
Model Checking and Modular Veri�cation�

Orna Grumberg
Computer Science Department

The Technion
Haifa ������ Israel

orna�techsel �BITNET�

David E� Long
School of Computer Science
Carnegie Mellon University

Pittsburgh� PA 	
�	�
long��cs�cmu�edu �Internet�

August 	
� 	��	

Abstract

We describe a framework for compositional veri�cation of �nite state processes� The
framework is based on two ideas� a subset of the logic CTL for which satisfaction is
preserved under composition� and a preorder on structures which captures the relation
between a component and a system containing the component� Satisfaction of a formula
in the logic corresponds to being below a particular structure �a tableau for the formula�
in the preorder� We show how to do assume�guarantee style reasoning within this
framework� In addition	 we demonstrate e
cient methods for model checking in the
logic and for checking the preorder in several special cases� We have implemented a
system based on these methods	 and we use it to give a compositional veri�cation of a
CPU controller�

� Introduction

Temporal logic model checking procedures are useful tools for the veri�cation of �nite state
systems ��� ��� ��	
 However� these procedures have traditionally su�ered from the state
explosion problem
 This problem arises in systems which are composed of many parallel
processes� in general� the size of the state space grows exponentially with the number of
processes
 By introducing symbolic representations for sets of states and transition relations
and using a symbolic model checking procedure� systems with very large state spaces �����

or more states� can be veri�ed ��� �	
 Further� the time and space requirements with these
techniques may in practice be polynomial in the number of components of the system

�This research was sponsored in part by the Avionics Laboratory� Wright Research and Development
Center� Aeronautical Systems Division �AFSC�� U�S� Air Force� Wright�Patterson AFB� Ohio ���		�
��	
under Contract F		
�����C���
�� ARPA Order No� ���� and in part by the National Science Foundation
under Contract No� CCR������ and in part by the U�S��Israeli Binational Science Foundation�
The views and conclusions contained in this document are those of the authors and should not be inter�

preted as representing the o�cial policies� either expressed or implied� of the U�S� government�

�

Unfortunately� the symbolic procedures still have limits� and many realistic problems are
not tractable due to their size
 Thus� we are motivated to search for additional methods
of handling the state explosion problem� methods which work well in conjunction with the
symbolic techniques

An obvious method for trying to avoid the state explosion problem is to use the natural
decomposition of the system
 The goal is to verify properties of individual components�
infer that these hold in the complete system� and use them to deduce additional properties
of the system
 When verifying properties of the components� it may also be necessary to
make assumptions about the environment
 This approach is exempli�ed by Pnueli�s assume�
guarantee paradigm ���	
 A formula in his logic is a triple h�iM h�i where � and � are
temporal formulas and M is a program
 The formula is true if whenever M is part of a
system satisfying �� the system must also satisfy �
 A typical proof shows that h�iM h�i
and htrueiM �h�i hold and concludes that htrueiM kM �h�i is true

In order to automate this approach� a model checker must have several properties
 It
must be able to check that a property is true of all systems which can be built using a given
component
 More generally� it must be able to restrict to a given class of environments when
doing this check
 It must also provide facilities for performing temporal reasoning
 Most
existing model checkers were not designed to provide these facilities
 Instead� they typically
assume that they are given complete systems

An elegant way to obtain a system with the above properties is to provide a preorder on
the �nite state models that captures the notion of �more behaviors� and to use a logic whose
semantics relate to the preorder
 The preorder should preserve satisfaction of formulas of
the logic� i
e
� if a formula is true for a model� it should also be true for any model which is
smaller in the preorder
 In addition� composition should preserve the preorder� and a system
should be smaller in the preorder than its individual components
 Finally� satisfaction of
a formula should correspond to being smaller than a particular model a tableau for the
formula� in the preorder
 In such a framework� the above reasoning sequence might be
expressed as� T is the tableau of �� M kT j� �� M � � T � and hence M kM � j� �
 Note that
assumptions may be given either as formulas or directly as �nite state models� whichever is
more concise or convenient
 More complex forms of reasoning such as induction ���	 are also
possible within this framework

In choosing a computational model� a logic and a preorder to obtain a system such as
this� we are guided by the following considerations
 First� we must be able to realistically
model physical systems such as circuits
 Second� there should be e�cient procedures for
model checking and for checking the preorder
 Finally� it should be possible to implement
these procedures e�ectively using symbolic techniques

In this paper� we propose a preorder for use with a subset of the logic CTL� ���	
 This
subset is strictly more expressive than LTL
 Further� the induced subset of CTL is expressive
enough for most veri�cation tasks and has an e�cient model checking algorithm
 We also
give a tableau construction for this CTL subset
 The construction provides a means of
temporal reasoning and makes it possible to use formulas as assumptions
 Our preorder and
the semantics of our logics both include a notion of fairness
 This is essential for modeling
systems such as communication protocols
 We show how to use our results to verify systems
composed of Moore machines
 Moore machines have an explicit notion of input and output

�

and are particularly suitable for modeling synchronous circuits
 Finally� we suggest e�cient
methods for checking the preorder in several interesting cases
 We have implemented a
system based on these results� the system supports e�cient compositional veri�cation and
temporal reasoning

Our paper is organized as follows
 Section � surveys some related work
 In section ��
we present the logic and its semantics for Kripke structures�
 The preorder and some of
its properties are given in section �
 The next section de�nes the semantics of the logic for
Moore machines
 Given a Moore machine and a formula� we show how to e�ciently check
whether for all environments� the Moore machine in the environment satis�es the formula

Section � presents the tableau construction and demonstrates how to use it for temporal
reasoning
 Methods for checking the preorder are discussed in section �
 Section � gives a
compositional veri�cation of a simple CPU controller
 We conclude with a summary and
some directions for future work

� Related work

Much of the work on reducing the complexity of automatic veri�cation can be grouped into
two classes
 The �rst class includes methods to build a reduced global state graph or to
expand only the needed portion of the global state graph

Local model checking algorithms ��� ��� ��	 based on logics like the ��calculus use a
tableau�based procedure to deduce that a speci�c state the initial state of the system�
satis�es a given logical formula
 The state space can be generated as needed in such an
algorithm� and for some formulas� only a small portion of the space may have to be examined

The main drawback of these algorithms is that often the entire space is generated for
example� when checking that a property holds globally�
 It is also not clear whether the
algorithms can take good advantage of symbolic representations

Graf and Ste�en ���	 describe a method for generating a reduced version of the global
state space given a description of how the system is structured and speci�cations of how
the components interact
 Clarke� Long and McMillan ��	 describe a similar attempt
 Both
methods will still produce large state graphs if most of the states in the system are not
equivalent� and much of the veri�cation must be redone if part of the system changes

Shtadler and Grumberg ���	 show how to verify networks of processes whose structure is
described by grammars
 In this approach� which involves �nding the global behavior of each
component� networks of arbitrary complexity can be veri�ed by checking one representative
system
 For many systems� however� the number of states may still be prohibitive� and it is
not clear whether the method can use symbolic representations

The second class of methods are compositional� properties of the individual components
are veri�ed� and properties of the global system are deduced from these
 A representation
of the global state space is not built

Josko ���	 gives an algorithm for checking whether a system satis�es a CTL speci�cation
in all environments
 His algorithm also allows assumptions about the environment to be
speci�ed in a restricted linear�time logic
 The system is able to handle assume�guarantee
reasoning
 The method is fairly ad hoc however� and more complex forms of reasoning such
as induction cannot be easily incorporated into the system

�

Within the framework of CCS ���	� there have been a number of suggestions for compo�
sitional reasoning
 Larsen ���	 investigates the expressive power of formalisms for specifying
the behavior of a process in a system
 He suggests equivalence� re�nement and satisfaction
of a formula� as three interesting relations between an implementation and its speci�cation

However� he does not discuss the applicability of these ideas to veri�cation� nor does he
suggest how they can be implemented
 Walker ���	 demonstrates how to use a preorder plus
knowledge of how a system should operate to simplify the veri�cation of bisimulation equiv�
alence
 Cleaveland and Ste�en ��	 use a similar idea
 Winskel ���	 proposes a method for
decomposing speci�cations into properties which the components of a system must satisfy
for the speci�cation to hold
 The approach is very appealing� but unfortunately� dealing
with parallel composition is di�cult
 It is not apparent whether any of these methods will
work well with symbolic representations

