
High Level Verification of Control Intensive Systems Using Predicate
Abstraction ∗

Edmund Clarke
Carnegie Mellon Univ.
Pittsburgh, PA 15217

emc@cs.cmu.edu

Orna Grumberg
TECHNION

Technion City, Haifa 32000, Israel
orna@cs.technion.ac.il

Muralidhar Talupur, Dong Wang
Carnegie Mellon Univ.
Pittsburgh, PA 15217

{tmurali,dongw}@cs.cmu.edu

Abstract

Predicate abstraction has been widely used for model
checking hardware/software systems. However, for control
intensive systems, existing predicate abstraction techniques
can potentially result in a blowup of the size of the abstract
model. We deal with this problem by retaining important
control variables in the abstract model. By this method we
avoid having to introduce an unreasonable number of pred-
icates to simulate the behavior of the control variables. We
also show how to improve predicate abstraction by extract-
ing useful information from a high level representation of
hardware/software systems. This technique works by first
extracting relevant branch conditions. These branch condi-
tions are used to invalidate spurious abstract counterexam-
ples through a new counterexample-based lazy refinement
algorithm. Experimental results are included to demon-
strate the effectiveness of our methods.

1 Introduction

Background. Abstraction based model checking has
been widely accepted as a valuable method for the verifi-
cation of large hardware/software systems. Predicate ab-
straction [1, 2, 3, 9, 10, 12, 15, 17, 18], in particular, is
one of the most successful abstraction techniques. In pred-
icate abstraction, the concrete system is approximated by
only keeping track of certain predicates over the concrete
state variables. Each predicate corresponds to an abstract
boolean variable. Any concrete transition corresponds to
a change of values for the set of predicates and is subse-

∗This research is sponsored by the Semiconductor Research Corpora-
tion (SRC) under contract no. 99-TJ-684, the Gigascale Silicon Research
Center (GSRC), the National Science Foundation (NSF) under Grant No.
CCR-9803774. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not neces-
sarily reflect the views of SRC, GSRC, NSF, or the United States Govern-
ment.

quently translated into an abstract transition. Using predi-
cate abstraction, it is possible to not only reduce the com-
plexity of the system under verification, but also, for soft-
ware systems, to extract finite models that are amenable to
model checking algorithms.

Predicate abstraction is a special case of existential ab-
straction [5, 8, 14], which is a conservative approach for
model checking universal temporal logic [8] properties (we
only consider safety properties in this paper). That is, the
correctness of any universal formula on an abstract system
automatically implies the correctness of the formula on the
concrete system. However, a counterexample on an abstract
system may not correspond to any real path, in which case
it is called a spurious counterexample [6]. To get rid of a
spurious counterexample, the abstraction needs to be made
more precise via refinement. Counterexample guided ab-
straction refinement [6, 12, 19] (CEGAR) automates this
procedure. It works as follows: For a given system, an ab-
stract model that is guaranteed to include all behaviors of
the original system is built. Model checking is then applied
to the abstract model. If the property holds, it is true of
the concrete model and verification terminates. In case the
property is violated on the abstract model a counterexam-
ple is generated. This abstract counterexample is checked
against the concrete model. If the abstract counterexam-
ple corresponds to a concrete execution path, the property
is proved to be false and verification terminates. Otherwise,
the abstract counterexample is spurious and is used to guide
the refinement of the abstract model. The above procedure
repeats until the property is confirmed or refuted.

Motivation. It is usually the case that verification effort is
focused more on the control logic than the data computation
because most bugs exist in designing the control logic. Tra-
ditional predicate abstraction techniques can perform badly
when verifying hardware/software systems which contain
extensive control structure (control intensive systems). The
control logic usually consists of concurrent state machines.

Each of these state machines may depend on several control
variables, that encode the change of state. Since the behav-
ior of a control intensive system is determined to a large ex-
tent by the control variables, the number of predicates over
the control variables that are needed can be much larger than
the number of control variables. In such a case, it is better
to use the control variables as predicates, (called variable
predicates), instead of the original predicates (called origi-
nal or formula predicates). We propose a clustering based
heuristic to identify important control variables and retain
these control variables in the abstract model. By doing this
we also circumvent to a certain extent the problem of build-
ing the abstract model. This method works extremely well
in practice.

It is usually the case that different predicates are not in-
dependent. We describe efficient methods to compute con-
straints between predicates, which are added as invariants
to the abstract model to make it more accurate.

Another issue that we address in this paper is the fol-
lowing: Current predicate abstraction methods do not make
use of information available in the high level descriptions
of the system under verification. Most hardware/software
codesign tools use high level design languages, such as ES-
TEREL, graphical FSMs, RTL Verilog/VHDL, C/C++ etc.
But most model checking engines and existing verification
tools use the bit level representation of the design under ver-
ification. There is much useful information that is relevant
to verification in the high level representation, which is lost
once it is translated to bit level representation. To retain this
information, we extract the branch conditions in RTL Ver-
ilog (the language considered in this paper) and use them
as predicates. This technique can be easily adapted to other
design languages.

For a given design, there are usually many branch condi-
tions that we can extract. Not all of them are relevant to the
verification of a given property. We propose a lazy coun-
terexample based refinement algorithm to efficiently iden-
tify the branch conditions that are relevant.

Outline of the paper. In the next section we introduce
predicate abstraction and other relevant theory. In Section 3,
we give a clustering based heuristic to identify control vari-
ables and present a modified localization reduction algo-
rithm to bound the size of the abstract model. Algorithms
to compute accurate abstract models are also discussed in
the same section. Section 4 gives the predicate extraction
and refinement algorithm. Some related work is discussed
in Section 5. In Section 6, we describe our experiments.
Section 7 concludes the paper.

