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Abstract.
Symbolic Trajectory Evaluation (STE) is a powerful technique for hardware

model checking. It is based on combining 3-valued abstraction with symbolic sim-
ulation, using 0,1 and

�
("unknown"). The

�
value is used to abstract away parts

of the circuit. The abstraction is derived from the user’s specification. Currently the
process of refinement in STE is performed manually. This paper presents an auto-
matic refinement technique for STE. The technique is based on a clever selection of
constraints that are added to the specification so that on the one hand the semantics
of the original specification is preserved, and on the other hand, the part of the state
space in which the "unknown" result is received is significantly decreased or to-
tally eliminated. In addition, this paper raises the problem of vacuity of passed and
failed specifications. This problem was never discussed in the framework of STE.
We describe when an STE specification may vacuously pass or fail, and propose a
method for vacuity detection in STE.

Keywords. Symbolic Trajectory Evaluation (STE), model checking, abstraction-
refinement, vacuity

1. Introduction

This paper is an overview of the work presented in [30] and [29]. It presents the frame-
work of Symbolic Trajectory Evaluation (STE) and describes automatic refinement and
vacuity detection in this context.

Symbolic Trajectory Evaluation (STE) [26] is a powerful technique for hardware
model checking. STE combines 3-valued abstraction with symbolic simulation. It is ap-
plied to a circuit

�
, described as a graph over nodes (gates and latches). Specifications

in STE consist of assertions in a restricted temporal language. The assertions are of the
form ������� , where the antecedent � expresses constraints on nodes 	 at different
times 
 , and the consequent � expresses requirements that should hold on such nodes� 	��
�� . For each node, STE computes a symbolic representation, often in the form of a
Binary Decision Diagram (BDD) [8]. The BDD represents the value of the node as a
function of the values of the circuit’s inputs. For precise symbolic representation, mem-
ory requirements might be prohibitively high. Thus, in order to handle very large circuits,
it is necessary to apply some form of abstraction.

Abstraction in STE is derived from the specification by initializing all inputs not ap-
pearing in � to the � (“unknown”) value. The rest of the inputs are initialized according
to constraints in � to the values � or � or to symbolic variables. A fourth value, � , is
used in STE for representing a contradiction between a constraint in � on some node� 	��
�� and the actual value of node 	 at time 
 in the circuit.



In [18], a 4-valued truth domain � � � � ��� � ��� is defined for the temporal language
of STE, corresponding to the 4-valued domain of the values of circuit nodes. Thus, STE
assertions may get one of these four values when checked on a circuit

�
. The values

� and � indicate that the assertion fails or passes on
�

, respectively. The � truth value
indicates that no computation of

�
satisfies � . Thus, the STE assertion passes vacu-

ously. The � truth value indicates that the antecedent is too coarse and underspecifies
the circuit.

In the latter case a refinement is needed. Refinement in STE amounts to changing
the assertion in order to present node values more accurately.

STE has been in active use in the hardware industry, and has been very successful
in verifying huge circuits containing large data paths [27,25,34]. Its main drawback,
however, is the need for manual abstraction and refinement, which can be labor-intensive.

In this work we propose a technique for automatic refinement of assertions in STE.
In our technique, the initial abstraction is derived, as usual in STE, from the given speci-
fication. The refinement is an iterative process, which stops when a truth value other than
� is achieved. Our automatic refinement is applied when the STE specification results
with � . We compute a set of input nodes, whose refinement is sufficient for eliminating
the � truth value. We further suggest heuristics for choosing a small subset of this set.

Selecting a "right" set of inputs has a crucial role in the success of the abstraction and
refinement process: selecting too many inputs will add many variables to the computation
of the symbolic representation, and may result in memory and time explosion. On the
other hand, selecting too few inputs or selecting inputs that do not affect the result of the
verification will lead to many iterations with an � truth value.

We point out that, as in any automated verification framework, we are limited by
the following observations. First, there is no automatic way to determine whether the
provided specification is in accord with the user intention. Therefore, we assume that
it is, and we make sure that our refined assertion passes on the concrete circuit if and
only if the original assertion does. Second, bugs cannot automatically be fixed. Thus,
counterexamples are analyzed by the user.

Another important contribution of our work is identifying that STE results may hide
vacuity. This possibility was never raised before. Hidden vacuity may occur since an
abstract execution of

�
on which the truth value of the specification is � or � , might not

correspond to any concrete execution of
�

. In such a case, a pass is vacuous, while a
counterexample is spurious. We propose two algorithms for detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte environ-
ment [27]. We ran it on two nontrivial circuits with several assertions. Our experimen-
tal results show success in automatically identifying a set of inputs that are crucial for
reaching a definite truth value. Thus, a small number of iterations were needed.

The rest of the paper is organized as follows. Section 2 reviews related work. In Sec-
tion 3 we give some background and basic definitions and notations. Section 4 describes
the inherent limitations of automatic refinement of specifications versus manual refine-
ment, and characterizes our proposed refinement technique. Section 5 presents heuris-
tics for choosing a subset of inputs to be refined. Section 6 defines the vacuity problem
in STE and suggests several methods for vacuity detection. Section 7 briefly summa-
rizes experimental results of our refinement technique. Finally, Section 8 concludes and
suggests directions for future research.



2. Related Work

Abstraction is a well known methodology in model checking for fighting the state ex-
plosion problem. Abstraction hides certain details of the system in order to result in a
smaller model. Two types of semantics are commonly used for interpreting temporal
logic formulas over an abstract model. In the two-valued semantics, a formula is either
true or false in the abstract model. When the formula is true, it is guaranteed to hold for
the concrete model as well. On the other hand, false result may be spurious, meaning that
the result in the concrete model may not be false. In the three-valued semantics [7,28],
a third truth value is introduced: the unknown truth value. With this semantics, the true
and false truth values in the abstract model are guaranteed to hold also in the concrete
model, whereas the unknown truth value gives no information about the truth value of
the formula in the concrete model.

In both semantics, when the model checking result on the abstract model is incon-
clusive, the abstract model is refined by adding more details to it, making it more similar
to the concrete model. This iterative process is called Abstraction-Refinement, and has
been investigated thoroughly in the context of model checking [14,10,21,15,3].

The work presented in this paper is the first attempt to perform automatic refinement
in the framework of STE. In [13], it is shown that the abstraction in STE is an abstract
interpretation via a Galois connection. However, [13] is not concerned with refinement.
In [32], an automatic abstraction-refinement for symbolic simulation is suggested. The
main differences between our work and [32] is that we compute a set of sufficient inputs
for refinement and that our suggested heuristics are significantly different from those
proposed in [32].

Recently, two new refinement methods have been suggested. The automatic refine-
ment presented in [12] is based on a notion of responsibility and can be combined with
the method presented here. The method in [16] is applicable only in the SAT-based STE
framework developed there. In [1], a method for automatic abstraction without refine-
ment is suggested.

Generalized STE (GSTE) [36] is a significant extension of STE that can verify all
� -regular properties. Two manual refinement methods for GSTE are presented in [35].
In the first method, refinement is performed by changing the specification. In the sec-
ond method, refinement is performed by choosing a set of nodes in the circuit, whose
values and the relationship among them are always represented accurately. In [33], SAT-
based STE is used to get quick feedback when debugging and refining a GSTE assertion
graph. However, the debugging and refinement process itself is manual. An automatic
refinement for GSTE has recently been introduced in [11].