Kurshan ���	 describes a veri�cation methodology based on testing containment of ��
regular languages
 Homomorphic reductions are used to map implementations to speci�ca�
tions� and the speci�cations may be used as implementations at the next level of abstraction

Dill ���	 proposes an elegant form of trace theory which can be used in a similar manner�
but the framework does not handle liveness properties well
 Both approaches depend on
speci�cations being deterministic for e�ciency� and neither approach makes provisions for
using logical formulas as speci�cations or assumptions

Shurek and Grumberg ���	 describe criteria for obtaining a modular framework� and
illustrate the idea using CTL� with only universal path quanti�ers
 This system is closest to
the work presented here� but they give no provisions for handling fairness e�ciently� using
formulas as assumptions� or supporting temporal reasoning
 Models in their system are also
associated with a �xed decomposition into components� hence it is unclear how to perform
inductive reasoning in the framework

� Temporal logic

The logics presented in this section are branching�time temporal logics
 In order to be able
to e�ciently decide whether a formula is true in all systems containing a given component�
we eliminate the existential path quanti�er from the logics
 Thus� a formula may include
only the universal quanti�er over paths� but unlike in linear�time temporal logic� nesting
of path quanti�ers is allowed
 To ensure that existential path quanti�ers do not arise via
negation� we will assume that formulas are expressed in negation normal form
 In other
words� negations are applied only to atomic propositions
 The logics are interpreted over a
form of Kripke structure with fairness constraints
 Path quanti�ers range over the fair paths
in the structures

De�nition � ��CTL�� The logic �CTL� is the set of state formulas given by the following
inductive de�nition�

�� The constants true and false are state formulas� For every atomic proposition p�
p and �p are state formulas�

�� If � and � are state formulas� then � � � and � � � are state formulas�

�

�� If � is a path formula� then ��� is a state formula�

	� If � is a state formula� then � is a path formula�

� If � and � are path formulas� then so are � � �� � � ��

�� If � and � are path formulas� then so are

�a X��

�b �U �� and

�c �V ��

We also use the following abbreviations� F� and G�� where � is a path formula� denote
true U �� and false V �� respectively�

�CTL is a restricted subset of �CTL� in which the � path quanti�er may only precede
a restricted set of path formulas
 More precisely� �CTL is the logic obtained by eliminating
rules � through � above and adding the following rule

��
 If � and � are state formulas� then �X�� ��U ��� and ��V �� are state formulas

In practice� we have found that many of the formulas which are used in specifying and
verifying systems are expressible in �CTL� and almost all are expressible in �CTL�
 An
example formula which is not expressible in �CTL� is a weak form of absence of deadlock�
�G�F p states that it should always be possible to reach a state where p holds

We will give the semantics of the logic using a form of Kripke structure with fairness
constraints

De�nition � �structure� A structure M � hS� S��A�L�R�Fi is a tuple of the following
form�

�� S is a �nite set of states�

�� S� � S is a set of initial states�

�� A is a �nite set of atomic propositions�

	� L is a function that maps each state to the set of atomic propositions true in that state�

� R � S 	 S is a transition relation�

�� F is a Streett acceptance condition� represented by pairs of sets of states�

De�nition � A path in M is an in�nite sequence of states � � s�s�s�

 such that for all
i
 N� Rsi� si����

De�nition 	 De�ne inf�� � f s j s � si for in�nitely many i g� � is a fair path in M i�
for every P�Q�
 F� if inf�� � P �� � then inf�� � Q �� �

�

The notation �n will denote the su�x of � which begins at sn
 We now consider the
semantics of the logic �CTL� with atomic propositions drawn from the set A

De�nition
 �satisfaction of a formula� Satisfaction of a state formula � by a state s
�s j� � and of a path formula � by a fair path � �� j� � is de�ned inductively as follows�

�� s j� true� and s �j� false� s j� p i� p
 Ls�� s j� �p i� p �
 Ls��

�� s j� � � � i� s j� � and s j� �� s j� � � � i� s j� � or s j� ��

�� s j� ��� i� for every fair path � starting at s� � j� ��

	� � j� �� where � is a state formula� i� the �rst state of � satis�es the state formula�

� � j� � � � i� � j� � and � j� �� � j� � � � i� � j� � or � j� ��

�� �a � j� X� i� �� j� ��

�b � j� �U � i� there exists n
 N such that �n j� � and for all i � n� �i j� ��

�c � j� �V � i� for all n
 N� if �i �j� � for all i � n� then �n j� ��

M j� � indicates that for every s�
 S�� s� j� ��

Emerson and Halpern ���	 compared the expressive power of the three logics LTL� CTL
and CTL�
 They showed that LTL and CTL have incomparable expressive power� while
CTL� is strictly more expressive than either of the others
 Eliminating the existential path
quanti�er from CTL and CTL� does not a�ect the relative expressive power of the logics

�CTL� trivially encompasses LTL and �CTL
 The formula �F�Gp is a formula of �CTL
that does not have an equivalent LTL formula
 On the other hand� there is no �CTL formula
that is equivalent to the LTL formula �FG p
 Thus� LTL and �CTL are incomparable� and
both are strictly less expressive than �CTL�

� Homomorphisms and composition of structures

In this section� we de�ne the preorder which we use and examine some of its properties
 We
also show how these properties make assume�guarantee style reasoning possible

De�nition � �structure homomorphism� Let M and M � be two structures with A � A��
and let t and t� be states in S and S�� respectively� A relation H � S	S� is a homomorphism
from M� t� to M �� t�� i� the following conditions hold�

�� Ht� t���

�� For all s and s�� Hs� s�� implies

�a Ls� �A� � L�s��� and

�b for every fair path � � s�s�

 from s � s� in M there exists a fair path �� �
s�

�
s�

�

 from s� � s�

�
in M � such that for every i
 N� Hsi� s�

i
��

�

When H satis�es property �� we say H is a homomorphism� H is a homomorphism from M
to M � i� for every s�
 S� there is s�

�

 S�

�
such that Hs�� s�

�
�� To indicate that two paths

correspond as in item �b above� we write H�� ����

De�nition � For s
 S and s�
 S�� M�s� � M �� s�� i� there is a homomorphism from
M�s� to M �� s��� M �M � i� there exists a homomorphism from M to M ��

When M and M � are understood� we sometimes write s � s�
 Intuitively� two states
are homomorphic if their labels agree on the atomic propositions of the second structure
and if for every fair path from the �rst state there is a corresponding fair path from the
second state
 Two structures are homomorphic if for every initial state of the �rst� there
is a corresponding initial state of the second
 One may view the second structure as a
speci�cation and the �rst as its implementation
 Since a speci�cation may hide some of the
implementation details� it may have a smaller set of atomic propositions

De�nition �composition of structures� Let M and M � be two structures� The com�
position of M and M �� denoted M kM �� is the structure M �� de�ned as follows�

�� S�� �
n
s� s��

��� Ls� �A� � L�s�� �A
o
�

�� S��

� � S� 	 S�

�� � S���

�� A�� � A �A��

	� L��

�
s� s��

�
� Ls� � L�s���

� R��

�
s� s��� t� t��

�
i� Rs� t� and R�s�� t���

�� F�� �
n �

P 	 S�� � S��� Q	 S�� � S��

� ��� P�Q�
 F
o

�
n �

S 	 P �� � S��� S 	Q�� � S��

� ��� P �� Q��
 F�

o
	

The choice of this de�nition of composition is motivated by its correspondence with
composition of Moore machines
 Each transition of the composition is a joint transition of
the components� and states of the composition are pairs of component states that agree on
their common atomic propositions
 We �rst note that this composition operator has the
usual properties

Theorem � Composition of structures is commutative and associative �up to isomorphism�

Proof Straightforward but tedious
 �

We now turn to the connections between the relation � and composition
 To begin� we
note that a path in M kM � is fair i� its restriction to each component results in a fair path

