowed path quantifiers are A and E, respectively.
ACTL and ECTL are the restriction of ACTL* and ECTL* to CTL.

LTL [55] can be defined as the subset of ACTL* consisting of formulas of
the form A f, where f is a path formula in which the only state subformulas
permitted are Boolean combinations of atomic propositions. More precisely,
f is defined (in positive normal form) by

1. If p € AP then p and —p are path formulas.
2. If f and g are path formulas, then fAg, fVg, Xf, fUyg,and fRyg
are path formulas.

We will refer to such f as an LTL path formula.
We now consider the semantics of the logic CTL* with respect to a
Kripke model.

Definition 2.3 (Satisfaction of a formula) Given a Kripke model M,
satisfaction of a state formula f by a model M at a state s, denoted M, s |=
f, and of a path formula g by a path =, denoted M, \= g, is defined as
follows (where M is omitted when clear from the context).

1.sEpifand only if p € L(s); sk=—p if and only if p ¢ L(s).
2.sEfAgifand onlyif sk= f and s = g¢.
sEfVgifandonlyifsiE f orskg.
3. s = A f if and only if for every path = from s, 7 = f.
s = E f if and only if there exists a path © from s such that 7 = f.
4. ™ = f, where f is a state formula, if and only if the first state of ©
satisfies the state formula.
s.rEfAgifandonlyiftl= fand = g.
rEfVgifandonlyift= forrEyg.
6. (a) 7 EX [ if and only if 71 = f.
(b) # = fUg if and only if for some n > 0, 7™ = ¢ and for all i < n,
™ Ef.
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(c) 7 = fR g if and only if for all n > 0, if for all i < n, 7 W f
then 7™ = g.

M = f if and only if for every s € So, M,s = f.

In [30] it has been shown that CTL and LTL are incomparable in their
expressive power, and that CTL* is more expressive than each.

Below we present several formulas together with their intended meaning
and their syntactic association with some of the logics mentioned above.

— Mutual exclusion: AG —(csyAcsy) where ¢s; is an atomic proposition
that is true in a state if and only if process ¢ is in its critical section
in that state. The formula means that it is invariantly true (in every
state along every path) that processes 1 and 2 cannot be in their critical
section at the same time.

The formula is in CTL, LTL and CTL*.

— Nonstarvation: AG(request — AF grant) means that every re-
quest will be granted along every execution.

This formula is in CTL but not in LTL. However, it is equivalent to
the LTL formula AG(request — F grant).

— “Sanity check”: The formula EF request is complementary to the
nonstarvation formula. It excludes the case where the implication in
the nonstarvation formula holds vacuously just because no request has
been presented.

This is a CTL formula that is not expressible in LTL.

— Fairness: A(GF enabled — G F executed) describes a fairness re-
quirement that a transition which is infinitely often enabled (G F enabled)
is also infinitely often executed (G F ezecuted).

This LTL formula is not expressible in CTL.

— Reaching a reset state: AG EF reset describes a situation where in
every state along every path there is a possible continuation that will
eventually reach a reset state.

The formula is in CTL and is not expressible in LTL.

2.2. CTL MODEL CHECKING

In this section we briefly describe an algorithm for CTL model checking.
CTL model checking [29] is widely used due to its efficient algorithm. LTL
model checking [44] is also commonly used because many useful properties
are easily expressed in LTL. CTL* model checking [31] can be built as a
combination of the algorithms for LTL and CTL. For more details on these
algorithms see [17].

The CTL model checking algorithm receives a Kripke model M =
(5,80, R, L) and a CTL formula f. It works iteratively on subformulas
of f, from simpler subformulas to more complex ones. For each subformula



g of f, it returns the set S, of all states in M that satisfy g. That is,
Sy, ={s| M,s = ¢ }. An important property of the algorithm is that when
it checks the formula ¢, all subformulas of ¢ have already been checked.
When the algorithm terminates, it returns True if So C Sy and returns
False otherwise.

For CTL model checking, positive normal form is not necessary, in which
case every formula can be expressed using the Boolean operators — and
A and the temporal operators EX, EU, and EG. The model checking
algorithm consists of several procedures, each taking care of formulas in
which the main operator is one of the above. Here, we present only the more
complex procedures for formulas of the form f = E(gUh) and f = EGyg.

The procedure CheckEU, presented in Figure 1, accepts as input the
sets of states S, and S), and iteratively computes the set Sy of states that
satisfy f = E(gUh). The computation is based on the equivalence

E(¢gUh)=h V(g N EX(E(¢Uh)).

At each iteration, () holds the set of states computed in the previous it-
eration while (9’ holds the set of states computed in the current iteration.
Initially, all states that satisfy & are introduced into Q’. At step 1, all states
in .S, that have a successor in () are added. These are exactly the states
that satisfy ¢ and have a successor that satisfies E(gU#h). The computation
stops when no more states can be added, i.e., a fixpoint is reached (in fact,
this is a least fizxpoint).

procedure CheckEU( S, S}, )

Q :=0; Q"= Sp;
while (Q # Q') do
Q:=Q"

Q' :=QU{s | IS R(s,s") NQ() A Sy(s) ] 1}
end while;

S¢:=Q); return (Sy)
Figure 1. The procedure CheckEU for checking the formula f = E(gUh)

The procedure CheckEG, presented in Figure 2, accepts the set of states
S, and iteratively computes the set Sy of states that satisfy f = EG ¢. The
computation is based on the equivalence

EGg=9g N EX(EGy).

Initially, all states that satisfy ¢ are introduced into Q’. At any step, states
that do not have a successor in () are removed. When the computation
terminates, each state in () has a successor in ). Since all states in @)
satisfy ¢, they all satisfy EG ¢. In this case, a greatest fixrpoint is computed.



procedure CheckEG( S, )

Q= 5;Q" = Sg;
while (Q # Q') do
Q:=Q"

Q:=QN{s | I R(s,s) NQ(s) ] }
end while;

S¢:=Q); return (Sy)

Figure 2. The procedure CheckEG for checking the formula f = EGg

Theorem 2.4 [17] Given a model M and a CTL formula f, there is a
model checking algorithm that works in time O((|S|+ |R]) - |f]).

2.3. EQUIVALENCES AND PREORDERS

In this section we define the bisimulation relation and the simulation pre-
order over Kripke models. We will also state the relationships between these
relations and logic preservation. Intuitively, two states are bisimilar if they
are identically labeled and for every successor of one there is a bisimilar
successor of the other. Similarly, one state is smaller than another by the
simulation preorder if they are identically labeled and for every successor
of the smaller state there is a corresponding successor of the greater one.
The simulation preorder differs from bisimulation in that the greater state
may have successors with no corresponding successors in the smaller state.