An additional source of abstraction in STE is the fact that the constraints of � on
internal nodes are propagated only forward through the circuit and through time. We
do not deal with this source of abstraction. In [36], they handle this problem by the
Bidirectional (G)STE algorithm, in which backward symbolic simulation is performed,
and new constraints implied by the existing constraints are added to � . STE is then
applied on the enhanced antecedent. Our automatic refinement can be activated at this
stage.

Vacuity refers to the problem of trivially valid formulas. It was first noted in [4].
Automatic detection of vacuous pass under symbolic model checking was first proposed
in [5] for a subset of the temporal logic ACTL called w-ACTL. In [5], vacuity is defined



as the case in which, given a model
�

and a formula
�

, there exists a sub formula �
of
�

which does not affect the validity of
�

. Thus, replacing � with any other formula
will not change the truth value of

�
in
�

. In [19,20] the work of [5] has been extended
by presenting a general method for detecting vacuity for specifications in CTL*. Further
extensions appear in [2,9].

In the framework of STE, vacuity, sometimes referred to as antecedent failure, is
discussed in [18,26]. Roughly speaking, it refers to the situation in which a node is as-
signed with a � value, implying that there are no concrete executions of the circuit that
satisfy all the constraints in � . As a result, � � � � is trivially satisfied. This is in fact a
special case of vacuity as defined in [5]. The work presented here is the first to raise the
problem of hidden vacuity, in which the formula is trivially satisfied despite the fact that
no nodes are assigned with the � value.

3. Background

3.1. Circuits

There are different levels in which hardware circuits can be modeled. We concentrate
on a synchronous gate-level view of the circuit, in which the circuit is modeled by log-
ical gates such as AND and OR and by delay elements (latches). Aspects such as tim-
ing, asynchronous clock domains, power consumption and physical layout are ignored,
making the gate-level model an abstraction of the real circuit.

More formally, a circuit
�

consists of a set of nodes � , connected by directed
edges. A node is either an input node or an internal node. Internal nodes consist of latches
and combinational nodes. Each combinational node is associated with a Boolean func-
tion. The nodes are connected by directed edges, according to the wiring of the electric
circuit. We say that a node 	�� enters a node 	�� if there exists a directed edge from 	��
to 	�� . The nodes entering a certain node are its source nodes, and the nodes to which
a node enters are its sink nodes. The value of a latch at time 
 can be expressed as a
Boolean expression over its source nodes at times 
 and 
	� � , and over the latch value
at time 
	� � . The value of a latch at time 0 is determined by a given initial value. The
outputs of the circuit are designated internal nodes whose values are of interest. We re-
strict the set of circuits so that the directed graph induced by

�
may contain loops but

no combinational loops.
Throughout the paper we refer to a node 	 at a specific time 
 as

� 	��
�� .

N4

N5

N3

N6

In1

In2

In3
N2

N1

Figure 1. A Circuit

An example of a circuit is shown in Figure 1. It contains three inputs In1, In2 and
In3, two OR nodes N1 and N2, two AND nodes N3 and N6, and two latches N4 and N5.



For simplicity, the clocks of the latches were omitted and we assume that at each time

 the latches sample their data source node from time 
 � � . Note the negation on the
source node In2 of N2.

The bounded cone of influence (BCOI) of a node
� 	��
�� contains all nodes

� 	 � ��
 � �
with 
 ��� 
 that may influence the value of

� 	��
�� , and is defined recursively as follows:
the BCOI of a combinational node at time 
 is the union of the BCOI of its source nodes
at time 
 , and the BCOI of a latch at time 
 is the union of the BCOI of its source nodes
at times 
 and 
 � � according to the latch type.

3.2. Four-Valued Symbolic Simulation

Usually, the circuit nodes receive Boolean values, where the value of a node can be
described by a Boolean expression over its inputs. In STE, a third value, � ("unknown"),
is introduced. Attaching � to a certain node represents lack of information regarding
the Boolean value of that node. The motivation for the introduction of � is that its use
decreases the size of the Boolean expressions of the circuit nodes. This, however, is done
at the expense of the possibility of receiving unknown values for the circuit outputs.

1 0

X

Figure 2. The � partial order

A fourth value, � , is also added to represent the over-constrained value, in which
a node is forced both to 0 and to 1. This value indicates that a contradiction exists
between external assumptions on the circuit and its actual behavior. The set of values��� � � � � ��� � ��� forms a complete lattice with the partial order �	� � , �
� � , ��� �
and ��� � (see Figure 2 1. This order corresponds to set inclusion, where � represents
the set � � � � � , and � represents the empty set. As a result, the greatest lower bound
(the lattice’s meet)  corresponds to set intersection and the least upper bound (the lat-
tice’s join) � corresponds to set union. The Boolean operations AND, OR and NOT are
extended to the domain

�
as shown in Figure 3.

AND � 0 1 �
� � 0 � �
0 0 0 0 �
1 � 0 1 �
� � � � �

OR � 0 1 �
� � � 1 �
0 � 0 1 �
1 1 1 1 �
� � � � �

NOT
� �
0 1
1 0
� �

Figure 3. Quaternary operations

A state � of the circuit
�

is an assignment of values from
�

to all circuit nodes,
��� ��� � . Given two states � � , � � , we say that � � ��� ��� � ����� 	�� ����� � � 	 � �

1Some works refer to the partial order in which
�

is the smallest element in the lattice and � is the greatest.



� ��� ��� 	�� � � � � � 	 �	� � � � 	 ����� . A state is concrete if all nodes are assigned with
values out of � � � � � . A state � is an abstraction of a concrete state ��� if ��� � � .

A sequence � is any infinite series of states. We denote by � �	� � � � ��
 , the state
at time

�
in � , and by � �	� � � 	 � � � ��
 ��	 � � , the value of node 	 in the state � �� � .

����� � ��
 , denotes the suffix of � starting at time
�
. We say that � � ��� � � � ���������

� ��	 � � ��� � �	� � � 	 � � � ��� ������� �	��� � �� � ��� � �� ����� . Note that we refer to states and
sequences that contain � values as least elements w.r.t � .

In addition to the quaternary set of values � , STE uses Boolean symbolic variables
which enable to simulate many runs of the circuit at once. Let � be a set of symbolic
Boolean variables over the domain � � � � � . A symbolic expression over � is an expression
consisting of quaternary operations, applied to ��� � . A symbolic state over � is a
mapping which maps each node of

�
to a symbolic expression. Each symbolic state

represents a set of states, one for each assignment to the variables in � . A symbolic
sequence over � is a series of symbolic states. It represents a set of sequences, one for
each assignment to � . Given a symbolic sequence � and an assignment

�
to � ,

� � ���
denotes the sequence that is received by applying

�
to all symbolic expressions in � .

Given two symbolic sequences � � , � � over � , we say that � � ��� � if for all assignments�
to � ,

� � � � � � � � � � � .
Sequences may be incompatible with the behavior of

�
. A (symbolic) trajectory �

is a (symbolic) sequence that is compatible with the behavior of
�

[24]: let  "!�# � 	��
 �$� �
be the value of a node

� 	��
�� as computed according to the values of its source nodes in
� . It is required that for all nodes

� 	��
�� , � � 
�� � 	 � �% �!�# � 	��
 �&� � (strict equality is not
required in order to allow external assumptions on nodes values to be embedded into � ).
A trajectory is concrete if all its states are concrete. A trajectory � is an abstraction of a
concrete trajectory � � if � � �'� .