2 Preliminary

In this section, we review the theory of existential ab-
straction. We then present predicate abstraction and the
localization reduction as special cases of this concept.

2.1 Existential Abstraction

We model circuits and programs as transition sys-
tems. Given a set of atomic propositions, A, let M =
(S, S0, R, L) be a transition system (refer to [8] for details).

Definition 2.1 Given two transition systems M =
(S, S0, R, L) and M̂ = (Ŝ, Ŝ0, R̂, L̂), with atomic propo-
sitions A and Â respectively, a relation ρ ⊆ S × Ŝ, which
is total on S, is a simulation relation between M and M̂ if
and only if for all (s, ŝ) ∈ ρ the following conditions hold:

• L(s)
⋂

Â = L̂(ŝ)
⋂

A

• For each state s1 such that (s, s1) ∈ R, there exists a
state ŝ1 ∈ Ŝ with the property that (ŝ, ŝ1) ∈ R̂ and
(s1, ŝ1) ∈ ρ.

We say that M̂ simulates M through the simulation relation
ρ, denoted by M �ρ M̂ , if for every initial state s0 in M

there is an initial state ŝ0 in M̂ such that (s0, ŝ0) ∈ ρ. We
say that ρ is a bisimulation relation between M and M̂ if
M �ρ M̂ and M̂ �ρ−1 M . If there is a bisimulation re-
lation between M and M̂ then we say that M and M̂ are
bisimilar, and we denote this by M ≡bis M̂ .

Theorem 2.1 (Preservation of ACTL* [8])
Let M = (S, S0, R, L) and M̂ = (Ŝ, Ŝ0, R̂, L̂) be two tran-
sition systems, with A and Â as the respective sets of atomic
propositions and let ρ ⊆ S × Ŝ be a relation such that
M �ρ M̂ . Then, for any ACTL* formula, Φ with atomic
propositions in A ∩ Â

M̂ |= Φ implies M |= Φ.

In the above theorem, if ρ is a bisimulation relation, then
for any CTL* formula Φ with atomic propositions in A∩Â,
M̂ |= Φ ⇔ M |= Φ.

Let M = (S, S0, R, L) be a concrete transition system
over a set of atomic propositions A. Let Ŝ be a set of abstract
states and ρ ⊆ S × Ŝ be a total function on S. Further, let
ρ and L be such that for any ŝ ∈ Ŝ, all states s ∈ S that
satisfy ρ(s, ŝ) have the same labeling over a subset Â of A.
Then an abstract transition system M̂ = (Ŝ, Ŝ0, R̂, L̂) over
Â which simulates M can be constructed as follows:

Ŝ0 = ∃s. S0(s) ∧ ρ(s, ŝ) (1)

R̂(ŝ, ŝ′) = ∃s s′. ρ(s, ŝ) ∧ ρ(s′, ŝ′) ∧ R(s, s′) (2)

for each ŝ ∈ Ŝ, L̂(ŝ) =
⋂

ρ(s,ŝ)

(L(s) ∩ Â) (3)

This kind of abstraction is called existential abstraction [5,
14].

2.2 Predicate Abstraction

Predicate abstraction can be viewed as a special case
of existential abstraction. In predicate abstraction a set
of predicates {P1, . . . , Pk}, including those in the prop-
erty to be verified, are identified from the concrete pro-
gram. These predicates are defined on the variables of the
concrete system. They also serve as the atomic proposi-
tions that label the states in the concrete and abstract tran-
sition systems, that is, the set of atomic propositions is
A = {P1, P2, .., Pk}. A state in the concrete system will
be labeled with all the predicates it satisfies. The abstract
state space has a boolean variable Bj corresponding to each
predicate Pj . So each abstract state is a valuation of these
k boolean variables. An abstract state will be labeled with
predicate Pj if the corresponding bit Bj is 1 in that state.
The predicates are also used to define a total function ρ be-
tween the concrete and abstract state spaces. A concrete
state s will be related to an abstract state ŝ through ρ if and
only if the truth value of each predicate on s equals the value
of the corresponding boolean variable in the abstract state ŝ.
Formally,

ρ(s, ŝ) =
∧

1≤j≤k

Pj(s) ⇔ Bj(ŝ) (4)

Note that ρ is a total function because each Pj can have
one and only one value on a given concrete state and so the
abstract state corresponding to the concrete state is unique.
Using this ρ and the construction given in the previous sub-
section, we can build an abstract model which simulates the
concrete model. We now define the concretization function
γ, which maps a set of abstract states to the corresponding
set of concrete states. Formally, let f̂ be a propositional
formula over abstract state variables,

γ(f̂) = f̂ [Bj ← Pj]. (5)

In predicate abstraction [18], the abstract initial states Ŝ0

and the abstract transition relation R̂ are defined as

Ŝ0 =
∧

{Ŷ1 | S0 → γ(Ŷ1)} (6)

R̂ =
∧

{Ŷ → Ŷ ′ | (R ∧ γ(Ŷ)) → γ(Ŷ ′)} (7)

where Ŷ (Ŷ1) is an arbitrary conjunction (disjunction) of
the literals of the current state variables {B1, B2, . . . , Bk}
and Ŷ ′ is an arbitrary disjunction of literals of the next state
variables {B′

1, B
′
2, . . . , B

′
k}. It can be shown that (6) is

equivalent to (1) and (7) is equivalent to (2).
Equations (6) and (7) can be used to compute abstract

models for both hardware and software verification. To de-
termine the validity of the proof obligations involved, a gen-
eral theorem prover, such as Simplify [16], is used. For
hardware verification, a SAT solver, such as zChaff, can be

more efficient. In practice, heuristics are used to reduce the
number of calls to the theorem prover [1, 18]. In this paper,
to reduce the abstraction time, we restrict Ŷ1 and Ŷ ′ to be at
most one literal, and restrict Ŷ to include at most two liter-
als. The model so obtained will be an over-approximation
of the abstract model. We rely on refinement to compute a
precise enough abstract model when necessary.