Lemma � Let M �� �M kM �� The following conditions are equivalent�

�� ��� � s�� s�

��s�� s
�

��

 is a fair path in M ���

�

�� � � s�s�

 and �� � s�

�s
�

�

 are fair paths in M and M � respectively� and si� s�

i
� is a

state of M �� for all i
 N�

Proof Assume condition � above
 By the de�nition of composition� � � s�s�

 is a path
in M
 Let P�Q�
 F� and suppose inf�� � P ��
 Now P ��� Q��� �

�
P 	 S�� � S��� Q	

S�� � S��

�

 F��� and inf���� � P �� ��
 By the de�nition of a fair path� inf���� � Q�� ��

Hence inf�� � Q �� � and so � is a fair path in M
 Similarly� �� � s�

�s
�

�

 is a fair path
in M �

Assume condition � above
 From the de�nition of composition� ��� � s�� s�

�
�s�� s�

�
�

 is

a path in M ��
 Suppose P ��� Q���
 F�� and inf���� � P �� ��
 Either P ��� Q��� �
�
P 	 S�� �

S��� Q 	 S�� � S ��

�
for some P�Q�
 F� or P ��� Q��� �

�
S 	 P �� � S��� S 	 Q�� � S��

�
for

some P �� Q��
 F�
 In the �rst case� we have inf�� � P �� � and so inf�� � Q ��
 This
implies inf���� � Q�� ��
 The second case is similar
 Hence ��� is a fair path in M ��
 �

Theorem �

�� � is a preorder�

�� For all M and M �� M kM � �M �

�� For all M � M � and M ��� if M �M � then M kM �� �M � kM ���

	� For all M � M �M kM �

Proof

�
 The relation H �
n
s� s�

��� s
 S
o
is a homomorphism fromM to M � so � is re�exive

Thus it only remains to show that � is transitive
 Assume M � M � and M � � M ��

Let H� be a homomorphism from M to M �� and let H� be a homomorphism from M �

to M ��
 De�ne H� as the relational product of H� and H�� i
e
�

H� �
n
s� s���

��� �s� �H�s� s
�� �H�s

�� s���	
o
	

If s�
 S�� then by the de�nition of homomorphism� there exists s�

�
 S�

� such
that H�s�� s�

�
�
 Similarly� there exists s��

�

 S��

�
such that H�s�

�
� s��

�
�� and hence

H�s�� s��

�
�

Suppose H�s� s���� and let s� be such that H�s� s�� and H�s�� s���
 By the de�nition
of homomorphism� Ls� � A� � L�s�� and L�s�� �A�� � L��s���
 Then since A� � A���
we have Ls� � A�� � L

��s���
 If � is a fair path in M from s� then there exists a fair
path �� from s� in M � such that H��� ���
 Since H� is a homomorphism� there exists
a fair path ��� from s�� in M �� such that H���� ����
 But then H��� ����� and hence H�

is a homomorphism from M to M ��
 Thus M �M ��

�

�� De�ne H by
H �

n �
�s� s��� s�

��� �s� s�� � SMkM �
o
�

If �s�� s��� is an initial state of M kM �� then s� � S�� The label of �s� s�� is L�s��L��s���

and
�
L�s� � L��s��

�
�A � L�s�� If �s�� s����s�� s

�
�� � � � is a fair path in M kM �� then by

the previous lemma� s�s� � � � is a fair path in M � By the de�nition of H � H
�
�si� s�i�� si

�

for every i� Hence H is a homomorphism and M kM � �M �

�� Let H� be a homomorphism from M to M �� De�ne H� by

H� �
n�

�s� s���� �s�� s���
� ��� H��s� s

��
o
�

We show that H� is a homomorphism� Let �s�� s���� be an initial state of M kM ��� By
the de�nition of composition� s� � S� and s��� � S��

� � SinceM �M �� there exists s�� � S�
�

such that H��s�� s
�
��� Now �s��� s

��
�� is a state of M � kM �� since

L
��s��� �A

�� � �L�s�� �A
�� � A��

� �L�s�� �A
��� �A�

� �L���s���� �A� � A
�

� L
���s���� �A

��

Further� �s��� s
��
�� is an initial state of M � kM �� by the de�nition of composition� By

de�nition of H�� we have H�

�
�s�� s����� �s

�
�� s

��
��
�
�

Suppose H�

�
�s� s���� �s�� s���

�
� First note that

�
L�s� � L���s���

�
� �A� �A��� �

�
L�s� �A�

�
�
�
L�s� �A��

�

�
�
L

���s��� � �A� �A���
�

� L
��s�� �

�
L

���s��� �A
�
� L���s���

� L
��s�� � L���s����

Let �s�� s�����s�� s
��
�� � � � be a fair path in M k M �� from �s� s��� � �s�� s����� Then for

every i � N� we have L�si��A�� � L���s��i ��A� By the previous lemma� � � s�s� � � � is
a fair path in M starting at s� and ��� � s���s

��
� � � � is a fair path in M �� from s��� Since

H��s� s��� there is a path �� � s��s
�
� � � � from s� � s�� in M � such that for every i � N�

H��si� s
�
i�� By the de�nition of homomorphism� L�si� � A

� � L
��s�i� for all i� Arguing

as above� we then have L��s�i� � A
�� � L���s��i � � A

� for each i� and so each �s�i� s
��
i � is

a state in M � kM ��� Now H�

�
�si� s��i �� �s

�
i� s

��
i �
�
by the de�nition of H�� Applying the

previous lemma� we �nd that �s��� s
��
���s

�
�� s

��
�� � � � is a fair path starting in �s�� s��� and

corresponding to the path �s�� s�����s�� s
��
�� � � ��

	� First note that for every state s of M � �s� s� is a state of M k M � De�ne H �n �
s� �s� s�

� ��� s � S
o
� If s� � S�� then by the de�nition of composition� �s�� s�� is an

initial state of M kM � �s� s� trivially has the same label as s� Using the previous
lemma and the de�nition of composition� we �nd that if s�s� � � � is a fair path in M �
then �s�� s���s�� s�� � � � is a fair path in M k M � By the de�nition of H� we have

H
�
si� �si� si�

�
for all i� Hence H is a homomorphism and M �M kM � �

Theorem � Let s and s� be states of M and M �� and let H be a homomorphism such that
H�s� s��� Let � and �� be fair paths such that H��� ���� Then

�� for every �CTL� �state� formula � �with all atomic propositions in A��� if s� j� � then
s j� �� and

	� for every �CTL� path formula � �with all atomic propositions in A��� if �� j� �� then
� j� ��

Proof The proof proceeds by induction on the structure of the formula�

�� If � � true or � � false � the result is trivial� If � � p� an atomic proposition� then
s� j� � if and only if p � L��s��� By the de�nition of homomorphism�L�s��A� � L��s���
and so p � L�s� i� p � L��s��� Thus s j� �� The case where � � �p is similar�

�� If � � �� � ��� then s� j� � i� s� j� �� and s� j� ��� The induction hypothesis implies
s j� �� and s j� �� hence s j� �� The case where � � �� � �� is similar�

�� If � � ������ then s j� � i� for every fair path � from s� � j� ��� Let � be any fair path
from s� By the de�nition of homomorphism� there exists a fair path �� from s� such
that H��� ���� If s� j� �� then �� j� �� for any �� from s�� The induction hypothesis
then implies � j� ��� and hence s j� ��

	� If � is a path formula consisting of only a state formula and �� j� �� then the initial
state s� of �� satis�es �� By the induction hypothesis� s j� �� and since s is the initial
state of �� � j� ��

�� The cases for the conjunction and disjunction of path formulas are similar to case ��

�� �a� If � � X��� then �� j� � implies ��� j� �� Now since H��� ���� we also have
H����� ���� Then the induction hypothesis implies �� j� ��� Thus � j� ��

�b� If � � �� U ��� then �� j� � implies there exists n such that ��n j� �� and for
all i � n� ��i j� ��� Since H������� we have H��j� ��j� for any j� Applying the
induction hypothesis� �n j� �� and �i j� �� for all i � n� Hence � j� ��

�c� The case where � � �� V �� is similar to the previous two cases� �

Corollary � Suppose M �M �� Then for every �CTL� formula � �with atomic propositions
in A��� M � j� � implies M j� ��

Proof Immediate� �

��

Using theorem � and this corollary� we see that a standard CTL �CTL�� model checking
algorithm ���� when restricted to �CTL ��CTL��� can be viewed as determining whether
a formula is true of all systems containing a given component� This is the key to compo�
sitional veri�cation� With the theorem and corollary� it is also straightforward to justify
the soundness of the assume�guarantee paradigm when assumptions are given as structures�
�The connection between structures and formulas will be examined in section ��� Discharg�
ing an assumption involves checking for the relation �� Suppose that we wish to check that
M kM � j� � and that we have veri�ed the following relationships�

M � A

A kM � � A�

M kA� j� ��

In other words� M discharges assumption A� M � under assumption A discharges assump�
tion A�� and M under assumption A� satis�es the desired formula� From theorem �� we
have

M kM � �M kM kM �

�M kA kM �

�M kA��

Then corollary � implies that M k M � j� �� The theorem and corollary also show that
any system containing M kM � will satisfy �� Note that � is not necessarily true in either
M or M � and may involve atomic propositions from both M and M ��

� Moore machines

We have seen that the structures de�ned earlier �de�nition �� can be used for compositional
reasoning about synchronous systems� However� such systems are typically given using a
more common �nite state model such as Moore machines ��	�� Moore machines are models of
computation with an explicit notion of inputs and outputs� Since the inputs originate from an
external� uncontrolled environment� the machine can always receive any combination of input
values� Moore machines are synchronous in a composition of Moore machines� each machine
makes a single step at every point� Thus� they are most suitable for modeling synchronous
circuits� In this section� we show a natural correspondence between Moore machines with
an empty set of inputs and the structures de�ned earlier� We use this correspondence to
de�ne the semantics of �CTL� with respect to Moore machines� and we show how to use
compositional reasoning to verify a system composed of Moore machines�

De�nition � �Moore machine� A Moore machine M � hS�S�� I� O�L�Ri is a tuple of
the following form

�� S is a
nite set of states�

	� S� 	 S is a set of initial states�

��

�� I is a
nite set of input propositions�

�� O is a
nite set of output propositions�

� L is a function that maps each state to the set of output propositions true in that state�

�� R 	 S
 �I
 S is the transition relation�

We require that I �O � � and that for every s � S and v 	 I� there exists some t � S such
that R�s� v� t�� We also let A denote I �O�

De�nition �� �composition of Moore machines� Let M and M � be Moore machines
with O�O� � �� The composition of M and M �� denoted M kM �� is the Moore machine M ��

de
ned as follows�

�� S�� � S
 S��

	� S��
� � S�
 S�

��

�� I�� � �I � I�� n �O �O���

�� O�� � O �O��

� L��
�
�s� s��

�
� L�s� � L��s���

�� R��
�
�s� s��� v� �t� t��

�
i� R

�
s� �v � L��s��� � I� t

�
and R�

�
s�� �v � L�s�� � I�� t�

�
�

We now turn to the question of how to de�ne satisfaction of a speci�cation by a Moore
machine M � The key consideration is that we wish to have a compositional method of
reasoning� Thus� M satisfying a speci
cation should mean that M plus any environment
satis
es that speci
cation� We will achieve this by considering the behavior of complete
systems involving M �

De�nition �� A Moore machine M is called closed if I � ��

Intuitively� the behavior of a closed machine cannot be altered� For such a machine� there
is a structure which naturally corresponds to it� We de�ne this structure precisely now� The
de�nition here is actually slightly more general in that it assigns a structure to non�closed
machines as well�

De�nition �	 �structure for a Moore machine� The structure M � corresponding to a
Moore machine M � denoted by K�M�� is de
ned as follows�

�� S� � S
 �I �

	� S�
� � S�
 �I �

�� A� � A � I �O�

�� L�
�
�s� v�

�
� L�s� � v�

��

� R�
�
�s� v��� �t� v��

�
i� R�s� v�� t��

�� F� � ��

De�nition �� A Moore machine M � is called a closing environment for M if O � O� � ��
I 	 O� and I � 	 O�

IfM � is a closing environment forM � thenM and M � can be composed� and the resulting
Moore machine will be closed� We now de�ne satisfaction of a formula by a Moore machine�

De�nition �
 �satisfaction in a Moore machine� If M is a Moore machine and � is
a �CTL� formula with atomic propositions over A� then M j� � i� for every closing envi�
ronment M � for M � K�M kM �� j� ��

We must now demonstrate how to e�ciently check whether M j� ��

Lemma 	 IfM andM � are Moore machines with O�O� � �� then K�M kM �� is isomorphic
to K�M� kK�M ���

Proof De�ne � mapping the states of K�M kM �� to the states of K�M�kK�M �� as follows�

�
�
��s� s��� v�

�
�

�
�s� �v � L��s��� � I�� �s�� �v � L�s�� � I��

�

Suppose
�
�s� s��� v

�
and

�
�t� t��� u

�
both map to the same state of K�M� kK�M ��� Then

from the de�nition of �� we immediately have s � t and s� � t�� Also�
�
v � L��s��

�
� I ��

u � L��t��
�
� I and

�
v � L�s�

�
� I � �

�
u � L�t�

�
� I�� By the de�nition of Moore machine

composition� v and u are disjoint from O �O�� Hence v� I � u� I and v � I � � u� I�� This
implies v � �I � I�� � u � �I � I��� i�e�� v � u� Hence � is an injection�

To argue that � is surjective� we consider the cardinalities of the two sets of states� First�
we have

jSK�MkM ��j � jSj � jS�j � �j�I�I
��n�O�O��j�

Now consider jSK�M�kK�M ��j� This is the number of states in the cross product SK�M�
SK�M ��

which have compatible labelings� Fix a pair of states s and s�� There are �jIj states in K�M�
with s as their �rst component and �jI

�j in K�M �� with s� as the �rst component� Thus there
are potentially �jIj � �jI

�j states in K�M � kK�M �� corresponding to s and s�� However� each
pair must correspond on the atomic propositions in I � O�� I � � O� and I � I�� Thus there
are exactly

�jIj � �jI
�j

�jI�O�j � �jI ��Oj � �jI�I�j

��

states in K�M� kK�M �� corresponding to s and s�� Thus we have

jSK�M�kK�M ��j �
jSj � jS�j � �jIj � �jI

�j

�jI�O�j � �jI ��Oj � �jI�I�j

�
jSj � jS�j � �jI�I

�j

�jI�O�j � �jI ��Oj

�
jSj � jS�j � �jI�I

�j

�jI�O�j � �jI�Oj � �jI ��Oj � �jI ��O�j

�
jSj � jS�j � �jI�I

�j

�j�I�I����O�O��j

� jSj � jS�j � �j�I�I
��n�O�O��j

� jSK�MkM ��j�

Hence � is a bijection�
If

�
�s�� s���� v

�
is an initial state of K�M k M ��� then s� � S� and s�� � S�

�� Then

�
�
�s�� s���� v

�
is an initial state of K�M �kK�M �� since s� � S� implies

�
s�� �v�L��s�����I

�
is

an initial state of K�M � and s�� � S�
� implies

�
s��� �v�L�s����I

�
�
is an initial state of K�M ���

Similarly� if �
�
�s� s��� v

�
is an initial state of K�M� k K�M ��� then

�
�s� s��� v

�
is an initial

state of K�M kM ���
The sets of atomic propositions of the two structures are clearly identical� The labeling

of
�
�s� s��� v

�
is L�s� � L��s�� � v� The labeling of �

�
�s� s��� v

�
is

L
K�M�

�
�s� �v � L��s��� � I�

�
� LK�M ��

�
�s�� �v � L�s�� � I��

�

� L�s� �
�
�v � L��s��� � I

�
� L��s�� �

�
�v � L�s�� � I �

�

� L�s� � L��s�� �
�
v � �I � I��

�

� L�s� � L��s�� � v

� L
K�MkM ��

�
��s� s��� v�

�
�

RK�MkM ��
�
��s� s��� v�� ��t� t��� u�

�
i� RMkM �

�
�s� s��� v� �t� t��

�
i� R

�
s� �v �L��s���� I� t

�
and

R�
�
s�� �v�L�s���I �� t�

�
i� RK�M�

�
�s� �v�L��s����I�� �t� �u�L��t����I�

�
and RK�M ��

�
�s�� �v�

L�s��� I ��� �t�� �u �L�t��� I ��
�
i� RK�M�kK�M ��

�
����s� s��� v��� ���t� t��� u�

�
� The fairness sets

of both structures are empty� �

De�nition �� If M is a Moore machine� the maximal closing environment for M � denoted
E�M�� is the Moore machine M � de
ned as follows�

�� S� � �I �

	� S�
� � S��

�	

�� I� � ��

�� O� � I�

� L��s�� � s��

�� R��s�� �� t�� is identically true�

The maximal environment �for M� represents an environment which can do anything at
each step� Intuitively� a possible behavior of M in an arbitrary environment must also be a
possible behavior of M in the maximal environment� The logics we use specify properties
that should hold for every possible behavior of a system� Hence� if M plus its maximal
environment satis�es a formula� then M in any environment should satisfy that formula�

Lemma � Suppose M � is a closing environment for M � and suppose M �� � E�M �� Then
K�M �� � K�M ����

Proof De�ne
H �

n
�s�� s���

��� L��s�� �A�� � L
���s���

o
�

Note that for every s� � S�� there is some s�� � S�� such that H�s�� s��� �in particular� the
state L��s���A�� in M ���� Thus� if s�� � S�

�� there is s
��
� which is related to it by H� and every

state in M �� is an initial state�
If H�s�� s���� then by the de�nition of H � we have L��s���A�� � L���s���� If �� is a fair path

in M �� then the fact that every state in M � is related to some state in M �� plus the fact that
R�� is identically true implies that there is a path ��� in M �� such that H���� ����� Further�
every path in M �� is fair� Thus H is a homomorphism� �

Lemma
 Let M be a Moore machine� Then K�M � is isomorphic to K�M k E�M���

Proof Let M � � K�M � and M �� � K�M k E�M��� De�ne � mapping the states of M �� to

the states of M � by �
�
��s� v�� ��

�
� �s� v�� � is obviously an injection� and � is a surjection

since each subset of �I is a state of E�M��

If
�
�s�� v���

�
� S��

� � then s� must be in S�� Hence �s�� v� � S�
�� Similarly� if �s�� v� � S�

��

then s� � S� and so
�
�s�� v�� �

�
� S��

� � A
�� and A� are trivially equal� We also have

L
��
�
��s� v�� ��

�
� L

MkE�M�
�
�s� v�

�
� �

� L�s� � LE�M��v�

� L�s� � v

� L
�
�
�s� v�

�
�

Finally� we have R��
�
��s� v��� ��� ��t� v��� ��

�
i� RMkE�M�

�
�s� v����� �t� v��

�
i� R�s� v�� t� i�

R�
�
�s� v��� �t� v��

�
� F�� and F� are both empty� �

��

Theorem
 If M is a Moore machine� then M j� � i� K�M � j� ��

Proof Suppose K�M� j� �� By lemma 	� we �nd K�M k E�M�� j� �� and then by
lemma �� K�M� kK�E�M �� j� �� Let M � be any closing environment for M � By lemma ��
K�M �� � K�E�M��� Hence by theorem �� K�M� kK�M �� � K�M� kK�E�M��� Applying
corollary �� we have K�M� k K�M �� j� �� By lemma �� K�M� k K�M �� is isomorphic
to K�M kM ��� and thus K�M kM �� j� �� Since M � was arbitrary� M j� ��

If M j� �� then K�M k E�M�� j� �� and hence by lemma 	� K�M� j� �� �

Thus� to determine if a system M� kM� k � � � kMn satis�es a formula �� we instead check
that K�M� kM� k � � � kMn� satis�es �� By lemma �� this is equivalent to checking that
K�M�� kK�M�� k � � � kK�Mn� satis�es the formula� As illustrated in the previous section�
we can use the assume�guarantee paradigm to try to verify this latter relation� Thus� during
an actual veri�cation we will be working with structures even though the thing we want to
verify is a property of a composition of Moore machines�

� The tableau construction

In this section� we give a tableau construction for �CTL formulas �for a similar construction
for LTL� see Burch et al� ����� We show that the tableau of a formula is a maximal model for
the formula under the relation �� Thus� the structure generated in the construction can be
used as an assumption by composing the structure with the desired system before applying
the model checking algorithm� Discharging the assumption is simply a matter of checking
that the environment satis�es the formula� We also indicate how the tableau can be used to
do temporal reasoning� For the remainder of this section� �x a �CTL formula ��

De�nition �� The set sub��� of subformulas of the formula � is de
ned by the following
equations�

�� If � � true or � � false or � � p� an atomic proposition� then sub��� � f�g� If
� � �p� a negated atomic proposition� then sub��� � f�� pg�

	� If � � �� � �� or � � �� � ��� then sub��� � f�g � sub���� � sub�����

�� �a� If � � �X��� then sub��� � f�g � sub�����

�b� If � � ����U ���� then sub��� � f�g � sub���� � sub�����

�c� If � � ����V ���� then sub��� � f�g � sub���� � sub�����

De�nition � The set el��� of elementary formulas of the formula � is de
ned by the
following equations�

�� If � � true or � � false� then el��� � �� If � � p� an atomic proposition� or � � �p�
then el��� � fpg�

	� If � � �� � �� or � � �� � ��� then el��� � el���� � el�����

��

�� �a� If � � �X��� then el��� � f�X��g � el�����

�b� If � � ����U ���� then el��� � f�X false��X���� U ���g � el���� � el�����

�c� If � � ����V ���� then el��� � f�X false��X���� V ���g � el���� � el�����

The special elementary subformula �X false denotes the nonexistence of a fair path
s j� �X false indicates that no fair path begins at s�

De�nition �� �tableau of a formula� The tableau of �� denoted T���� is the structure
hS�S��A�L� R�Fi de
ned as follows�

�� S � �el����

	� S� � ����� where � is the map from el��� � sub��� � ftrue� falseg to S de
ned by the
following equations�

�a� ��true� � S� ��false� � �� If � � el���� then ���� � f s j � � s g� If � � ����
then ���� � S n ������

�b� If � � �� � ��� then ���� � ����� � ������ If � � �� � ��� then ���� �
����� � ������

�c� i� If � � ����U���� then ���� �
�
������

�
���������X��

��
����X false��

ii� If � � ����V���� then ���� �
�
������

�
���������X��

��
����X false��

�� A � f p j p � el��� g�

�� L�s� � f p j p � s g�

� R�s� t� i� for each formula �X� in el���� �X� � s implies t � �����

�� F �
n �

���X���� U ����������
� ��� �X����U ��� � el���

o
�

Lemma � For all subformulas � of �� if s � ����� then s j� ��

Proof The proof proceeds by induction on the structure of ��

�� If � � true� then ���� � S� and every state satis�es true� If � � false� then ���� � ��
so the result is trivial� If � � p� an atomic proposition� then ���� � f s j p � s g�
But L�s� � f q j q � s g� and so p � L�s� and s j� p� If � � �p� a negated atomic
proposition� then ���� � S n f s j p � s g� Since L�s� � f q j q � s g� we have that
p 	� L�s� and so s j� �p�

�� If � � �� � ��� then ���� � ����� � ������ and hence s � ����� and s � ������ By
the induction hypothesis� s j� �� and s j� ��� which implies s j� �� � ��� The case
where � � �� � �� is similar�

�� �a� If � � �X��� then ���� � f s j �X���� � s g� and so �X���� � s� Suppose
R�s� t�� By the de�nition of R� we have t � ������ and then the induction
hypothesis implies t j� ��� Since t was chosen arbitrarily� any fair path from s
satis�es �� at its second state� and hence s j� �X�����

��

�b� If � � ����U���� then ���� �
�
������

�
���������X��

��
����X false�� Let

t be any state in ����� Then either

i� t � ���X false�� in which case t has no successors and t j� � trivially� or

ii� t � ������ in which case the induction hypothesis implies t j� ��� or

iii� t � ����� � ���X��� In this case� the induction hypothesis implies t j� ���
By the de�nition of R� we also know that if R�t� u�� then u � �����

Let s � s�� and consider a fair path � � s�s�s� � � � from s� Note that no state on
this path can satisfy the �rst condition above� There are two cases to consider�

i� There is some j such that sj j� ��� Let si be the �rst such state on the path�
By the above� for every j � i� sj j� ��� Hence the path satis�es �� U ���

ii� For every j� sj j� ��� Then the above implies that for every j� sj � ���X���
By the induction hypothesis� we know that each sj is not in ������ But then
inf��� � ���X�� � � and inf��� � ����� � �� By the de�nition of F� this
contradicts the fact that � is fair� and so this case is impossible�

Thus s j� ����U ����

�c� If � � ���� V ���� then ���� �
�
����� �

�
����� � ���X��

��
� ���X false�� If

t is any state in ����� then either

i� t � ���X false�� in which case t has no successors and t j� � trivially� or

ii� t � ������ In this case� we also have either t � ����� or for every u such
that R�t� u�� u � �����

Let s � s�� and let � � s�s�s� � � � be a fair path from s� Note that no si can
satisfy the �rst condition above� If si is such that for all j � i� sj j� ��� then
the induction hypothesis implies that sj 	� ������ Hence sj � ������ and also
si � ����� then the induction hypothesis implies for all j � i� sj j� ��� Thus
the path satis�es �� V ��� and hence we have s j� ����V ���� �

Now let M � T���� and �x a structure M ��

Lemma � De
ne a relation H 	 S�
 S by

H �
n
�s�� s�

��� s � f� j � � el���� s� j� � g
o
�

If H�s�� s�� then for every subformula or elementary formula � of �� s� j� � implies s � �����

Proof The proof proceeds by induction on the structure of �� where the base cases for the
induction are the elementary subformulas of �� plus true and false�

�� If � � true� then ���� � S� so the result is trivial� If � � false � then s� cannot
satisfy �� If � � el���� then by the de�nition of H � s� j� � implies � � s� Now
���� � f s j � � s g� so s � �����

�� If � � �p� a negated atomic proposition� then s� j� � implies p 	� s� Since ���� �
S n f s j p � s g� s � �����

��

�� If � � ������ then ���� � ������������ We have s� j� � implies s� j� �� and s� j� ���
By the induction hypothesis� s � ����� and s � ������ and so s � ������������ The
case when � � �� � �� is similar�

	� If � � ���� U ���� then ���� �
�
����� �

�
����� � ���X��

��
� ���X false�� Given

s� j� �� there are three cases�

�a� If no fair paths start at s�� then s� j� �X false � The induction hypothesis implies
s � ���X false�� and so s � �����

�b� If s� j� ��� then by the induction hypothesis� s � ������ and so s � �����

�c� Otherwise� s� j� �� and s� j� �X�� By the induction hypothesis� s � ����� and
s � ���X�� �since �X� � el����� Hence s � �����

In all cases� s � ������U �����

�� If � � ���� V ���� then ���� �
�
����� �

�
����� � ���X��

��
� ���X false�� Since

s� j� �� either

�a� no fair paths start at s�� in which case s� j� �X false and the induction hypothesis
implies s � ����� or

�b� s� j� ��� and so by the induction hypothesis� s � ������ Also� either s� j� ��

or s� j� �X�� Applying the induction hypothesis again� either s � ����� or
s � ���X��� In both cases� s � �����

Thus in all cases� s � ������ V ����� �

Lemma The relation H given above is a homomorphism�

Proof Note that for every state s� of M �� there is a �single� state s of M such that H�s�� s��
Let A be the set of atomic propositions for M � and assume H�s�� s�� We have L�s� � f p j
p � s g� From the de�nition of H� p � s implies s� j� p� Further� if s� j� p and p � A� then
p � el���� and hence p � s� p � L�s�� Thus we �nd L��s�� � A � L�s��

Let s�� � s�� and suppose �� � s��s
�
�s

�
� � � � is a fair path from s�� Let �X��� �X���

� � � � �X�n be all the formulas of the form �X� in el��� which s� satis�es� Then we have
s�� j� ��� s�� j� ��� � � � � s�� j� �n� Let s� be the state of M related to s�� by H� By the
previous lemma� s� � ������ s� � ������ � � � � s� � ���n�� Now by the de�nition of H� the
formulas of the form �X� in s must be exactly �X��� �X��� � � � � �X�n� Then from the
de�nition of R� we see that R�s� s��� Since H�s��� s��� we can continue the process� De�ning
s� � s� we get a sequence of states � � s�s�s� � � � starting at s such that H�s�i� si� for all i�
To complete the proof� we must show that this sequence is fair�

Assume that � is not fair� Looking at F� we see that there must be some elementary
subformula �X���aU�b� such that inf�������X���aU�b�� � � and inf�������b� � ��
Consider one of the states si� si � ���X���a U �b�� i� �X���aU �b� � si� and then the
de�nition of H implies s�i j� �X���aU �b�� In addition� the previous lemma implies that if
si 	� ���b�� then s�i j� �b� Choose i so that si � ���X���aU �b�� and so that for all j � i�

�

sj 	� ���b�� Then s�is
�
i�� � � � is a fair path in M � starting at s�i� and every state on this path

satis�es ��b� But s�i j� �X���aU �b�� a contradiction� Hence � is in fact a fair path in M �
�

Theorem � M � j� � i� M � � T����

Proof Suppose M � � T���� By lemma � and the de�nition of the tableau� every initial
state of T��� satis�es �� i�e�� T��� j� �� Then since M � � T���� M � j� ��

If M � j� �� then by de�nition� every s�� � S�
� satis�es �� By the de�nition of H� every

such s�� is paired with a �unique� s�� Lemma � implies that s� � ����� and by the de�nition
of the tableau� s� � S�� By lemma �� H is a homomorphism� so M � � T���� �

The tableau construction can also be used to reason about formulas� We are typically
interested in whether every model of a formula � is also a model of some other formula ��
Let � j� � denote this semantic relation�

Proposition � � j� � i� T��� j� ��

Proof If � j� �� then every model of �� in particular T���� is also a model of �� Assume

T��� j� �� and let M j� �� By the previous corollary� M � T���� Since T��� j� ��

T��� � T���� Hence M � T���� i�e�� M j� �� �

We will sometimes extend the set of elementary formulas of a formula by adding addi�
tional atomic propositions� For example� if we wished to check whether true implied p� we
would extend the set of atomic propositions for true to include p �another way to view this
is to imagine rewriting true as true � �p � �p�� The formula � has a nontrivial model i� it
is not the case that � j� �X false� � is true in every model i� true j� ��

� Checking for homomorphism

In this section� we discuss the problem of determining whether there exists a homomorphism
between two structuresM andM �� Our goal is to e�ciently determine ifM �M �� First note
that if H� and H� are homomorphisms� then H��H� is a homomorphism� Also� � is trivially
a homomorphism� These facts imply that there is a maximal homomorphism under set
inclusion� We will actually give an algorithm for computing this maximal homomorphism�

We also note the following facts�

�� If s is a state of M and no fair paths start at s� then s is homomorphic to exactly
those states s� in M � for which L�s� �A� � L��s���

�� If s� is a state of M � and no fair paths start at s�� then s� is homomorphic exactly to
those states s inM which are the start of no fair path and for which L�s��A� � L��s���

States which are the start of no fair path can be detected in polynomial time ���� and
eliminated in a preprocessing step� Hence� without loss of generality� we can assume that
every state in M and M � is the start of some fair path� We now describe polynomial time
algorithms for checking the preorder in several important special cases�

Suppose that M � has a trivial acceptance condition� i�e�� F� � ��

��

De�nition �� De
ne a sequence of relations Hi as follows�

�� H� �
n
�s� s��

��� L�s� �A� � L
��s��

o

	� Hi�� � Hi �
n
�s� s��

��� �t�R�s� t�� �t��R��s�� t�� �Hi�t� t����
o

De
ne H� to be the
rst Hi such that Hi � Hi�� �such an i exists since Hj�� 	 Hj for all
j and each Hj is
nite��

Theorem � For every s � S and s� � S�� s � s� i� H��s� s���

Proof We �rst note that H� is the greatest �xed point of the equation

H � H �
n
�s� s��

��� L�s� �A� � L
��s�� � �t�R�s� t�� �t��R��s�� t�� �H�t� t����

o
�

Suppose s and s� are states such that H��s� s��� We have L�s��A� � L��s�� immediately�
Let s� � s and s�� � s�� and assume � � s�s� � � � is a fair path starting from s� From the
above equation� there exists a state s�� such that R��s��� s

