
Compositional Verification and 3-Valued Abstractions
Join Forces?

Sharon Shoham and Orna Grumberg

Computer Science Department, Technion, Haifa, Israel,
{sharonsh,orna }@cs.technion.ac.il

Abstract. Two of the most promising approaches to fighting the state explosion
problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can deter-
mine the truth value of the fullµ-calculus with respect to a given system.
Given a systemM = M1||M2, we view each componentMi as an abstraction
Mi ↑ of the global system. The abstract componentMi ↑ is defined using a 3-
valued semantics so that whenever aµ-calculus formulaϕ has a definite value
(true or false) onMi↑, the same value holds also forM . Thus,ϕ can be checked
on eitherM1 ↑ or M2 ↑ (or both), and if any of them returns a definite result,
then this result holds also forM . If both checks result in an indefinite value,
the composition of the components needs to be considered. However, instead of
constructing the composition ofM1↑ andM2↑, our approach identifies and com-
poses only the parts of the components in which their composition is necessary in
order to conclude the truth value ofϕ. It ignores the parts which can be handled
separately. The resulting model is often significantly smaller than the full system.
We explain how our compositional approach can be combined with abstraction,
in order to further reduce the size of the checked components. The result is an
incremental compositional abstraction-refinement framework, which resembles
automatic Assume-Guarantee reasoning.

1 Introduction

Model checking [11] is a useful approach for verifying properties of systems. The main
disadvantage of model checking is the state explosion problem, which refers to its high
space requirements. Two of the most promising approaches to fighting the state explo-
sion problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can determine the
truth value of the fullµ-calculus with respect to a given system.

In compositional model checking one tries to verify parts of the system separately
in order to avoid the construction of the entire system. To account for the dependencies
between the components, the Assume-Guarantee (AG) paradigm [22, 25] suggests how
to verify one module based on anassumptionabout the behavior of its environment,
where the environment consists of the other system modules. The environment is then
verified, in order toguaranteethat it actually satisfies the assumption. Many of the

? The first author would like to acknowledge the financial support of an IBM Ph.D. Fellowship.

works on compositional model checking are based on the AG paradigm and on learn-
ing [12, 5, 10] (see the related work section for more details). In contrast, our approach
is based on techniques taken from the 3-valued game-based model checking for abstract
models [26, 18, 19].

We first present our method for concrete systems, composed of concrete (unab-
stracted) components. We then extend it to abstract systems, in which one or both of
the components have been abstracted (separately). For simplicity we refer to systems
that consist of two componentsM1||M2. However, our approach can be extended to
the composition ofn components. In our settingM1 andM2 are Kripke structures that
synchronize on the joint labeling of the states. This composition is suitable for model-
ing synchronous systems with shared variables. In particular, it is suitable for hardware
designs that synchronize on their inputs and outputs, since our models can be viewed
as Moore machines [20]. The underlying ideas are applicable to other models as well,
such as Labeled Transition Systems (LTSs), where components synchronize on their
joint transitions and interleave their local transitions.

Given a systemM = M1||M2, we view each componentMi as an abstractionMi↑
of the global systemM , in which the values of the local (unshared) variables and the
transitions of the other component are unknown. We consider the 3-valued semantics of
theµ-calculus, in which the value of a formula in a model is either tt (true), ff (false),
or⊥ (unknown).Mi↑ is defined so that whenever aµ-calculus formulaϕ has a definite
value (tt or ff) onMi↑, the same value holds also forM . Thus,ϕ can be checked on
eitherM1↑ or M2↑ (or both), and if any of them returns a definite result, then this result
holds also forM . Only if both checks result in⊥, the value ofϕ in M is unknown.

For the 3-valued abstraction, when the model checking returns⊥, the abstract model
should berefinedin order to eliminate the⊥ result. For our framework, a refinement
could be achieved by composingM1↑ andM2↑. This, however, is not desired and not
necessary. Instead, only the parts of the abstract models for which the model check-
ing result is⊥ are identified and composed. The resulting refined model is often sig-
nificantly smaller than the full system and is guaranteed to return the correct model
checking result.

More specifically, our approach is based on the 3-valued game for model checking
of µ-calculus, suggested in [18, 19]. The game is played on agame graph, whose nodes
are labeled bys ` ψ, wheres is a state in the checked model andψ is a subformula
of the checked formula, s.t. the value ofψ in s is relevant for determining the model
checking result. The model checking algorithm “colors” each node in the game graph
by T , F , or ? iff the value ofψ in s is tt, ff or⊥, respectively. Recall that we first apply
the model checking algorithm to each component separately. If the algorithm colors a
nodes ` ψ of M1↑ with T (F), then it is guaranteed that every state in the composed
systemM , whose first component iss, satisfies (falsifies)ψ. A similar property holds
for M2↑. Thus, when the model checking returns⊥ then only the subgraphs of nodes
whose color is? require further checking and are therefore composed. As such, the
game-based approach provides a natural way of identifying and focusing on the places
where the value of the checked formula remained inconclusive.