Let AP be a set of atomic propositions and let M; = (S, So,, R1, L1)
and My = (53, So,, Rz, L) be two models over AP.

Definition 2.5 A relation B C Sy x Sy is a bisimulation relation [5/]
over My and My if the following conditions hold:

1. For every s; € Sy, there is sy € Sp, such that B(sy,sz). Moreover, for
every sq € So, there is s € Sp, such that B(s1,s2).
2. For every (s1,s2) € B,

— Li(s1) = La(sz2) and
— Vt1[ Ri(s1,t1) — Fta] Ra(se,ta) N Blti,ta) ]].
— Vo[ Ra(s2,t2) — Fti[ Ri(s1,t1) N Blti,ta) ]].
We write s; = sy for B(s1,s2). We say that M; and My are bisimilar

(denoted My = My) if there exists a bisimulation relation B over M; and
Ms.

Definition 2.6 A relation H C Sy X Sy is a simulation relation [51] over
My and My if the following conditions hold:

1. For every sy € Sy, there is sy € Sy, such that H(s1,sz2).



2. For every (s1,s2) € H,
- Ll(Sl) = LQ(SQ) and
— th[ Rl(shtl) — Eltg[ R2(827t2) A H(thtg) ]]

We write s1 < sy for H(s1,s2). My simulates My (denoted M; < My) if
there exists a simulation relation H over M; and M.

The relation = is an equivalence relation on the set of models, while
the relation < is a preorder on this set. That is, = is reflexive, symmetric
and transitive and < is reflexive and transitive. Note that if there is a
bisimulation relation over M; and M,, then there is a wunique maximal
bisimulation relation over M; and Ms, that includes any other bisimulation
relation over My and M,. A similar property holds also for simulation.

The following theorem relates bisimulation and simulation to the logics

they preservel.

Theorem 2.7
— [9] Let My = M;. Then for every CTL* formula f (with atomic propo-
sitions in AP), My = f if and only if M; E f.
— Let M1 j MQ.

e [36] For every ACTL* formula f with atomic propositions in AP,
M | f implies My = f.

o lor every ECTL* formula [ with atomic propositions in AP,
M, | f implies My = f.

The last part of Theorem 2.7 is a direct consequence of the previous part of
this theorem. It is based on the observation that for every ECTL* formula
f, there is an ACTL* formula which is equivalent to —f.

3. Data Abstraction

The first abstraction that we present is data abstraction [15, 47]. In order
to obtain a smaller model for the verified system, we abstract away some of
the data information. At the same time, we make sure that each behavior of
the system is represented in the reduced model. In fact, the reduced model
may contain more behaviors than the concrete (full) model. Nevertheless,
it is often smaller in size (number of states and transitions), which makes
it easier to apply model checking.

Data abstraction is done by choosing, for every variable in the system,
an abstract domain that is typically significantly smaller than the original
domain. The abstract domain is chosen by the user. The user also supplies

'Bisimulation and simulation also preserve the p-calculus logic [40] and its univer-
sal [46] and existential subsets, respectively. The discussion of this is beyond the scope
of this paper.



a mapping from the original domain onto the abstract one. An abstract
model can then be defined in such a way that it is greater by the simulation
preorder than the concrete model of the system. Theorem 2.7 can now be
used to verify ACTL* properties of the system by checking them on the
abstract model.

Clearly, a property verified for the abstract model can only refer to
the abstract values of the program variables. In order for such a property
to be meaningful in the concrete model we label the concrete states by
atomic formulas of the form Z; = a. These atomic formulas indicate that
the variable x; has some value d that has been abstracted to «.

The definition of the abstract model is based on the definition of the
concrete model. However, building it on top of the concrete model would
defeat the purpose since the concrete model is often too large to fit into
memory. Instead, we show how the abstract model can be derived directly
from some high-level description of the program, e.g., from the program
text. As we will see later, extracting a precise abstract model may not be
an easy task. We therefore define an approzimated abstract model. This
model may have more behaviors than the abstract model, but it is easier
to build from the program text.

Let P be a program with variables zq, ..., z,. For simplicity we assume
that all variables are over the same domain D. Thus, the concrete (full)
model of the system is defined over states s of the form s = (dy,...,d,) in
D x ... x D, where d; is the value of z; in this state (denoted s(z;) = d;).

The first step in building an abstract model for P is choosing an ab-
stract domain A and a surjection h : D — A. The next step is to restrict
the concrete model of P so that it reflects only the abstract values of its
variables. This is done by defining a new set of atomic propositions

@:{@:aﬁ:l,...,n and a € A }.
The notation 7; is used to emphasize that we refer to the abstract value
of the variable z;. The labeling of a state s = (dy,...,d,) in the concrete
model will be defined by

Lisy={a;=a|h(d))=a;, i=1,...,n }.
Example 3.1 Let P be a program with a variable x over the integers. Let

s, §' be two program states such that s(xz) = 2 and s'(x) = —7. Following
are two possible abstractions.

Abstraction 1:

Ay ={a_,ap,ay} and
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a4 Zfd>0
hl(d): ag Zfd:()
a_ ifd<0

The set of atomic propositions is APy ={¥=a_, ¥ =ag, T =ay }.
The labeling of states in the concrete model induced by Ay and hy is:
Li(s)={=ay} and L1(s) ={x =a_}.

Abstraction 2:

AQ = {aeven7 aodd} and

| Gepen  if even(]d])
ha(d) —{ tont if 0dd(|d])

The set of atomic propositions is APy = { T = Gepen, T = Godd }-
The labeling of states in the concrete model induced by Ay and hy is:
Lo(8) = {Z = tepen } and Ly(s") = {7 = apdd}-

By restricting the state labeling we lose the ability to refer to the actual
values of the program variables. However, many of the states are now in-
distinguishable and can be collapsed into a single abstract state.

Given A and h as above, we can now define the most precise abstract
model, M, called the reduced model. First we extend the mapping b : D —
A to n-tuples in D x ...x D:

h((dy, ... dn)) = (h(dy), ..., h(d,)).

An abstract state (aq,...,a,) of M, will represent the set of all states
(dy,...,d,) such that h((dy,...,d,)) = (a1,...,a,). Concrete states sy, sg
are said to be equivalent (s; ~ s3) if and only if h(s1) = h(sz), that is, both
states are mapped to the same abstract state. Thus, each abstract state
represents an equivalence class of concrete states.

Definition 3.1 Given a concrete model M, an abstract domain A, and an
abstraction mapping h : D — A, the reduced model M, = (S,, 5,, R., L)
is defined as follows:

- S, =Ax...x A.

— So,(s,) © 3ds € Sy : h(s) = s,.

— R.(s;,t,) < 3s,t[ h(s) = s, ANR(t) =t NR(s, 1) ].

— Fors, = (a1,...,a,), Ly(s;)={zi=a; | i=1,...,n }.

This type of abstraction is called existential abstraction.

Lemma 3.2 The reduced model M, is greater by the simulation preorder
than the concrete model M ; that is, M < M,.
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To see why the lemma is true, note that the relation H ={ (s,s,) | h(s) =
s, } is a simulation preorder between M and M,. The following corollary
is a direct consequence of this lemma and Theorem 2.7.

Corollary 3.3 For every ACTL* formula ¢, if M, = ¢ then M = .

3.1. DERIVING MODELS FROM THE PROGRAM TEXT

In the next section we explain how the reduced and approximated model
for the system can be derived directly from a high-level description of the
system. In order to avoid having to choose a specific programming lan-
guage, we argue that the program can be described by means of first-order
formulas. In this section we demonstrate how this can be done.

Let P be a program, and let 7 = (2q,...,2,) and T = (2!, ...,2]) be
two copies of the program variables, representing the current and next state,
respectively. The program will be given by two first-order formulas, So(7)
and R(7,7’), describing the set of initial states and the set of transitions.
Let d = (dy,...,d,) be a vector of values. The notation Sy[T + d] indicates
that for every 1 = 1, ..., n, the value d; is substituted for the variable z; in
the formula Sg. A similar notation is used for substitution in the formula

R.

Definition 3.4 Let S = Dx...x D be the set of states in a model M. The
formulas So(T) and R(Z,T') define the set of initial states Sy and the set
of transitions R in M as follows. Let s = (dy,...,d,) and s’ = (dY,...,d)
be two states in S.

— So(s) & So(@)[T « d] is true.
— R(s,s") & R(Z,7)[T  d, 2" + d'] is true.

The following example demonstrates how a program can be described by
means of first-order formulas. A more elaborate explanation can be found
in [17]. We assume that each statement in the program starts and ends with
labels that uniquely define the corresponding locations in the program. The
program locations will be represented in the formula by the variable pe (the
program counter), which ranges over the set of program labels.

Example 3.2 Given a program with one variable x that starts at label
lo, in any state in which x is even, the set of its initial states is described
by the formula:

So(pe,z) = pe=1ly A even(z).

The statement |: x:=e ' is described by the formula:

R(pe,z,pc 2’y = pe=1 A ' =e A pd =1.
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The statement | : if z = 0 thenly : z :=1elsely: v =a+110 is
described by the formula:

(pe=l Aa=0 A" =aApd =l)V
(pe=1l AN a0 A2’ =aApd =1V
(pe=lLiAna'=1Apd =1V
(pe=lana’ =4+ 1Apd =1)).

R(pc7x7pcl7 x/) —

Note that checking the condition of the i f statement takes one transition,
along which the value of the program variable is checked but not changed.
If the program contains an additional variable y, then ¥’ = y will be added
to the description of each of the transitions above. This captures the fact
that variables that are not assigned a new value keep their previous value.

3.2. DERIVING ABSTRACT MODELS

Given Sp and R that describe a concrete model M, we would like to define
formulas Sy and R that describe the reduced model M,.. The new formulas
will be defined over variables #;, which range over the abstract domain.
The formulas will determine for abstract states whether they are initial and
whether there is a transition connecting them. For this purpose, we first

define a derivation of a formula over variables z7,...,7} from a formula
over xy,...,Tg.

Definition 3.5 Let ¢ be a first-order formula over variables xq,...,xg.
The formula [¢] over 71, ..., 7} is defined as follows:

k
[6)(ZT, ..., T8) = 32y ...z (/\h(mi):@/\wxh...,xk)).

Lemma 3.6 Let So and R be the formulas describing a model M over
states in D X ... x D. Then the formulas Sy = [So] and R = [R] describe
the reduced model M, over A x ...x A.

The lemma holds since M, is defined by existential abstraction (see Defi-
nition 3.1). This is directly reflected in [So] and [R].

Using SO and R allows us to build the reduced model M, without first
building the concrete model M. However, the formulas Sy and R might
be quite large. Thus, applying existential quantification to them might be
computationally expensive. We therefore define a transformation 7 on first-
order formulas. The idea of 7 is to push the existential quantification in-
wards, so that it is applied to simpler formulas.

Definition 3.7 Let ¢ be a first-order formula in positive normal form.
Then the following holds:
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b~

. If p is a primitive relation, then T (p(z1,...,2x)) = [p](Z1, ..., Tk) and
T (a1, - or24) = [B)(Ers . Th).

- T(o1 N d2) =T (01) AT (¢2).

- T(O1V d2) =T (01) VT (¢2).

CT(Vag) =V T ().

T (3zg) =327 (¢).

R o e

We can now define an approzimated abstract model M,. It is defined over
the same set of states as the reduced model, but its set of initial states
and set of transitions are defined using the formulas 7(Sp) and 7(R). The
following lemma ensures that every initial state of M, is also an initial state
of M,. Moreover, every transition of M, is also a transition of M,.

Lemma 3.8 For every first-order formula ¢ in positive normal form, [¢]

implies T (¢). In particular, [So] implies T (So) and [R] implies T (R).

Note that the other direction does not hold. Cases 2 and 4 of Definition 3.7
result in nonequivalent formulas.

Corollary 3.9 M < M, < M,.

By allowing M, to have more behaviors than M,, we increase the like-
lihood that it will falsify ACTL* formulas that are actually true in the
concrete model and possibly true in M,. This reflects the tradeoff between
the precision of the model and its ease of computation.

In practice, there is no need to construct formulas in order to build the
approximated model. The user should provide abstract predicates [p] and
[—p] for every basic action p in the program (e.g. conditions, assignments
of mathematical expressions). Based on these, the approximated model can
be constructed automatically.

In [15, 47] several data abstractions have been suggested and used to
verify meaningful properties of interesting programs.

4. Counterexample-Guided Abstraction Refinement

In the previous section we showed how an abstract model can be con-
structed based on an abstract domain and a mapping, both provided by
the user. Unfortunately, choosing a suitable abstraction is not trivial for
large systems and requires considerable creativity.

In this section we describe a technique (presented in [16]) that deter-
mines the required domain and mapping automatically, based on an anal-
ysis of the program text. This technique differs from data abstraction in
that the abstract domains and abstract mappings are defined for clusters
of variables rather than single variables. The clusters are chosen according
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to dependencies that are found among the variables in the program. Ab-
stracting clusters of variables results in an abstract model that reflects the
system behavior more precisely.

As in the previous section, we use existential abstraction. Existential
abstraction guarantees that ACTL* properties true of the abstract model
are also true of the concrete model. However, if a property is false in the
abstract model, then the counterexample produced by the model checking
algorithm may be the result of some behavior that is not present in the
concrete model. In this case, we refine the abstraction to eliminate the
erroneous behavior from the abstract model. The refinement is determined
by information obtained from the counterexample.

The suggested method has the following steps:

— Generating an initial abstraction.
This involves the construction of variable clusters for variables which
interfere with each other via conditions in the program.

— Model-checking the abstract model.
If the formula is true, we conclude that the concrete model satisfies the
formula and stop. If a counterexample T' is found, we check whether
T is a counterexample in the concrete model. If it is, we conclude that
the concrete model does not satisfy the formula and stop. Otherwise,
T is a spurious counterexample, and we proceed to step 3.

— Refining the abstraction. R
This is done by splitting one abstract state so that T is not included
in the new abstract model. We then go back to step 2.

4.1. ASSUMPTIONS

There are several assumptions that are needed in order to make our method
fully automatic and effective.

— The program is finite-state, i.e., each variable is over a finite domain.

— We use BDD-based algorithms. BDD [10] is a data structure for repre-
senting Boolean functions. BDDs are often very concise in their space
requirements. Sets of states and sets of transitions of Kripke models can
easily be represented by BDDs. Moreover, most operations applied in
model checking algorithms can be implemented efficiently with BDDS.
As a result, BDD-based model checking [13, 49] (called symbolic model
checking) is very useful in practice.

— The full model is too large to fit into memory, even when represented by
BDDs. However, subsets of the full state space can be held in memory.
In particular, we will maintain as BDDs the sets of concrete states that
are mapped to a specific abstract state.
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— The transition relation of the full model is available. If it is too large,
it is held partitioned. There are known techniques for handling parti-
tioned transition relations in model checking [12].

4.2. GENERATING THE INITIAL ABSTRACTION

Let P be a program over variables zy,...,z,. Suppose that each variable
z; is defined over domain D, , which is finite. Finiteness of the domains
is necessary in order for the method to be fully automatic. Let ¢ be the
ACTL* formula to be checked on P.

Atomic formulas will be defined over program variables, constants and
relation symbols. For instance, 2 > y and = = 1 are atomic formulas.
Boolean combinations of atomic formulas are used as conditions in the
program. The logic ACTL* is also defined over atomic formulas of this
type. We use Atom to denote the set of all atomic formulas appearing in
P and .

Given a state s = d = (dy,...,d,) and an atomic formula p over
T1,...,%,, We write s = p if p[T < d] = true. That is, p is evaluated
to true when each variable z; is assigned the value d;.

As before, the concrete model M of program P is defined over states
S = Dy, X ...x Dy, , where each state in M is labeled with the set of
atomic formulas from Atom that are true in that state.

We say that two atomic formulas interfere if the sets of variables ap-
pearing in them are not disjoint. Let =; be that equivalence relation over
Atom which is the reflexive, transitive closure of the interference relation.
The equivalence class of an atomic formula f € Atom is called the cluster
of f and is denoted by [f]. Note that if two atomic formulas f; and f; have
nondisjoint sets of variables, then [fi] = [fz]. That is, a variable cannot
occur in formulas that belong to different formula clusters.

Consequently, we can define an equivalence relation =y on the program
variables as follows:

z; =v z; if and only if z; and z; appear in atomic formulas
that belong to the same formula cluster.

The equivalence classes of =y are called variable clusters. Let { FCY, ..., FC,,}
and {VCy,...,VC,,} be the set of formula clusters and variable clus-
ters, respectively. Each variable cluster VC; is associated with a domain
Dye, = ervci D, representing the value of all the variables in this clus-
ter. Note that S = Dy¢, X ... X Dyg,,.

Example 4.1 Let Atom ={ z >y, « =1, z=1t}. Then there are two
formula clusters, FCy ={ x>y, a =1} and FCy ={ z =1 }, and two
variable clusters, VCy = {z,y} and VCy = {z,t}.
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The initial abstraction is defined by h = (hq,..., hy), where h; is defined
over Dy, as follows. For (dy,...,dg), (e1,...,€ex) € Dyc,,

hi((dl, .. ,dk)) = hi((el, .. .,ek)) <~

Vfe FC;: (dl,...,dk) Ef e (61,...,€k) Ef

Thus, two states are h;-equivalent if and only if they satisfy the same for-
mulas in F'C;. They are h-equivalent if and only if they satisfy the same
formulas in Atom.

The reduced model for the abstraction & will be defined over abstract
states that are the equivalence classes of the h-equivalence. Each equiva-
lence class will be labeled by all formulas from Atoem which are true in all
states in the class. The initial states and transition relation are defined by
the existential abstraction, as before.

Example 4.2 Let P be a program with variables x,y over domain {0,1}
and z,t over domain {true, false}. Let FC;, ={ x>y, . =1}, FCy =
{z=1t},VCi=A{z,y} and VCqy = {z,t}. Then, the hi-equivalence classes

C EL = {0,000, 1)}, Er = {(L0)}, Ex = {(1,1)}.

The hy-equivalence classes are:
Fo = A{(false, false), (true,true)}, Fax = {(false, true), (true, false)}.

The reduced model contains six states labeled by:

) {z=1t}

) = A{z>ye=1z=1t}

) = {z=1,z=t}
Ey,Ey) = 0

) = {z>ya=1}

)

= {z=1}

Example 4.2 shows that abstracting variable clusters rather than single
variables allows smaller abstract domains that are more precise. Valuations
of a whole variable cluster determine the truth of the conditions in the
program, and thus influence its control flow. Abstracting a whole cluster
allows us to identify all states that satisfy the same conditions and then
abstract them together. Thus, the abstract model reflects more closely the
control flow of the program.
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4.3. IDENTIFYING SPURIOUS PATH COUNTEREXAMPLES

Once the reduced model is built, we can run the model checking algorithm
on it. Suppose the model checking stopped with a path counterexample.
Such a counterexample is produced, for instance, when the checked property
is AG p for some atomic formula p. The path leads from an initial state to
a state that falsifies p. Our goal is to find whether there is a corresponding
path in the concrete model from an initial state to a state that falsifies p.

Let T = 51...5, be the path counterexample in the reduced model.
For an abstract state 5, h~!(5) denotes the set of concrete states that are
mapped to 3, i.e., h1(8) = { s | h(s) =5 }. h='(T) denotes the set of all
concrete paths from an initial state that correspond to f, ie.,

ATy ={s1...5, | /\h(si) =5 A So(s1) A /_\R(si,sm) I3

We say that a path T = §1...8, corresponds to a real counterexample
if there is a path 7 = s;1...s, such that for all 1 < ¢ < n, h(s;)) = §.
Moreover, 7 starts at an initial state and its final state falsifies p. Note
that if h(s;) = §;, then s; and §; satisfy the same atomic formulas. Thus,
it immediately follows that T corresponds to a real counterexample if and
only if h=1(T) is not empty.

The algorithm SplitPATH in Figure 3 checks whether h~! (f) is empty.
In fact, it computes a sequence Sq,..., 5, of sets of states. For each i, 5;
contains states that correspond to 5; and are also successors of states in
Si_1. It starts with Sy = h=1(51) N .Sg, which includes all initial states that
correspond to §;. If some S; turns out to be empty, then SplitPATH returns
both the place ¢ where the failure occurred and the last nonempty set S;_;.

SplitPATH uses the transition relation R of the concrete model M in
order to compute I'mg(S;—1, R), which is the set of all successors of states
in 5;_1. All operations in SplitPATH, including I'mg, are effectively im-
plemented with BDDs (symbolic implementation). The following lemma
proves the correctness of SplitPATH.

Lemma 4.1 7T corresponds to a real counterexample if and only if for all
1<i<n, S;#0.

4.4. IDENTIFYING SPURIOUS LOOP COUNTEREXAMPLES

Suppose that the model checking returns a loop counterexample. This may
occur, for instance, when the property AF pis checked. The counterexample
exhibits an infinite path along which p never holds. A loop counterexample
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o~

Algorithm SplitPATH(T)

S = h=1(51) N So;

J=1

while (S # 0 and j < n) do
Ji=a+L
Sprev = 57

S = Img (S, R) N h~"(5));

end while;

if S # 0 then output "counterexample exists”
else output j, Sprev

Figure 3. SplitPATH checks if an abstract path is spurious.

will be of the form R
T=35...8(Sit1-.-$)%
where the sequence S;y71 ...S, repeats forever.

Some difficulties arise when trying to determine whether a loop coun-
terexample in the abstract model corresponds to a real counterexample
in the concrete model. First, an abstract loop may correspond to differ-
ent loops of different sizes in the concrete model. Furthermore, the loops
may start at different stages of the unwinding. Clearly, the unwinding must
eventually result in a periodic path. However, a careful analysis is needed
in order to see that a polynomial number of unwindings is sufficient. More

precisely, let
min = min{ |h_1(8/¢\+1)|7 R |h_1(§n)| ).

That is, men is the size of the smallest set of concrete states that cor-
responds to one of the abstract states on the loop. Then min + 1 un-
windings are sufficient. This is formalized in the following lemma. Let
T=351...5(531...5) and Typwind = 51 ...5; (551 ...5,)™"H,

Lemma 4.2 T corresponds to a concrete counterexample if and only if
™Y (Tynwing) is not empty.

Following is an intuitive explanation for the correctness of the “if” clause
of the lemma. Assume h_l(Tunwmd) # (). For any concrete path 7 in
h_l(funwmd), the suffix 7't of 7 goes min + 1 times through each of
the sets h™1(5;), for j = i+ 1,...,n. Suppose min = |h=1(557)|. Then at
least one state in h~!(537) repeats twice along 7'*', thus forming a concrete
loop. Replacing 7*! with this loop in 7 results in a loop counterexample
in the concrete model.
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From this lemma we conclude that the loop counterexample can be
reduced to a path counterexample. Figure 4 presents the algorithm Split-
LOOP, which applies SplitPATH to T,,.ing in order to check if an ab-
stract loop is spurious. LoopIndex(j) computes the index in the unwound

Twnwing of the abstract state at position 7. That is,
LoopIndex(j) = if j < n then j else((j — (: 4+ 1)mod(n — 1)) + (i + 1).

Thus, SplitLOOP returns two indices k& and p, which are consecutive on
the loop, and the set Sy.c, € h71(5;). In the refinement step, the loop
counterexample can now be treated similarly to the path counterexample.

~

Algorithm SplitLOOP(T)

min = min{ |h"1 (s, .-, [R7HE)] T

Tunwind = unwind (7', min + 1);

Compute j and Sprev as in SplitPATH(funWind);
k := LoopIndex(j);

p := LoopIndex(j + 1);

output Sprev, £, p

Figure 4. SplitLOOP checks if an abstract loop is spurious

4.5. REFINING THE ABSTRACTION

Once we have realized that a path or a loop counterexample is spurious,
we would like to eliminate it by refining our abstraction. We will only
describe the refinement process for path counterexamples. The treatment
of loop counterexamples is similar. Let 7, .S,,c, be the output of SplitPATH,
where S, € h™'(5;21). We observe that the states in A™'(5;_7) can be
partitioned into three subsets:

— Sp: dead-end states, which are reachable from an initial state in
h~1(51) but have no outgoing transition to states in A (5}). Note that
Sprev — SD-

— Sp: bad states, which are not reachable but have outgoing transitions
to states in h™1(5;).

— S5 irrelevant states, which are neither reachable nor dead.

Since existential abstraction is used, the dead-end states induce a path to
§;-1 in the abstract model. The bad states induce a transition from §;_3
to §;. Thus, a spurious path leading to §; is obtained.
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In order to eliminate this path we need to refine the abstraction mapping
h so that the dead-end states and bad states do not belong to the same
abstract state.

Recall that each abstract state corresponds to an h-equivalence class
of concrete states. The goal is to find a refinement that keeps the number
of new equivalence classes as small as possible. It turns out that when
irrelevant states are present, the problem of finding the optimal refinement
is NP-complete. However, if the set of irrelevant states is empty, the problem
can be solved in polynomial time. A possible heuristic associates Sy with Sp
and then applies refinement, which separates them from Sp. The resulting
refinement is not optimal, but gives good results in practice.

We now show how the model is refined in case S; = (. Recall that
S = Dyc, X ...x Dyg,, and h = (hy,...,hy), where h; is defined over
Dy ¢,. The equivalence relations = (=;) are the sets of pairs of h-equivalent
( hi-equivalent) elements. For Sp C S, ¢ € {1,...,m}, and a € Dy¢,, we
define the projection set proj(Sp,i,a) by:

PT‘Oj(SD,i,Q) :{ (dh...7di_17di+17...7dm) |

(dh...7di_17a7di+17...7dm) € Sp }

The refinement procedure checks, for each ¢ and for each pair (a,b) in
=,, whether proj(Sp,i,a) = proj(Sp,,b). If not, then (a,b) is eliminated
from =;. By eliminating (a,b) from =;, we partition the equivalence class
h=1(s;21). Since proj(Sp,i,a) # proj(Sp,1,b), there are states

Sq = (dh .. .7di_17a7di+17 .. 7dm) and Sp = (dh .. .7di_17b7di+17 .. 7dm)

such that s, € Sp and s, € Sp (or vice versa). This implies that s, € Sp
(since Sy is empty), and therefore s, and s, should not be in the same
equivalence class. Removing (a, b) from =; also removes (s,, s;) from =, as
required.

The refinement procedure continues to refine the abstraction mapping
by partitioning equivalence classes until a real counterexample is found or
until the ACTL* formula holds. Since each equivalence class is finite and
nonempty, the process always terminates.

Theorem 4.3 Given a model M and an ACTL* formula ¢ whose coun-
terexample is either path or loop, the refinement algorithm finds a model M
such that M = ¢ < M E ¢.

In [16], several practical improvements are presented. The method is
also experimented on large examples.
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5. Abstract Interpretation

In this section we show how abstractions preserving full CTL* and its uni-
versal and existential subsets can be defined within the framework of ab-
stract interpretation. We will see that abstract interpretation can be used to
obtain abstract models which are more precise and therefore preserve more
properties than the existential abstraction presented previously [23, 22].
The abstraction suggested in this section abstracts the state space rather
than the data domain and can be applied to infinite as well as finite sets.
It actually preserves the full p-calculus (see [22] for more details).

Given an abstract domain, abstract interpretation provides a general
framework for automatically “interpreting” systems on the abstract do-
main. The classical abstract interpretation framework [19] was used to prove
safety properties, and does not consider temporal logic or model check-
ing. Hence, it usually abstracts sets of states. Here, on the other hand, we
are interested in properties of computations. We therefore abstract Kripke
models, including their sets of states and transitions.

The models we use in this section are slightly different from the Kripke
models presented in Definition 2.1. Instead of using the set AP of atomic
propositions to label states, we use literals from the set

Lit= AP U {-p|pe€ AP }.

The Kripke model M = (S, So, R, L) is defined as before for S, Sy, and R.
The labeling function L : S — P(Lit) is required to satisfy

p€L(s)=-p¢gL(s)and =p € L(s) = p ¢ L(s).

Recall that labeling a state with a formula means that the formula is true
in that state. Thus, by the above, p and —p cannot be true together in a
state. It is not required, however, that p € L(s) < —p ¢ L(s). Hence, it is
possible that neither p nor —p will be true in s.

It is straightforward to extend the semantics of CTL* formulas for these
models. Only for literals should it be changed. The remaining semantics is
identical to Definition 2.3. For literals, we can define the semantics by

1. If p € AP then
s Epifand only if p € L(s); s = —p if and only if —=p € L(s).
As a result of this change, however, the semantics of any CTL* formula
may now be such that neither s = ¢ nor s = —p.

We will now present some basic notions required for the development of
an abstract interpretation framework in the context of Kripke models and
temporal logic specifications. For more details see [22, 24].

Abstract interpretation assumes two partially ordered sets, (C,C) and
(A, <), of the concrete and abstract domains. In addition, two mappings are
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used: The abstraction mapping o : C' — A and the concretization mapping

v:A—=C.

Definition 5.1 (o : €' — A,y : A — (') is a Galois connection from
(C,C) to (A, <) if and only if

— « and v are total and monotonic.

— forallce C, y(a(c)) e

— foralla € A, a(y(a)) < a.

(a, ) is a Galois insertion if, in addition, the order < on A is defined by
the order J on C' as follows:

a<a < v(a) Ey(d).

Note that the requirement for Galois insertion is stronger than the require-
ment for monotonicity of 7. Assume that < and I are partial orders in
which two elements are equal if and only if each is smaller than the other.
Then, v(a1) = v(ag) implies a; = ay. Therefore, for Galois insertion

a(y(a)) = a.

For a < &' we say that a is more precise than o', or @' approzimates a.
Similarly, for ¢ C ¢'.

We now present our framework in which the choice of concrete and
abstract domains is motivated by the goal of model abstraction. Given a
model M, we choose (P(S5), C) as the concrete domain. We choose a set of
abstract states S and use the Galois insertion so that the partial order for
S is determined by

a<d & (@) Cy(d).

Since v and « are total and monotonic, S must include a greatest element
top, denoted T, so that a(S) = T and v(T) = S. Moreover, for every
S’ C S, there must be a € S such that a(S') = a. However, associating
each subset of concrete states with an abstract state does not imply that
there must be a different abstract state for each subset.

Example 5.1 A correct (though uninteresting) abstraction chooses S =

{T} withy(T)=S and for all ' C S, a(S") =T.
The following abstraction is more interesting.

Example 5.2 Let S be the set of all states with one variable x over the
natural numbers. Let S = { grt_5, leq_5, T } where v(grt5) = Sss ={ s €
S|s(z) > 5 } and y(leq5) = S<s = { s € S|s(z) < 5 }. (Also, y(T) = S,

as is always the case).
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In order to guarantee that o(v(a)) = a, we must define a(Sss) =
grt5 and a(S<s) = leq 5. This also guarantees that v(a(Ss5) O Ss5 and
v(a(S<s) 2 S<s.

Consider now the set Ss6 = { s € S|s(x) > 6 }. Both a(Ss¢) = grt_5
and o(Ss¢) = T will satisfy y(a(S>6) O Sse. However, more precise ab-
straction is desired. Thus, since grt 5 < T, we choose a(Ssg) = grt_5.

On the other hand, for Sso = { s € S|s(z) > 2 } the only correct choice
is a(S52) =T.

Remark: The Galois insertion is less restrictive than existential abstrac-
tion in the sense that it allows nondisjoint subsets of states to be mapped
to different abstract states. Furthermore, concrete states mapped to the
same abstract state do not necessarily satisfy the same atomic formulas.
In contrast, existential abstraction partitions the concrete state space into
disjoint equivalence classes, so that all states in the same class satisfy the
same set of atomic formulas.

5.1. THE ABSTRACT MODEL

The abstraction and concretization mappings defined so far determine the
set of abstract states and their relationship with the set of concrete states. In
order to define the abstract model we still need to define the state labeling,
the set of initial states, and the transition relation of the abstract model.
We start with a definition that will be used when we present the abstract
transition relation.