2.3 Localization Reduction

Localization reduction [13] is also a special case of ex-
istential abstraction. In localization reduction, a set of im-
portant state variables, called visible variables, are retained
in the abstract model; while the rest, called invisible vari-
ables, are dropped (Their values are assigned nondetermin-
istically). The abstract transition is obtained by conjunct-
ing the transition relations for the visible variables. For-
mally, let V be the set of concrete state variables, and S be
the concrete state space. The value of a variable v ∈ V
in state s ∈ S is denoted by s(v). Given a set of vari-
ables U = {u1, u2, . . . , uk}, U ⊆ V , let sU denote the
portion of s that corresponds to the variables in U , i.e.,
sU = (s(u1)s(u2) . . . s(uk)). Let U be the set of visible
variables. The set of abstract states for localization reduc-
tion is Ŝ = Du1 × Du2 . . . × Duk

. The simulation relation
is ρ(s, ŝ) = (sU ≡ ŝ).

We also assume that neither the concrete transition re-
lation nor the set of initial states is described as a single
formula. Instead, for each individual variable v ∈ V , the
transition relation of v is represented as a propositional for-
mula Rv and the set of initial states of v is represented as a
propositional formula Iv. Thus the abstract initial states Ŝ0

and the abstract transition relation R̂ are defined as

Ŝ0 = ∧v∈UIv (8)

R̂ = ∧v∈URv (9)

It is usually the case that R̂ depends not only on current and
next state variables on U , but also some invisible variables
(precisely those invisible variables that occur in some Rv

or Iv). In the abstract model, these invisible variables are
treated as primary inputs. In general, the abstract model for
localization reduction can be computed very easily, but the
size of the abstract transition relation may be large since it
is directly copied from the concrete model.

3 Clustering Based Predicate Abstraction

In this section, we show how to use clustering based
heuristics to identify control variables. We present an al-
gorithm to build an abstract model by combining localiza-
tion reduction with predicate abstraction. This procedure
ensures that the size of the abstract model is bound by the

size of the concrete model. We also show how to use cor-
relations between predicates and control variables to make
the abstract model more accurate.

3.1 Identifying Control Variables

Predicate abstraction is suitable for handling variables
with large domains. Such variables are usually called data
variables. By replacing important formulas over concrete
data variables with abstract predicates, it is possible to re-
duce the complexity of verification significantly. Besides
data variables, there are other variables with small domains
(e.g., boolean variables) that control the behavior of the sys-
tem to be verified. These variables are called control vari-
ables. Abstracting control variables does not give much
advantage. Because control variables typically have small
domains, the amount of reduction obtained by replacing
a predicate over several control variables with an abstract
boolean variable is not very significant.

We propose a clustering-based heuristic to identify the
important control variables for the verification of the given
property. Let {P1, . . . , Pk} be the set of predicates. Each
predicate Pi is a boolean formula over a set of concrete state
variables, called the supporting variables of Pi. We parti-
tion predicates into small clusters. Initially, each predicate
is a cluster. We merge two clusters if the intersection of
their supports crosses a certain threshold (the support of
a cluster is the union of the supporting variables for each
predicate in the cluster). We continue this process until no
more clusters can be merged. Thus, the clusters we create
partition the predicates into disjoint sets (but the supporting
variables of different clusters may still overlap). Let c be
a cluster, the set of indexes of predicates in c be I(c), the
supporting variables of c be v(c). If all the variables in v(c)
are finite state, each variable can be represented by several
equivalent boolean variables which encode the domain of
this variable. The set of boolean variables for variables in
v(c) is called the set of supporting boolean variables. For
a cluster c, if the number of predicates is comparable to the
number of supporting boolean variables, then this cluster is
called a control cluster and the supporting variables of c are
regarded as control variables.

3.2 Combining with Localization Reduction

It is well known that, given n boolean variables, the
number of distinct propositional formulas over them is 22n

.
Since control variables determine the control flow of the
system under verification, in order to approximate the be-
havior of the concrete system, many predicates over the
control variables may be necessary. Each of these propo-
sitional formulas may become a predicate during predicate
abstraction. Therefore, for the verification of control inten-

sive systems, a blowup of the abstract model is likely when
using existing predicate abstraction methods. Furthermore,
building the abstract model using equations (6) and (7) is
time consuming. Both these problems can be avoided by
using our technique of combining the localization reduction
with predicate abstraction. Using our method, it is possible
to bound the size of the abstract model by that of the con-
crete model. We retain most the control variables in the
abstract model (the criteria for retaining a control variable
is discussed later in this section). The concrete transition
relations for these control variables also serve as abstract
transition relations after some minor modifications. So we
can circumvent the problem of building abstract transition
relations for all these control variables.

The modification to the concrete transition relation is as
follows: for a supporting variable v ∈ v(c), let Rv be the
concrete transition relation for v. Let R′

v = Rv[Pj ←
Bj , for all j such that Pj is a formula predicate]. That is,
we replace all occurrences of every formula predicate Pj

in Rv by the corresponding abstract boolean variable Bj . If
R′

v is finite state, that is, if there are no unbounded variables
or unbounded control (e.g., recursion) in it, then we use v
as an abstract state variable. In such a case we use R′

v as
the abstract transition relation for variable v. In the termi-
nology of localization reduction, variable v is visible and
unabstracted. There is one major difference between local-
ization reduction and our method: In localization reduction,
the transition relation for a visible variable is copied from
the concrete model to the abstract model, whereas in our
method, we replace a subformula of the concrete transition
relation if that subformula corresponds to a formula predi-
cate. Doing this has two advantages: Firstly, even if Rv had
unbounded variables, R′

v could be finite state because of
the substitutions. Secondly, the transition relations for the
control variables are modified so that the abstract variables
corresponding to formula predicates constrain the possible
next states of the control variables. This leads to a more
accurate model.

Note that the abstract model built using the localization
reduction has more primary inputs (invisible variables) than
the abstract model built using predicate abstraction. This
can increase the size of the abstract model. Therefore, we
retain unabstracted only those variables whose next state
logic has a small number of inputs.

3.3 Correlations between Control Variables and
Predicates

Our abstract model includes real predicates and control
variables. In this subsection, a method to correlate predi-
cates and control variables will be discussed. Recall from
Section 3.1 that the clusters we build partition the predicates
into disjoint sets (although the supporting variables of the

clusters may overlap). Our method replaces the predicates
in the control clusters by the supporting variables. There
might be other predicates which have these control variables
in their support. As an example, suppose we decide to drop
a predicate cluster {P1 ≡ x ∨ y, P2 ≡ x ∧ y} and replace
the two predicates with the variables {x, y}. Suppose also
there are two additional predicates, P3 ≡ x ∨ y ∨ z and
P4 ≡ x ∧ y ∧ w whose corresponding abstract state vari-
ables are B3 and B4, respectively. Thus, the abstract state
variables include x, y,B3, B4. Further assume that the next
state value for variable x is defined as ¬z in the concrete
model. Note that the values of variables x, y and values of
B3, B4 are not independent. The following are three possi-
ble scenarios

• If we know that B3 is false in an abstract state, then
x = false and y = false in that state.

• If we know x = false in an abstract state, then B4 must
be false in that state.

• If we know B3 is false in an abstract state, then in the
corresponding concrete states, z is false. Therefore, in
the abstract successor states, x will be true.

It is desirable to incorporate the correlations/constraints be-
tween control variables and real predicates into the abstract
model. This will make the abstraction more accurate. Our
method does not directly compute these constraints. In-
stead, we selectively introduce the concrete definitions of
some predicates into the abstract model as invariants. The
model checking procedure will enforce any implied con-
straints through these invariants. Note that, only formula
predicates whose supporting variables are all finite state
are considered in this method. For the above example, we
add z, w as two additional abstract input variables and add
the definitions of the two predicates as abstract invariants:
B3 = (x∨y∨z), and B4 = (x∧y∧w). This will force the
abstract model to observe any constraints between variables
x, y and B3, B4. Note that by doing this we have added two
new variables z, w to the abstract model. This could make
the abstract model larger. To overcome this problem, we
add the definition of a predicate to the abstract model only
if most of the variables in the support of this predicate are
either control variables themselves (e.g. x, y for B3) or in
the support of control variables (e.g. z for x). In this way,
the added invariants will restrict the possible values of the
control variables and predicates. This will ensure we only
add a small number of additional variables, e.g., z and w.

3.4 Correlations Between Formula Predicates

It is also possible that the predicates in a non-control
cluster may not be independent, in the sense that not all
possible combinations of assignments to their abstract state

variables are possible. For the example in the previous para-
graph, when B3 = false, B4 must also be false. For a given
cluster c, let v(c) be the concrete supporting variables in c,
let I(c) be the indexes of the predicates in c. We define
g(c), called the consistent abstract states over cluster c, as
follows

g(c) = {ŝ | ∃s ∈ S.
∧

j∈I(c)

(Pj(s) = Bj(ŝ))} (10)

It is easy to see that any ŝ �∈ g(c) does not have any corre-
sponding concrete state and therefore it should be excluded
from the abstract model checking. We represent the com-
puted consistent abstract states for each non-control cluster
as invariant in the abstract model. It is possible to compute
a single set of consistent abstract states by conjuncting all
predicates instead of conjuncting predicates of each clus-
ter separately. Although this will result in a more accurate
constraint, it may be computationally expensive when the
number of predicates is large.

We now show how to compute g(c). We have two al-
gorithms depending on whether or not there are any un-
bounded variables in v(c). The first algorithm is based on
BDDs. It only works if all variables in v(c) have finite do-
mains. We can build BDDs for each Pj and Bj , then g(c)
can be calculated by conjuncting Pj(s) = Bj(ŝ), j ∈ I(c)
and quantifying v(c). This is not expensive because the
number of predicates in a cluster is usually small. The sec-
ond algorithm is based on the abstraction function [18]. Let
Ŷ (c) be a disjunction of literals over variables Bj , where
j ∈ I(c). It can be shown that g(c) is the same as

∧
{Ŷ (c) | true ⇒ γ(Ŷ(c))} (11)

Essentially, this equation says that a formula over the ab-
stract variables, Ŷ (c), includes the set of consistent abstract
states if the corresponding concrete formula, γ(Ŷ (c)), is
true. The second algorithm works for variables with both
finite and infinite domains. For the finite case, a SAT solver
can be used; while for the other case, a general theorem
prover has to be used. Since the second algorithms may re-
quire solving true ⇒ γ(Ŷ(c)) for all possible disjunctions
over variables in cluster c, it is usually slower than the first
algorithm when variables have finite domains.