�
�� and H��s�� s���� Continuing in this

fashion� we �nd a path s��s
�
� � � � starting from s� such that H��si� s�i� for all i� Since F

� � ��
this path is fair� Hence H� is a homomorphism from s to s�� i�e�� s � s��

To show that s � s� implies H��s� s��� we show that any homomorphism H is a �xed
point of the above equation� Since H� is the greatest �xed point� we will have H 	 H��
Hence if there is some homomorphism H such that H�s� s��� then H��s� s��� It is enough to
show that H is a subset of the set

n
�s� s��

��� L�s� � A� � L
��s�� � �t�R�s� t�� �t��R��s�� t�� �H�t� t����

o
�

If H�s� s��� then we have L�s��A� � L
��s��� If R�s� t�� then by our earlier assumption� there

exists a fair path from t� Hence� letting s� � s and s� � t� there is some fair path s�s� � � �
from s through t� Since H�s� s��� there exists a fair path s��s

�
� � � � from s� � s�� such that

H�si� s�i� for all i� Now if we take t� � s��� we see that �s� s
�� is in the above set� �

We note that H� � Hi for some i which is at most jSj � jS�j� Each Hj�� can also be
computed in polynomial time from Hj hence H� can be computed in polynomial time�

Another important case is when M � is deterministic� i�e�� if R��s�� t�� and R��s�� u��� then
L��t�� � L��u��� For this case� s � s� i� the language of s is contained in the language of s�

�the language for a state s is the set of sequences of labelings which occur along the fair
paths starting at s�� This relation can be checked in polynomial time using the techniques
of Clarke� Draghicescu and Kurshan ����

Finally� if M � is the result of a tableau construction� say M � � T���� then as shown in
the previous section� checking whether M �M � reduces to the problem of checking whether
M j� ��

��

� An example

We have implemented a BDD�based model checker based on the theory developed in the pre�
vious sections� The model checker is written in a combination of T �Yale�s dialect of Scheme�
and C� It includes facilities for model checking� temporal reasoning �via the tableau construc�
tion�� and checking for homomorphism� To illustrate the system� we use the controller of a
simple CPU as an example� The controller is written in a state machine description language
called CSML ��� which is compiled into Moore machines� We give only a brief description of
the CPU here Clarke� Long and McMillan ��� give details� The CPU is a simple stack�based
machine� i�e�� part of the CPU�s memory contains a stack from which instruction operands
are popped and onto which results are pushed� There are two parts to the CPU controller�
The �rst part is called the access unit and is responsible for all the CPU�s memory refer�
ences� The second part� called the execution unit� interprets the instructions and controls
the arithmetic unit� shifter� etc� These two parts operate in parallel� The access unit and
execution unit communicate via a small number of signals� Three of the signals� push� pop
and fetch � are inputs of the access unit and indicate that the execution unit wants to push or
pop something from the stack or to get the next instruction� For each of these signals there
is a corresponding ready output from the access unit� The execution unit must wait for the
appropriate ready signal before proceeding� One additional signal� branch� is asserted by
the execution unit when it wants to jump to a new program location�

In order to increase performance� the access unit attempts to keep the value on the top
of the stack in a special register called the TS register� The goal is to keep the execution
unit from having to wait for the memory� For example� when the TS register contains valid
data� a pop operation can proceed immediately� In addition� when a value is pushed on the
stack� it is moved into this register and copied to memory at some later point� The access
unit also loads instructions into a queue when possible so that fetches do not require waiting
for the memory� This queue is �ushed whenever the CPU branches�

Clarke� Long and McMillan gave a number of correctness conditions for the controller�
We demonstrate here how these formulas can be veri�ed in a compositional fashion� From
the form of the conditions� we divide them into three classes� The �rst class consists of
simple safety properties of the access unit� For example� one of these formulas is

�G�sptomema � tsload � tsstore��

which states that if the access unit outputs the top�of�stack pointer as a memory address�
then it is either reading or writing the TS register� The model checker veri�ed that each of
these properties held for the access unit alone� Hence� they hold in any system containing
the access unit�

The conditions in the second class are slightly more complex� These properties are
safety properties which specify what sequences of operations are allowed� For example� one
condition is

�G
�
pushed � �X��tsstored � popped V ��pushed � tsload��

�
�

Here pushed is an abbreviation for push � pushrdy� and popped abbreviates pop � poprdy�
The formula asserts that if a push operation is completed� then another push cannot be

��

completed and the access unit cannot attempt to load the TS register from memory until
either a pop occurs or the TS register is stored on the stack� In other words� once the
TS register contains a value which needs to be pushed on the stack� the CPU cannot do
anything that would destroy this value until the value is either used or successfully stored
in memory� Since all of the properties in this class essentially specify when the access unit
may assert its ready signals� it is tempting to check whether they hold for the access unit
alone as well� This is not possible� however� because the properties also depend on how
the memory acknowledgment signal behaves� To verify these properties� we made a simple
model of the memory �see �gure ��� For conciseness� the �gure shows a Moore machine
the actual model used is obtained by adding the fairness constraint shown in the �gure
to the structure corresponding to this Moore machine� All of the properties in this class
except for one turn out to be true in the system composed of the access unit and this model
of the memory� The exception is an analog to the previous formula that deals with what
occurs after a pop� The counterexample produced by the model checker for this formula
showed that the formula was false because a push and a pop could occur simultaneously�
When we examined the access unit� we saw that it had been designed assuming that these
operations would be mutually exclusive� The formula turns out to be true with the additional
assumption �G��push � �pop�� The model checker veri�ed this by building the tableau for
this assumption� composing it with the access unit and memory model� and checking the
formula�

F is de�ned by
GF�memrd �memwr � memack �

memrd �memwr

memack

Figure �� Memory abstraction

The �nal class of criteria consists of a single liveness property� �G�F�fetch � fetchrdy��
This formula states that the CPU always fetches another instruction� We demonstrate two
di�erent ways of verifying this property�

One way is to observe that for this formula to be true� it must obviously be the case that
the memory responds to requests eventually and that the execution unit does not execute
in�nite sequences of pushes� pops and branches� The memory model already has a fairness
constraint ensuring the �rst of these� but there is nothing to guarantee the second� We can
take care of this by using a simple model of the execution unit �see �gure ��� Again� the
actual model is the structure derived from the Moore machine� plus the indicated fairness
constraint� The output idle in this �gure is an abbreviation for ��push�pop�fetch�branch��

��

The model checker veri�ed that the access unit plus the models of the execution unit and
the memory satis�ed the above formula� It also veri�ed that there was a homomorphism
between the �structure for the� actual execution unit and the model� Thus� we can conclude
that this formula holds in the �nal system provided there is a homomorphism from the
actual memory to our model� We also checked that the execution unit model satis�ed
the assumption �G��push � �pop� used above� Since there is a homomorphism from the
execution unit to the model� we know that the execution unit must satisfy this assumption as
well� This �nal step allows us to conclude that the composition of the access and execution
units satis�es the entire speci�cation provided the memory is homomorphic to the model we
used�

�fetchrdy

�pushrdy

�poprdy

fetchrdy

pushrdy

poprdy

F is de�ned by
GF idle �GF fetch

branch

fetch

idle

push

pop

Figure �� Execution unit abstraction

We can also verify the �nal property using a series of �CTL assumptions� The idea will
be to check the property for the execution unit� In order for the formula to be true� the
access unit must eventually respond to push and pop requests and must �ll the instruction
queue when appropriate� We can only guarantee that the access unit meets these conditions
if we know that the execution unit does not try to do two operations at once and that it
will not remove a request before the corresponding operation can complete� We begin with
these properties�

�G
�
��fetch � push� � ��fetch � pop� � � � � � ��pop � branch�

�
���

�G
�
push � ��pushed V push�

�
���

�G
�
pop � ��popped V pop�

�
���

�	

The �rst of these speci�es that every pair of operations the execution unit can perform are
mutually exclusive� The other two formulas state that if the execution unit makes a push
or pop request� then it does not deassert the request until the operation completes� The
model checker veri�ed that these properties hold in the execution unit alone� and �using the
tableau construction� that the �rst property implies the assumption �G��push��pop� used
above� Now using formulas � and � as assumptions� we checked that the system composed
of the access unit and the memory model satis�ed the formula