Definition 5.2 Let A and B be sets and R C A x B. The relations
RF, R C P(A) x P(B) are defined as follows:

~RE={(X,)Y)|TweXyeY: R,y }
~RB={(X,Y)|V2eX yeY: Rx,y) }

If R is a transition relation and X and Y are subsets of states, then
RF(X,Y) if and only if some state in X can make a transition to some
state in Y. RVH(X7 Y) if and only if every state in X can make a transition
to some state in Y. Note that the transition relation defined by existential
abstraction can be viewed as an R¥ relation over the equivalence classes
represented by the abstract states.

Given a set S of abstract states, our goal is to define a precise abstract
model M = (§, 3\0, ]%, E) such that for every ACTL* formula ¢ over atomic

formulas in Lit, and for every abstract state a € 5, the following require-
ment holds:

MalEy = My (1)
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5.1.1. The Abstract Labeling Function

The abstract labeling function L is defined so that Requirement (1)
holds for the literals in Lit. For every p € Lit,

peL(a) < Vsey(a): pe L(s).

Thus, an abstract state is labeled by literal p if and only if all states in
its concretization are labeled by p. However, since our abstraction mapping
does not require that all these states be identically labeled, it is possible
that neither p € L(a) nor -p € L(a).

Explicitly labeling the negation of atomic formulas allows us to distin-
guish between the case in which “all concrete states do not satisfy p” and
the one in which “not all concrete states satisfy p.”

The following lemma states that less precise states satisfy fewer literals.
Consequently, it is desirable to map subsets of states to their most precise
abstraction (see Example 5.2).

Lemma 5.3 Fora,a’ €5, ifa’ > a then Vp € Lit, a Ep=akEnp
5.1.2. The Abstract Initial states

The set of initial abstract states is defined by
So={a({s}) | s €S }.

This guarantees Requirement (1) on the level of models. That is, M E
¢ = M E . To see why this is true, note that

M\):cp = VaEEB:M\,a):cp =

VaEEB:ng(a)):cp = VseSy: M,sEp = ME .

As alternative definition might be So = a(Sp). It also satisfies Require-
ment (1). However, for each s € Sy, a({s}) < a(Sp). Thus, the alternative
definition suggests a single initial state which is less precise and therefore
enables verification of fewer properties.

5.1.3. The Abstract Transition Relation

A definition that is similar to existential abstraction could work in the
case where ACTL* must be preserved. Using the notation of Definition 5.2,
the abstract transition relation can be defined by:

R(a,b) & BP(y(a),7(0)).
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However, as for the other components of the abstract model, the abstract
interpretation framework provides the means for a more precise definition.
Next we present an abstract transition relation that is more precise. It is

denoted by R4 in order to emphasize that it preserves ACTL*.
RA(a,b)) & be {a(V)|Y € min{Y'|R3(y(a),Y")}}.

The difference between R and R4 can be explained as follows. Given an
abstract state a, consider all Y C S such that there is a transition from
some state in y(a) to somestatein Y’ (i.e., R33(v(a), Y’)). Then, R connects

L

a to a(Y") for each of these Y. On the other hand, R4 connects a to all a(Y')

which are minimal (by the inclusion order) among these Y. Clearly, R4
connects a to fewer states, which are more precise. Note also that minimal
Y’s are always singletons.

Example 5.3 The following example shows the difference between é;‘
and Iz It also demonstrates the ability of é;‘ to verify more properties
than R.
Let M = (S, So, R, L) where
— S ={s1, 82,83},
— So={s1},
- R= {(817 52)7 (517 53)7 (527 52)7 (537 82)};
— L(s1) ={p}, L(s2) = {p, ¢}, L(s3) = {-p, ¢}
M is defined by
~S= {ay, as3, T} where
o v(a1) = {s1}, v(az3) = {s2, 55} and y(T) = 5.
o a({s1}) = a1, a({s2}) = a({s3}) = a({s2, s3}) = azs,
al{s1,s2}) = a({s1,s3}) =a(S)=T.
- Si=fm) )
L(ay) = {p}, L(azs) ={q} and L(T) = 0.

—

— RA = {/(1117 a23), (@23, aza), (T, azs)} and
R = RA U {(al, T), (a237 T)(T, 023)7 (T, T)}
Suppose we would like to verify the property AX AGgq for M. When we
check the property on the model defined by R, we find that it is false, and

therefore we do not know whether it holds for M. However, if we check it

on the model defined by R4, since it is true for this model we can conclude
that it is true for M as well.

Lemma 5.4 Let M be a model and M = (§,§\0,]§;‘,E) be an abstract
model for M. Then M < M. Thus, for every ACTL* formula ¢ and for
every abstract state a € S, M,a = ¢ = M,v(a) E ¢.
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To show that M < M\, we define a simulation relation H C § X S. In order
to enable the simulation to relate abstract and concrete states we need to
change the requirement on the state labeling: If H(s,a) then L(a) C L(s).
The relation H(s,a) < s € vy(a) can now be shown to be a simulation
preorder. For ACTL*, Theorem 2.7 still holds with the new definition of <
and thus implies the lemma.

5.2. ABSTRACT MODEL PRESERVING ECTL*

Until now we have only been concerned with abstractions preserving ACTL*.
In this section we show how to define an abstraction which preserves ECTL*.
The abstract model is defined in such a way that if an ECTL* formula is true
for that model then it is also true for the concrete model. In the next sec-
tion we show how to combine the abstractions for ACTL* and ECTL* into
one abstraction that weakly preserves all of CTL*. Recall that bisimulation
also preserves full CTL*. However, bisimulation provides strong preserva-
tion and therefore usually allows less reduction in the abstract model.

The ECTL*-preserving abstract model is identical to the ACTL*-preserving
model M defined above, except that the transition relation R4 is replaced

by a different transition relation, R¥.

The following observation explains the difference between R4 and RE.
In order to preserve ACTL*, the set of abstract transitions should represent
each of the concrete transitions. Additional transitions are also allowed.
The abstract model then includes every behavior of the concrete model.
Hence, every ACTL* property true for the abstract model is also true for
the concrete model.

On the other hand, in order to preserve ECTL*, the set of abstract
transitions must include only representatives of concrete transitions and
nothing else. Thus, any behavior of the abstract model appears also in the
concrete model. As a result, every ECTL* property true for the abstract
model is true for the concrete model as well.

We will therefore have an abstract transition from a to b only if for every
state in y(a) there is a transition to some state in v(b) (i.e., R"(y(a),v(b))).
However, as for R4, we suggest a better definition that connects a to fewer
abstract states, which are more precise:

RE(a,b)) & b€ {a(V)|Y € min{Y'|R"(v(a),Y')}}.