The difference between assigning an input with a symbolic variable and assigning
it with � is that a symbolic variable is used to obtain an accurate representation of the
value of the input. For example, the negation of a variable  is () whereas the negation
of � is � . In addition, if two different inputs are assigned with the same variable  in
a symbolic sequence � , then it implies that the two inputs have the same value in every
concrete sequence derived from � by applying to it an assignment

�
. However, if the

inputs are assigned with � , then it does not imply that they have the same value in any
concrete sequence corresponding to � .

Figure 4 describes a symbolic trajectory of the circuit from Figure 1 up to time 1.
The values given by the user are marked in bold, and include the input values and the
initial values of the latches. The notation  �*,+ � � � stands for "if  �* holds then 1 else � ".

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 -/. 1 -�0 1  �  � � 1 �
1 -21 � 0  �*�+ � � � � �  �  �  �

Figure 4. Four-valued Symbolic Simulation



3.3. Trajectory Evaluation Logic (TEL)

We now describe the Trajectory Evaluation Language (TEL) used to specify properties
for STE. This logic is a restricted version of the Linear Temporal Logic (LTL) [23],
where only the next time temporal operator is allowed.
A Trajectory Evaluation Logic (TEL) formula is defined recursively over � as follows:

� � � � 	 is ��� � ��� � ����� � � �	� �

where 	 � � , � is a Boolean expression over � and � is the next time operator. Note that
TEL formulas can be expressed as a finite set of constraints on values of specific nodes
at specific times. 
�� denotes the application of 
 next time operators. The constraints on� 	��
�� are those appearing in the scope of 
� . The maximal depth of a TEL formula

�
,

denoted depth(
�

), is the maximal time 
 for which a constraint exists in
�

on some node� 	��
�� , plus 1.
Usually, the satisfaction of a TEL formula

�
on a symbolic sequence � is defined

in the 2-valued truth domain [26], i.e.,
�

is either satisfied or not satisfied. In [18],
�

is
used also as a 4-valued truth domain for an extension of TEL. We also use a 4-valued
semantics. However, our semantic definition is different from [18] w.r.t � values. In [18],
a sequence � containing � values could satisfy

�
with a truth value different from � .

In our definition this is not allowed. We believe that our definition captures better the
intent behind the specification w.r.t contradictory information about the state space. The
intuition behind our definition is that a sequence that contains � value does not represent
any concrete sequence, and thus vacuously satisfies all properties.
Given a TEL formula

�
over � , a symbolic sequence � over � , and an assignment

�
to

� , we define the satisfaction of
�

as follows:
� � �$��� � ��� � � � ��� � � ��	 � � � � � ��� �	� � � 	 � � � . Otherwise:� � �$��� � 	 is � � � � � � � ��� � � � � 	 � � � � � �� � �$��� � 	 is � � � � � � � ��� � � � � 	 ���� � � � � and

� � ��� � � � � 	 � � � � � � �� � �$��� � 	 is � � � � � � � ��� � � � � 	 � � �� � �$��� ��� � ���
=

� ( � � � � � � �$��� � � �� � �$��� � � � � � � � =
� � �$��� � � � � � � ��� � � � �� � �$��� ��� ��� =
� � � � � � �

Note that given an assignment
�

to � ,
� � � � is a constant (0 or 1). In addition, the � truth

value is determined only according to
�

and � , regardless of
�

.
We define the truth value of ��� � � as follows:

� ��� � ��� � � � � � � � � �$��� � ��� � �� ��� � ��� � � � � � � � � �$��� � ��� �� � and
� � � � � �$��� � ��� � �� ��� � ��� � � � � � � � � �$��� � ��� �� � � ��� � and

� � � � � � ��� � ��� � �� ��� � ��� � � � � � � � � �$��� � ��� � �



It has been proved in [18] that the satisfaction relation is monotonic, i.e., for all TEL
formulas

�
, symbolic sequences � � � � � and assignments

�
to � , if

� � � � � � � � � � � then� � � � � � � ��� � � � �$� � � � ��� . This also holds for our satisfaction definition.

Theorem 3.1 [29] Given a TEL formula
�

and two symbolic sequences ��� and � � , if
� � � � � then

� � � � � ��� � � � � � � ��� .
It has been proved in [18] that every TEL formula

�
has a defining sequence, which

is a symbolic sequence � � so that
� � � � � ��� ��� , and for all � ,

� � � � ��� � � � � ��� if
and only if � ��� � . For example, ����� ��� is 	�
 is the sequence � ���� ��� 	�
 ��� ��� ��������� , where
� ���� ��� 	�
 is the state in which 	 equals

��� � � � � � ( � � � � , and all other nodes equal
� , and � � is the state in which all nodes equal � . � � may be incompatible with the
behavior of

�
.

The defining trajectory � � of
�

and
�

is a symbolic trajectory so that
� � � � � ��� �

� � � ��� and for all trajectories � of
�

,
� � � � ��� � � � � ��� if and only if � ��� � . The �

may arise in case of a contradiction between
�

and
�

. (Similar definitions for � � and
� � exist in [26] with respect to a 2-valued truth domain).

Given �
�
, �

�
is computed iteratively as follows: For all

�
, �

� �	� � is initialized to
� � �	� � . Next, the value of each node

� 	� � � is calculated according to its functionality and
the values of its source nodes. The calculated value is then incorporated into � � �	� � � 	 �
using the  operator. The computation of � � �	� � continues until no new values are derived
at time

�
. Note that since there are no combinational loops in

�
, it is guaranteed that

eventually no new node values at time
�

will be derived. An example of a computation of
� � is given in Example 1.

3.4. Verification in STE

Specification in STE is given by STE assertions. STE assertions are of the form � � �
� , where � (the antecedent) and � (the consequent) are TEL formulas. � expresses
constraints on circuit nodes at specific times, and � expresses requirements that should
hold on circuit nodes at specific times.

� � � � � � � � � if and only if for all concrete
trajectories � of

�
and assignments

�
to � ,

� � �$��� � � � � � implies that
� � �$��� � � � � � .

A natural verification algorithm for an STE assertion � ��� � is to compute the
defining trajectory ��� of

�
and � and then compute the truth value of ��� � � � . If� ��� � � � � � � � � ��� then it holds that

� � � � � ��� � � . If
� ��� � � � � � � then it

holds that
� �� � � � � � � � . If

� ��� � � � � � � , then it cannot be determined whether� � � � � ��� � � .
The case in which there is

�
so that

� � ��� � contains � is known as an antecedent
failure. The default behavior of most STE implementations is to consider antecedent
failures as illegal, and the user is required to change � in order to eliminate any � values.
In this paper we take the approach that supports the full semantics of STE as defined
above. That is, concrete trajectories

� � ��� � which include � are ignored, since they do
not satisfy � and therefore vacuously satisfy � � � � .

Note that although ��� is infinite, it is sufficient to examine only a bounded prefix
of length depth( � ) in order to detect � values in ��� . The first � value in ��� is the
result of the  operation on some node

� 	��
�� , where the two operands have contradicting
assignments 0 and 1. Since

� ���
depth

� � � � ��� �	� � � ��� , it must hold that 
 � depth
� � � .

The truth value of ��� � � � is determined as follows:



1. If for all
�

, there exists
� ��	 so that

� � ��� � �	� � � 	 � � � , then
� ��� � � � � � � .

2. Otherwise, if there exists
�

such that for some
� � � ��	 � � ,

� � ��� � �	� � � 	 � �
� � � � � and

� � ��� � �	� � � 	 � � � � � � � � and
� � � � � �	� � � 	 � �� � � ��� � �	� � � 	 � , and

� � � � �
does not contain � , then

� ��� � � � � � � .
3. Otherwise, if there exists

�
such that for some

� � � ��	 � � ,
� � � � � �	� � � 	 � � �

and
� � � � � �	� � � 	 � � � � � � � , and

� � ��� � does not contain � , then
� ��� � � � � � � .

4. Otherwise,
� � � � � � � � � .

Note that, similarly to detecting � , in order to determine the truth value of � � � �
� , it is sufficient to examine only a bounded prefix of length depth

� � � , since
� � �

depth
� � � � � � �	� � ��� � .

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 �  � �  � + � � � � � � �
1 � � � � � � 1  �  �

Figure 5. The Defining Trajectory �
�

Example 1 Consider again the circuit
�

in Figure 1. Also consider the STE assertion
� ��� � , where � � (In1 is 0) � (In3 is  � � � (N3 is 1), and � ��� (N6 is 1). Figure 5
describes the defining trajectory ��� of

�
and � , up to time 1. It contains the symbolic

expression of each node at time 0 and 1. The state � � �	� � is represented by row
�
. The

notation  � + � � � stands for “if  � holds then 1 else � ”. � � is the sequence in which
all nodes at all times are assigned � , except for node N6 at time 1, which is assigned 1.� ��� � � � � � � due to those assignments in which  � � � . We will return to this example
in Section 6.

3.5. STE Implementation

Most widely used STE implementations are BDD-based (e.g., [27]). BDDs are used to
represent the value of each node

� 	��
�� as a function of the circuit’s inputs. Since node
values range over the quaternary domain � � � � ��� � ��� , two BDDs are used to represent
the function of each node

� 	��
�� . This representation is called dual rail.
The dual rail of a node

� 	��
�� in ��� consists of two functions defined from � to
� � � � � : � ��� � and

�����
� , where � is the set of symbolic variables appearing in � . For each

assignment
�

to � , if
� ���
� � (

�����
� holds under

�
, then

� 	��
�� equals � under
�

. Similarly,
( � ��� � �

������
� , (
� ���
� � (

�����
� and

� ���
� �
������
� stand for 0, � and � under

�
, respectively.

Likewise, � ��� � and �
���
� denote the dual rail representation of

� 	��
�� in � � . Note that
� ��� � ���

���
� never holds, since we always assume that � is not self-contradicting.

The BDDs for
� ���
� and

�����
� can be computed for each node

� 	��
�� , based on the
node’s functionality and the BDDs of its input nodes. Usual BDD operations are suf-
ficient. Once this computation terminates, the BDDs for

� ���
� ,
������
� are compared with

� ��� � , �
���
� in order to determine the truth value of the specification � ��� � on

�
. In

the following section, we further elaborate on the use of the dual rail representation in
computing the STE result.



Example 2 Consider the symbolic trajectory described in Figure 4, where � �
�, � �& � �& �* � .

� The value of node
��� 	� � � � ,  * , is given by the dual rail representation� �� � � � � � � � �  * , ���� � � � � � � � � () * .� The value of node

��� 	�� � � � , � , is given by the dual rail representation
� �� � � � � � � � �

� , ���� � � � � � � � � � .� The value of node
� 
 � � � � ,  * + � � � , is given by the dual rail representation� �� � � � � � � �  * , ���� � � � � � � � � .

4. Choosing Our Automatic Refinement Methodology

Intuitively, the defining trajectory � � of a circuit
�

and an antecedent � is an abstraction
of all concrete trajectories of

�
on which the consequent � is required to hold. This

abstraction is directly derived from � . If
� ��� � � � � � � , then � is too coarse, that is, it

contains too few constraints on the values of circuit nodes. Our goal is to automatically
refine � (and subsequently � � ) in order to eliminate the � truth value.

In this section we examine the requirements that should be imposed on automatic re-
finement in STE. We then describe our automatic refinement methodology, and formally
state the relationship between the two abstractions, derived from the original and the re-
fined antecedent. We refer only to STE implementations that compute � � . We assume
that antecedent failures are handled as described in Section 3.

We first describe the handling of � values which is required for the description of
the general abstraction and refinement process in STE. In the dual-rail notation given
earlier, the Boolean expression ( � ��� � � (

�����
� represents all assignments

�
to � for which� � ��� � � 
�� � 	 � �� � . Thus, the Boolean expression 	��	� 
 ��
 ����

� 
� �
� ( � ��� � � (

�����
� � rep-

resents all assignments
�

to � for which
� � ��� � does not contain � . It is sufficient to

examine only nodes
� 	��
�� on which there exists a constraint in � . This is because there

exists a node
� 	��
�� and an assignment

�
to � such that

� � ��� � � 
�� � 	 � � � only if there
exists a node

� 	 � ��
 � � on which there exists a constraint in � and
� � ��� � � 
 � � � 	 � � � � . That

is, the constraint on
� 	 � ��
 � � in � contradicts the behavior of

�
. Thus,

� ��� � � � � � � if
and only if 	���� 
 � � .

We now describe how the abstraction and refinement process in STE is done tra-
ditionally, with the addition of supporting � in ��� . The user writes an STE assertion
� ��� � for

�
, and receives a result from STE. If

� ��� � � � � � � , then the set of
all

�
so that

� � �&� � � � � � � � is provided to the user. This set, called the symbolic
counterexample, is given by the Boolean expression over � :

���
����
� 
� �

���
� ���� � � (

� ���
� �
� ���
� � �

�
�
���
� �
� ���
� � (

� ���
� ����� � 	��	� 
��

Each assignment
�

in this set represents a counterexample
� � ��� � . The counterexamples

are given to the user to analyze and fix.
If
� ��� � � � � � � , then the set of all

�
so that

� � �$��� � � � � � � is provided to the
user. This set, called the symbolic incomplete trace, is given by the Boolean expression
over � :



� �
����
� 
� �

���
� ���� � ���

���
� � � (

� ���
� � (

� ���
� ��� � 	��	� 
��

The user decides how to refine the specification in order to eliminate the partial informa-
tion that causes the � truth value. If

� ��� � � � � � � , then the assertion passes vacuously.
Otherwise,

� ��� � � � � � � and the verification completes successfully.
We point out that, as in any automated verification framework, we are limited by

the following observations. First, there is no automatic way to determine whether the
provided specification is in accord with the user’s intention. Therefore, we assume it
is, and we make sure that our refined assertion passes on the concrete circuit if and
only if the original assertion does. Second, bugs cannot automatically be fixed. Thus,
counterexamples are analyzed by the user.

We emphasize that automatic refinement is valuable even when it eventually results
in a fail. This is because counterexamples present specific behaviors of

�
and are sig-

nificantly easier to analyze than incomplete traces.
As mentioned before, we must assume that the given specification is correct. Thus,

automatic refinement of � must preserve the semantics of � ��� � : Let � ����� ��� �
denote the refined assertion. Let ��� 	 � � � � denote the set of all concrete trajectories of�

. We require that � ����� ��� � holds on ��� 	 � � � � if and only if � ��� � holds on��� 	 � � � � .
In order to achieve the above preservation, we choose our automatic refinement as

follows. Whenever
� ��� � � � � � � , we add constraints to � that force the value of

input nodes at certain times (and initial values of latches) to the value of fresh symbolic
variables, that is, symbolic variables that do not already appear in � . By initializing an
input

�� 	��
�� with a fresh symbolic variable instead of � , we represent the value of
�	� 	��
��

accurately and add knowledge about its effect on
�

. However, we do not constrain input
behavior that was allowed by � , nor do we allow input behavior that was forbidden by
� . Thus, the semantics of � is preserved. In Section 5, a small but significant addition is
made to our refinement technique.

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. Let � be the antecedent we want to refine. � is
defined over a set of variables � . Let � ����� be a set of symbolic variables so that � �
� ����� �
	 . Let � �� � � be the set of inputs at specific times, selected for refinement. Let
� ����� be a refinement of � over ��� � ����� , where � ����� is received from � by attaching
to each input

�	� 	��
�� ��� �� � � a unique variable  �
���
� � �

����� and adding conditions to �
as follows:

� ����� � � � ��
�
��
� 
��� �������


 � � � � �	� 	 is  �
��
� ��� �

where � � ( � if
�	� 	��
�� has a constraint 
 � � � � �� 	 is � ��� in � for some Boolean

expressions
�

and � over � , and � � � otherwise (
�� 	��
�� has no constraint in � ). The

reason we consider � is to avoid a contradiction between the added constraints and the
original ones, due to constraints in � of the form

� � �
.

Let � ��� ��� be the defining trajectory of
�

and � ����� , over � � � ����� . Let
�

be an
assignment to � . Then ��� 	 � � � ����� � � � � � denotes the set of all concrete trajectories �
for which there is an assignment

� �
to � ����� so that

� � � � � � � ����� ��� � is an abstraction
of � . Since for all concrete trajectories � ,

� � � � � � � �$� � � � ����� � � � � � � �



� � � � � � � ����� ��� � , we get that ��� 	 � � � ����� � � � � � are exactly those � for which there is� �
so that

� � � � � � � �&��� � � ����� � � � .
The reason the trajectories in � � 	 � � � ����� � � � � � are defined with respect to a single

extension to the assignment
�

rather than all extensions to
�

is that we are interested
in the set of all concrete trajectories that satisfy

� � � ����� � with the truth value � . Since
every trajectory � � ��� 	 � � � ����� � � � � � is concrete, it can satisfy

� � � ����� � with the truth
value � only with respect to a single assignment to � ����� . The fact that there are other
assignments to � ����� for which � does not satisfy

� � � ����� � with the truth value � is not
a concern, since the truth value of � ����� ��� � is determined only according to the
concrete trajectories � and assignments

�
to � � � ����� so that

� � �&��� � � ����� � � � .
Theorem 4.1 1. For all assignments

�
to � , � � 	 � � � � � � � � � ��� 	 � � � ����� � � � � � .

2. If
� ��� � ��� � � � � � � then for all

�
it holds that

� � � ��� 	 � � � � � � � � � � � �$� � �
� � � � .

3. If there is
� �

to � ����� and ��� ��� 	 � � � ����� � � � � � � � � so that
� � � � � � � �$� � �

� ����� � ��� but
� � � � � � � �&� � � � � � � then � � ��� 	 � � � � � � � � and

� � �&� � �
� � � � and

� � �$��� � � � � � .

Theorem 4.1 implies that if � ����� ��� � holds on all concrete trajectories of
�

, then
so does � ��� � . Moreover, if � ����� � � � yields a concrete counterexample � � , then

� � is also a concrete counterexample w.r.t � ��� � . The proof of Theorem 4.1 can be
found in [29].

5. Selecting Inputs for Refinement

After choosing our refinement methodology, we need to describe how exactly the re-
finement process is performed. We assume that

� ��� � � � � ��� , and thus automatic
refinement is activated. Our goal is to add a small number of constraints to � forcing
inputs to the value of fresh symbolic variables, while eliminating as many assignments�

as possible so that
� � �$��� � � � � � � . The refinement process is incremental - inputs�	� 	��
�� that are switched from � to a fresh symbolic variable will not be reduced to � in

subsequent iterations.

5.1. Choosing Our Refinement Goal

Assume that
� ��� � � � � � � , and the symbolic incomplete trace is generated. This

trace contains all assignments
�

for which
� � �$��� � � � � � � . For each such assignment�

, the trajectory
� � � � � is called an incomplete trajectory. In addition, this trace may

contain multiple nodes that are required by � to a definite value (either 0 or 1) for some
assignment

�
, but equal � . We refer to such nodes as undecided nodes. We want to keep

the number of added constraints small. Therefore, we choose to eliminate one undecided
node

� 	��
�� in each refinement iteration, since different nodes may depend on different
inputs. Our motivation for eliminating only part of the undecided nodes is that while it
is not sufficient for verification it might be sufficient for falsification. This is because
an eliminated � value may be replaced in the next iteration with a definite value that
contradicts the required value (a counterexample).



Algorithm 1 EliminateIrrelevantPIs(
� 	��
��

sinks_relevant �
� ��� �

��� 
���	� � ����� � 
 relevant � �
� �

relevant �� � � sinks_relevant � ( ����� � � (
� ���
�

We suggest to choose an undecided node
� 	��
�� with a minimal number of inputs in

its BCOI. Out of those, we choose a node with a minimal number of nodes in its BCOI.
Our experimental results support this choice. The chosen undecided node is our refine-
ment goal and is denoted

� � � � 
 ��
 
�� . We also choose to eliminate at once all incomplete
trajectories in which

� � � � 
 ��
 
�� is undecided. These trajectories are likely to be eliminated
by similar sets of inputs. Thus, by considering them all at once we can considerably
reduce the number of refinement iterations, without adding too many variables.

The Boolean expression
� ( � �� �
� � � � � �2( ���� ��� � � � � � � � �� ��� � � � � � � �� �
� � � � � ��� � 	��	� 
 represents

the set of all
�

for which
� � � � 
 ��
 
�� is undecided in

� � ��� � . Our goal is to add a small
number of constraints to � so that

� � � � 
 ��
 
�� will not be � whenever
�
� �� ��� � � � � � � �� �
� � � � � �

holds.

5.2. Eliminating Irrelevant Inputs

Once we have a refinement goal
� � � � 
 ��
 
�� , we need to choose inputs

�� 	��
�� for which
constraints will be added to � . Naturally, only inputs in the BCOI of

� � � � 
 ��
 
�� are con-
sidered, but some of these inputs can be safely disregarded.

Consider an input
�� 	��
�� , an assignment

�
to � and the defining trajectory ��� . We

say that
�� 	��
�� is relevant to

� � � � 
 ��
 
�� under
�

, if there is a path of nodes � from
�	� 	��
��

to
� � � � 
 ��
 
�� in (the graph of)

�
, so that for all nodes

� 	��
 � � in � ,
� � ��� � � 
 � � � 	 � � � .�	� 	��
�� is relevant to

� � � � 
 ��
 
�� if there exists
�

so that
�� 	��
�� is relevant to

� � � � 
 ��
 
��
under

�
.

For each
�	� 	��
�� , we compute the set of assignments to � for which

�	� 	��
�� is relevant
to
� � � � 
 ��
 
�� . The computation is performed recursively starting from

� � � � 
 ��
 
�� . � � � � 
 ��
 
��
is relevant when it is � and is required to have a definite value:

� ( � �� ��� � � � � � ( � �� ��� � � � � � � � �� �
� � � � � � � �� ��� � � � � ��� � 	��	� 
��
A source node

� 	��
�� of
� � � � 
 ��
 
�� is relevant whenever

� � � � 
 ��
 
�� is relevant and
� 	��
��

equals � . Let � � 
 � 	��
�� return the sink nodes of
� 	��
�� that are in the BCOI of

� � � � 
 ��
 
�� .
Proceeding recursively as described in Algorithm 1, we compute for each

�� 	��
�� the set
of assignments in which it is relevant to

� � � � 
 ��
 
�� .
For all

�
that are not in relevant �

��
� , changing

�	� 	��
�� from � to 0 or to 1 in
� � ��� �

can never change the value of
� � � � 
 ��
 
�� in

� � ��� � from � to 0 or to 1. To see why this
is true, note that if

�
is not in relevant �

��
� it means that there is at least one node

� 	 � ��
 � �
on a path in

�
from

�� 	��
�� to
� � � � 
 ��
 
�� whose value under

�
is definite ( � or � ). Since

all nodes in
�

represent monotonic functions, changing the value of
�� 	��
�� in

�
from �

to � or � will not change the value of
� 	 � ��
 � � and therefore will not change the value of� � � � 
 ��
 
�� .

Consequently, if
�� 	��
�� is chosen for refinement, we can optimize the refinement by

associating
� 	��
�� with a fresh symbolic variable only when relevant �

��
� holds. This can

be done by adding the following constraint to the antecedent:



relevant �
��
� � ��� �� 	 is  �

��
� ���

If
�	� 	��
�� is chosen in a subsequent iteration for refinement of a new refinement goal� � � � 
 � ��
 
 � � , then the previous constraint is extended by disjunction to include the condi-

tion under which
�	� 	��
�� is relevant to

� � � � 
 � ��
 
 � � . Theorem 4.1 holds also for the opti-
mized refinement. Let � � be the set of inputs of

�
. The set of all inputs that are relevant

to
� � � � 
 ��
 
�� is

� � � � �
� � � � � 
 � � �� 	��
�� � � 	 � � � � relevant �
��
� �
� � � �

Adding constraints to � for all relevant inputs
�	� 	��
�� will result in a refined antecedent

� ����� . In the defining trajectory of
�

and � ����� , it is guaranteed that
� � � � 
 ��
 
�� will not

be undecided. Note that � � � � ��� � � � � 
 is sufficient but not minimal for elimination of all un-
desired � values from

� � � � 
 ��
 
�� . Namely, adding constraints for all inputs in � � � � �
� � � � � 

will guarantee the elimination of all cases in which

� � � � 
 ��
 
�� is undecided. However,
adding constraints for only a subset of � � � � ��� � � � � 
 may still eliminate all such cases.

The set � � � � �
� � � � � 
 may be valuable to the user even if automatic refinement does not
take place, since it excludes inputs that are in the BCOI of

� � � � 
 ��
 
�� but will not change
the verification results w.r.t

� � � � 
 ��
 
�� .
5.3. Heuristics for Selection of Important Inputs

If we add constraints to � for all inputs
�	� 	��
�� � � � � � �
� � � � � 
 , then we are guaranteed to

eliminate all cases in which
� � � � 
 ��
 
�� was equal to � while it was required to have a

definite value. However, such a refinement may add many symbolic variables to � , thus
significantly increase the complexity of the computation of the defining trajectory. We
can reduce the number of added variables at the cost of not guaranteeing the elimination
of all undesired � values from

� � � � 
 ��
 
�� , by choosing only a subset of � � � � �
� � � � � 
 for
refinement. As mentioned before, a � or a � truth value may still be reached even without
adding constraints for all relevant inputs.

We apply the following heuristics in order to select a subset of � � � � ��� � � � � 
 for refine-
ment. Each node

� 	��
�� selects a subset of � � � � ��� � � � � 
 as candidates for refinement, held
in candidates ��� � . The final set of inputs for refinement is selected out of candidates

�
�
� �

�
� � .� � denotes the set of inputs

�	� 	��
�� of
�

. Each input in � � � � �
� � � � � 
 selects itself as a can-
didate. Other inputs have no candidates for refinement. Let out

� 	��
�� return the sink nodes
of
� 	��
�� that are in the BCOI of

� � � � 
 ��
 
�� , and let degin
� 	��
�� return the number of source

nodes of
� 	��
�� that are in the BCOI of

� � � � 
 ��
 
�� . Given a node
� 	��
�� , sourceCand ��� �

denotes the sets of candidates of the source nodes of
� 	��
�� , excluding the source nodes

that do not have candidates. The candidates of
� 	��
�� are determined according to the

following conditions:

1. If there are candidate inputs that appear in all sets of � � � � � � � ! 	 � �� � , then they
are the candidates of

� 	��
�� .
2. Otherwise, if

� 	��
�� has source nodes that can be classified as control and data,
then the candidates of

� 	��
�� are the union of the candidates of its control source
nodes, if this union is not empty. For example, a latch has one data source node
and at least one control source node - its clock. The identity of control source
nodes is automatically extracted from the netlist representation of the circuit.



3. If none of the above holds, then the candidates of
� 	��
�� are the inputs with the

largest number of occurrences in � � � � � � � ! 	 � �� � .
We prefer to refine inputs that are candidates of most source nodes along paths from

the inputs to the refinement goal, i.e., influence the refinement goal over several paths.
The logic behind this heuristic is that an input that has many paths to the refinement goal
is more likely to be essential to determine the value of the refinement goal than an input
that has less paths to the refinement goal.

We prefer to refine inputs that affect control before those that affect data since the
value of control inputs has usually more effect on the verification result. Moreover, the
control inputs determine when data is sampled. Therefore, if the value of a data input is
required for verification, it can be restricted according to the value of previously refined
control inputs. In the final set of candidates, sets of nodes that are entries of the same
vector are treated as one candidate. Since the heuristics did not prefer one entry of the
vector over the other, then probably only their joint value can change the verification
result. Additional heuristics choose a fixed number of # candidates out of the final set.

6. Detecting Vacuity and Spurious Counterexamples

In this section we raise the problem of hidden vacuity and spurious counterexamples that
may occur in STE. This problem was never addressed before in the context of STE.

In STE, the antecedent � functions both as determining the level of the abstraction
of
�

, and as determining the trajectories of
�

on which � is required to hold. An
important point is that the constraints imposed by � are applied (using the  operator)
to abstract trajectories of

�
. If for some node

� 	��
�� and assignment
�

to � , there is a
contradiction between

� � ��� � � 
�� � 	 � and the value propagated through
�

to
� 	��
�� , then� � ��� � � 
�� � 	 � � � , indicating that there is no concrete trajectory � so that

� � �$� � � � � �
� .

In this section we point out that due to the abstraction in STE, it is possible that
for some assignment

�
to � , there are no concrete trajectories � so that

� � �$� � � � � �
� , but still

� � ��� � does not contain � values. This is due to the fact that an abstract
trajectory may represent more concrete trajectories than the ones that actually exist in�

. Consequently, it is possible to get
� � �$��� � � � � � � � � � � without any indication that

this result is vacuous, i.e., for all concrete trajectories � ,
� � �&� � � � � � � . Note that

this problem may only happen if � contains constraints on internal nodes of
�

. Given a
constraint ! on an input, there always exists a concrete trajectory that satisfies ! (unless
! itself is a contradiction, which can be easily detected). This problem exists also in STE
implementations that do not compute � � , such as [24].

Example 3 We return to Example 1 from Section 3. Note that the defining trajectory � �
does not contain � . In addition,

� ��� � � � � � � due to the assignments to � in which
 � � � . However, � never holds on concrete trajectories of

�
when  � � � , since

N3 at time 0 will not be equal to � . Thus, the counterexample is spurious, but we have
no indication of this fact. The problem occurs when calculating the value of (N3,0) by
computing �� � � � . If � had contained a constraint on the value of In2 at time 0, say
(In2 is  � � , then the value of (N3,0) in ��� would have been

�  � �) � �  � � �  � �) ��+ � � � � ,
indicating that for all assignments in which  � � � or  � � � , ��� does not correspond
to any concrete trajectory of

�
.



Vacuity may also occur if for some
�

to � , � under
�

imposes no requirements. This is
due to constraints of the form � � �

where
� � � � is 0.

An STE assertion � ��� � is vacuous in
�

if for all concrete trajectories � of
�

and assignments
�

to � , either
� � �&� � � � � � � , or � under

�
imposes no requirements.

This definition is compatible with the definition in [5] for ACTL.
We say that � ����� passes vacuously on

�
if � � � � is vacuous in

�
and� ��� � � � � � � � � � � . A counterexample � is spurious if there is no concrete trajectory

� � of
�

so that � � � � . Given ��� , the symbolic counterexample � � is spurious if
for all assignments

�
to � in � � , � � ��� � is spurious. We believe that this definition is

more appropriate than a definition in which � � is spurious if there exists
�

that satisfies
� � and

� � ��� � is spurious. The reason is that the existence of at least one non-spurious
counterexample represented by � � is more interesting than the question whether each
counterexample represented by � � is spurious or not.

We say that � ��� � fails vacuously on
�

if
� ��� � � � � � � and � � is spurious.

As explained before, vacuity detection is required only when � constrains internal
nodes. It is performed only if

� ��� � � � � � � � � � � (if
� ��� � � � � � � then surely

� ��� � passes vacuously). In order to detect non-vacuous results in STE, we need to
check whether there exists an assignment

�
to � and a concrete trajectory � of

�
so

that � under
�

imposes some requirement and
� � �$� � � � � � � . In case the original

STE result is fail, namely,
� � � � � � � � � , � should also constitute a counterexample for

� ��� � . That is, we require that
� � �&��� � � � � � .

We propose two different algorithms for vacuity detection. The first algorithm uses
Bounded Model Checking (BMC) [6] and runs on the concrete model. The second al-
gorithm uses STE and requires automatic refinement. The algorithm that uses STE takes
advantage of the abstraction in STE, as opposed to the first algorithm which runs on the
concrete model. In case non-vacuity is detected, the trajectory produced by the second
algorithm (which constitutes either a witness or a counterexample) may not be concrete.
However, it is guaranteed that there exists a concrete trajectory of which the produced
trajectory is an abstraction. The drawback of the algorithm that uses STE, however, is
that it requires automatic refinement.

6.1. Vacuity Detection using Bounded Model Checking

Since � can be expressed as an LTL formula, we can translate � and
�

into a Bounded
Model Checking (BMC) problem. The bound of the BMC problem is determined by the
depth of � . Note that in this BMC problem we search for a satisfying assignment for � ,
not for its negation. Additional constraints should be added to the BMC formula in order
to fulfill the additional requirements on the concrete trajectory.

For detection of vacuous pass, the BMC formula is constrained in the following
way: Recall that

�
� ��� � � �

���
� � denotes the dual rail representation of the requirement on the

node
� 	��
�� in � . The Boolean expression � ��� � � �

���
� represents all assignments

�
to �

under which � imposes a requirement on
� 	��
�� . Thus,

� �����
� 
� � �

���
� � �

���
� represents all

assignments
�

to � under which � imposes some requirement. This expression is added
as an additional constraint to the BMC formula. If BMC finds a satisfying assignment
to the resulting formula, then the assignment of BMC to the nodes in

�
constitutes a

witness indicating that � � � � passed non-vacuously. Otherwise, we conclude that
� ��� � passed vacuously.



For detection of vacuous fail, the BMC formula is constrained by conjunction with
the (symbolic) counterexample � � . For STE implementations that compute � � , � � �� ����

� 
� �
���
� ��� � � (

� ���
� �
�����
� � �

�
�
���
� �
� ���
� � (

�����
� ��� . There is no need to add the 	��	� 


constraint that guarantees that none of the nodes equals � , since the BMC formula runs
on the concrete model, and thus the domain of the nodes in the BMC formula is Boolean.
If BMC finds a satisfying assignment to the resulting formula, the assignment of BMC
to the nodes in

�
constitutes a concrete counterexample for � ��� � . Otherwise, we

conclude that � ��� � failed vacuously.
Vacuity detection using BMC is an easier problem than solving the original STE

assertion � � � � using BMC. The BMC formula for � � � � contains the following
constraints on the values of nodes:

� The constraints of � .� The constraints of
�

on nodes appearing in � .� The constraints of
�

on nodes appearing in � .� A constraint on the values of the nodes appearing in � that guarantees that at least
one of the requirements in � does not hold.

On the other hand, the BMC formula for vacuity detection contains only the first
two types of constraints on the values of nodes. Therefore, for vacuity detection using
BMC, only the BCOI of the nodes in � is required, whereas for solving the original STE
assertion � � � � using BMC, both the BCOI of the nodes appearing in � and the
BCOI of the nodes appearing in � are required.

6.2. Vacuity Detection using Symbolic Trajectory Evaluation

For vacuity detection using STE, the first step is to split � into two different TEL for-
mulas: � �

�
is a TEL formula that contains exactly all the constraints of � on inputs, and

� ��� � is a TEL formula that contains exactly all the constraints of � on internal nodes. If
there exists an assignment

�
to � so that

� � �&� �
� � � � � ��� � � � � , then we can conclude

that there exists a concrete trajectory of
�

that satisfies � . Note that since � �
�

does
not contain constraints on internal nodes, it is guaranteed that no hidden vacuity occurs.
However, it is also necessary to guarantee that in case

� � � � � � � � � , � under
�

im-
poses some requirement, and in case

� ��� � � � � � � , then
� � ���

� � � should constitute a
counterexample. Namely,

� � � � �� � , where � � is the symbolic counterexample.
If we cannot find such an assignment

�
, this does not necessarily mean that the result

of � ��� � is vacuous: if there are assignments
�

to � for which
� � �&���

� � � � � ��� � � �
� , then the trajectory

� � ���
� � � is potentially an abstraction of a witness or a concrete

counterexample for � ��� � . However, it is too abstract in order to determine whether
or not � �	� � holds on it. If we refine � �

�
to a new antecedent as described in Section 4,

then it is possible that the new antecedent will yield more refined trajectories that contain
enough information to determine whether they indeed represent a witness or concrete
counterexample.

Algorithm 2 describes vacuity detection using STE. It receives the original an-
tecedent � and consequent � . In case

� ��� � � � � � � , it also receives the symbolic
counterexample � � . inputConstraints is a function that receives a TEL formula � and
returns a new TEL formula that consists of the constraints of � on inputs. Similarly,
internalConstraints returns a new TEL formula that consists of the constraints of � on



internal nodes. Note that since �/�
�

does not contain constraints on internal nodes, then
���

� � does not contain � values, and thus we can assume that
� ���
� �
�����
� never holds. By

abuse of notation,
� ���
� and

�����
� are here the dual rail representation of a node

� 	��
�� in

���
� � . Similarly, we use � ��� � and �

���
� for the dual rail representation of a node

� 	��
�� in
the defining sequence of either � or � ��� � , according to the context.

Algorithm 2 STEVacuityDetection( � � � � � � )
1: � �

�
� inputConstraints

� � �
2: � ��� � � internalConstraints

� � �
3:

�
�

 ����

� 
� ����� �
���
� ��� � �

� ���
� � �

�
�
���
� �
�����
� ���

{
�

represents all assignments to � for which
� � �$���

� � � � � ��� � � � � }
4: if

� ��� � � � � � � � ��� � �����
� 
� �

�
� ��� � ���

���
� ��� �

� � �� � then
5: return non-vacuous
6: else if

� � � � � � � � � � ��� � � � � � �� � � then
7: return non-vacuous
8: end if
9: if

� � � � � �&���
� � � � � ��� � � � � then

10: � �
�

� refine
� � �

�
�

11: goto 3
12: else
13: return vacuous
14: end if

The algorithm computes the set
�

, which is the set of all assignments to � for which� � �$���
� � � � � ��� � � � � . Lines 4 and 6 check whether there exists a suitable assignment�

in
�

that corresponds to a witness or to a counterexample. If such a
�

exists, then the
result is non-vacuous. If no such

�
exists, then if there exist assignments for which the

truth value of � ��� � on ���
� � is � , then � �

�
is refined and

�
is recomputed. Otherwise,

the result is vacuous.
Note that in case

� � � � � � � � � , we check whether
�

contains an assignment
that constitutes a counterexample by checking that the intersection between

�
and the

symbolic counterexample � � produced for
� ����� � � � is not empty. However, as a result

of the refinement,
�

may contain new variables that represent new constraints of the
antecedent that were not taken into account when computing � � . The reason that checking
whether

� � � � � � �� � still returns a valid result is as follows. By construction, we know
that for all assignments

� � �
,
� � �&���

� � � � � ��� � � � � . Since
� � �&���

� � � � � �
� � � � ,

we get that
� � �&� �

� � � � � � � � � ��� � � � � , where � �
�
� � �	� � is the TEL formula that

contains exactly all the constraints in �/�
�

and � ��� � . Since
� � �&���

� � � � � �	� � � � � ,
we get that

� � ���
� � � does not contain � values. Therefore, for all nodes

� 	��
�� so that� � ��� � � 
�� � 	 � � � � � � � � � � � it holds that
� � ���

� � � � 
�� � 	 � � � . Thus, for all
� � � � � , � � is

a counterexample also with respect to the antecedent � �
�
� � �	� � .

Besides the need for refinement, an additional drawback of Algorithm 2 in compar-
ison with vacuity detection using BMC, is that it attempts to solve a much harder prob-
lem - it computes a set of trajectories that constitute witnesses or concrete counterex-
amples, whereas in vacuity detection using BMC only one such trajectory is produced
- a satisfying assignment to the SAT formula. This is in analogy to using STE versus



using BMC for model checking - STE finds the set of all counterexamples for � � � � ,
while BMC finds only one counterexample. However, the advantage of Algorithm 2 is
that it exploits the abstraction in STE, whereas vacuity detection using BMC runs on the
concrete model.

In [29], vacuity detection for SAT-based STE is presented as well.

6.3. Preprocessing for Vacuity Detection

There are some cases in which even if there exist constraints in � on internal nodes,
vacuity detection can be avoided by a preliminary analysis based on the following obser-
vation: hidden vacuity may only occur if for some assignment

�
to � , an internal node� 	��
�� is constrained by � to either 0, or 1, but its value as calculated according to the

values of its source nodes is � . We call such a node
� 	��
�� a problematic node. For ex-

ample, in Example 1 from Section 3, the value of (N3,0) as calculated according to its
source nodes is � , and it is constrained by � to 1.

In order to avoid unnecessary vacuity detection, we suggest to detect all problematic
nodes as follows. Let

� 	 
 � � � denote all internal nodes
� 	��
�� on which there exists a

constraint in � . Let � ��� � and � � �� � denote the dual rail representation of the node
� 	��
��

in � � . Let � ��� � and � � �� � denote the dual rail representation of the value of
� 	��
�� as

calculated according to the values of its source nodes in ��� . Then the Boolean expression� ����
� 
� � � � � � 


���
� � �� � ���

���
� � � (��

���
� � (��

� ��
� � represents all assignments to � for which

there exists a problematic node
� 	��
�� . If this Boolean expression is identical to 0, then

no problematic nodes exist and vacuity detection is unnecessary.

7. Experimental Results

We implemented our automatic refinement algorithm AutoSTE on top of STE in Intel’s
FORTE environment [27]. AutoSTE receives a circuit

�
and an STE assertion � � �

� . When
� ��� � � � � � � , it chooses a refinement goal

� � � � 
 ��
 
�� out of the undecided
nodes, as described in Section 5. Next, it computes the set of relevant inputs

�� 	��
�� . The
Heuristics described in Section 5 are applied in order to choose a subset of those inputs.
In our experimental results we restrict the number of refined candidates in each iteration
to 1. � is changed as described in Section 5 and STE is rerun on the new assertion.

We ran AutoSTE on two different circuits, which are challenging for Model Check-
ing: the Content Addressable Memory (CAM) from Intel’s GSTE tutorial, and IBM’s
Calculator 2 design [31]. The latter has a complex specification.Therefore, it constitutes
a good example for the benefit the user can gain from automatic refinement in STE. All
runs were performed on a 3.2 GHz Pentium 4 computer with 4 GB memory.

A detailed description of the experiments can be found in [29].

8. Conclusions and Future Work

This work describes a first attempt at automatic refinement of STE assertions. We have
developed an automatic refinement technique which is based on heuristics. The refined
assertion preserves the semantics of the original assertion. We have implemented our



automatic refinement in the framework of Forte, and ran it on two nontrivial circuits of
dissimilar functionality. The experimental results show success in automatic verification
of several nontrivial assertions.

Another important contribution of our work is identifying that STE results may hide
vacuity. This possibility was never raised before. We formally defined STE vacuity and
proposed two methods for vacuity detection.

Additional work is needed in order to further evaluate the suggested automatic re-
finement on industrial-size examples of different functionality. Such an evaluation is very
likely to result in new heuristics. A preliminary work has recently been done for STE
in [12] and for GSTE in [11].

We would also like to implement our suggested vacuity detection algorithms and
compare their performance. In addition, we would like to develop an automatic refine-
ment techniques to SAT based STE [33,24,17], and integrate SAT based refinement tech-
niques [22,10].
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