�G
�
push � ��push U pushed�

�
� �	�

This speci�cation states that every push operation will be completed� Similarly� using for�
mulas � and � as assumptions� we veri�ed

�G
�
pop � ��pop U popped�

�
� ���

The system composed of the access unit and the memory model also satis�es the for�
mula �G�F�fetchrdy � branch� �at any point� either the access unit will eventually �ll
the instruction queue or a branch will occur�� Finally� using this formula and formu�
las 	 and � as assumptions� the model checker veri�ed that the execution unit satis�es
�G�F�fetch � fetchrdy�� �Again� to complete the veri�cation we would have to demonstrate
a homomorphism between the actual memory and our model of it��

� Conclusion

We have identi�ed a subset� �CTL�� of CTL� which is appropriate for compositional rea�
soning� For this subset� satisfaction is preserved under composition hence a standard model
checking algorithm can be used to answer the question� Is a formula true for all systems
containing a speci�ed component� We have also proposed a preorder � which is appropriate
for �CTL�� The preorder captures the relation between a component and a system contain�
ing that component� It provides the basis for using an assume�guarantee style of reasoning
with the logic� Assumptions which are given as structures are discharged by checking the
preorder� We have given a tableau construction for the �CTL subset of �CTL�� Satisfaction
of a �CTL formula corresponds to being below the tableau of the formula in the preorder�
The construction makes it possible to use �CTL formulas as assumptions and to do temporal
reasoning� �CTL also has an e�cient model checking algorithm� We have implemented a
symbolic veri�cation system based on these results and have used it to verify some nontrivial
systems in a compositional fashion�

There are several directions for future work� Intuitively� the �CTL� subset of CTL�
should be maximal in the sense that any formula for which satisfaction is preserved under
composition should be equivalent to a formula of �CTL�� but we have not proved this�
Another idea is to look at di�erent logics with the same �avor� such as �CTL� extended with
automata operators or the
�calculus with only ��� modalities� It would also be interesting to
try to extend the tableau construction of section � to all of �CTL�� In order to accomplish
this however� it will almost certainly be necessary to use a more complex type of structure
than that given in de�nition �� Another question is whether it is possible to apply our ideas
to branching�time logics with existential path quanti�ers� For example� is there a reasonable

��

algorithm which will determine whether a CTL formula is true in all systems containing
a given component� It is fairly easy to come up with algorithms which are sound� but
completeness seems more di�cult to achieve� We also wish to examine the problem of
e�ciently checking the preorder for arbitrary structures� Finally� it is essential to try to
apply the compositional reasoning methods we have considered to more complex systems in
order to evaluate the techniques�

References

��� J� R� Burch� E� M� Clarke� K� L� McMillan� D� L� Dill� and J� Hwang� Symbolic model checking�
���� states and beyond� In LICS�� �	���

�	� E� M� Clarke� I� A� Draghicescu� and R� P� Kurshan� A uni
ed approach for showing language
containment and equivalence between various types of ��automata� In A� Arnold and N� D�
Jones� editors� Proceedings of the ��th Colloquium on Trees in Algebra and Programming�
volume �� of Lecture Notes in Computer Science� Springer�Verlag� May �����

��� E� M� Clarke� E� A� Emerson� and A� P� Sistla� Automatic veri
cation of
nite�state concurrent
systems using temporal logic speci
cations� ACM Transactions on Programming Languages

and Systems� ��	��	���	��� �����

��� E� M� Clarke� D� E� Long� and K� L� McMillan� Compositional model checking� In Proceedings
of the Fourth Annual Symposium on Logic in Computer Science� IEEE Computer Society
Press� June �����

��� E� M� Clarke� D� E� Long� and K� L� McMillan� A language for compositional speci
cation
and veri
cation of
nite state hardware controllers� In J� A� Darringer and F� J� Rammig�
editors� Proceedings of the Ninth International Symposium on Computer Hardware Description

Languages and their Applications� North�Holland� June �����

��� R� Cleaveland� Tableau�based model checking in the propositional mu�calculus� Acta Infor�

matica� 	�	���� �����

�� R� Cleaveland and B� Ste�en� When is �partial� adequate� a logic�based proof technique
using partial speci
cations� In LICS�� �	���

��� O� Coudert� C� Berthet� and J� C� Madre� Verifying temporal properties of sequential machines
without building their state diagrams� In Kurshan and Clarke ����

��� J� W� de Bakker� W��P� de Roever� and G� Rozenberg� editors� Proceedings of the REX

Workshop on Stepwise Re�nement of Distributed Systems� Models� Formalisms� Correctness�
volume ��� of Lecture Notes in Computer Science� Springer�Verlag� May �����

���� D� L� Dill� Trace Theory for Automatic Hierarchical Veri�cation of Speed�Independent Circuits�
ACM Distinguished Dissertations� MIT Press� �����

���� E� A� Emerson and J� Y� Halpern� �Sometimes� and �Not Never� revisited� On branching
time versus linear time� Journal of the ACM� ���������� �����

��	� E� A� Emerson and C��L� Lei� E�cient model checking in fragments of the propositional
mu�calculus� In Proceedings of the Second Annual Symposium on Logic in Computer Science�
IEEE Computer Society Press� June �����

��

���� S� Graf and B� Ste�en� Compositional minimization of
nite state processes� In Kurshan and
Clarke ����

���� J� E� Hopcroft and J� D� Ullman� Introduction to Automata Theory� Languages� and Compu�

tation� Addison�Wesley� ����

���� B� Josko� Verifying the correctness of AADL�modules using model checking� In de Bakker
et al� ����

���� R� P� Kurshan� Analysis of discrete event coordination� In de Bakker et al� ����

��� R� P� Kurshan and E� M� Clarke� editors� Proceedings of the ���� Workshop on Computer�

Aided Veri�cation� June �����

���� R� P� Kurshan and K� L� McMillan� A structural induction theorem for processes� In Proceed�

ings of the Eighth Annual ACM Symposium on Principles of Distributed Computing� ACM
Press� August �����

���� K� G� Larsen� The expressive power of implicit speci
cations� To appear in Proceedings of
the Eighteenth International Colloquium on Automata� Languages� and Programming�

�	�� O� Lichtenstein and A� Pnueli� Checking that
nite state concurrent programs satisfy their
linear speci
cation� In Proceedings of the Twelfth Annual ACM Symposium on Principles of

Programming Languages� January �����

�	�� Proceedings of the Fifth Annual Symposium on Logic in Computer Science� IEEE Computer
Society Press� June �����

�		� R� Milner� A Calculus of Communicating Systems� volume �	 of Lecture Notes in Computer

Science� Springer�Verlag� �����

�	�� A� Pnueli� In transition for global to modular temporal reasoning about programs� In K� R�
Apt� editor� Logics and Models of Concurrent Systems� volume �� of NATO ASI series	 Series

F� Computer and system sciences� Springer�Verlag� �����

�	�� Z� Shtadler and O� Grumberg� Network grammars� communication behaviors and automatic
veri
cation� In J� Sifakis� editor� Proceedings of the ��
� International Workshop on Automatic

Veri�cation Methods for Finite State Systems� Grenoble� France� volume �� of Lecture Notes
in Computer Science� Springer�Verlag� June �����

�	�� G� Shurek and O� Grumberg� The modular framework of computer�aided veri
cation� Moti�
vation� solutions and evaluation criteria� In Kurshan and Clarke ����

�	�� C� Stirling and D� J� Walker� Local model checking in the modal mu�calculus� In J� Diaz
and F� Orejas� editors� Proceedings of the ��
� International Joint Conference on Theory and

Practice of Software Development� volume ������	 of Lecture Notes in Computer Science�
Springer�Verlag� March �����

�	� D� Walker� Bisimulations and divergence� In Proceedings of the Third Annual Symposium on

Logic in Computer Science� IEEE Computer Society Press� June �����

�	�� G� Winskel� Compositional checking of validity on
nite state processes� Draft copy�

��

�	�� G� Winskel� Model checking in the modal ��calculus� In Proceedings of the Sixteenth Interna�

tional Colloquium on Automata� Languages� and Programming� �����

��

