M onotonic Abstraction-Refinement for CTL

Sharon Shoham and Orna Grumberg

Computer Science Department, Technion, Haifa, Isradl,
{sharonsh, orna}ecs.technion.ac.il

Abstract. Thegoa of thiswork isto improve the efficiency and effectiveness of
the abstraction-refinement framework for CTL over the 3-valued semantics. We
start by proposing a symbolic (BDD-based) approach for this framework. Next,
we generalize the definition of abstract models in order to provide a monotonic
abstraction-refinement framework. To do so, we introduce the notion of hyper-
transitions. For agiven set of abstract states, this resultsin amore precise abstract
model in which more CTL formulae can be proved or disproved.

We suggest an automatic construction of an initial abstract model and its succes-
sive refined models. We complete the framework by adjusting the BDD-based
approach to the new monotonic framework. Thus, we obtain a monotonic, sym-
bolic framework that is suitable for both verification and falsification of full CTL.

1 Introduction

The goal of thiswork is to improve the efficiency and effectiveness of the abstraction-
refinement framework for CTL over the 3-valued semantics. We first suggest a sym-
bolic (BDD-based) approach for this framework. Next, we generalize the definition of
abstract modelsin order to provide a monotonic abstraction-refinement framework. The
new definition resultsin more precise abstract modelsin which more CTL formulae can
be proved or disproved. Finally, we adjust the BDD-based approach to the new mono-
tonic framework.

Abstraction is one of the most successful techniquesfor fighting the state explosion
problem in model checking [5]. Abstractions hide some of the details of the verified
system, thusresult ina smaller model. Usually, they are designed to be conservative for
true, meaning that if a formulais true of the abstract model then it is also true of the
concrete (precise) model of the system.

The branching-timelogic CTL [5] iswidely used in model checking. In the context
of abstraction, often only the universal fragment of CTL, ACTL, is considered. Over-
approximated abstract models are used for verification of ACTL formulae while under-
approximated abstract models are used for their refutation.

Abstractionsdesigned for full CTL have the advantage of handling both verification
and refutation on the same abstract model. A greater advantage is obtained if CTL is
interpreted w.r.t. the 3-valued semantics [11]. This semantics evaluates a formula to
either true, false or indefinite. Abstract models can then be designed to be conservative
for both true and false. Only if the value of aformulain the abstract model isindefinite,
itsvaluein the concrete model isunknown. In this case, arefinement is needed in order
to make the abstract model more precise.

The first result of this paper is a BDD-based approach for thisframework. We use a
symbolic model checking for CTL with the 3-valued semantics [3]. If the model check-
ing resultsin an indefinite value, we find a cause for thisresult and derive fromit acrite-
rionfor refinement. Previousworks[15, 18, 19] suggested abstraction-refinement mech-
anisms for various branching time logics over 2-valued semantics, for specific abstrac-
tions. In [20] the 3-valued semantics is considered. Yet, their abstraction-refinement is
based on games and is not suitable for a symbolic evaluation.

In order to motivate our next result we need a more detailed description of ab-
stract models for CTL. Typically, each state of an abstract model represents a set of
states of the concrete model. In order to be conservative for CTL the abstract model
should contain both may transitions (—) which over-approximate transitions of the
concrete model, and must transitions (——), which under-approximate the concrete tran-
sitions [14, 8]. In our work we use abstract models which are called Kripke Modal
Transition Systems (KMTS) [12,10]. In KMTSs, for every abstract states s, and s/,
s — s iff there exists a concrete state s, represented by s, and there exists a con-
crete state s/, represented by s/, such that s, — s/, (33-condition). s, — s, iff for all
s represented by s, thereexists s/, represented by s/, suchthat s. — s., (v3-condition).

Refinements “split” abstract states so that the new, refined states represent smaller
subsets of concrete states. Several abstraction-refinement frameworks have been sug-
gested for ACTL and LTL with the 2-valued semantics, where abstractions are conser-
vative for true [13, 4, 1, 6, 2]. There, the refined model obtained from splitting abstract
stateshas less (may) transitionsand is therefore more precise in the sense that it satisfies
more properties of the concrete model. We call such arefinement monotonic.

For full CTL with the 3-valued semantics, an abstraction-refinement framework has
been suggested in [20]. For such aframework, one would expect that after splitting, the
number of must transitions will increase as the number of may transitions decreases.
Unfortunately, thisis not the case. Once a state s/, is split, the V3-condition that allowed
s — s/ might not hold any more. As a result, the refinement is not monotonic since
CTL formulae that had a definite value in the unrefined model may become indefinite.

In [9] this problem has been addressed. They suggest to keep copies of the unre-
fined states in the refined model together with the refined ones. This avoids the loss
of must transitions and guarantees monotonicity. Yet, this solution is not sufficient be-
cause the old information is still expressed w.r.t. the “unrefined” states and the new
information (achieved by the refinement) is expressed w.r.t. the refined states. Asare-
sult the additional precision that the refinement provides cannot be combined with the
oldinformation. Thisis discussed extensively in Section 4.1.

In this work we suggest a different monotonic abstraction-refinement framework
which overcomes this problem. For a given set of abstract states, our approach results
in a more precise abstract model in which more CTL formulae have a definite value.
Moreover, our approach avoids the need to hold copies of the unrefined states.

Inspired by [17], we define a generalized KMTS (GKMTS) in which must transi-
tions are replaced by must hyper-transitions, which connect a single state s, to a set
of states A. A GKMTS includes s, — A iff for all s, represented by s, there exists
s’ represented by some s/, € A such that s. — s.. This weakens the ¥Y3-condition by
alowing the resulting states s’, to be “scattered” in several abstract states.