To further reduce the size of the checked components, we combine our composi-
tional approach with abstraction. Abstraction not only reduces the state-space of the

components, but also allows to handle infinite-state components by abstracting them
into finite-state components. Given a system composed of two (or more) components,
we first abstract each component separately. However, in order to guarantee preserva-
tion of both tt and ff we require that the common alphabet (e.g. common inputs and
outputs for hardware designs) will not be abstracted. Only local (unshared) variables
can be abstracted. While this limits the amount of reduction that can be achieved by the
abstraction on a single component, it enables additional reduction due to the composi-
tional reasoning.

We propose an automatic construction of the initial abstraction for each component
separately. We then proceed as before: we run a 3-valued model checking on each of the
components. If both return⊥, we identify and compose the parts where indefinite results
were obtained, and apply 3-valued model checking to the composed model. While in
the concrete case this step always terminates with a definite result, here we may obtain
an indefinite result due to abstraction. In such a case, we follow [26, 18, 19] in finding
the causefor the indefinite result on the composed model. However, the refinement
is applied on each of the components separately. Moreover, we adopt the incremental
approach of [26, 18, 19] and refine only the indefinite part of each component.

An abstraction of a componentMi (which comprises the environment of the other
component) can be viewed as providing an assumption onMi. From this point of view,
when applying abstraction-refinement on one or both of the components, the result is
an automatic mechanism for assumption generation, which is either symmetric (refers
to both components) or asymmetric (abstracts only one component). In each iteration,
more information about the component is revealed, by need – based on the cause for
the indefinite result. This resembles iterative AG reasoning. The use of conservative
abstractions guarantees that the assumption describes the component correctly (by con-
struction). Thus unlike typical AG reasoning, this need not be verified.

In summary, our contribution is threefold:
– We introduce a new ingredient to compositional model checking, which enhances

its modularity. Namely, given a compositional system, our approach uses a model
checking game-graph as a means to identify and focus on the parts of the compo-
nents in which their composition is indeed necessary to conclude the truth value of
the checked property, due to dependencies between them. It uses the game-graph
to exchange information between the components in these points, by need, and ig-
nores the parts which can be handled separately. Thus, it avoids the construction of
the full composition. Furthermore, if a certain formula only depends on one com-
ponent, then it is resolved on this component alone while avoiding the composition
altogether. Our technique is orthogonal to the AG approach, and can also be ap-
plied when the composed system consists of a component and an assumption on its
environment.

– We develop a compositional, fully automatic, abstraction-refinement framework,
which has some resemblance to iterative AG-reasoning, but benefits from the mod-
ular model checking described above. The refinement is also applied to each com-
ponent separately. In addition, the abstraction-refinement is incremental in the sense
that results from previous iterations are re-used. From the AG point of view, our
compositional abstraction-refinement can be viewed as a new, automatic, mecha-
nism for assumption generation, which uses the power of abstraction-refinement.

– Finally, unlike most automatic AG approaches, which are limited to universal safety
properties, our technique is applicable to thefull µ-calculus.

Related Work Recently, [12] followed by [5, 10], considered automatic assumption
generation for AG reasoning. They uselearningalgorithms for finite automata in order
to automatically produce suitable assumptions for an AG rule. A similar approach is
taken in [7], where the AG rule used is symmetric. Assumption generation in a more
general setting is addressed in [16, 2]. These works are all restricted touniversal safety
properties. The learning algorithms used in these works also perform some kind of an
abstraction-refinement. However, these algorithms are not specifically tailored for ver-
ification. In particular, they do not always maintain a conservative abstraction of the
environment. As such, the assumption sometimes needs to be weakened and sometimes
needs to be strengthened. In our case an assumption (abstraction) should never be weak-
ened. Moreover, we increase the modularity of the model checking step by using the
game-based approach, which also enables an incremental analysis. Most importantly,
our approach is applicable to thefull µ-calculus.

The game-based model checking enables us to identify the places where the value
of a subformula in a component’s state is the same forall environments. We exploit this
information to reduce the model checking instance of the entire system. Other authors
have also used similar information for reductions. In [1] the authors merge compo-
nent’s states that share the same value for a given CTL formula in all environments,
thus minimizing the component. In [3] the authors use reachability and controllability
information about the concrete components (gathered via game-theoretic techniques) in
order to construct abstract components forinvarianceproperties. The composition of
the abstract components is then computed and model checked. We, on the other hand,
do not try to minimize each component. Instead, the game-graph enables us to prune
parts of each component’s model checking instance whose effect was already taken into
consideration. As a result, we reduce the state space exploration of the entire system.
This is applicable even if no states of the individual components can be merged.

[15] uses controllability information to speed up falsification of invariance proper-
ties. They identify unpreventable violations of the property based on each component
separately, which enables to prune the state space exploration of the compound system
before a violation is actually encountered. The authors state that their method can be ex-
tended to arbitrary LTL properties. However, they only use controllability information
w.r.t. the entire formula. Our approach enables to gather information about subformulas
as well, and thus can result in more substantial reductions. In addition, our approach is
aimed at both verification and falsification (with a 3-valued semantics) and is applicable
to a full branching time logic.

[24] also uses 3-valued model checking for modular verification. They consider
feature-oriented modules, where the composition is via interfaces and has a more se-
quential nature. As a result, they only refer to unknown propositions and not to un-
certainty in the transitions. A substantial part of their work is devoted to determining
what information needs to be included in a feature’s interface to support compositional
reasoning. In our case, we use the game graph for sharing such auxiliary information.