As in the case of R4 and B33, RP contains less transitions than R"3. Still,
it does not allow to prove more ECTL* properties.
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Lemma 5.5 Let M be a model and M = (§ g\o,é\ E) be an abstract
model. Then M < M Thus, for every FCTL* formula @, and for every
abstract state a € S, M va = e = M,y(a) E .

Here we define H(a,s) C S xS, However, we relate exactly the same
abstract and concrete states: H(a,s) < s € v(a). As before we require
that if s and a are related (here they are related by H(a,s) rather than

H(s,a)) then E(a) C L(s). With these changes, Theorem 2.7 holds for
ECTL* and thus the lemma holds. P
Note that because of the minimality requirements in B4, R¥ may not

——

be included in RA.

Example 5.4 Consider the model of FExample 5.3, in which the transi-
tion (83782) zs replaced by (ss, s1), resulting in a new transition relation

R'. Then, RA = {(a1, az3), (azs, ass), (azs, a1), (T, T)}. On the other hand,

~1

R = {(ay,as3), (azs, T), (T, T)}. Note that the transition (azs, T) € RF
—~1

is not in R4 since T is not minimal in the set of states connected to ass.

o~
Using the model with the RE transition relation, we can verify for the
concrete model the EC'TL* property EF EG q.

5.3. ABSTRACT MODELS PRESERVING FULL CTL*

In order to (weakly) preserve full CTL*, we now define an abstract model
with a mized transition relation: M = (3,35, é;‘, ]é\E, E) This model has
two types of paths: A-paths, defined along é;‘ transitions, and E-path, de-
fined along IQ\E transitions. The semantics of CTL* with respect to this
model differs from the semantics in Definition 2.3 only in item 3.

— s = A fif and only if for every A-path 7 from s, 7 = f.
— s E E fif and only if there exists an E-path 7 from s such that = = f.

Theorem 5.6 Let M be a model and M = (§,$,]@,]§E,E) be a mized
abstract model. Then for every CTL* formula ¢ and for every abstract state

a€S MalEoe=M-~y(a)kEg.

This theorem can be proved by induction of the formula structure. It can
also be proved based on a mized simulation over M and M. For details
see [22].

In [22] approximations were defined in the context of abstract interpre-
tation. Similarly to the framework of data abstraction, approximations here
allow different levels of precision. It has also been shown how an approxi-
mation can be extracted from the program text.
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6. Related Work

Several works have applied data abstraction in order to reduce the state
space. Wolper and Lovinfosse [60] characterize a class of data-independent
systems in which the data values never affect the control flow of the com-
putation. Therefore, the datapath can be abstracted away entirely. Van
Aelten et al. [2] have discussed a method for simplifying the verification of
synchronous processors by abstracting away the datapath. Abstracting the
datapath using uninterpreted function symbols is very useful for verifying
pipeline systems [7, 11, 39].

In this paper we present a methodology for automatic construction of
an initial abstract model, based on atomic formulas extracted from the
program text. The atomic formulas are similar to the predicates used for
abstraction by Graf and Saidi [35]. However, predicates are used to gen-
erate an abstract model, while atomic formulas are used to construct an
abstraction mapping.

The use of counterexamples to refine abstract models has been inves-
tigated by a number of researchers. The localization reduction by Kur-
shan [41] is an iterative technique in which both the initial abstraction and
the counterexample-guided refinements are based on the wvariable depen-
dency graph. The localization reduction either leaves a variable unchanged
or replaces it by a nondeterministic assignment. A similar approach has
been described by Balarin et al. in [3] and by Lind-Nielson and Ander-
sen [45]. The method presented here, on the other hand, applies abstraction
mapping that makes it possible to distinguish many degrees of abstraction
for each variable.

Lind-Nielson and Andersen [45] also suggest a model checker that uses
upper and lower approximations in order to handle all of CTL. Their ap-
proximation techniques avoid the need to recheck the entire model after
each refinement, yet still guarantee completeness.

A number of other papers [42, 52, 53] have proposed abstraction re-
finement techniques for CTL model checking. However, these papers do
not use counterexamples to refine the abstraction. The methods described
in these papers are orthogonal to the techniques presented here and may
be combined with them in order to achieve better performance. The tech-
nique proposed by Govindaraju and Dill [33] is a first step in this direction.
The paper only handles safety properties and path counterexamples; it uses
random choice to extend the counterexample it constructs.

Many abstraction techniques can be viewed as applications of the ab-
stract interpretation framework [19, 59, 20]. Bjorner, Browne and Manna
use abstract interpretation to automatically generate invariants for general
infinite state systems [8]. Abstraction techniques for the p-calculus have
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been suggested in [21, 22, 46].

Abstraction techniques for infinite state systems have been proposed
in [1, 5, 43, 48]. The predicate abstraction technique, suggested by Graf and
Saidi [35], is also aimed at abstracting an infinite state system into a finite
state system. Later, a number of optimization techniques were developed
in [6, 26, 25]. Saidi and Shankar have integrated predicate abstraction into
the PVS system, which could easily determine when to abstract and when
to model check [58]. Variants of predicate abstraction have been used in
the Bandera Project [28] and the SLAM project [4].

Colén and Uribe [18] have presented a way to generate finite state ab-
stractions using a decision procedure. As in predicate abstraction, their
abstraction is generated using abstract Boolean variables.

A number of researchers have modeled or verified industrial hardware
systems using abstraction techniques [32, 34, 37, 38]. In many cases, their
abstractions are generated manually and combined with theorem-proving
techniques [56, 57]. Dingel and Filkorn have used data abstraction and
assume-guarantee reasoning, combined with theorem-proving techniques,
in order to verify infinite state systems [27]. Recently, McMillan has incor-
porated a new type of data abstraction, along with assume-guarantee rea-
soning and theorem-proving techniques, into his Cadence SMV system [50].

7. Conclusion

In this work, three notions of abstraction have been introduced. They are
all based on the idea that in order to check a specific property, some of
the system states are in fact indistinguishable and can be collapsed into an
abstract state that represents them.

Several concepts are common to all of these abstractions. Even though
they were introduced within the framework of one of the abstractions, they
are applicable with some changes to the other notions:

— The abstractions are derived from a high-level description of the pro-
gram.

— Since deriving precise abstraction is usually difficult, the notion of
approximations that are easier to compute is introduced.

— Refinement is required in case the abstraction is too coarse to enable
the verification or the falsification of a given property.

— The abstractions provide weak preservation. Most of the discussion in
this paper has been devoted to the preservation of ACTL*. However,
preservation of ECTL* and full CTL* can be defined for each of the
abstractions.
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