In general, the number of must hyper-transitionsmight be exponential in the number
of states in the abstract model. In practice, optimizations can be applied in order to
reduce their number. We suggest an automatic construction of an initiadl GKMTS and
itssuccessive refined modelsin away that in many cases avoidsthe exponentia blowup.

In order to complete our framework, we also adjust for GKMTSs the 3-valued sym-
bolic model checking and the refinement suggested above for KMTSs. Thus, we obtain
amonotonic, symbolic framework that is suitable for both verification and falsification
of full CTL.

Organization. In Section 2 we give some background for abstractions and the 3-valued
semantics. We a so present a symbolic 3-valued model checking algorithm. In Section 3
we suggest a refinement mechanism that fits the symbolic 3-valued model checker. In
Section 4 we present generalized KMTSs and their use as abstract models. Finally, we
present our monotonic abstracti on-refinement framework in Section 5.

2 Preliminaries

Let AP beafinite set of atomic propositions. In this paper we consider the logic CTL,
defined asfollows. ¢ :=tt | p| ¢ | ¢ A ¢ | AY wherep € AP, and ¢ isa path
formuladefined by ¢ ::= X¢ | Uy | ¢V . Other operators can be expressed in the
usual manner [5]. Let Lit = AP U {-p: p € AP}. The (concrete) semantics of CTL
formulae is defined w.r.t. aKripke structure M = (S, Sy, —, L), where S isafinite set
of states, Sy C S isaset of initial states, —C S x S isatransition relation, which must
betotal and L : S — 27 isalabeling function, such that for every state s and every
p € AP, p e L(s) iff -p ¢ L(s). A pathin M from s isan infinite sequence of states,
T = $g,81,...9Uchthat s = sg and Vi > 0, s; = si41.

[(M,s) E ¢] = tt (= ff) means that the CTL formula ¢ istrue (false) in the state
s of the Kripke structure M. [(M, nr) = 4] = tt (= ff) has the same meaning for path
formulae over paths (see [5]). M satisfies ¢, denoted [M | ¢] = tt, if Vso € Sp -
[(M,sq) =] = tt. Otherwise, M refutes ¢, denoted [M =] = ff.

2.1 Abstraction
We use Kripke Modal Transition Systems[12, 10] as abstract models that preserve CTL.

Definition 1. A Kripke Modal Transition System (KM TS) isatuple M = (S, Sg, >
, = L), where S, S, are defined asbefore, =5 C Sx .S and =5C Sx S aretransition
relations such that =% istotal and —>C—51, and L : S — 2% isalabelingfunction
such that for every state s and p € AP, at most one of p and —p isin L(s).

A finite or infinite sequence of states m = sg, s1, . . .isapathin M froms if s = s and
for every two consecutive states s; , s; 1 inthe sequence, s; — s;41. misamust (may)
path if itis maximal and for every s;, s; 11 wehavethat s; = s;41 (8; — s;41). The
maximality isin the sense that = cannot be extended by any transition of the same type.

Note, that a Kripke structure can be viewed as aKMTS where — = ™5="% and
for each state s and p € AP, we have that exactly one of p and —p isin L(s).

must

! The requirement that == C 2 is not essential for the purposesof this paper.

Construction of an Abstract KMTS. Let M = (S¢, Soe, —, L¢) be a(concrete)
Kripkestructure. Let S, be aset of abstract statesand v : S, — 2°¢ atotal concretiza-
tion function that maps each abstract state to the set of concrete states it represents.

An abstract model, in the form of a KMTS M4 = (Sa, Soa, —, =% L), can
then be defined as follows. The set of initial abstract states S 4 isbuilt such that sy, €
Spa Iff Isge € Soe @ sc € Y(spq). The “if” isneeded in order to preserve truth from
M4 to M, while*only if” isneeded to preserve falsity.

The labeling of an abstract state is defined in accord with the labeling of all the
concrete statesit represents. For ! € Lit : 1 € La(sq) onlyif Vs, € v(s4) :1 € Le(se).
It is thus possible that neither p nor —p are in L 4 (s4). If the “only if” is replaced by
“iff”, then we say that the abstract labeling function is exact.

The may-transitions in an abstract model are computed such that every concrete
transition between two states is represented by them: if Is. € y(sq) and 3s, € ~(s),)
such that s, — s, then there exists a may transition s, — s’,. Note that it is possi-
ble that there are additional may transitions as well. The must-transitions, on the other
hand, represent concrete transitions that are common to al the concrete states that are
represented by the source abstract state: a must transition s, — s/, exists only if
Vse € v(sq) Js. € v(s,) suchthat s, — s.. Notethat it is possible that there are less
must transitionsthan allowed by thisrule. That is, the may and must transitions do not
have to be exact, as long as they maintain these conditions.

Other constructions of abstract models can be used as well. For example, if v is
apart of a Galois Connection [7] (v : S4 — 2%¢,a : 29¢ — S,) from (2°¢,C)
to (S4,C), then an abstract model can be constructed as described in [8] within the

must,

framework of Abstract Interpretation [7, 16, 8]. It isthen not guaranteed that —C .

3-Valued Semantics. [12] defines the 3-valued semantics [(M, s) =] of CTL over
KMTSs, and similarly [(M, 7) E] for path formulae, preserving both satisfaction
(tt) and refutation (ff) from the abstract to the concrete model. Yet, a new truth value,
1, isintroduced, meaning that the truth value over the concrete model is unknown and
can be either tt or ff. Intuitively, in order to preseve CTL, we examine truth of aformula
of the form A« aong all the may paths. Itsfalsity is shown by a single must path.

Definition 2 (Precision Preorder). Let M;, M, be two KMTSs over states 57, S
andlet s; € S; and s2 € S». We say that (M7, s1) is more precise than (M, s2),
denoted (My,s1) <cn (Mo, s9), if for every ¢ in CTL: [(Ma,s2) B ¢] #1 =
[(M1,51) E @] = [(Ma, s2) = ¢]. Smilarly, we say that M, ismore precise than Mo,
denoted My <., Ms,iffor every o inCTL: [My E @] #1L = [My E o] = [My E ¢].

The following definition formalizes the relation between two KM TSs that guaran-
tees preservation of CTL formulae w.r.t. the 3-valued semantics.

Definition 3 (Mixed Simulation). [8,10] Let M; = (S1, So1, =1, —54, L1) and
My = (SQ,SQQ,E)Q,ﬂ)Q,Lz) be two KMTSs. szaythatH g S1 X So is amixed
simulation from M, to M if (s1, s2) € H impliesthe following:

1. LZ(SZ) g Ll(Sl).
2. if sy =5 s}, thenthereissome s, € S St. s9 —5 s5 and (s}, s4) € H.
3. if s5 =5, b, thenthereissome s| € S; st. s; =% s} and (s}, s5) € H.

If there is a mixed simulation 7 such that Vs, € Sp; Js2 € Sps @ (s1,82) € H,and
Vss € Spg 351 € Suy : (s1,s2) € H, then M, is greater by the mixed simulation
relation than A, denoted M; < Ms.

In particular, Definition 3 can be applied to a (concrete) Kripke structure M and an
(abstract) KMTS M 4 constructed based on 'S4, v as described above. By doing so, we
get that M 4 isgreater by the mixed simulationrelation than M . The mixed simulation
H C S¢ %S4 canbeinduced by v asfollows: (s, s,) € H iff s. € y(sq). Preservation
of CTL formulae is then guaranteed by the following theorem.

Theorem 1. [10] Let H C 54 x S bethemixed simulationrelation froma KMTS M,
to a KMTS M». Then for every (s, s2) € H we havethat (M7, s1) <cn (M2, s2). We
concludethat My <¢r Ms.

Notethat if the KMTS M isin fact a Kripke structure, then for every CTL formula
we have that [(M,s) = ¢] = [(M,s) = ¢]. Therefore, Theorem 1 also describes
the relation between the 3-valued semantics over an abstract KMTS and the concrete
semantics over the corresponding concrete model.

Exact KM TS. If thelabeling function and transitions of the constructed abstract model
M 4 are exact, then we get the exact abstract model. This model is most precise com-
pared to all the KM TSs that are constructed as described above w.r.t. the given S4, .

2.2 Symbolic 3-Valued Model Checking

[3] suggests a symbolic multi-valued model checking algorithm for CTL. We rephrase
their algorithm for the special case of the 3-valued semantics, discussed in our work.

Let M beaKMTSand ¢ aCTL formula. For v € {tt, ff, L } we denote by |¢], the
set of statesin M for which the truth value of ¢ isv. That is, s € [¢]. iff [(M,s) &
¢] = v. Model checking is done by computing these sets for the desired property . If
all theiinitial states of M arein [, then [M =] = tt. If at least one initial state is
n [els, then [M | ¢] = ff, and otherwise [M £ o] =_L.

The algorithm that computes the sets]t and []¢ uses the following notation.

must,

For Z C S :ax(Z)={s|Vs' : s % s = Z(s')}andex(Z) ={s | Is' : s >
s'ANZ(s")}. Thealgorithmisasfollows.

[ttt = [ttles =0

ﬂ]]tt—{SES peL(s)} Iplg={s€S:-pel(s)} forpe AP

[=alte = T g [~e1lit = lealu

lor Agaltt = lealte N lealtt Te1 A pales = leales U le2lss

[AX o1]tt = ax(le]tt) [AX @1l = ex(lelse)

[A(prUe2)ltt = pZ Je2ltt U (I]t N ax(2))

[A(prU@2) gt = vZ.Jpaltt N (11 lg U ex(2))

[A(p1Via)ltt = vZ.Jealtt 0 (lerltt U ax(2))

[A(p1V o)t = pZ N ealgr U (Ipnls 0 ex(2))
Furthermore, for every CTL formulap, [¢] . iscomputed as S\ ([¢ltt U [#l¢f)-

The fixpoint operators p.2.7(Z) and v Z.7(Z) are computed as follows. For Z C S
we define 7 (Z) to be the ith application of 7 to Z. Formaly, 7°(Z) = Z and for
every i > 0: 7it1(Z) = 7(r%(Z)). Since the transformers (r’s) used in the fixpoint

definitionsof AU and AV are monotonic and continuous (similarly to [5]), then they
have aleast fixpoint (x«) and a greatest fixpoint (v) [21]. Furthermore, p.7.7(Z) can be
computed by | J; 7/ (#) and vZ.7(Z) can be computed by (), 7¢(.5).

3 3-Valued Refinement

Model checking of an abstract KMTS w.r.t. the 3-valued semantics may end with an
indefinite result, raising the need for a refinement of the abstract model. In this section
we suggest a refinement mechanism that fits the use of the symbolic 3-valued model
checking algorithm presented above. This results in a symbolic 3-valued abstraction-
refinement algorithm for CTL. The suggested refinement follows similar lines as the
refinement of [20], where a game-based model checking was used.

We start with some definitions and observations regarding the symbolic 3-valued
model checking agorithm. For ¢ € {A(p1Uwp2), A(p1Vp2)} and for v € {tt, ff}
we denote by ¢’ the set of states at the beginning of the ith iteration of the fixpoint
computanon of lele (@ > 0). Furthermore, for L, we define l]i, to be the set S\

Ul Note that the sets |], are not necessarily monotonic and that |¢[1 is
not computeé by afixpoint computation.

For every state s €] we define en(s) to be the number of theiteration where s
was first added to ||, . Notethat || = 0, therefore en(s) is aways> 1. Also note
that en(s) can be computed from the intermediate results of the fixpoint computation
when needed, without having to remember it for every state. We also have thefollowing.

Lemmal. Ifs € | . thenVi > en(s): s € [¢]', . Furthermore, if o = A(p1Ups)
thenVi < en(s): s € el andif o = A(p1 Vo) thenVi < en(s): s € [plit.

We now describe our refinement. Asin most cases, our refinement consists of two
parts. First, we choose a criterion that tells us how to split the abstract states. We then
construct the refined abstract model, using the refined abstract state space.

Suppose the model checking resultis | and refinement is needed. This means that
thereexistsat least oneinitia state so for whichthetruthvalueof ¢ is L,i.e. sy € [¢] L.
Our goal isto find and eliminate at least one of the causes of the indefinite result. We
first search for a failure state. Thisis a state s such that (1) the truth value of some
subformulay’ of ¢ insis_L; (2) theindefinitetruthvalueof o’ in s affectsthe indefinite
value of ¢ in sp; and (3) the indefinite value of ¢’ in s can be discarded by splitting
s. The latter requirement means that the state s itself is responsible for introducing
(some) uncertainty. The other requirements demand that this uncertainty is relevant to
the model checking result. A failure state is found by applying the following recursive
algorithmon s and ¢ (Where sg €] L).

Givenastate s andaformulay’ st. s € |¢'] L, dgorithm FindFailure returnsa
failurestate and either an atomic proposition or amay transition as the cause for failure.

Algorithm FindFailure (s, ¢')

— If ¢’ = p € AP:return s and p as the cause.

—If gpl = e call FindFailureon s and ¢ (weknow that s € [p1]1).

—If ¢’ = ¢1 A ps: cdl FindFailure on s and ¢; for some i € {1,2} such that
s € Jpi] L (such i must exist).

—If ' = AX
o If thereexists s; € S suchthat s = s, and s1 € [e1] then return s and
s % s, asthe cause.
e Otherwise, call FindFailure on s; and ¢; such that s — s; and s € [y1] L
(such s; must exist).
= If ¢ = A(p1Ups) or A(p1Vipa):
o If s € 2] L thencall FindFailureon s and 5.
o Otherwise, if s € [¢1] 1 then call FindFailureon s and ;.
e Otherwise, if thereexistss; € S suchthat s — s, and s; € [¢'[¢f thenreturn
sand s —% s; asthe cause.
e Otherwise, if there exists s; € S suchthat s —% s; and s; € [¢']L and
en(s1) < en(s) then call FindFailureon s; and ¢.
e Otherwise, choose s; € S suchthat s 5 s; and s; € [¢']L (and en(s;) >
en(s)) and return s and s —— s; as the cause (such s; must exist).

Note that the order of the “if” statements in the algorithm determines the failure state
returned by the algorithm. Different heuristics can be applied regarding their order.

Theorem 2. The algorithmiswell defined, meaning that all the possible cases are han-
dled and the algorithm can always proceed. Furthermore, it always terminates.

Intuitively, at every moment FindFailure looksfor areason for the indefinite value
of the current formula ¢’ inthe current state s. If s itself is not responsiblefor introduc-
ing the indefinite value, then the algorithm greedily continues with a state and formula
that affect the indefinite value of ¢’ in s. This continues until afailure state is reached.

Theorem 3. Let s be the failure state returned by FindFailure. Then the cause
returned by the algorithmis either (1) p € AP such that neither p nor —p label s; or
(2) an outgoing may transition of s which is not a must transition.

Inthefirst possibility described by Theorem 3, the labeling of s causesittobein p] .,
thusit introduces an uncertainty and is considered the cause for failure. To demonstrate
why the second case is viewed as a cause for failure, consider aformula A¢; whichis
indefiniteina state s. If s has an outgoing may transitionto astate s; where the value of
o1 isff, then s is considered afailure state with the may transition (which is not a must
transition, by Theorem 3) being the cause. Thisis because changing the may transition
to amust transition will make the value of AX ¢ in s definite (ff). Alternatively, if all
such transitions are eliminated, it will also make the value of AX ¢4 in s definite (tt).
A more complicated example of a may transition being the cause for the failureis
when ¢’ iseither A(p1Up2) or A(p1Va) and (1) s € [e2]L, (2) s € Je1]L, (3) there
isnos; € S suchthat s — s; and s; € ¢’ and (4) thereisno s; € S such that
s = sp and sy € [¢']L and en(sy) < en(s). In this case the algorithm considers s
to be afailure state and the cause is amay transition (which is not amust transition, by
Theorem 3) toastate s; suchthat s; € |¢’] L and en(s1) > en(s). To understand why
thisis a failure state, we focus on the case where ¢ = A(p1Uys). By Lemma 1, at
iteration en (s) (> 1), s moved from [/[¢)~ to [/ ""*). By the description of the

fixpoint computation of |’]¢s we concludethat s ¢ Hg@z]]ffﬂ(I]ng]]fo@l‘(I]QD/]].F?(S)_l)).

Yet, by (1), s € [e=2[L and thus s € [e2]¢ (otherwise it would bein [¢2]tt and thus
also in [¢'[4, in contradiction). Moreover, since s; is not yet in [']<"*)™", then by
Lemma 1 it must be at ﬂgo’]]]f]?(s)_l at that time. We consider s —— s, to be the cause
for failure because if it was a must transition rather than a may transition then s would
bein the set em(ﬂgp’]]]f?(s)_l) and therefore would remain in the set ﬂgo’]]]f]?(s) for at least
one more iteration. Thusit would have a better chance to remain in the set |/]¢ until
fixpoint is reached, changing theindefinite value of ¢’ in s to a definite one.

Once we are given afailure state s and a corresponding cause for failure, we guide
the refinement to discard the cause for failurein the hope for changing the model check-
ing result to a definite one. Thisis done as in [20], where the failure information is an-
alyzed and used to determine how the set of concrete states represented by s should be
split. A criterionfor splitting all abstract states can then be found by known techniques,
depending on the abstraction used (e.g. [6, 4]).

Having defined the refinement, we now have a symbolic abstraction-refinement al-
gorithm for CTL that uses the 3-valued semantics. In the next sections we will show
how this algorithm can be improved, by using a new notion of abstract models.

4 Generalized Abstract Models

In this section we suggest the notion of a generalized KM TS and its use as an abstract
model which preserves CTL. This notion allows better precision of the abstraction.

4.1 Motivation

The main flaw of using KMTSs as abstract models is in the must transitions, which
make the refinement not necessarily monotonic w.r.t. the precision preorder. The fol-
lowing example demonstrates the problem. We consider the traditional refinement that
is based on splitting the states of the (abstract) model.

Example 1. Consider the following program P.
P oinput: z > 0
pc=l:ifz >5thenz ==z + lelsex := « + 2fi
pc=2: whiletrue doif odd(z) thenz := —1 elsex := « + 1 fi od

Suppose we are interested in checking the property ¢ = EF(x < 0), which is
clearly satisfied by this program. The concrete model of the program is an infinite state
model. Suppose we start with an abstract model where concrete states that “agree” on
the predicate (¢ < 0) (taken form the checked property) are collapsed into a single
abstract state. Then we get the abstract model M/ described in Fig. 1(a), where the truth
value of ¢ is indefinite. Now, suppose we refine the model by adding the predicate
odd(z). Then we get the model M’ described in Fig. 1(b), where we still cannot verify
©. Moreover, we “lose” the must transition s, —» s; of M. This transition has no
corresponding must transition in the refined model A/’. This loss causes the formula
EX(z > 0) whichistruein M to become indefinitein A/’. Thus M’ £, M.

The source of the problem isthat when dealing with KM TSs as abstract models, we
are not guaranteed to have a mixed simulation between the refined abstract model and

(b)

Fig. 1. (8) An abstract model M describing the program P; (b) The abstract model A/’ resulting
from its refinement. Outgoing transitions of s»; are omitted sincethey are irrelevant.

the unrefined one, even if both are exact. This means that the refined abstract model
is not necessarily more precise than the unrefined one, even though each of its states
represents less concrete states. Thisis again demonstrated by Example 1. There, both
theinitial states of A/’ cannot be matched with the (only) initial state s, of M inaway
that fulfills the requirements of mixed simulation. This is because s, has an outgoing
must transition whereas the initial states of A/ have none. Consequently, M’ £ M.

[9] suggests a refinement where the refined model is smaller by the mixed ssimula-
tion than the unrefined one. The solution there is basically to use both the new refined
abstract states and the old (unrefined) abstract states. Thisis away of overcoming the
problem that the destination states of must transitions are being split, causing an unde-
sired removal of such transitions. This indeed prevents the loss of precision. Yet, this
solutionis not sufficient, as demonstrated by the following example.

Fig. 2. Themodel A" achieved by applying refinement as suggestedin [9] on M from Fig. 1(a).
Outgoing transitions of s»; are omitted since they are irrelevant, and so are additional outgoing
may transitions of the unrefined states (there are no additional outgoing must transitions for the
unrefined states).

Example 2. Fig. 2 presents the refined model M achieved by applying refinement as
suggested in[9] on the model M from Fig. 1(a). Indeed, we now have a mixed ssimula-
tionrelation from the refined model A to the unrefined model M, by simply matching
each state with itself or with its super-state, and the loss of precision is prevented. In
particular, the truth value of EX (x > 0) in M (unlike M’ from Fig. 1(b)) istt, since

there are must transitionsfrom the initial states of M’ to the old unrefined state s . Yet,
in order to verify the desired property ¢ = EF(x < 0), we need a must transition to
(at least one of) the new refined states s;5 and s1; from which a state satisfying z < 0
is definitely reachable (thisinformation was added by the refinement). However, the V3
condition is still not fulfilled between these states. As a result we cannot benefit from
the additional precision that the refinement provides and ¢ is still indefinite.

This example demonstrates that even when using the refinement suggested in [9],
must transitions may still be removed in the “refined” part of the model, containing
the new refined states. As a result the additional precision that the refinement provides
cannot necessarily be combined with the old information.

42 Generalized KMTSs

Having understood the problems that result from the use of must transitions in their
current form, our goal here is to suggest an alternative that will allow to weaken the
3 condition. Following the idea presented in [17] (in a slightly different context), we
suggest the use of hyper-transitionsto describe must transitions.
Definition 4 (Hyper-Transition). Given a set of states .S, a hyper-transitionis a pair
(s,A) where s € S and A C S isa nonempty set of states. Alternatively, a hyper-
transition from a state s is a nonempty set of (regular) transitionsfrom s.
A (regular) transition (s, s’) can beviewed asahyper-transition (s, A) where A = {s'}.
Recall that a (regular) must transition exists from s, to s/, in an abstract model only
if every state represented by s, has a (concrete) transition to some state represented by
s!,. The purpose of the generalization is to allow such a concrete transition to exist to
some state represented by some (abstract) state ina set A, (which playstherole of s’).
This can be achieved by using a hyper-transition. The hyper-transitionwill till perform
as amust transition in the sense that it will represent at |east one concrete transition of
each concrete state represented by s, (maintaining the Y3 meaning).

Definition 5. A Generalized Kripke Modal Transition System (GKMTS) M = (S, So,
% ™ L) isa KMTS except that ™>C S x 2° and for every (s, 4) €™ and
s’ € A, we have that (s,s') € holds. Alternatively, viewing a hyper-transition
(s, A) asaset of (regular) transitions {(s, s’) : s’ € A}, werequirethat (s, A) C—>.
The latter requirement replaces the requirement that —>C "% inaKMTS. A KMTS
can be viewed as a GKMTS where every must hyper-transitionis a regular transition.
Asbefore, amay pathin A isaninfinite path in A/ . However, instead of amust path
we how have a must hyper-path. To formally define it we use the following notation.
Definition 6. Let IT be a set of paths, then pre f; (IT) denotes the set of all the prefixes

of length ¢ of the pathsin /7.

Definition 7 (Must Hyper-Path). A must hyper-path from a state s is a nonempty set
11 of pathsfrom s, such that for every ¢ > 0:

prefipr (1) = U {mi-s:5€ Aq,}
i €prefi(I)
where for m; = sq,s1,...,s; € prefi(Il), theset A,, € 2° iseither (1) the target
set of some must hyper-transition (s;, A,,), or (2) the empty set, §, if there is no must
hyper-transition exiting s .

Recall that our intentionis to use GKMTSs as abstract models. Considering this goal,
Definition 7 is aimed at maintaining the desired property that if there is a must hyper-
path I7 from the abstract state s, then every concrete state represented by s, has a
corresponding concrete path, i.e. a path that is represented by some path in /7.

Note that a must hyper-path can include finite paths since A, can be empty.

3-Valued Semantics. We generalize the 3-valued semantics of CTL for GKMTSs. The
semantics is defined similarly to the (regular) 3-valued semantics, except that the use of
must pathsis replaced by must hyper-paths. In addition, for a (path) formula ¢/ of the
form X ¢, @1 U s, OF 91V o and amust hyper-path 17, we define

— [(M, IT) E +] = tt (ff), iff for every = € IT we havethat [(M, 7) |= o] = tt (ff)
— Otherwise, [(M, IT) =] =L1.

Note that the (regular) 3-valued semantics handles finite must paths as well.
The notion of a mixed simulation relation, that guaranteed preservation of CTL
formulae between two KMTSs, is generalized as well when dealing with GKMTSs.

Definition 8 (Generalized Mixed Simulation). Let M, = (S}, So1, —1, —%1, L)
and My = (S2, Soo, —9, 5y, L), be two GKMTSs. We say that 7 C 57 x So isa
generalized mixed simulation from M, to M- if (s1, s2) € H impliesthe following:

1. LZ(SZ) g Ll(Sl).

2. if s; =5, s}, thenthereissome s, € S St. 59 —5 s5 and (s}, s4) € H. .

3. ifs; ™5, Ay, thenthereissome A; C Sy st.s; =51 Ay and (A, Ay) € H,
where (A, As) € H & Vs) € Ay 3sh, € Ay @ (57, 55) € H.

If thereisa generalized mixed simulation # suchthatVs; € So; 3s2 € Soo @ (51, 82) €
H,andVss € Sy, Is1 € Spy : (s1,82) € H, then M is greater by the generalized
mixed simulation relation than A/, denoted M7 < Ms.

Theorem 4. Let H C S5 x S» be a generalized mixed simulation relation from a
GKMTS M, toa GKMTS M. Then for every (s1, s2) € H we havethat (M, s1) <cn
(M2, s2). We conclude that My <cr Mo.

Construction of an Abstract GKMTS. Given a concrete Kripke structure M., a set
S4 of abstract states and a concretization function ~, an abstract GKMTS My is con-
structed similarly to an abstract KMTS with the following difference: a must hyper-
transition s, =% A, existsonly if Vs, € 7(sq) 35, € (U%EA& »y(sg)) 50— 5.

This construction assures us that M < M4 w.r.t. the generalized mixed simula-
tion. Therefore, Theorem 4 guarantees preservation of CTL from M4 to M.

The use of GKMTSs allows construction of abstract models that are more precise
than abstract models described as KMTSs, when using the same abstract state space
and the same concretization function. This is demonstrated by the following example.

Example 3. Consider theexact KMTS M describedin Fig. 1(a) for the program P from
Example 1. The state s; has no outgoing must transition. Therefore, even verification of
the simple formula EX EX (true) fails, although this formula holdsin every concrete
model where the transition relation istotal. Using a GKMTS (rather than aKMTYS) as
an abstract model allows usto have a must hyper-transitionfrom s; tothe set {s1, s2}.
Therefore we are now able to verify the tautological formula EX E X (true).

Exact GKMTS. Aswith KMTSs, the must hyper-transitionsof a GKMTS do not have
to be exact, aslong as they maintain the new V3 condition. That is, it is possible to have
less must hyper-transitions than allowed by the v3 rule. If al the components of the
GKMTS are exact, then we get the exact GKMTS, which is most precise compared to
all the GKMTSsthat are constructed by the same rules based on the given S4 , .