In [4] the authors suggest to use game structures to reason about composition of
components. [14, 6] suggest abstraction-refinement frameworks for such models, w.r.t.

alternating time temporal logics, which enable to describe properties of the interaction
between components. We are interested in properties of the compound system, thus the
focus in these works is different. In addition, they abstract each component separately
and then model check the entire system. The model checking step is not modular.

[9] develops a compositional counterexample-guided abstraction refinement for a
universal temporal logic (which extends ACTL). In their approach, the abstraction and
the refinement steps are performed on each component separately, but the model check-
ing step is done on the entire (abstract) system. In our approach, the model checking
step is also compositional, and the properties considered are not limited to a universal
logic.

2 Preliminaries
µ-calculus [23] Let AP be a finite set of atomic propositions andV a set of proposi-
tional variables. The set of literals overAP is Lit = AP ∪{¬p : p ∈ AP}. We identify
¬¬p with p. The logicµ-calculusin negation normal formoverAP is defined by:

ϕ ::= l | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | ¤ϕ | ♦ϕ | µZ.ϕ | νZ.ϕ

wherel ∈ Lit andZ ∈ V. Intuitively, ¤ stands for “all successors”, and♦ stands for
“exists a successor”.µ denotes a least fixpoint, whereasν denotes greatest fixpoint. We
will also write η for eitherµ or ν. LetLµ denote the set ofclosedformulas generated
by the above grammar, where the fixpoint quantifiersµ andν are variable binders. We
assume that formulas are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variableZ identifiesa unique subformulafp(Z) = ηZ.ψ of ϕ,
where the setSub(ϕ) of subformulasof ϕ is defined in the usual way.

Concrete SemanticsConcrete systems are typically modelled asKripke structures. A
Kripke structure [11] is a tupleM = (AP, S, s0, R, L), whereAP is a finite set of
atomic propositions,S is a finite set of states,s0 ∈ S is an initial state,R ⊆ S × S is
a transition relation, andL : S → 2Lit is a labeling function, such that for every states
and everyp ∈ AP , exactly one ofp and¬p is in L(s).

Theconcrete semantics[[ϕ]]M of a closed formulaϕ ∈ Lµ overAP w.r.t. a Kripke

structureM = (AP, S, s0, R, L) is a mapping fromS to {tt, ff}. [[ϕ]]M (s) = tt (= ff)
means that the formulaϕ is true (false) in the states of the Kripke structureM . If
[[ϕ]]M (s0) = tt (= ff), we say thatM satisfies (falsifies)ϕ, denotedM |= ϕ (M 6|= ϕ).

3-Valued Abstraction In the context of abstraction,Kripke Modal Transition Sys-
tems[21, 17] are often used as abstract models that preserve theµ-calculus.

Definition 1. A Kripke Modal Transition System(KMTS) is a tupleM = (AP, S, s0,
R+, R−, L), whereAP , S ands0 are defined as before,R+, R− ⊆ S×S are must and
may transition relations (resp.) such thatR+ ⊆ R−, andL : S → 2Lit is a labeling
function such that for every states andp ∈ AP , at mostone ofp and¬p is in L(s).

The3-valued semantics[[ϕ]]M3 of a closed formulaϕ ∈ Lµ w.r.t. a KMTSM is a
mapping fromS to {tt, ff ,⊥} [8, 21]. It preserves both satisfaction (tt) and refutation
(ff) from the abstract KMTS to the concrete model it represents.⊥ is a new truth value

whose meaning is that the truth value over the concrete model is unknown and can be
either tt or ff. The interesting cases in the definition of the 3-valued semantics are those
of the literals and the modalities.

[[l]]M3 (s) = tt if l ∈ L(s), ff if ¬l ∈ L(s), ⊥ otherwise.

[[¤ψ]]M3 (s) =





tt, if ∀t ∈ S, if sR−t then[[ψ]]M3 (t) = tt
ff , if ∃t ∈ S s.t.sR+t and[[ψ]]M3 (t) = ff
⊥, otherwise

and dually for♦ψ when exchanging tt and ff. The notationsM |= ϕ andM 6|= ϕ are
used for KMTSs as well. In addition, if[[ϕ]]M3 (s0) =⊥, the value ofϕ in M is indefinite.

The following definition formalizes the relation between two KMTSs that guaran-
tees preservation ofµ-calculus formulas w.r.t. the 3-valued semantics.

Definition 2 (Mixed Simulation). [13, 17] Let M1 = (AP, S1, s
0
1, R

+
1 , R−1 , L1) and

M2 = (AP, S2, s
0
2, R

+
2 , R−2 , L2) be two KMTSs, both defined overAP . H ⊆ S1 × S2

is a mixed simulationfromM1 to M2 if (s1, s2) ∈ H implies:

1. L2(s2) ⊆ L1(s1).
2. if s1R

−
1 s′1, then there is somes′2 ∈ S2 such thats2R

−
2 s′2 and(s′1, s

′
2) ∈ H.

3. if s2R
+
2 s′2, then there is somes′1 ∈ S1 such thats1R

+
1 s′1 and(s′1, s

′
2) ∈ H.

If there is a mixed simulationH s.t. (s0
1, s

0
2) ∈ H, thenM2 abstractsM1, denoted

M1 ¹ M2.