4 Exploiting High Level Representation

In this section, we discuss how to improve predicate ab-
straction by using information from the high level represen-
tation of the design under verification. We first describe our
method for extracting branch conditions from RTL Verilog
and then we present our lazy-refinement algorithm to refine
the abstract model.

4.1 Extracting Branch Conditions

High level design languages usually contain branch
statements, such as if, case statements. The if statement
has two branches, while the case statement may have mul-
tiple branches. Usually, a case statement can be converted
to multiple if-then-else statements that are equivalent to it.
We call the boolean predicates that determine which branch
to be executed, branch conditions. We intend to extract the
branch conditions and use them as predicates in predicate
abstraction.

For the purpose of model checking, the high level repre-
sentation of the system under verification is translated into
a formula over the current and next state variables (referred
to as the transition relation). Each extracted branch con-
dition is translated into a subformula of the transition rela-
tion. For a branch condition, the corresponding subformula
of the transition relation is called the flattened branch con-
dition. The transition relation is further converted into dif-
ferent representations that are suitable for different model
checking engines. For example, it is converted to BDDs for
BDD-based model checkers, or CNF for SAT-based model
checkers. For a flattened branch condition, it is straightfor-
ward to identify the corresponding representation inside the
model checking engines.

We will describe a simple method to extract a set of flat-
tened branch conditions for RTL Verilog designs. We be-
lieve it is easy to generalize this method to other design
languages. One possible method is to develop a transla-
tor from RTL Verilog to gate level circuits, which can then
be easily converted into a transition relation. The main dis-
advantage of this method is the amount of work involved
in handling the semantics of Verilog, which is not formally
defined [11]. In practice Verilog is interpreted by a set of
standard commercial tools, such as Synopsys Design Com-
piler. Our method relies on the fact that commercial syn-
thesis tools already exist for Verilog. We first convert the
RTL design into another equivalent design, where the rele-
vant branch conditions are renamed to signals with unique
names. An example is shown in Figure 1. We use the
continuous assignment statement in Verilog to rename the
branch conditions using unique signals, such that the mod-
ified design is equivalent to the original one. After this,
a gate level circuit is generated from the modified design
using Synopsys Design Compiler. We further translate the
gate level circuit into a transition relation and the flattened
branch conditions can be identified using the unique signal
names. Our method can be easily applied to other design
languages as long as there are language constructs to re-
name boolean predicates using new variables. Our method
can take advantage of existing translators, therefore the im-
plementation time is much shorter than building a translator
from scratch.

ORIGINAL DESIGN

always @(posedge clk) begin
if (mode != NO CONF) begin

...
end else if (a == b) begin

...
end

end

MODIFIED DESIGN

assign pred1 = mode != NO CONF;
assign pred2 = a == b;
always @(posedge clk) begin

if (pred1) begin
...

end else if (pred2) begin
...

end
end

Figure 1. Replace branch conditions using
unique signals

It is usually the case that there are many branch condi-
tions that we can extract from a high level representation of
designs. Not all of them can be used as predicates to build
the initial abstraction, otherwise the abstract model will be-
come too large. We use the refinement algorithm in Sec-
tion 4.2 to identify a subset of the branch conditions which
are necessary to invalidate the given spurious abstract coun-
terexample.

4.2 Counterexample-based Lazy Refinement

In counterexample guided abstraction refinement, a
given spurious abstract counterexample is invalidated dur-
ing refinement through the introduction of a set of pred-
icates, called invalidating predicates, into the abstract
model. Once an abstract counterexample is determined to
be spurious, our algorithm identifies a subset of the flattened
branch conditions as invalidating predicates.

We first introduce some notation. Let f be a boolean for-
mula, we use ±f to denote f or f . Let v ∈ V be a concrete
state variable, we use v′ ∈ V ′ to denote the corresponding
next state variable. If f is a boolean function over V , then
f ′ is the same function over V ′.

The flattened branch conditions, which have not yet been
added as predicates, are called the candidate predicates. A
naive algorithm to compute the required set of invalidat-

ing predicates is the following: First, the set of candidate
predicates is ordered according to some importance crite-
ria. Using this order, candidate predicates can be added to
the abstract model one at a time and the given counterex-
ample can be checked on the refined abstract model. If the
counterexample is invalidated, the already added candidate
predicates will be the required set of invalidating predicates.
This naive algorithm has two disadvantages. One is that
the order of the predicates affects the size of the result. A
bad order may prevent the discovery of a smaller number
of invalidating predicates. Most importantly, the compu-
tation time is too high, because once a predicate is added,
the abstract model has to be updated as described in Sec-
tion 2.2. Instead, we have developed a new lazy refinement
algorithm, which avoids computing the full refined abstract
model at each stage. Intuitively, in this algorithm, the given
abstract counterexample is extended by assigning 0, 1 or x
values to the abstract variables corresponding to the candi-
date predicates. A candidate abstract variable is given a 0
or a 1 value at time i if it can be determined from the coun-
terexample at time i− 1 and i; otherwise an unknown value
x is given. The counterexample is invalidated if it can not
be extended to the next time step. If that is the case, we per-
form a backward analysis from the time of failure until time
0 to identify those candidate predicates that are responsible
for this failure. The predicates identified in this manner will
invalidate the spurious counterexample.