Any abstract GKMTS and in particular the exact GKMTS can be reduced without
damaging its precision, based on the following observation. Given two must hyper-
transitions s, — A, and s, — A/, where A, C A’, the transition s, —> A’/
can be discarded without sacrificing the precision of the GKMTS. Therefore, apossible
optimizationwould beto use only minimal must hyper-transitionswhere A , isminimal.
Thisis similar to the approach of [8], where the destination state of a (regular) must
transitionis chosen to be the smallest state w.r.t. agiven partial order on S 4.

In general, even when applying the suggested optimization, the number of must
hyper-transitionsin the exact GKMTS might be exponential in the number of states. In
practice, computing all of them is computationally expensive and unreasonable. Later
on, we will suggest how to choose an initial set of must hyper-transitions and increase
it gradually in away that in many cases avoids the exponential blowup.

5 Monotonic Abstr action-Refinement Framewor k

In this section our goal is to show how GKMTSs can be used in practice within an
abstraction-refinement framework designed for full CTL. We also show that using the
suggested framework allows us to achieve the important advantage of a monotonic re-
finement when dealing with full CTL and not just a universal fragment of it.

We start by pointing out that using exact GKMTSs as abstract models solves the
problem of the non-monotonic refinement, described in Section 4.1.

Definition 9 (Split). Let S¢ be a set of concrete states, let S4 and S, be two sets
of abstract states and let v : S, — 2°¢, 4/ : S, — 25 be the corresponding
concretization functions. We say that (5, , 7') isasplitof (54,) iff there existsa (total)

function p : 5%, — Sa such that for every s, € Sa: (Up(s, J=sa 7/(52)) = (54).
Theorem 5. Let M be a (concrete) Kripke structure and let M4, M, be two exact
GKMTSs defined based on (Sa,), (57,%') respectively, such that M- < M4 and
Me < M, IF (S, +") isasplitof (Sa,v), then M/, < M.

Theorem 5 claims that for exact GKMTSs, refinement that is based on splitting ab-
stract statesismonotonic. Thisistruewithout the need to hold“ copies’ of the unrefined
abstract states. Yet, as claimed before, constructing the exact GKMTS is not practical.
Therefore, we suggest a compromise that fits well into the framework of abstraction-
refinement. We show how to construct aninitial abstract GKMTS and how to construct a
refined abstract GKMTS (based on splitting abstract states). The constructionisdonein
away that is onthe one hand computationally efficient and on the other hand maintainsa
monotonic refinement. The basic ideais asfollows. In each iteration of the abstraction-
refinement we first construct an abstract KMTS, including its may transitions and its
(regular) must transitions. We then compute additional must hyper-transitions as de-
scribed below.

Construction of an Initial Abstract Model Mj:
Given an initial set of abstract states S, and a concretization function y:

1. construct an abstract KMTS based on (Sg, v).
2. for every abstract state, add a must hyper-transition which is the set of al its out-
going may transitions.

Note that the set of al the outgoing may transitions of a state indeed fulfills the ¥3
conditionand thus can be added as a must hyper-transition. Thisresultsfrom thetotality
of the concrete transition relation along with the property that every concrete transition
isrepresented by some may transition. We call such must hyper-transitionstrivial.

Construction of a Refined Model M, +:

Suppose that model checking of the abstract model M; resulted in an indefinite result
and refinement is needed. Let (S;41,7:+1) bethe split of (S;,;), computed by some
kind of arefinement mechanism. Construct A4;, asfollows.

1. construct an abstract KMTS based on (Si41, 7it+1)-

2. for every must hyper-transition (including regular must transitions) s; — A; in
M; and for every state s; 11 € S;41 that isasub-state of s; € S;, add to M, 1, the
must hyper-transition Us;eA,{SiH =5 i, 1 s}, isasub-stateof s} }.

3. [optional] discard from A, any must hyper-transitions;, — A;,; that isnot
minimal, which means that thereis s; 11 — Al in My where AL | C Ajyq.

The purpose of step 2 above is to avoid the loss of information from the previous
iteration, without paying an additional cost. To do so, we derive must hyper-transitions
in M;41 from must hyper-transitionsin A4;, while avoiding the recomputation of the
Y3 rule. Namely, if there isa must hyper-transition from s; to A; in M;, then for every
state s; 41 in M, 4, that isa sub-state of s; we add an outgoing must hyper-transitionto
the set of all sub-states of statesin A;, excluding states to which s;,, does not have a
may transition. Clearly, given that s; — A;, we are guaranteed that the ¥3 condition
holds for the corresponding hyper-transitions in A/,,, as well. Note that this is not
damaged by excluding from the destination set states to which s;; does not have a
may transition. This is because the lack of a may transition shows that the 33 condition
does not hold between s;,; and the relevant states. Therefore they cannot contribute to
the satisfaction of the V3 condition anyway and can be removed. By using this scheme,
the construction of the GKMTS requires no additional computational cost, compared to
the construction of a (regular) KMTS.

The purpose of step 3 is to reduce the GKMTS without sacrificing its precision.
Note that the reduction done in this step can be performed during step 2.

Theorem 6. Let M bea concrete Kripke structure and let My, My, ... M;, ... bethe
abstract GKMTSs constructed as described above. Then
(1) foreveryi > 0: Mo < M;; and (2) foreveryi > 0: M;11 < M.

Theorem 6 first ensures that the construction of theinitial and the refined GKMTSs
described above yields abstract model swhich are greater by the generalized mixed sim-
ulation relation than the concrete model. Moreover, it ensures that although we do not

use the exact GKMTSs, we still have a generalized mixed simulation relation between
GKMTSs from different iterationsin a monotonic fashion. This means that we do not
lose information during the refinement and we get “closer” to the concrete model.

