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Abstract.

This paper presents two frameworks for abstraction-refinement in
model checking. The first is the CounterExample-Guided Abstraction-
Refinement (CEGAR) which can verify universal fragments of temporal
logics and is based on a 2-valued semantics of temporal logics . The
other is the Three-valued Abstraction-Refinement (TVAR) and is based
on a 3-valued semantics of these logics.

We also present an application of the 3-valued framework for fully au-
tomatic compositional model checking. Based on this and other success-
ful applications of the 3-valued framework we conclude that the addi-
tional power it provides is worth the extra efforts of having non-standard
definitions and algorithms.
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1. Introduction

In this paper we present two frameworks for abstraction-refinement in model
checking, based on two different semantics for temporal logics: The 2-valued and
the 3-valued semantics. We then show how to exploit the 3-valued framework for
compositional model checking.

Model checking [10] is an efficient procedure for automatic system verification.
Given a finite-state model of a system and a desired property, it checks whether
the system satisfies the property. Model checking is widely used for hardware
and for software verification. Its main limitation, however, is the state explosion
problem which refers to its high memory requirements.

One of the most useful approaches to fighting the state explosion problem
is abstraction. Abstraction hides some of the system details that are considered
irrelevant for the checked property. An abstract model is then constructed in a way
which guarantees preservation of the checked property. That is, from the truth
value of the property on the abstract model we can conclude its truth value on the
full (concrete) model of the system. The abstract model is usually significantly



smaller in size (i.e., number of states and transitions) than the concrete model,
making the application of model checking to it more feasible1.

It sometimes happen that too many system details are eliminated via abstrac-
tion and as a result, the property cannot be correctly evaluated on the abstract
model. In that case, a refinement is needed in order to add more system details
into the model, thus making it closer to the concrete model.

The most widely used abstraction-refinement framework is based on the 2-
valued (standard) semantics of temporal logics. The abstract model in this case is
an over-approximation of the concrete model, meaning that it has more behaviors
(but still less states and transitions). Such abstractions preserve the validity of
properties in the universal fragment of temporal logics, but do not preserve their
falsity. Thus, it is possible that a property is refuted on the abstract model, but
the counterexample which demonstrates a bad abstract behavior do not have a
corresponding counterexample in the concrete model. Such counterexamples are
called spurious. If spurious counterexamples are identified, a refinement is applied,
in order to eliminate them. This framework is called CounterExample-Guided
Abstraction-Refinement (CEGAR) [9].

A different framework for abstraction-refinement is based on the 3-valued
semantics of temporal logics. The abstract model here both over-approximates
and under-approximates the concrete model. It preserves both validity and falsity
of full temporal logics. However, a property may also be evaluated to a third
indefinite truth value (sometimes denoted ⊥), which indicates that the abstraction
is too coarse. In this case, refinement is aimed at eliminating the indefinite result.
This framework is called Three-Valued Abstraction-Refinement(TVAR) [35,36].

The advantage of the 2-valued framework is that abstract models are of the
same form as concrete models (Kripke structures). Thus, semantics with respect to
abstract model is defined in the standard way. Further, standard model checking
algorithms can be applied in order to check properties on these models.

In contrast, the 3-valued semantics of temporal logics is defined with respect
to different types of models (KMTSs). The semantics is defined differently and
special-purpose model checking is required. Yet, the main advantage of TVAR is
its ability to both verify and falsify a significantly more expressive specification
language (the full temporal logics rather than just their universal fragment). Fur-
ther, as we show next, TVAR provides a different perspective on system modeling
and checking and thus enabling to develop new verification methodologies.

Another useful approach for fighting the state explosion problem is composi-
tional model checking. In compositional model checking one tries to verify parts
of the system separately in order to avoid the construction of the entire system.
To account for the dependencies between the components, the Assume-Guarantee
(AG) paradigm [27,33] suggests how to verify one module based on an assump-
tion about the behavior of its environment, where the environment consists of
the other system modules. The environment is then verified, in order to guar-
antee that it actually satisfies the assumption. Many of the works on composi-
tional model checking are based on the Assume-Guarantee (AG) paradigm and

1Abstraction can also transform an infinite-state system into a (small) finite abstract model.



on learning [13,2,1,5]. These works are all designed for universal safety properties
with the exception of [16], which learns the full class of ω-regular languages2.

In this paper we present an alternative solution to compositional model check-
ing, based on the work in [38]. We exploit the power of the 3-valued abstraction
in order to provide a fully automatic compositional technique that can determine
the truth values of full temporal logics with respect to a given system. Our goal
is to verify a system M composed of several components without ever fully con-
structing M . For that we view each component Mi of M as a 3-valued abstrac-
tion of M . If the checked property ϕ is evaluated to True or False on Mi then
we can conclude that this is indeed the truth value of ϕ on M . If, however, ϕ
is evaluated to the indefinite value on all components, then only the parts of the
components that are relevant to the indefinite result are composed and checked.
Thus the construction of the full model is avoided.

Other applications of 3-valued (and multi-valued) abstractions has been ap-
plied successfully in different contexts (see Conclusion for more details). We thus
conclude that the additional power of the 3-valued framework is worth the extra
efforts of having non-standard definitions and algorithms.

2-Valued Abstraction and Refinement

2. Basic Definitions

We start by presenting the logic that will be used for specification. We describe
the logic µ-calculus [28], which is highly expressive. Widely used temporal logics
such as LTL, CTL and CTL∗ [10] can be expressed within this logic.

The µ-calculus

Let AP be a finite set of atomic propositions and V a set of propositional variables.
We define the set of literals over AP to be Lit = AP ∪{¬p : p ∈ AP}. We identify
¬¬p with p. The logic µ-calculus [28] in negation normal form over AP is defined
by:

ϕ ::= l | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | 2ϕ | ♦ϕ | µZ.ϕ | νZ.ϕ

where l ∈ Lit and Z ∈ V . Intuitively, 2 stands for “all successors”, and ♦
stands for “exists a successor”. µ denotes the least fixpoint, whereas ν denotes the
greatest fixpoint. We will also write η for either µ or ν. Let Lµ denote the set of
closed formulas generated by the above grammar, where the fixpoint quantifiers
µ and ν are variable binders. We assume that formulas are well-named, i.e. no
variable is bound more than once in any formula. Thus, every variable Z identifies
a unique subformula fp(Z) = ηZ.ψ of ϕ, where the set Sub(ϕ) of subformulas of
ϕ is defined in the usual way.

2ω-regular languages can express both safety and liveness, but are still universal in essence,
i.e., no existential properties can be described



A useful sub-logic of the µ-calculus is its universal fragment, denoted ∀Lµ, in
which the operator ♦ is not allowed. Specification written in this fragment can
describe a property that holds for all behaviors of the system, but cannot specify
a property of a specific behavior. On the other hand, both safety and liveness
properties can be described. Safety properties are usually described by means of
greatest fixpoints while liveness properties are given by least fixpoints.

As an example of properties written in ∀Lµ, consider the safety property
“along all execution paths of the system and in every state on the path, p holds”,
for atomic proposition p (writen in CTL [10] as AGp). This property can be
written by the ∀Lµ formula

νZ(p ∧ 2Z).

The liveness property “Along every execution path eventually p holds” (written
in CTL as AFp) will be written by the ∀Lµ formula

µZ(p ∨ 2Z).

In the context of model checking, systems are typically modelled as Kripke struc-
tures [10]. For simplicity, we will assume Kripke structures with a single initial
state. Most of the definitions and results described here are presented in the
relevant works for Kripke structures with multiple initial states.

Definition 2.1 (Kripke structures) A Kripke structure M = (AP, S, s0, R, L) is
a tuple where AP is a finite set of atomic propositions, S is a finite set of states,
s0 ∈ S is the initial state, R ⊆ S × S is a transition relation3, and L : S → 2Lit

is a labeling function, such that for every state s and every p ∈ AP , exactly one
of p and ¬p is in L(s).

The concrete semantics [[ϕ]]
M

of a closed formula ϕ ∈ Lµ over AP w.r.t. a Kripke

structure M = (AP, S, s0, R, L) is a mapping from S to {tt,ff}. [[ϕ]]M (s) = tt
(= ff) means that the formula ϕ is true (false) in the state s of the Kripke

structure M . If [[ϕ]]M (s0) = tt (= ff), we say that M satisfies (falsifies) ϕ, denoted
M |= ϕ (M 6|= ϕ). For the full definition of the concrete semantics of µ-calculus,
see [28,10].

Simulation Relation

Next, we define a preorder over Kripke structures, called the simulation rela-
tion [32]. Intuitively, if structure M2 is greater by the simulation relation than
structure M1 then M2 has more behaviors than M1. Universal properties charac-
terize all behaviors of the model, thus every universal property that holds on M2

also holds on M1.

3For temporal logics the transition relation is usually required to be total. This makes the
definition of their semantics simpler and also simplifies the definition of simulation relations.
For µ-calculus this requirement is not needed.



We will later show how to exploit the simulation relation in model checking:
Instead of checking the concrete (full) model of a system we will check an abstract
model that has more behaviors but less states and transitions. Thus, applying
model checking to it is easier. By the preservation theorem for simulation pre-
sented below, we will be able to conclude that every property that is true on the
abstract model is also true on the concrete model (the opposite, however, is not
necessarily true).

Simulation between two models is checked state-wise: One state is smaller
than another by the simulation relation if they are identically labeled and for every
successor of the smaller state there is a corresponding successor of the greater
one. Formally, let M1 = (AP, S1, s

0
1, R1, L1) and M2 = (AP, S2, s

0
2, R2, L2) be two

Kripke structures over AP .

Definition 2.2 (Simulation relation) A relation H ⊆ S1 × S2 is a simulation re-
lation [32] over M1 and M2 if the following conditions hold:

1. The initial states are related. That is, H(s01, s
0
2).

2. For every s1, s2 such that H(s1, s2),

• L1(s1) = L2(s2) and
• ∀t1[ R1(s1, t1) −→ ∃t2[ R2(s2, t2) ∧ H(t1, t2) ]].

We write s1 ≤ s2 for H(s1, s2). M2 simulates M1 (denoted M1 ≤ M2) if there
exists a simulation relation H over M1 and M2.

The following theorem states the preservation of ∀Lµ formulas. Clearly, the
same preservation holds also for LTL and for the universal fragments of CTL and
CTL∗ [21].

Theorem 2.3 [31] Let M1 ≤ M2. Then for every ∀Lµ formula ϕ with atomic
propositions in AP , M2 |= ϕ implies M1 |= ϕ. Further, if s1 ≤ s2 then

[[ϕ]]
M2(s2) = tt implies [[ϕ]]

M1(s1) = tt.

Abstraction Mappings

We consider abstractions that collapse sets of concrete states into single abstract
states. Let M be a Kripke structure over a set of states S. Given a set of abstract
states Ŝ, the concretization function γ : Ŝ → 2S indicates, for each abstract state
ŝ, the set of concrete states represented by ŝ.

Such abstractions can be described in the framework of Abstract Interpreta-
tion [14,31,15].

3. Abstract Models

In this section we define an abstraction which is suitable for reasoning about
universal logics, such as ∀Lµ. The abstract model (Kripke structure) is defined
with respect to a given concrete one. It is guaranteed by construction to be greater
by the simulation relation than the concrete model, thus preservation of universal
logics is guaranteed. In practice, however, the concrete model is too large to fit into
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Figure 1. Existential Abstraction. M is the original Kripke structure, and cM the abstracted
one. The dotted lines in M indicate how the states of M are clustered into abstract states.

memory and therefore is never produced. The abstract models are constructed
directly from some high-level description of the system.

3.1. Existential Abstraction

We define abstract Kripke structures by means of existential abstraction [8]. Ex-
istential abstraction defines an abstract state to be an initial state if it represents
an initial concrete state. Similarly, there is a transition from abstract state ŝ to
abstract state ŝ′ if there is a transition from a state represented by ŝ to a state
represented by ŝ′. An abstract model constructed by means of an existential ab-
straction is an over-approximation of the concrete model in the sense that ev-
ery behavior of the concrete model has a corresponding behavior in the abstract
model, but the abstract model may also contain additional behaviors. Formally,

Definition 3.1 (Abstract Kripke structure) Let M = (AP, S, S0, R, L) be a (con-

crete) Kripke structure, let Ŝ be a set of abstract states and γ : Ŝ → 2S be

a concretization function. The abstract Kripke structure M̂ = (AP, Ŝ, Ŝ0, R̂, L̂)
generated by γ for M is defined as follows:

1. Ŝ0(ŝ) iff ∃s (s ∈ γ(ŝ) ∧ S0(s)).

2. R̂(ŝ1, ŝ2) iff ∃s1∃s2 (s1 ∈ γ(ŝ1) ∧ s2 ∈ γ(ŝ2) ∧ R(s1, s2)).

3. L̂(ŝ) =
⋂

s∈γ(bs) L(s).

Having ‘iff’ in items 1 and 2 of the definition above results in the exact
abstract model of M , with respect to γ. Replacing ‘iff’ by ‘if’ results in a model
with more initial states and more transitions, which still over-approximates the
structure M . Such a model is sometimes easier to construct. The results below
hold for any abstract Kripke structure constructed by existential abstraction, not
only for the exact one.

Note that, an abstract state ŝ is labeled by a literal p if and only if all the
states it represents are labeled by that literal. Since every concrete state is labeled



by exactly one of p and ¬p, ŝ will be labeled by at most one of p and ¬p. However,
it might not be labeled by either of them. To avoid this we introduce an additional
condition requiring that all concrete states, represented by the same abstract
state, are identically labeled.

We say that a concretization function γ is appropriate for AP if for every
abstract state ŝ and every s1, s2 ∈ γ(ŝ), L(s1) = L(s2). In that case we also obtain

that L̂(ŝ) = L(s) for every s ∈ γ(ŝ) . With the appropriateness requirement, the
resulting abstract model is a standard Kripke structure, thus standard semantics
for the logic can be used and standard model checking algorithms can be applied
to abstract models.

In section 5, we will consider 3-valued abstraction where the value of a literal
on an abstract state may be indefinite.

As an example of a concrete and abstract models, consider a (part of a)
model M described in the lower part of Figure 1. The dotted lines describe the
partition of the concrete states into sets, each represented by an abstract state in
M̂ . The initial state and transitions in M̂ are defined according to the existential
abstraction. Note that M̂ contains self loops indicating the possibility to stay
forever in the same state. Such behaviors are not included in M . This exemplifies
the fact that M̂ is an over-approximation of M .

The following theorem and corollary state that for ∀Lµ, properties which are

correct for M̂ are correct for M as well.

Theorem 3.2 [8] Let M be a Kripke structure and ϕ be a ∀Lµ formula, both

defined over AP . Further, let γ be appropriate for AP and M̂ be an abstract model
generated by γ for M . Then M ≤ M̂ .

By the above theorem and by Theorem 2.3 we get:

Corollary 3.3 Let M and M̂ be as above. Then [[ϕ]]
cM

= tt implies [[ϕ]]
M

= tt.

Note that once Ŝ, γ, and AP are given, Ŝ0, R̂, and L̂ are uniquely deter-
mined. Thus, Ŝ, γ, and AP uniquely determine M̂ . Since γ implicitly includes
the information about Ŝ and AP , we sometimes refer to γ for identifying M̂ .

Several types of abstractions based on existential abstraction are defined and
used. The most commonly used are the localization reduction [29] for hardware
verification and predicate abstraction [19] for software verification. The abstrac-
tions differ in their choice of abstract states and the concretization function.

Localization reduction distinguishes between visible and invisible variables,
where only the visible variables are considered to be relevant for the checked
property. The abstract states are defined to be all valuation of the visible variables.
γ mapped each abstract state to the set of concrete states that agree with it on
the valuation of the visible variables (while they may differ in their valuation of
the invisible variables). Usually, the visible variables are also chosen as the set of
atomic propositions AP .

Predicate abstraction chooses a set of predicates over the program variables.
Abstract states correspond to possible valuations of these predicates. An abstract
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Figure 2. Abstraction of a US traffic light.

state represents all those concrete states which agree with it on the valuation of
the predicates. The predicates are also used as the atomic propositions in AP .

As mentioned before, once Ŝ, γ, and AP are chosen, the abstract model
defined by means of existential abstraction is uniquely determined. Other types
of abstractions can also be found in the literature. A more detailed description of
the abstractions mentioned above can be found in [22].

4. CounterExample-Guided Abstraction Refinement (CEGAR)

It is easy to see that, regardless of the type of abstraction we use, the abstract
model M̂ contains less information than the concrete model M 4. Thus, model
checking the structure M̂ potentially produces incorrect results. Corollary 3.3
guarantees that if an ∀Lµ specification is true in M̂ then it is also true in M . On
the other hand, the following example shows that if the abstract model invalidates
an ∀Lµ specification, the actual model may still satisfy the specification.

Example 4.1 The US traffic light controller M , presented on the left-hand side
of Figure 2, contains three states, red, green, and yellow. It is defined over the set
of atomic propositions AP = {(state = red)}, where L(red) = {(state = red)}
and L(green) = L(yellow) = {¬(state = red)} . We would like to prove for
M the property “along every path, infinitely often (state = red) holds”. This
can be written in CTL as ψ = AGAF(state = red). The set of abstract

states is {r̂ed, ĝo}, where γ(r̂ed) = {red} and γ(ĝo) = {green, yellow}. Clearly,

L̂(r̂ed) = {(state = red)} while L̂(ĝo) = {¬(state = red)}. It is easy to see that

M |= ψ while M̂ 6|= ψ. There exists an infinite abstract trace 〈r̂ed, ĝo, ĝo, . . . 〉 that
invalidates the property. However no corresponding concrete trace exists in M .

When an abstract counterexample does not correspond to any concrete coun-

terexample, we call it spurious. For example, 〈r̂ed, ĝo, ĝo, . . . 〉 in the above exam-
ple is a spurious counterexample.

Let us consider the situation outlined in Figure 3. We see that the abstract
path, marked by the thick arrows, does not have a corresponding concrete path.
Every concrete path starting at the initial state ends up in state D, from which
we cannot go further. Therefore, D is called a deadend state. On the other hand,
the state B is a bad state, since it made us believe that there is an outgoing
transition. Finally, state I is an irrelevant state since it is neither deadend nor
bad. To eliminate the spurious path, the abstraction can be refined, for instance,

4From now on we will assume that cM is defined according to a concretization function γ,
which is appropriate for AP .
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Figure 3. The abstract path in cM (indicated by the thick arrows) is spurious. To eliminate the
spurious path, the abstraction has to be refined as indicated by the thick line in M .

as indicated by the thick line, separating deadend states from bad states. These
notions are made precise in the next section.

4.1. The CEGAR Framework

In this section we present the framework of CounterExample-Guided Abstraction-
Refinement (CEGAR) [29,9], for universal temporal logics and existential abstrac-
tion. The framework is suitable, in principle, for logics such as ∀Lµ, ACTL∗,
ACTL, and LTL. In practice, however, most model checking tools handle CTL or
LTL. They usually produce a counterexample in the form of a finite path leading
to a state violating the property. Alternatively, they produce a counterexample
in the form of a lasso (finite path leading to a simple cycle), showing a behavior
along which a desired state is never reached. Most CEGAR implementations refer
to these forms of counterexamples.

The main steps of the CEGAR framework are presented below:

1. Given a system P (whose concrete model is M) and a universal temporal

formula ϕ, generate an initial abstract model M̂ .
This step is typically done by examining a high level description of P .
For software, for instance, we may examine the program text and choose
conditions used in control statements such as if and while as predicates.
Additional predicates will come from the atomic formulas in ϕ.

2. Model check M̂ with respect to ϕ. If ϕ is true, then conclude that the
concrete model satisfies the formula and stop. If a counterexample T̂ is
found, check whether it is also a counterexample in the concrete model. If
it is, conclude that the concrete model does not satisfy the formula and
stop. Otherwise, the counterexample is spurious. Proceed to step 3.

3. Refine the abstract model, so that T̂ will not be included in the new,
refined abstract model. Go back to step 2.
Refinement is typically done by partitioning an abstract state. By this we
mean that the set of concrete states, represented by the abstract state, is



partitioned. The refinement can be accelerated in the cost of faster increase
of the abstract model if the criterion obtained for partitioning one abstract
state (e.g. a new predicate) is used to partition all abstract states.

4.2. A BDD-based Implementation of CEGAR

To exemplify one possible implementation of CEGAR, we follow [9], and present
a BDD-based implementation of the CEGAR framework. In this implementation
the abstract models and the refinements are computed and represented symboli-
cally, using BDDs [4]. Such an implementation is feasible only when the concrete
model of the system under consideration is finite and only moderately large.

Other CEGAR implementations are based on SAT-solvers or theorem provers.
Depending on the type of γ and the size of M , the initial abstract model (i.e.,
abstract initial states and abstract transitions) can be built using BDDs, SAT
solvers or theorem provers. Similarly, the partitioning of abstract states, per-
formed in the refinement, can be done using BDDs (e.g. as in [9]), SAT solvers
(e.g. as in [6]), or linear programming and machine learning (e.g. as in [11]).

We use standard BDD-based symbolic model checking procedures to deter-
mine whether M̂ satisfies the property ϕ. If it does, then by Corollary 3.3 we con-
clude that the original Kripke structure also satisfies ϕ. Otherwise, assume that
the model checker produces a counterexample T̂ corresponding to the abstract
model M̂ . In the rest of this section, we will focus on counterexamples which are
finite paths. In [9], counterexamples consisting of a finite path followed by a loop
(lasso) are also considered. In [12], tree-like counterexamples for all of ACTL are
considered.
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Figure 4. An abstract counterexample, which is spurious

4.2.1. Identifying Spurious Path Counterexamples

Assume the counterexample T̂ is a path 〈ŝ1, · · · , ŝn〉 starting at the initial abstract
state ŝ1. We extend the concretization function γ to sequence of abstract states
in the following way: γ(T̂ ) is the set of concrete paths defined as follows:

γ(T̂ ) = {〈s1, · · · , sn〉|
n∧

i=1

si ∈ γ(ŝi) ∧ S0(s1) ∧
n−1∧

i=1

R(si, si+1)}.



Next, we give a symbolic algorithm to compute a sequence of sets of states that
correspond to γ(T̂ ). Let S1 = γ(ŝ1) ∩ S0. For 1 < i ≤ n, we define Si in the
following manner: Si := Image(Si−1) ∩ γ(ŝi), where, Image(Si−1) is the set of
successors of states in Si−1. The sequence of sets Si is computed symbolically
using BDDs and the standard image computation algorithm. The following lemma
establishes the correctness of this procedure.

Lemma 4.1 The following are equivalent:

1. The path T̂ corresponds to a concrete counterexample.
2. The set of concrete paths γ(T̂ ) is non-empty.
3. For all 1 ≤ i ≤ n, Si 6= ∅.

Suppose that condition (3) of Lemma 4.1 is violated, and let i be the largest
index such that Si 6= ∅. Then ŝi is called the failure state of the spurious coun-
terexample T̂ . It follows from Lemma 4.1 that if γ(T̂ ) is empty (i.e., if the coun-

terexample T̂ is spurious), then there exists a minimal i (1 ≤ i ≤ n) such that
Si = ∅.

Example 4.2 Consider a program with only one variable with domain D =
{1, · · · , 12}. Assume that the concretization function is shown in Figure 4 by the

dotted lines from Ŝ = {1̂, 2̂, 3̂, 4̂}. Suppose that we obtain an abstract counterex-

ample T̂ = 〈1̂, 2̂, 3̂, 4̂〉. It is easy to see that T̂ is spurious. Using the terminology
of Lemma 4.1, we have S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, and S4 = ∅.
Notice that S4 is empty. Thus, ŝ3 is the failure state.

Algorithm SplitPATH(T̂ )

S := γ(ŝ1) ∩ S0

j := 1
while (S 6= ∅ and j < n) {

j := j + 1
Sprev := S

S := Image(S) ∩ γ(ŝj) }
if S 6= ∅ then output ”counterexample exists”
else output j − 1, Sprev

Figure 5. SplitPATH checks if an abstract path is spurious.

The symbolic Algorithm SplitPATH in Figure 5 obtains an abstract coun-
terexample T̂ = 〈ŝ1, . . . , ŝn〉 and computes the index of the failure state and the
set of states Si−1; the states in Si−1 are called deadend states. After the de-
tection of the deadend states, we proceed to the refinement step. On the other
hand, if none of the Si sets is empty then SplitPATH will report that a “real”
counterexample exists and we can stop.



4.2.2. Refining the Abstraction

We now explain how to refine an abstraction to eliminate a given spurious coun-
terexample. In order to simplify the discussion we assume that the abstract model
is exact (see the discussion following Definition 3.1). Abstract models with addi-
tional transitions and initial states can also be handled (see e.g. [26]). Recall the
discussion concerning Figure 3 in Section 4 where we identified deadend states,
bad states, and irrelevant states. The refinement should suggest a partitioning of
abstract states, that will separate the deadend states SD from the bad states SB .

We already have the deadend states. SD is exactly the set Sprev , returned
by the algorithm SplitPATH. The algorithm also returns j − 1, the index in
the counterexample where the failure state has been encountered. We can now
compute the bad states symbolically as follows:

SB = PreImage(γ(ŝj+1)) ∩ γ(ŝj),

where PreImage computes the set of predecessors of the states in γ(ŝj+1).
γ(ŝj) should now be partitioned to separate between SD and SB . This can

be done in different ways. For example, if we work directly with BDDs, then we

can add a new abstract state ŝ′j to Ŝ and update the BDD for γ so that states in

SD are now mapped to the new state ŝj
′. Of course, now R̂, Ŝ0 and L̂ should be

updated.
Our refinement procedure continues to refine the abstraction by partitioning

abstract states until a real counterexample is found, or the property is verified.
Since we assume that the concrete model is finite, the partitioning procedure is
guaranteed to terminate.

It should be noted that checking whether a counterexample is spurious and
then finding a splitting criterion involves computations on the concrete structure.
These computations, however, are usually easier than applying model checking
to the concrete structure. This is because they refer to the part of it which is
relevant to the counterexample. This is why BDD-based CEGAR is feasible only
when the concrete model M is finite and only moderately large.

3-Valued Abstraction and Refinement

5. Abstract models and Mixed Simulation

In the previous sections we dealt with an abstraction which over-approximates
the concrete model of the system. As seen there, such an abstraction can be used
for verifying properties written in the universal fragment of the µ-calculus, but
not for refuting such properties. In this section we present a different type of
abstraction, the 3-valued abstraction, which can be used for both verification and
falsification of the full µ-calculus.

Abstract models preserving the full µ-calculus need to have two types of
transitions [30,15]: The concrete transitions are over-approximated by the may
transitions and under-approximated by the must transitions. This is achieved by
using Kripke Modal Transition Systems [25,17] as abstract models.



Definition 5.1 A Kripke Modal Transition System (KMTS) is a tuple M =
(AP, S, s0, R

+, R−, L), where S is a finite set of states, s0 ∈ S is an initial state,
R+ ⊆ S × S and R− ⊆ S × S are transition relations such that R+ ⊆ R−, and
L : S → 2Lit is a labeling function, s.t. for each state s and p ∈ AP , at most one
of p and ¬p is in L(s).

The 3-valued semantics [[ϕ]]
M
3 of a closed formula ϕ ∈ Lµ w.r.t. a KMTS M

is a mapping from S to {tt,ff,⊥} [3,25]. The interesting cases in the definition of
the 3-valued semantics are those of the literals and the modalities.

[[l]]
M
3 (s) = tt if l ∈ L(s), ff if ¬l ∈ L(s), ⊥ otherwise.

[[2ψ]]
M

3 (s) =





tt, if ∀t ∈ S, if R−(s, t) then [[ψ]]
M

3 (t) = tt

ff, if ∃t ∈ S s.t. R+(s, t) and [[ψ]]M3 (t) = ff
⊥, otherwise

and dually for ♦ψ when exchanging tt and ff. The notations M |= ϕ and M 6|= ϕ

are used for KMTSs as well. In addition, if [[ϕ]]
M
3 (s0) =⊥, the value of ϕ in M is

indefinite.
The following definition formalizes the relation between two KMTSs that

guarantees preservation of µ-calculus formulas w.r.t. the 3-valued semantics.

Definition 5.2 (Mixed Simulation) [15,17] Let M1 = (AP, S1, s
0
1, R

+
1 , R

−
1 , L1)

and M2 = (AP, S2, s
0
2, R

+
2 , R

−
2 , L2) be two KMTSs, both defined over AP . Ĥ ⊆

S1 × S2 is a mixed simulation from M1 to M2 if Ĥ(s1, s2) implies:

1. L2(s2) ⊆ L1(s1).
2. if R−

1 (s1, s
′
1), then there is some s′2 ∈ S2 such that R−

2 (s2, s
′
2) and

Ĥ(s′1, s
′
2).

3. if R+
2 (s2, s

′
2), then there is some s′1 ∈ S1 such that R+

1 (s1, s
′
1) and

Ĥ(s′1, s
′
2).

If there is a mixed simulation Ĥ such that (s01, s
0
2) ∈ Ĥ, then M2 abstracts M1,

denoted M1 �M2.

In particular, Definition 5.2 can be applied to a (concrete) Kripke structure M

and an (abstract) KMTS M̂ , by viewing the Kripke structure as a KMTS where
R+ = R− = R. For a Kripke structure, the 3-valued semantics agrees with
the concrete semantics. Thus, preservation of Lµ formulas is guaranteed by the
following theorem.

Theorem 5.3 [17] Let Ĥ ⊆ S1×S2 be the mixed simulation relation from a KMTS

M1 to a KMTS M2. Then for every Ĥ(s1, s2) and every ϕ ∈ Lµ we have that

[[ϕ]]
M2

3 (s2) 6=⊥ ⇒ [[ϕ]]
M1

3 (s1) = [[ϕ]]
M2

3 (s2).

Given a concrete model M = (AP, S, s0, R, L), an abstract model M̂ can then
be defined as follows. ŝ0 is the initial abstract state iff s0 ∈ γ(ŝ0). An abstract state



s`ψ0 ∨ ψ1

s`ψi
: i ∈ {0, 1}

s`♦ψ
t`ψ

: sR+t or sR−t
s` ηZ.ψ
s`Z

s`ψ0 ∧ ψ1

s`ψi
: i ∈ {0, 1}

s`2ψ
t`ψ

: sR+t or sR−t s`Z
s`ψ

: if fp(Z) = ηZ.ψ

Figure 6. The rules of the model checking game for Lµ.

ŝ is labeled by l ∈ Lit only if all the concrete states that it represents are labeled
by l. Thus, it is possible that neither p nor ¬p are in L̂(ŝ). The may-transitions are
computed such that they represent (at least) every concrete transition: if ∃s ∈ γ(ŝ)
and ∃s′ ∈ γ(ŝ′) such that R(s, s′), then R−(ŝ, ŝ′). The must-transitions represent
concrete transitions that are common to all the concrete states represented by the
origin abstract state: R+(ŝ, ŝ′) only if ∀s ∈ γ(ŝ) ∃s′ ∈ γ(ŝ′) such that R(s, s′).
Other constructions of abstract models, based on Galois connections, can be found
in [15,18].

The relation Ĥ ∈ S × Ŝ, which is defined by (s, ŝ) ∈ Ĥ iff s ∈ γ(ŝ), then

forms a mixed simulation [15,17] from M to the resulting abstract model M̂ . By
the above theorem we thus have that every Lµ formula which has a definite truth

value (tt or ff) in the abstract KMTS M̂ has the same truth value in the concrete
Kripke structure M as well.

6. 3-Valued Model Checking

A 3-valued game-based model checking for the µ-calculus over KMTSs was sug-
gested in [20,23]. They introduce 3-valued parity games and translate the 3-valued
model checking problem into the problem of determining the winner in a 3-valued
satisfaction game, which is a special case of a 3-valued parity game. We omit the
details of the 3-valued satisfaction game, but continue with the game graph, which
presents all the information “relevant” for the model checking.

Let M = (AP, S, s0, R+, R−, L) be a KMTS and ϕ ∈ Lµ. The game graph
GM×ϕ, or in short G, is a graph (N,n0, E+, E−) where N ⊆ S × Sub(ϕ) is a
set of nodes and E+ ⊆ E− ⊆ N × N are sets of must and may edges defined
as follows. n0 = s0 ` ϕ ∈N is the initial node. The (rest of the) nodes and the
edges are defined by the rules of Figure 6, with the meaning that whenever n ∈ N

is of the form of the upper part of the rule, the result in the lower part of the
rule is also a node n′ ∈N and E−(n, n′). Moreover, E+(n, n′) holds as well in all
cases except for an application of the rules in the second column with a model’s
transition (s, t) ∈ R− \ R+. Intuitively, the outgoing edges of s ` ψ ∈ N define
“subgoals” for checking ψ in s.

If E−(n, n′) (E+(n, n′)) then n′ is a may (must) son of n. A node n = s `ψ
in GM×ϕ is classified as a ∧, ∨, 2, ♦ node, based on ψ. If ψ is of the form Z or
ηZ.ψ′, n is deterministic – it has exactly one son. If n has no outgoing edges, then
it is a terminal node. In a full game graph this means that either ψ is a literal, or
ψ is of the form ♦ψ′ or 2ψ′, and s has no outgoing transition in M .



Figure 7(b) presents examples of game graphs for ϕ = 2(¬i∨♦o) (written in
CTL as AX(¬i ∨ EXo) ) and the models from Figure 7(a), where all transitions
are considered may transitions.

The model checking algorithms of [20,23] can be viewed as coloring algorithms
that label (color) each node n = s ` ψ in the game graph by T , F , ? depending
on the truth value of ψ in the state s in M (based on the 3-valued semantics).
The result of the coloring is a 3-valued coloring function χ : N → {T, F, ?}.

The following formalizes the correctness of the coloring. For a (possibly not
closed) formula ψ, ψ∗ denotes the result of replacing every free occurrence of
Z ∈ V in ψ by fp(Z). Note that ψ∗ is a closed formula. Further note that if ψ is
closed, then ψ∗ = ψ.

Definition 6.1 Let GM×ϕ be a game graph for a KMTS M and ϕ ∈ Lµ. A (pos-
sibly partial) coloring function χ : N → {T, F, ?} for GM×ϕ (or its subgraph) is
correct if for every s`ψ ∈ N , whenever χ(s`ψ) is defined, then:

1. [[ψ∗]]M3 (s) = tt iff χ(s`ψ) = T .

2. [[ψ∗]]
M

3 (s) = ff iff χ(s`ψ) = F .

3. [[ψ∗]]
M

3 (s) =⊥ iff χ(s`ψ) =?.

Theorem 6.2 [20,23] Let χF be the (total) coloring function returned by the col-
oring algorithm of [20] or [23] for GM×ϕ. Then χF is correct.

The final coloring of the nodes reflects the 3-valued semantics of the logic:
A ∧-node or a 2-node is colored T iff all its may sons are colored T (and in
particular if it has no may sons), it is colored F iff it has a must son which is
colored F , and otherwise it is colored ?. Dually for a ∨-node or a ♦-node when
exchanging T and F . The color of s` l for l ∈ Lit is T iff l ∈ L(s), F iff ¬l ∈ L(s),
and ? otherwise. The result of the coloring is demonstrated in Figure 7(b).

Refinement

If the result of model checking on an abstract model is indefinite (⊥), a refinement
is needed. When using the coloring algorithms of [20,23], an indefinite result is
accompanied with a failure state and a failure cause. The failure cause is either a
literal whose value in the failure state is ⊥, or an outgoing may transition of the
failure state in the underlying model which is not a must transition. Refinement
is then performed by splitting the abstract states in a way that eliminates the
failure cause (see [20,23]).

As an example, consider the game graph G1 of Figure 7. The node s0 ` ¬i
is colored by ⊥ because the value of ¬i in s0 is indefinite. Thus, s0 is a failure
node and i is the cause. A refinement will split γ(ŝ0) to separate concrete states
in which i is true from those in which ¬i is true.

The state s1 is also a failure state for G1. This is because the node s1 ` ♦o
is colored ⊥. The reason for ⊥ is the may transition going from s1 to s2, where
o is true. Refinement will thus split the states in γ(ŝ1) to those from which there
is a (concrete) transition to a state in γ(ŝ2) and those that do not have such a
transition.



7. Compositional Model Checking and 3-Valued Abstraction Join Forces

In the coming sections we will present an application of 3-valued abstraction to
compositional model checking, based on [38].

7.1. Partial Coloring and Subgraphs

In the following sections we use the game-based model checking in order to identify
and focus on the places where the dependencies between components of the system
affect the model checking result. In this section we set the basis for this, by
investigating properties of the game graph and the coloring algorithms.

The coloring algorithms of [20,23] have the important property that they
can be applied on a partially colored graph, in which case they extend the given
coloring to the rest of the graph in a correct way. Moreover, the coloring can also
be applied on a partially colored subgraph, and under certain assumptions it will
yield a correct coloring of the subgraph. To formalize this, we need the following
definitions.

Definition 7.1 Let G be a game graph and χF its final coloring function. For a
non-terminal node n in G we define its witnessing sons as follows, depending on
its type:

∧, 2: the witnessing sons are those colored F or ? by χF .

∨, ♦: the witnessing sons are those colored T or ? by χF .

deterministic: the witnessing son is the only son.

The sons are witnessing in the sense that they suffice to determine the color
of the node, thus removing the rest of the node’s sons from the graph does not
change the result of the coloring. For example, if a ∧-node or a 2-node has no
witnessing sons, meaning all its sons are colored T , then we know it should be
colored T , and this is indeed how the coloring algorithms will color the node
when keeping only the witnessing sons. Otherwise, the witnessing sons determine
whether the node should be colored F or ?, thus one can correctly color the node
by considering only them.

Definition 7.2 A subgraph G′ of a game graph G is closed if every node in G′ is
either a terminal node, or all its witnessing sons (and corresp. edges) from G are
also in G′.

Theorem 7.3 Consider a closed subgraph G′ of a game graph G with a partial
coloring function χ which is correct and defined over (at least) all the terminal
nodes in G′. Then applying the coloring algorithm of [20] or [23] on G′ with χ as
an initial coloring results in a correct coloring of G′.

In fact, for the coloring of the subgraph to be correct, not all the witnessing
sons are needed, as long as there is enough information to explain the correct
coloring of each uncolored node. However, we will see that in our case we will
need all of them, as we will deduce from the game graph of one component to



the game graph of the full system, where some of the nodes will be removed and
for some an indefinite color (?) will change into T or F . This means that some of
the witnessing sons will not remain witnessing sons in the game graph of the full
system. Thus, we will not be able to know a-priori which of them is the “right”
choice to include in a way that will also provide the necessary information for a
correct coloring in the game graph of the full system.

Another notion that we will need later is the following.

Definition 7.4 (?-Subgraph) Let G be a colored graph whose initial node is colored
?. The ?-subgraph is the least subgraph G? of G that obeys the following:

• the initial node is in G? (and is the initial node of G?).
• For each node in G? which is colored ? in G all its witnessing sons (and

corresponding edges) in G are included in G?.

G? is accompanied with a partial coloring function χI which is defined over
the terminal nodes in G?, and colors them as the coloring function χF of G.

The ?-subgraphG? and its initial coloring meet the conditions of Theorem 7.3.
Intuitively, this means that G? contains all the information regarding the indefi-
nite result. Figure 7(b) provides examples of ?-subgraphs.

7.2. Compositional Model Checking

In compositional model checking the goal is to verify a formula ϕ on a compound
system without ever constructing its full compound model M1||M2. In our setting
M1 and M2 are Kripke structures that synchronize on the joint labelling of the
states. Since a Kripke structure is a special case of a KMTS where R = R+ = R−,
we define the composition for the more general case of KMTSs. In the following
we denote by Lit1 and Lit2 the sets of literals over AP1 and AP2, respectively

Definition 7.5 (Composable KMTSs) Two KMTSs M1 = (AP1, S1, s
0
1, R

+
1 , R

−
1 , L1)

and M2 = (AP2, S2, s
0
2, R

+
2 , R

−
2 , L2) are composable if their initial states agree

on their joint labeling, i.e. L1(s
0
1) ∩ Lit2 = L2(s

0
2) ∩ Lit1.

Definition 7.6 LetM1 = (AP1, S1, s
0
1, R

+
1 , R

−
1 , L1) and M2 = (AP2, S2, s

0
2, R

+
2 , R

−
2 ,

L2) be two composable KMTSs. We define their composition, denoted M1||M2, to
be the KMTS (AP, S, s0, R+, R−, L), where

• AP = AP1 ∪AP2

• S = {(s1, s2) ∈ S1 × S2 | L1(s1) ∩ Lit2 = L2(s2) ∩ Lit1}
• s0 = (s01, s

0
2)

• R+ = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R+
1 and (s2, t2) ∈ R+

2 }
• R− = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R−

1 and (s2, t2) ∈ R−
2 }

• L((s1, s2)) = L(s1) ∪ L(s2)

In particular, if M1 and M2 are Kripke structures with transition relations R1 and
R2 respectively, then M1||M2 is a Kripke structure with R = {((s1, s2), (t1, t2)) ∈
S × S | (s1, t1) ∈ R1 and (s2, t2) ∈ R2}.



From now on we fix AP to be AP1 ∪ AP2. For i ∈ {1, 2} we use i to denote
the remaining index in {1, 2} \ {i}.

We use the mechanism produced for abstractions of full branching time logics
for the purpose of compositional verification. The basic idea is to view each Kripke
structure Mi as a partial model that abstracts M1||M2.

Definition 7.7 Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. We lift Mi

into a KMTS Mi↑= (AP, Si, s
0
i , R

+
i ↑, R

−
i ↑, Li↑) over AP where R+

i ↑= ∅, R−
i ↑= Ri

and Li↑ (s) = Li(s).

That is, we viewMi as a KMTSMi↑ overAP (rather than APi). This immediately
makes the value of each literal over AP \ APi in each state of Mi ↑ indefinite
(as neither p nor ¬p are in Li(s)) – indeed, it depends on Mi. In addition, each
transition of Mi is considered a may transition (since in the composition it might
be removed if a matching transition does not exist in Mi, but transitions can
never be added).

Theorem 7.8 M1||M2 � Mi↑. The mixed simulation is {((s1, s2), si) | (s1, s2) ∈
S}.

Since each Mi↑ abstracts M1||M2, we are able to first consider each component
separately: Theorem 5.3 ensures that if ϕ has a definite value (tt or ff) in Mi↑
under the 3-valued semantics, then the same value holds in M1||M2 as well. In
particular, the values in M1↑ and M2↑ cannot be contradictory, and a definite
value in one of them is suffices in order to determine the value in M1||M2.

The more typical case is that the value of ϕ on both M1↑ and M2↑ is indefi-
nite. This reflects the fact that ϕ depends on both components and their synchro-
nization. Typically, an indefinite result requires some refinement of the abstract
model. In our case refinement means considering the composition with the other
component. Still, in this case as well, having considered each component sepa-
rately can guide us into focusing on the places where we indeed need to consider
the composition of the components.

The game-based approach to model checking provides a convenient way for
presenting this information. If the KMTS Mi↑ is model checked using the algo-
rithm of [20] or [23], then the result is a colored game graph, in which T and F

represent definite results (i.e. truth values that hold no matter what the environ-
ment is), but the ? color needs to be resolved by considering the composition.
This is where the ?-subgraph (see Definition 7.4) becomes handy, as it points out
the places where this is really needed.

The ?-subgraph for each component is computed top-down, starting from the
initial node. As long as a node colored ? is encountered, the search continues in a
BFS manner by including the witnessing sons. Definite nodes which are included
in the subgraph become terminal nodes, and their coloring defines the initial
coloring function.

The ?-subgraphs of the two colored graphs present all the indefinite informa-
tion that results from the dependencies between the components. Thus, to resolve
the indefinite result, we compose the ?-subgraphs.



Definition 7.9 (Product Graph) Let G?1 and G?2 be two ?-subgraphs as above
with initial nodes s01 ` ϕ and s02 ` ϕ resp. We define their product to be the least
graph G|| = (N||, n

0
||, E

+
|| , E

−
|| ) such that:

• n0
|| = (s01, s

0
2)`ϕ is the initial node in N||.

• If (s1, s2) ` ψ ∈ N|| and (s1 ` ψ, s
′
1 ` ψ

′) ∈ E−
1 and (s2 ` ψ, s

′
2 ` ψ

′) ∈ E−
2

and L1(s
′
1)∩Lit2 = L2(s

′
2)∩Lit1 (i.e. (s′1, s

′
2) is a state of M1||M2), then:

(s′1, s
′
2)`ψ

′ ∈ N|| and ((s1, s2)`ψ, (s′1, s
′
2)`ψ

′) is in E+
|| and E−

|| .

Note that all the edges in G|| are must edges, whereas in the ?-subgraphs we
had may edges (the transitions of each component were treated as may transitions
in the lifted version). This is because the product graph already refers to the
complete system M1||M2, where all transitions are concrete transitions (modeled
as must transitions).

The product graph is constructed by a top-down traversal of the subgraphs,
where, starting from the initial nodes, nodes that share the same formulas and
whose states agree on the joint labeling are composed (recall that s01 and s02
agree on their joint labeling). Whenever two non-terminal nodes are composed,
the outgoing edges are computed as the product of their outgoing edges, limited
to legal nodes (w.r.t. the restriction to states that agree on their labeling). In
particular, this means that if a node in one subgraph has no matching node in
the other, then it will be omitted from the product graph. In addition, when a
terminal node of one subgraph is composed with a non-terminal node of the other,
the resulting node is a terminal node in G||.

We accompany G|| with an initial coloring function for its terminal nodes
based on the initial coloring functions of the two subgraphs. We use the following
observation:

Proposition 7.10 Let n = (s1, s2) ` ψ be a terminal node in G||. Then one of
the following holds. Either (a) at least one of s1 ` ψ and s2 ` ψ is a terminal
node in its subgraph, in which case at least one of them is colored with a definite
color by the initial coloring of its subgraph, and contradictory definite colors are
impossible. We denote this color by col(n); Or (b) both s1 ` ψ and s2 ` ψ are
non-terminal nodes but no outgoing edges were left in their composition.

Definition 7.11 We define the initial coloring function χI of G|| as follows. Let n
be a terminal node in N||. If it fulfills case (a) of Prop. 7.10, then χI(n) = col(n).
If it fulfills case (b), then χI(n) = T if n is a ∧-node or a 2-node, and χI(n) = F

if n is a ∨-node or a ♦-node. χI is undefined for the rest of the nodes.

In particular, if a terminal node in G|| results from a terminal node which
is colored by ? in one subgraph and a terminal node which is colored by some
definite color in the other, then the definite color takes over.

Note that the initial coloring function of the product graph colors all the
terminal nodes by definite colors. Along with the property that all the edges in
the product graph are must edges, this reflects the fact that the composition
resolves all the indefinite information that existed in each component when it was
considered separately. Therefore, when applying (one of) the coloring algorithm to



the product graph, all the nodes are colored by definite colors (in fact, a 2-valued
coloring can be applied).

Theorem 7.12 The resulting product graph G|| is a closed subgraph of the game
graph over M1||M2. In addition, the initial coloring function is correct w.r.t.
M1||M2 and defined over all the terminal nodes in the subgraph.

By Theorem 7.3, this means that coloring G|| results in a correct result with
respect to the model checking of ϕ in M1||M2. Thus, to model check ϕ on M1||M2

it remains to color the product graph G||. Note that the full graph for M1||M2 is
not constructed. To sum up, the algorithm is as follows.

Step 1 Model check each Mi↑ separately (for i ∈ {1, 2}):

1. Construct the game graph Gi for ϕ and Mi↑.
2. Apply the 3-valued coloring on Gi.

Let χi be the resulting coloring function.

If χ1(n
0
1) or χ2(n

0
2) is definite, return the corresponding

model checking result for M1||M2.

Step 2 Consider the composition M1||M2:

1. Construct the ?-subgraphs for G1 and G2.
2. Construct the product graph G|| of the ?-subgraphs.
3. Apply the 3-valued coloring on G||

(with the initial coloring function).

Return the model checking result corresponding to χ||(n
0
||).

Example 7.1 Consider the components depicted in Figure 7(a). The atomic
proposition o (short for output) is local to M1, i (input) is local to M2, and r

(receive) is the only joint atomic proposition that M1 and M2 synchronize on.
Suppose we wish to verify in M1||M2 the property 2(¬i∨♦o), which states that in
all the successor states of the initial state, an input signal implies that there is a
successor state where the output signal holds. Figure 7(b) depicts the colored game
graph of each (lifted) component, and highlights the ?-subgraph of each of them.
The product graph and its coloring is depicted in Figure 7(c), as an “intersection”
of the two subgraphs. All the edges in the product graph are must edges. All nodes,
and in particular the initial node, are colored T , thus the property is verified. One
can see that most of the efforts were done on each component separately, and the
product graph only considers a small part of the compound system.

8. Conclusion

In this paper we describe two frameworks for abstraction-refinement in model
checking. While having similar general flow of abstract-check-refine, the details of



G1::

s0 `¬i ∨♦o

s0 `♦o

s0 ` o s2 ` o

s1 `¬i ∨♦o

s1 `♦o

s0 `�(¬i ∨ ♦o)

s1 ` o

s0 `¬i s1 `¬i

G2::

t1 `¬i ∨ ♦o

t2 `¬it1 `¬i t2 `♦o

t0 `�(¬i ∨ ♦o)

t0 `¬i ∨♦o

t0 ` o t1 ` o t2 ` o

t2 `¬i ∨ ♦o

t1 `♦ot0 `¬i t0 `♦o

(b)

¬r,¬o

r, or,¬o

s0

s2s1

M1::
¬i,¬r

¬i, ri, r

t0

t1 t2

M2::

(a)

(s0, t0)`�(¬i ∨ ♦o)

(s2, t1)` o

(s1, t1)`♦o

(s1, t1)`¬i ∨♦o

(c)

Figure 7. (a) Components, (b) their game graphs and their ?-subgraphs (enclosed by a line), and
(c) the product graph. Dashed edges denote may edges which are not must edges. The colors
reflect the coloring function: white stands for T , dark gray stands for F and light gray stands
for ?.

the two frameworks are quite different. One is based on the 2-valued semantics for
temporal logics. It may return false negative results since the abstraction does not
distinguish between the case where the checked property is violated and the case
where information is lacking. As a result, the goal of refinement is to eliminate
spurious counterexamples.

The other framework is based on the 3-valued semantics. It identifies the case
where information is lacking and returns then an indefinite result. It thus never
returns false negative or false positive. The refinement in this case is aimed at
eliminating indefinite results.

For a given set of abstract states, model checking the 3-valued abstract model
will return more precise results more often. It is therefore worth the extra cost
of constructing a KMTS rather than a Kripke structure as an abstract model. In
[37] and [39], suggestions are made on how to reduce this extra cost while still
benefit from the additional precision.

We demonstrate how the 3-valued abstraction-refinement framework can be
exploited in order to obtain a fully automatic compositional technique. The com-
positional approach we present is significantly different from other compositional
approaches, which are mostly based on the Assume-Guarantee reasoning.

Other applications of 3-valued abstractions have been applied successfully in
different contexts. One example is the Symbolic Trajectory Evaluation (STE) [34]
which combines symbolic simulation with 3-valued abstraction. It is capable of
verifying and refuting huge circuits with respect to simple LTL specifications.
However, it sometimes returns an indefinite value (denoted there byX) to indicate
that the abstraction is too coarse to determine if the specification holds. In this
case a refinement of the abstraction is applied [40,7] by replacing some of the X
values on circuit inputs with symbolic variables.



X-BMC [41] is another successful application of 3-valued abstraction to hard-

ware verification. It introduces X to the circuit inputs, thus eliminating parts of

the circuit that are irrelevant to the checked property. It can handle any property

expressed by an ω-regular language. An application of 3-valued abstraction to

software is presented in [24].

All of the above demonstrates the power of 3-valued abstraction which can

significantly enhance the model checking technology. Further research is needed

in order to extend its use to other applications.
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