Suppose there are already m predicates in the abstract
model. Let ce = 〈ce0, ce1, . . . , cen〉 be a spurious abstract
counterexample. Note that, each cej is a conjunction of lit-
erals over the set of abstract state variables B1, . . . , Bm. Let
cp = {cpm+1, cpm+2, . . . , cpm+k} be the set of candidate
predicates, which are temporarily represented by abstract
state variables {Bm+1, Bm+2, . . . , Bm+k} (These candi-
date predicates have not been added to the abstract model
yet). The example in Figure 2 illustrates how our algo-
rithm works. Suppose there are 2 predicates, 3 candidate

time 0 time 1 time 2

1
0 1

0 1
1

0

1 1

1
x0

B1
B2

B3
B4
B5

Figure 2. A refinement example

predicates and a spurious abstract counterexample of length
3. The counterexample contains values for predicates P1

and P2 at each time from 0 to 2. Our algorithm first deter-
mines the values for the candidate predicates at time 0. If
(S0∧γ(ce0)) → cp4 is a tautology, then any valid extension
of ce0 must have the abstract variable corresponding to cp4

set to 0. The values of other candidate predicates at time 0
can be determined similarly. The resulting extended coun-
terexample at time 0 is denoted by ece0. We then extend the
counterexample at time 1 to obtain ece1. For example, if we
can prove that

(R ∧ γ(ce0) ∧ cp3 ∧ cp4 ∧ cp5 ∧ γ(ce1)) → cp′
3 (12)

is a tautology (where cp′
3 is the same as cp3 except that it

is over the next state variables), the value of this candidate
predicate must be 1. Note that we can not determine the
value of cp4 at time 1, therefore its value is unknown in the
extended counterexample. After ece1 is determined, if

(R ∧ γ(ce1) ∧ cp3 ∧ cp5) → γ(ce2) (13)

is a tautology, then the counterexample can not be extended
to time 2, thus it has been invalidated. Finally, we iden-
tify the set of invalidating predicates. It is possible that
not all candidate predicates in the left hand side of equa-
tions (12) and (13) are necessary in showing that they are
tautologies. Only those in the proof of the tautologies are
necessary. Proofs can be obtained from proof generating
theorem provers (e.g., Simplify) and proof generating SAT
solvers [4]. Suppose, we can determine that cp3, cp5 in
equation (12) and cp5 in equation (13) are not in the respec-
tive proofs for those two implications. Then we can deduce
that, of all candidate predicates, cp3 alone is responsible for
disabling the transition from time step 1 to time step 2 (since
cp5 is not needed in the proof of equation (13)). Moreover,
of all candidate predicates, only cp4 at time 0 determines
the value of cp3 at time step 1 (since cp3, cp5 do not appear
in the proof of equation (12)). Thus the set of invalidating
predicates is {cp3, cp4}. Note, we have worked backwards
along the counterexample. We first found some invalidating
predicates at time step 1 and then used that to find more in-
validating predicates at time step 0. This is the basic idea of
our algorithm to find the set of invalidating predicates.

We now present the lazy refinement algorithm in detail.
Our algorithm is separated into three parts, the first one,
which computes ece0, is shown in Figure 3. The second
one, which computes ecei+1 making use of ecei, is shown
in Figure 4. The last one, shown in Figure 5, computes the
invalidating predicates as a subset of the candidate predi-
cates once the counterexample is invalidated.

The algorithm to compute ece0 is similar to the algo-
rithm for computing the set of abstract initial states in Sec-
tion 2.2, except that we use S0∧γ(ce0) instead of S0 alone.
This makes sense because our goal is to extend the current
counterexample. The idea is to determine if the set of con-
crete initial states S0 and the concrete states corresponding
to ce0 can imply either the truth or falsity of each candidate
predicate; otherwise the value of the candidate predicate is
unknown.

COMPUTE INITIAL

1 let ece0 = ce0

2 for each candidate predicate cpm+j

3 if (S0 ∧ γ(ce0)) → cpm+j is a tautology
4 let ece0 = ece0 ∧ Bm+j

5 elseif (S0 ∧ γ(ce0)) → cpm+j is a tautology
6 let ece0 = ece0 ∧ Bm+j

7 endif
8 endfor

Figure 3. Algorithm to compute ece0

Given the extended counterexample at time i, the algo-
rithm in Figure 4 extends the counterexample to time i + 1.
It first checks whether there are any concrete transitions be-
tween γ(ecei) and γ(cei+1). The code for this is given in
lines (1) to (4). If it is not the case, the counterexample has
been invalidated by the candidate predicates, the set of in-
validating predicates is calculated and returned in line (3).
If it is possible to make a concrete transition from γ(ecei)
to γ(cei+1), the algorithm will check whether a candidate
predicate is guaranteed to be true/false for such concrete
transitions. This is computed in line (7) and line (9) and
ecei+1 is updated. If the counterexample can be extended
from time 0 until time n, the set of flattened branch condi-
tions are not enough to invalidate the counterexample. We
will resort to the traditional refinement methods to compute
a new predicate [6] using SAT. Details can be found in [7].

//i: time to extend counterexample
COMPUTE NEXT(i)

1 if (R ∧ γ(ecei)) → γ(cei+1) is a tautology
2 let f = (R ∧ γ(ecei)) → γ(cei+1)
3 return DETERMINE PREDICATES(i, f)
4 endif
5 let ecei+1 = cei+1

6 for each candidate predicate cpm+j

7 if (R ∧ γ(ecei) ∧ γ(cei+1)) → cp′
m+j is a tautology

8 let ecei+1 = ecei+1 ∧ Bm+j

9 elseif (R ∧ γ(ecei) ∧ γ(cei+1)) → cp′
m+j is a

tautology
10 let ecei+1 = ecei+1 ∧ Bm+j

11 endif
12 endfor

Figure 4. Algorithm to compute ecei+1

If the counterexample is invalidated at line (1) in Fig-
ure 4, the algorithm in Figure 5 is called with the time t

//t: the time when extending counterexample fails
//f = (R ∧ γ(ecet)) → γ(cet+1)
DETERMINE PREDICATES(t, f)

1 let np = {〈±Bm+j , t〉 | ± cpm+j is in the proof of f}
2 for i = t − 1 to 0
3 let taut(i) = {(R ∧ γ(ecei) ∧ γ(cei+1)) → ±cp′

m+q |
〈±Bm+q, i + 1〉 ∈ np}

4 let prf = { proofs for the implications in taut(i)}
5 let np = np ∪ {〈±Bm+w, i〉 |

±cpm+w is in any proof in prf }
6 endfor
7 return {cpm+j | ∃0 ≤ i ≤ t. 〈±Bm+j , i〉 ∈ np}

Figure 5. Algorithm to compute invalidating
predicates

and f = (R ∧ γ(ecet)) → γ(cet+1). We use the set np
to hold all candidate predicates that are given a 0 or 1 value
in the time steps preceding t and result in the failure of the
counterexample. In line (1), np is initialized to all candidate
predicates that are directly responsible for the failure. This
is done by analyzing the proof for the failure of the coun-
terexample. In the loop between line (2) and line (6), we
go backward in time to find the set of candidate predicates
that are indirectly responsible for the failure. Finally in line
(7), the set of invalidating predicates is returned. Note that,
in line (3), taut(i) is a subset of the tautologies we com-
puted from the algorithm in Figure 4. For each implication
(R ∧ γ(ecei) ∧ γ(cei+1)) → ±cp′

m+q in taut(i), we re-

fine the abstract transition relation R̂ by conjuncting it with
ecei → (cei+1 ∨ ±B′

m+q). Therefore, our algorithm not
only computes the subset of the flattened branch conditions
which can invalidate the given spurious abstract counterex-
ample but also computes the refined abstract model. Our al-
gorithm does not build the whole refined abstract model and
then test whether it invalidates the counterexample. Instead,
it gradually refines the abstract model until the counterex-
ample is invalidated. Therefore, our lazy algorithm can be
more efficient than the naive algorithm.

5 Related Work

Some researchers have considered combining unab-
stracted control variables with predicate abstraction [15],
but their methods are not automatic. As far as we know,
no one else has considered the correlation between unab-
stracted control variables and predicates. Using the correla-
tions between all predicates to constrain the abstract model
has been investigated in [1]. The correlations are computed

using a general theorem prover. We first partition the set of
predicates into clusters based on the sharing of support sets,
then correlations are computed for each cluster separately.
Although our result is more approximate, the complexity of
our algorithm is much less sensitive to the total number of
predicates. We also give a BDD-based algorithm for the
verification of finite state systems.

Exploiting high level language features for abstraction
has been investigated in [6]. They extract conditions of case
statements in the SMV language in order to build the initial
abstraction. The extraction method in [6] requires modify-
ing the source code of an existing translator from SMV lan-
guage to transition relations, therefore it can not be applied
to commercial tools. The extracted conditions are used only
for the initial abstraction; while we use a new refinement al-
gorithm to check whether branch conditions can invalidate
the spurious abstract counterexample. The branch condi-
tions become predicates only when they invalidate a spuri-
ous counterexample.

Our counterexample-based lazy refinement algorithm
tries to identify the branch conditions that can invalidate
the spurious abstract counterexample, before using the tra-
ditional refinement methods to compute a new predicate.
Therefore, our algorithm is an extension of the existing re-
finement algorithms. Our experiments show that this new
refinement algorithm can identify the set of predicates to
verify the given property much more quickly than the tradi-
tional methods alone.

Lazy abstraction for the verification of C programs has
been investigated in [12]. The goals of their algorithm and
ours are different. In [12], the construction of the abstract
model and abstract model checking are performed only
from the state where the spurious abstract counterexample
fails on the concrete system. While Our refinement algo-
rithm identifies a subset of the branch conditions that can
invalidate a spurious counterexample without constructing
the full refined abstract model.

6 Experimental Results

We have modified the zChaff SAT solver [20] to gener-
ate proofs of unsatisfiability. The techniques in this paper
are implemented on top of the predicate abstraction frame-
work reported in [7]. We compare results with and with-
out these techniques using two sets of benchmarks: one is
the integer unit (IU) of the picoJava microprocessor from
Sun; the other is a programmable FIR filter (PFIR) which
is a component of a system-on-chip design. The size of the
benchmarks is shown in Table 1. The first column is the
name of the property. The first three properties are from
the IU design; the remaining six are from the PFIR design.
For all the properties shown in the first column of Table 2,
we have performed cone-of-influence reduction before the

verification. The resulting number of registers and gates are
shown in the second and third columns. Most properties are
true, except PFIRscr1 and PFIRprop5. The lengths of the
counterexamples are shown in the fourth column.

circuit # regs # gates ctrex

IUscr1 4855 149143 true
IUscr3 4855 149143 true
IUscr6 4855 149143 true
PFIRscr1 243 2295 16
PFIRprop5 250 2342 17
PFIRprop8 244 2304 true
PFIRprop9 244 2304 true
PFIRprop10 244 2304 true
PFIRprop12 247 2317 true

Table 1. The benchmarks used in the experi-
ments

All these properties are difficult for the state-of-art BDD-
based model checker, Cadence SMV. Except for the two
false properties, Cadence SMV can not verify any in 24
hours. The verification time for PFIRscr1 is 834 seconds,
and for PFIRprop5 is 8418 seconds. In Table 2, we com-
pare predicate abstraction with and without [7] the tech-
niques presented in this paper. In Table 2, the second to
fourth columns are the results obtained without our tech-
niques; while the last three columns are the results obtained
with the techniques enabled. We compare the time (in sec-
onds), the number of refinement iterations and the num-
ber of predicates in the final abstraction. In all cases, our
new method outperforms the old one in the amount of time
used; sometimes over an order of magnitude improvement
is achieved. In most cases, we use fewer refinement iter-
ations and smaller predicate sets to verify the given prop-
erties. A detailed analysis of the PFIR results shows that
the extraction algorithm extracted about 9 branch condi-
tions from the RTL Verilog, which were later used as pred-
icates. Without these extracted predicates, the set of predi-
cates computed using traditional refinement algorithm was
not sufficient to finish verification within 24 hours (for 3
properties).

7 Conclusion

We have presented two techniques to improve predicate
abstraction for the verification of hardware/software sys-
tems. We give an algorithm based on localization reduc-
tion to avoid the potential blowup of the abstract models
when verifying control intensive systems. This technique
builds a “hybrid” abstract model, which includes predicates

circuit Old New
time iters pred time iters pred

IUscr1 2000 11 7 1265 7 18
IUscr3 2003 10 6 1974 16 7
IUscr6 9976 27 12 3498 20 11
PFIRscr1 746 109 44 386 67 34
PFIRprop5 1616 110 43 756 101 44
PFIRprop8 >24h >276 >80 159 40 25
PFIRprop9 >24h >189 >47 202 43 27
PFIRprop10 6808 170 52 178 50 25
PFIRprop12 >24h >223 >52 591 80 38

Table 2. Comparison without [7] and with our
techniques

as well as unabstracted control variables. It is usually the
case that the predicates/control variables are not indepen-
dent. We give algorithms to compute correlations between
them, which help to make the abstract model more accu-
rate. We also present algorithms to exploit information in
high level design languages. We give a simple method to
extract branch conditions from high level design represen-
tations. Using a new counterexample-based lazy refinement
algorithm, the necessary branch conditions can be added as
new predicates to invalidate spurious abstract counterexam-
ples. Experimental results demonstrate the usefulness of
our methods.

References

[1] Thomas Ball, Rupak Majumdar, Todd Millstein, and
Sriram K. Rajamani. Automatic Predicate Abstraction
of C Programs. In PLDI 2001.

[2] Thomas Ball, Andreas Podelski, and Sriram K. Raja-
mani. Boolean and cartesian abstractions for model
checking c programs. In TACAS 2001, volume 2031
of LNCS, pages 268–283, April 2001.

[3] Saddek Bensalem, Yassine Lakhnech, and Sam Owre.
Computing abstractions of infinite state systems com-
positionally and automatically. In Computer-Aided
Verification, CAV’98, pages 319–331, 1998.

[4] Pankaj Chauhan, Edmund M. Clarke, Samir Sapra,
James Kukula, Helmut Veith, and Dong Wang. Auto-
mated abstraction refinement for model checking large
state spaces using sat based conflict analysis. In FM-
CAD’02, 2002.

[5] E. Clarke, O. Grumberg, and D. Long. Model check-
ing and abstraction. In POPL, pages 343–354, 1992.

[6] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan
Lu, and Helmut Veith. Counterexample-guided Ab-
straction Refinement. In CAV’00, 200.

[7] Edmund Clarke, Muralidhar Talupur, and Dong Wang.
SAT based Predicate Abstraction for Hardware Verifi-
cation. In Sixth International Conference on Theory
and Applications of Satisfiability Testing, 2003.

[8] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 1999.

[9] Michael Colon and Tomas E. Uribe. Generating finite-
state abstractions of reactive systems using decision
procedures. In CAV’98, pages 293–304, 1998.

[10] Satyaki Das, David L. Dill, and Seungjoon Park. Ex-
perience with predicate abstraction. In CAV’99, pages
160–171, 1999.

[11] Michael J. C. Gordon. The semantic challenge of Ver-
ilog HDL. In LICS’95, pages 136–145, 1995.

[12] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,
and Gregoire Sutre. Lazy abstraction. In POPL, pages
58–70, 2002.

[13] R. P. Kurshan. Computer-Aided Verification. Prince-
ton Univ. Press, Princeton, New Jersey, 1994.

[14] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and
S. Bensalem. Property preserving abstractions for the
verification of concurrent systems. Formal Methods in
System Design: An International Journal, 6(1):11–44,
January 1995.

[15] Kedar S. Namjoshi and Robert P. Kurshan. Syntactic
program transformations for automatic abstraction. In
CAV’00, 2000.

[16] Greg Nelson. Techniques for Program Verification.
PhD thesis, Stanford University, 1980.

[17] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In CAV’97, pages 72–83, 1997.

[18] H. Saidi and N. Shankar. Abstract and model check
while you prove. In CAV’99, pages 443–454, 1999.

[19] Dong Wang, Pei-Hsin Ho, Jiang Long, James Kukula,
Yunshan Zhu, Tony Ma, and Robert Damiano. Formal
Property Verification by Abstraction Refinement with
Formal, Simulation and Hybrid Engines. In DAC’01,
2001.

[20] Lintao Zhang, Conor F. Madigan, Matthew W.
Moskewicz, and Sharad Malik. Efficient conflict
driven learning in a Boolean satisfiability solver. In
ICCAD’01, 2001.