Example 4. To demonstrate these ideas we return to the program P from Example 1
and see how the use of GKMTSs as described above affects it. The initial GKMTS
My issimilar tothe KMTS M from Fig. 1(a), with two additional trivial must hyper-
transitions from s; and from s, to {s1, s2}. Yet, thetruthvalue of ¢ = EF(z < 0)
remains indefinite in this model. When we construct the refined model A/, (based on
the addition of the predicate odd(x)), we get a GKMTS that is similar to the KMTS
M’ from Fig. 1(b), but M, also has additional must hyper-transitions. In particular, it
has two trivial must hyper-transitionsfrom both of itsinitial statesto the set {s 1o, s11}.
These must hyper-transitions are the refined version of the (regular) must transition
from sy to 51 in My: They exist because the initial states of M; are sub-states of the
initial state sq of My and the set {s10, 511} consists of al the sub-states of s;. Their
existence in M, alowsto verify ¢, since due to them each of theinitial states now has
an outgoing must hyper-path in which all the paths reach s+, where = < 0.

Example 4 also demonstrates our advantage over [9] which stems from the fact that
our refinement does not use “copies’ of the unrefined abstract states, unlike [9]. This
example shows that in our approach the old information (from the unrefined model) is
expressed with respect to the new refined states. Consequently, the old information and
the new information, for which refinement was needed, can be combined, resultingina
better precision.

To conclude this section and make the suggested ideas complete, it remains to pro-
vide (1) amodel checking algorithm that evaluates CTL formulae over GKMTSs, using
the generalized 3-valued semantics; and (2) a suitable refinement mechanism to be ap-
plied when the model checking result isindefinite. Using these two components within
the general framework suggested above, results in an actual abstraction-refinement
framework where the refinement is monotonic.

Model Checking. Asamodel checking algorithm we suggest a simple generalization
of the symbolic 3-valued algorithm presented in Section 2.2. The only change isin the
definition of the operator ex(.7), which is now defined to be

ex(Z)={s|3sh,...s, s 5 {s],...,sL}A /\Z(sg)}
i=1

Refinement. As for the refinement mechanism, we can use the algorithm suggested in
Section 3 in order to find a failure state, analyze the failure and decide how to split the
abstract states. To be convinced of that, one needs to notice that the refinement is based
on may transitions only. Therefore no change is needed.

Moreover, the construction of a refined model M; 1 can be improved when this
refinement mechanism isused. Namely, duringthe failure analysisitispossibleto learn
about additional must hyper-transitionsthat can be added to M/, 1 . Thisisbecauseif the
causefor failureisamay transitions; — s’ (in M;) then the splitisdone by separating
theset S;. of all the concrete states represented by s; that have a corresponding outgoing
transition, from the rest (see [20]). In this case, we are guaranteed that after the split,

the V3 condition holds between the sub-state of s; representing the concrete set St and
the set containing all the sub-states of s;. Therefore, we can add such a must hyper-
transition to ;1 without additional computational cost.

Other extensions of the refinement mechanism, which are more GKMTS-oriented

and further exploit the use of must hyper-transitions, are omitted due to space limita-
tions.

Theorem 7. For finite concrete models, iterating the suggested abstraction-refinement
process is guaranteed to terminate with a definite answer.

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

17.
18.

10.

20.

21

S. Barner, D. Geist, and A. Gringauze. Symbalic localization reduction with reconstruction
layering and backtracking. In Computer-Aided Verification (CAV), Denmark, July 2002.

P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith, and D.Wang. Automated abstraction
refinement for model checking large state spacesusing sat based conflict analysis. In Formal
Methodsin Computer Aided Design (FMCAD), November 2002.

. M. Chechik, B. Devereux, A. Gurfinkel, and S. Easterbrook. Multi-valued symbolic model-

checking. Technical Report CSRG-448, University of Toronto, April 2002.

. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In Computer Aided Verification (CAV), LNCS, Chicago, USA, July 2000.

. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December 1999.
. EMM. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement

using ILP and machine leraning techniques. In Computer Aided \erification (CAV), 2002.

. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In popl4, pages238-252, 1977.

. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM

Transactionson Programming Languagesand Systems (TOPLAS), 19(2), March 1997.

. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using modal

transition systems. In CONCUR, 2001.

P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.
In Computer Aided Verification (CAV), LNCS, Copenhagen, Denmark, July 2002.

P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In \erification,
Model Checking and Abstract Interpretation (VMCAI), LNCS, January 2003.

M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation for three-
valued program analysis. LNCS, 2028:155-169, 2001.

R.P. Kurshan. Computer-Aided-\erification of Coordinating Processes. Princeton University
Press, 1994.

K.G. Larsen and B. Thomsen. A modal processlogic. In LICS, July 1988.

W. Lee, A. Pardo, J. Jang, G. D. Hachtel, and F. Somenzi. Tearing based automeatic abstrac-
tion for CTL model checking. In ICCAD, pages 7681, 1996.

C. Loiseaux, S. Graf, J. Sifakis, A. Bougjjani, and S. Bensalem. Property preserving abstrac-
tions for the verification of concurrent systems. Formal Methodsin System Design, 1995.
K. S. Namjoshi. Abstraction for branching time properties. In CAV, Boulder, CO, July 2003.
A. Pardoand G. D. Hachtel. Automatic abstraction techniquesfor propositional mu-calculus
model checking. In Computer Aided Verification (CAV), pages 12—23, 1997.

A. Pardo and G. D. Hachtel. Incremental CTL model checking using BDD subsetting. In
Design Automation Conference, pages 457462, 1998.

S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-
valued abstraction-refinement. In Computer Aided Verification, Boulder, CO, July 2003.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math, 1955.