In particular, Def. 2 can be applied to a (concrete) Kripke structureMC and an (abstract)
KMTS MA, by viewing the Kripke structure as a KMTS whereR+ = R− = R. For
a Kripke structure, the 3-valued semantics agrees with the concrete semantics. Thus,
preservation ofLµ formulas is guaranteed by the following theorem.

Theorem 1. [17] Let H ⊆ S1 × S2 be the mixed simulation relation from a KMTS
M1 to a KMTSM2. Then for every(s1, s2) ∈ H and everyϕ ∈ Lµ we have that

[[ϕ]]M2
3 (s2) 6=⊥⇒ [[ϕ]]M1

3 (s1) = [[ϕ]]M2
3 (s2).

Abstract Model Checking A 3-valued game-based model checking for theµ-calculus
over KMTSs was suggested in [18, 19]. They introduce 3-valued parity games and trans-
late the 3-valued model checking problem into the problem of determining the winner
in a 3-valued satisfaction game, which is a special case of a 3-valued parity game. We
omit the details of the 3-valued satisfaction game, but continue with thegame graph,
which presents all the information “relevant” for the model checking.

Game Graph Let M = (AP, S, s0, R+, R−, L) be a KMTS andϕ ∈ L0
µ. Thegame

graphGM×ϕ, or in shortG, is a graph(N, n0, E+, E−) whereN ⊆ S × Sub(ϕ) is
a set of nodes andE+ ⊆ E− ⊆ N × N are sets of must and may edges defined as
follows. n0 = s0 ` ϕ ∈N is the initial node. The (rest of the) nodes and the edges are
defined by the rules of Fig. 1, with the meaning that whenevern ∈ N is of the form of
the upper part of the rule, the result in the lower part of the rule is also a noden′ ∈N
andE−(n, n′). Moreover,E+(n, n′) holds as well in all cases except for an application
of the rules in the second column with a model’s transition(s, t) ∈ R−\R+. Intuitively,
the outgoing edges ofs`ψ ∈ N define “subgoals” for checkingψ in s.

s`ψ0 ∨ ψ1

s`ψi
: i ∈ {0, 1} s`♦ψ

t`ψ
: sR+t or sR−t

s` ηZ.ψ
s`Z

s`ψ0 ∧ ψ1

s`ψi
: i ∈ {0, 1} s`¤ψ

t`ψ
: sR+t or sR−t s`Z

s`ψ
: if fp(Z) = ηZ.ψ

Fig. 1. Rules for game graph construction

If E−(n, n′) (E+(n, n′)) thenn′ is a may (must) son ofn. A noden = s ` ψ in
GM×ϕ is classified as a∧, ∨, ¤,♦ node, based onψ. If ψ is of the formZ or ηZ.ψ′, n
is deterministic– it has exactly one son. Ifn has no outgoing edges, then it is aterminal
node. In a full game graph this means that eitherψ is a literal, orψ is of the form♦ψ′

or ¤ψ′, ands has no outgoing transition inM .
Fig. 2(b) presents examples of game graphs forϕ = ¤(¬i ∨ ♦o) and the models

from Fig. 2(a), where all transitions are considered may transitions.

Coloring Algorithm The model checking algorithms of [18, 19] can be viewed as
coloring algorithms that label (color) each noden = s`ψ in the game graph byT , F , ?
depending on the truth value ofψ in the states in M (based on the 3-valued semantics).
The result of the coloring is a3-valued coloring functionχ : N → {T, F, ?}.

In both cases the coloring is performed by solving the 3-valued parity game for
satisfaction, where each color stands for a possible result in the game. The algorithm
of [18] is a generalization of Zielonka’s algorithm for solving (2-valued) parity games.
In [19], the 3-valued satisfaction game is reduced into two (2-valued) parity games,
improving the coloring’s complexity. The following formalizes the correctness of the
coloring. For a (possibly not closed) formulaψ, ψ∗ denotes the result of replacing every
free occurrence ofZ ∈ V in ψ by fp(Z). Note that ifψ is closed, thenψ∗ = ψ.

Definition 3. Let GM×ϕ be a game graph for a KMTSM and ϕ ∈ Lµ. A (possibly
partial) coloring functionχ : N → {T, F, ?} for GM×ϕ (or its subgraph) iscorrectif
for everys`ψ ∈ N , wheneverχ(s`ψ) is defined, then:

1. [[ψ∗]]M3 (s) = tt iff χ(s`ψ) = T .
2. [[ψ∗]]M3 (s) = ff iff χ(s`ψ) = F .
3. [[ψ∗]]M3 (s) =⊥ iff χ(s`ψ) =?.

Theorem 2. [18, 19] Let χF be the (total) coloring function returned by the coloring
algorithm of [18] or [19] for GM×ϕ. ThenχF is correct.

Moreover, in both cases, the final coloring of the nodes reflects the 3-valued seman-
tics of the logic: A∧-node or a¤-node is coloredT iff all its may sons are colored
T (and in particular if it has no may sons), it is coloredF iff it has a must son which
is coloredF , and otherwise it is colored?. Dually for a∨-node or a♦-node when ex-
changingT andF . The color ofs` l for l ∈ Lit is T iff l ∈ L(s), F iff ¬l ∈ L(s), and
? otherwise. The result of the coloring is demonstrated in Fig. 2(b).

Refinement If the model checking result of an abstract model is indefinite (⊥), a refine-
ment is needed. When using the coloring algorithms of [18, 19], an indefinite result is
accompanied with afailure stateand afailure cause. The failure cause is either a literal
whose value in the failure state is⊥, or an outgoing may transition of the failure state

in the underlying model which is not a must transition. Refinement is then performed
by splitting the abstract states in a way that eliminates the failure cause (see [18, 19]).

3 Partial Coloring and Subgraphs

In the following sections we use the game-based model checking in order to identify and
focus on the places where the dependencies between components of the system affect
the model checking result. In this section we set the basis for this, by investigating
properties of the game graph and the coloring algorithms.

Due to their nature, as algorithms for solving a 3-valued parity game, the coloring
algorithms of [18, 19] have the important property that they can be applied on a partially
colored graph, in which case they extend the given coloring to the rest of the graph
in a correct way. Moreover, the coloring can also be applied on a partially colored
subgraph, and under certain assumptions it will yield a correct coloring of the subgraph.
To formalize this, we need the following definitions.

Definition 4. Let G be a game graph andχF its final coloring function. For a non-
terminal noden in G we define itswitnessing sonsas follows, depending on its type:

∧, ¤: the witnessing sons are those coloredF or ? byχF .
∨, ♦: the witnessing sons are those coloredT or ? byχF .
deterministic: the witnessing son is the only son.

The sons are witnessing in the sense that they suffice to determine the color of
the node, thus removing the rest of the node’s sons from the graph does not damage
the result of the coloring. For example, if a∧-node or a¤-node has no witnessing
sons, meaning all its sons are coloredT , then we know it should be coloredT , and
this is indeed how the coloring algorithms will color the node when keeping only the
witnessing sons. Otherwise, the witnessing sons determine whether the node should be
coloredF or ?, thus one can correctly color the node by considering only them.

Definition 5. A subgraphG′ of a game graphG is closedif every node inG′ is either
a terminal node, orall its witnessing sons (and corresp. edges) fromG are also inG′.

Theorem 3. Consider a closed subgraphG′ of a game graphG with a partial coloring
functionχ which is correct and defined over (at least) all the terminal nodes inG′. Then
applying the coloring algorithm of [18] or [19] onG′ with χ as an initial coloring
results in a correct coloring ofG′.

In fact, for the coloring of the subgraph to be correct, notall the witnessing sons
are needed, as long as there is enough information to explain the correct coloring of
each uncolored node. However, we will see that in our case we will need all of them,
as we will deduce from the game graph of one component to the game graph of the full
system, where some of the nodes will be removed and for some an indefinite color (?)
will change intoT or F . This means that some of the witnessing sons will not remain
witnessing sons in the game graph of the full system. Thus, we will not be able to know
a-priori which of them is the “right” choice to include in a way that will also provide
the necessary information for a correct coloring in the game graph of the full system.

Another notion that we will need later is the following.

Definition 6 (?-Subgraph).LetG be a colored graph whose initial node is colored?.
The?-subgraphis the least subgraphG? of G that obeys the following:

– the initial node is inG? (and is the initial node ofG?).
– For each node inG? which is colored? in G all its witnessing sons (and corre-

sponding edges) inG are included inG?.

G? is accompanied with a partial coloring functionχI which is defined over the
terminal nodes inG?, and colors them as the coloring functionχF of G.

The?-subgraphG? and its initial coloring meet the conditions of Thm. 3. Intuitively,
this means thatG? containsall the information regarding the indefinite result. Fig. 2(b)
provides examples of?-subgraphs.

4 Compositional Model Checking

In compositional model checking the goal is to verify a formulaϕ on a compound
systemM1||M2. In our settingM1 andM2 are Kripke structures that synchronize on
the joint labelling of the states. Since a Kripke structure is a special case of a KMTS
whereR = R+ = R−, we define the composition for the more general case of KMTSs.
In the following we denote byLit1 andLit2 the sets of literals overAP1 andAP2, resp.

Definition 7. Two KMTSsM1 = (AP1, S1, s
0
1, R

+
1 , R−1 , L1) andM2 = (AP2, S2, s

0
2,

R+
2 , R−2 , L2) are composableif their initial states agree on their joint labeling, i.e.

L1(s0
1) ∩ Lit2 = L2(s0

2) ∩ Lit1.

Definition 8. LetM1 = (AP1, S1, s
0
1, R

+
1 , R−1 , L1) andM2 = (AP2, S2, s

0
2, R

+
2 , R−2 ,

L2) be two composable KMTSs. We define their composition, denotedM1||M2, to be
the KMTS(AP, S, s0, R+, R−, L), where

– AP = AP1 ∪AP2

– S = {(s1, s2) ∈ S1 × S2 | L1(s1) ∩ Lit2 = L2(s2) ∩ Lit1}
– s0 = (s0

1, s
0
2)

– R+ = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R+
1 and(s2, t2) ∈ R+

2 }
– R− = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R−1 and(s2, t2) ∈ R−2 }
– L((s1, s2)) = L(s1) ∪ L(s2)

In particular, if M1 and M2 are Kripke structures with transition relationsR1 and
R2 resp., thenM1||M2 is a Kripke structure withR = {((s1, s2), (t1, t2)) ∈ S ×
S | (s1, t1) ∈ R1 and(s2, t2) ∈ R2}.

From now on we fixAP to beAP1 ∪ AP2. For i ∈ {1, 2} we usei to denote the
remaining index in{1, 2} \ {i}.

We use the mechanism produced for abstractions of full branching time logics for
the purpose of compositional verification. The basic idea is to view each Kripke struc-
tureMi as a partial model that abstractsM1||M2.

Definition 9. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. We liftMi into a

KMTSMi↑= (AP, Si, s
0
i , R

+
i ↑, R−i ↑, Li↑) overAP whereR+

i ↑= ∅, R−i ↑= Ri and
Li↑ (s) = Li(s).

That is, we viewMi as a KMTSMi↑ over AP (rather thanAPi). This immediately
makes the value of each literal overAP \APi in each state ofMi↑ indefinite (as neither
p nor¬p are inLi(s)) – indeed, it depends onMi. In addition, each transition ofMi is
considered a may transition (since in the composition it might be removed if a matching
transition does not exist inMi, but transitions can never be added).

Theorem 4. M1||M2 ¹ Mi↑. The mixed simulation is{((s1, s2), si) | (s1, s2) ∈ S}.
Since eachMi↑ abstractsM1||M2, we are able to first consider each component sepa-
rately: Thm. 1 ensures that ifϕ has a definite value (tt or ff) inMi↑ under the 3-valued
semantics, then the same value holds inM1||M2 as well. In particular, the values in
M1↑ andM2↑ cannot be contradictory, and it suffices that one of them is definite in
order to determine the value inM1||M2.

The more typical case is that the value ofϕ on bothM1↑ andM2↑ is indefinite.
This reflects the fact thatϕ depends on both components and their synchronization.
Typically, an indefinite result requires some refinement of the abstract model. In our
case refinement means considering the composition with the other component. Still, in
this case as well, having considered each component separately can guide us into focus-
ing on the places where we indeed need to consider the composition of the components.

The game-based approach to model checking provides a convenient way for pre-
senting this information. If the KMTSMi↑ is model checked using the algorithm of [18]
or [19], then the result is a colored game graph, in whichT andF represent definite
results (i.e. truth values that hold no matter what the environment is), but the? color
needs to be resolved by considering the composition. This is where the?-subgraph (see
Def. 6) becomes handy, as it points out the places where this is really needed.

The?-subgraph for each component is computed top-down, starting from the initial
node. As long as a node colored? is encountered, the search continues in a BFS manner
by including the witnessing sons. Definite nodes which are included in the subgraph
become terminal nodes, and their coloring defines the initial coloring function.

The?-subgraphs of the two colored graphs present all the indefinite information that
results from the dependencies between the components. Thus, to resolve the indefinite
result, we compose the?-subgraphs.

Definition 10 (Product Graph). Let G?1 andG?2 be two?-subgraphs as above with
initial nodess0

1 ` ϕ and s0
2 ` ϕ resp. We define their product to be the least graph

G|| = (N||, n0
||, E

+
|| , E−

||) such that:

– n0
|| = (s0

1, s
0
2)`ϕ is the initial node inN||.

– If (s1, s2) ` ψ ∈ N|| and (s1 ` ψ, s′1 ` ψ′) ∈ E−
1 and (s2 ` ψ, s′2 ` ψ′) ∈ E−

2

and L1(s′1) ∩ Lit2 = L2(s′2) ∩ Lit1 (i.e. (s′1, s
′
2) is a state ofM1||M2), then:

(s′1, s
′
2)`ψ′ ∈ N|| and((s1, s2)`ψ, (s′1, s

′
2)`ψ′) is in E+

|| andE−
|| .

Note that all the edges inG|| are must edges, whereas in the?-subgraphs we had
may edges (the transitions of each component were treated as may transitions in the
lifted version). This is because the product graph already refers to the complete system
M1||M2, where all transitions are concrete transitions (modeled as must transitions).

The product graph is constructed by a top-down traversal of the subgraphs, where,
starting from the initial nodes, nodes that share the same formulas and whose states

agree on the joint labeling are composed (recall thats0
1 ands0

2 agree on their joint la-
beling). Whenever two non-terminal nodes are composed, the outgoing edges are com-
puted as the product of their outgoing edges, limited to legal nodes (w.r.t. the restriction
to states that agree on their labeling). In particular, this means that if a node in one sub-
graph has no matching node in the other, then it will be omitted from the product graph.
In addition, when a terminal node of one subgraph is composed with a non-terminal
node of the other, the resulting node is a terminal node inG||.

We accompanyG|| with an initial coloring function for its terminal nodes based on
the initial coloring functions of the two subgraphs. We use the following observation:

Proposition 1. Letn = (s1, s2) `ψ be a terminal node inG||. Then one of the follow-
ing holds. Either (a) at least one ofs1 `ψ ands2 `ψ is a terminal node in its subgraph,
in which case at least one of them is colored by a definite color by the initial coloring
of its subgraph, and contradictory definite colors are impossible. We denote this color
bycol(n); Or (b) boths1 `ψ ands2 `ψ are non-terminal nodes but no outgoing edges
were left in their composition.

Definition 11. We define the initial coloring functionχI of G|| as follows. Letn be a
terminal node inN||. If it fulfills case (a) of Prop. 1, thenχI(n) = col(n). If it fulfills
case (b), thenχI(n) = T if n is a∧-node or a¤-node, andχI(n) = F if n is a∨-node
or a♦-node.χI is undefined for the rest of the nodes.

In particular, if a terminal node inG|| results from a terminal node which is colored
by ? in one subgraph and a terminal node which is colored by some definite color in the
other, then the definite color takes over.

Note that the initial coloring function of the product graph colors all the terminal
nodes by definite colors. Along with the property that all the edges in the product graph
are must edges, this reflects the fact that the composition resolves all the indefinite in-
formation that existed in each component when it was considered separately. Therefore,
when applying (one of) the coloring algorithm to the product graph, all the nodes are
colored by definite colors (in fact, a 2-valued coloring can be applied).

Theorem 5. The resulting product graphG|| is a closed subgraph of the game graph
over M1||M2. In addition, the initial coloring function is correct w.r.t.M1||M2 and
defined over all the terminal nodes in the subgraph.

By Thm. 3, this means that coloringG|| results in a correct result w.r.t. the model check-
ing of ϕ in M1||M2. Thus, to model checkϕ on M1||M2 it remains to colorG||. Note
that the full graph forM1||M2 is not constructed. To sum up, the algorithm is as follows.

Step 1 Model check eachMi↑ separately (fori ∈ {1, 2}):
1. Construct the game graphGi for ϕ andMi↑.
2. Apply the 3-valued coloring onGi. Let χi be the resulting coloring function.

If χ1(n
0
1) or χ2(n

0
2) is definite, return the corresp.model checking result forM1||M2.

Step 2 Consider the compositionM1||M2:

1. Construct the?-subgraphs forG1 andG2.
2. Construct the product graphG|| of the?-subgraphs.
3. Apply the 3-valued coloring onG|| (with the initial coloring function).

Return the model checking result corresponding toχ||(n
0
||).

G1::

s0 ⊢¬i ∨♦o

s0 ⊢♦o

s0 ⊢ o s2 ⊢ o

s1 ⊢¬i ∨♦o

s1 ⊢♦o

s0 ⊢�(¬i ∨ ♦o)

s1 ⊢ o

s0 ⊢¬i s1 ⊢¬i

G2::

t1 ⊢¬i ∨ ♦o

t2 ⊢¬it1 ⊢¬i t2 ⊢♦o

t0 ⊢�(¬i ∨ ♦o)

t0 ⊢¬i ∨♦o

t0 ⊢ o t1 ⊢ o t2 ⊢ o

t2 ⊢¬i ∨ ♦o

t1 ⊢♦ot0 ⊢¬i t0 ⊢♦o

(b)

¬r,¬o

r, or,¬o

s0

s2s1

M1::

¬i,¬r

¬i, ri, r

t0

t1 t2

M2::

(a)

(s0, t0)⊢�(¬i ∨ ♦o)

(s2, t1)⊢ o

(s1, t1)⊢♦o

(s1, t1)⊢¬i ∨♦o

(c)

Fig. 2. (a) Components, (b) their game graphs and their?-subgraphs (enclosed by a line), and (c)
the product graph. Dashed edges denote may edges which are not must edges. The colors reflect
the coloring function: white stands forT , dark gray stands forF and light gray stands for?.

Example 1.Consider the components depicted in Fig. 2(a). The atomic propositiono
(short foroutput) is local toM1, i (input) is local toM2, andr (receive) is the only
joint atomic proposition thatM1 andM2 synchronize on. Suppose we wish to verify in
M1||M2 the property¤(¬i∨♦o), which states that in all the successor states of the ini-
tial state, aninput signal implies that there is a successor state where theoutput signal
holds. Fig. 2(b) depicts the colored game graph of each (lifted) component, and high-
lights the?-subgraph of each of them. The product graph and its coloring is depicted in
Fig. 2(c), as an “intersection” of the two subgraphs. All the edges in the product graph
are must edges. All nodes, and in particular the initial node, are coloredT , thus the
property is verified. One can see that most of the efforts were done on each component
separately, and the product graph only considers a small part of the compound system.

5 Adding Abstraction

In Section 4 we considered concrete components. The indefinite results on each compo-
nent resulted only from their interaction, and were resolved by composing the indefinite
parts. We now combine this idea with existing abstraction-refinement techniques.

5.1 Motivation

Composing the?-subgraphs of two components, as suggested in Section 4, corresponds
to refiningall possible failure causes. We now show how to use abstraction in order to
make the refinement more local and gradual by eliminatingonefailure cause at a time.

Suppose that the coloring of the game-graphG1 for the lifted concrete component
M1↑ results in an indefinite result. We wish to eliminate the failure cause returned by

the coloring algorithm forM1↑. Suppose thats is the failure state. It abstracts all the
states ofM1||M2 that consist ofs and a matching state ofM2. Eliminating the cause
for failure amounts to exposing fromM2 the information that involves the failure, and
splitting s accordingly. For example, in Fig. 2, a possible failure cause inG1 is the
may transition ofM1↑ from s1 to s2. In order to either remove it or turn it into a must
transition, we need to consider all the states ofM2 which are composable withs1. These
are the states labeledr. We need to find out which of them have a transition to a state
labeledr (i.e., a state composable withs2), and which of them do not.

Clearly, the complete composition of the?-subgraphs achieves this goal. However,
it exposes more information than relevant for the given failure cause. Thus we do not
want to resort to that (in this example it is indeed necessary, but in the general case not
all the causes for failure need to be eliminated). We now sketch the idea that allows
us to only consider the information fromM2 that is needed for eliminating the failure
cause ofM1↑. This will be described more formally in Section 5.2.

We abstractM2 into M̂2. We start with a most coarse abstraction ofM2 w.r.t.AP1∩
AP2, where each state is abstracted by its labeling, restricted toAP1 ∩AP2.

Definition 12. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. Themost coarse

abstractionfor Mi w.r.t. AP ′ ⊆ APi is the KMTSM̂∗
i = (APi, 2AP ′ , Li(s0

i)∩AP ′, ∅,
2AP ′ × 2AP ′ , L∗i), where forŝ ∈ 2AP ′ , L∗i (ŝ) = ŝ ∪ {¬p | p ∈ AP ′ \ ŝ}.

Theorem 6. Mi ¹ M̂∗
i . The mixed simulation is{(si, Li(si) ∩AP ′) | si ∈ Si}.

The construction of the most coarse abstraction requires almost no knowledge of the
component. More precise transitions can be computed as in [26]. Starting from the
most coarse abstraction ofM2, we iteratively model check the composition ofM1 and
the abstract model̂M2. The model checking is performed in a compositional fashion,
similarly to Section 4, without computing the full composition. If the result in some
iteration is indefinite, we refinêM2 depending on the failure cause overM1||M̂2. Re-
call that our purpose was to eliminate a failure cause overM1↑. Since we start with a
most coarse abstraction ofM2 w.r.t. the joint atomic propositions,M1||M̂2 is initially
isomorphic toM1↑. As a result, in the first iteration the failure cause overM1||M̂2 re-
flects the failure cause overM1↑, and the refinement of̂M2 indeed exposes the relevant
information fromM2. Similarly, in the next iterations, the failure cause overM1||M̂2

reflects the failure cause overM1↑, after taking into consideration the elimination of
previous failure causes. In this sense, in each iteration we eliminate one failure cause
over M1↑, andM̂2 “accumulates” the information required to eliminate these failure
causes.

This means that we keep one of the components,M1, concrete, and construct an ab-
stract environment for it, by applying an iterative abstraction-refinement onM2, where
refinement is aimed at eliminating the indefinite results that arise when consideringM1

with the abstract environment. This approach is reminiscent of an asymmetric Assume-
Guarantee rule. The next step is to make the approach symmetric by abstracting both
components. This amounts to constructing abstract environments for both the compo-
nents. In this case, refinement also needs to be applied on both components.

5.2 Compositional Abstraction-Refinement

We now describe in detail the combination of the compositional approach with abstraction-
refinement. This provides a framework for using both the asymmetric and the symmet-
ric approaches sketched above. On the one hand, we enhance the compositional model
checking of Section 4 by using abstraction and a more gradual refinement. On the other
hand, we enhance the abstraction-refinement framework by making both the abstract
model checking and the refinement compositional. We no longer require that the state
spaces of the concrete components are finite, as long as the abstract state spaces are.

Compositional Abstraction Composition of abstract models (KMTSs) is defined in
Def. 8. In order to ensure that the composition of two abstract modelsM̂1 = (AP1, Ŝ1,
ŝ0
1, R

+
1 , R−1 , L̂1) andM̂2 = (AP2, Ŝ2, ŝ

0
2, R

+
2 , R−2 , L̂2), for M1 andM2 respectively,

results in an abstract model forM1||M2, we considerappropriateabstract models w.r.t.
AP1 ∩ AP2. We say thatM̂i is anappropriateabstract model ofMi w.r.t. AP1 ∩ AP2

if M̂i andMi are related by a mixed simulation relation which is appropriate w.r.t.
AP1 ∩AP2, as defined below.

Definition 13. Let H ⊆ Si × Ŝi be a mixed simulation fromMi to M̂i, both defined
over APi. We say thatH is appropriatew.r.t. AP ′ ⊆ APi if for every(si, ŝi) ∈ H,
Li(si) ∩ Lit′ = L̂i(ŝi) ∩ Lit′, whereLit′ denotes the set of literals overAP ′.

In particular, the most coarse abstraction w.r.t.AP1 ∩ AP2 (see Def. 12) is appro-
priate w.r.t.AP1 ∩ AP2. Appropriateness of̂M1 andM̂2 w.r.t. AP1 ∩ AP2 means that
the abstraction of each component only identifies states that agree on their labelings
w.r.t. the joint atomic propositions. It ensures that if(ŝ1, ŝ2) is a state of the abstract
composition and̂s1 abstractss1 andŝ2 abstractss2, then sincês1 andŝ2 agree on the
joint labeling, then so dos1 ands2. This ensures that(s1, s2) is a state of the concrete
composition, abstracted by(ŝ1, ŝ2). We now have the following.

Theorem 7. Let M̂i be an appropriate abstract model forMi w.r.t. AP1 ∩ AP2. Then
M1||M2 ¹ M̂1||M̂2.

Thus, if each ofM1 andM2 is abstracted separately by an appropriate abstraction w.r.t.
AP1∩AP2, then the composition of the corresponding abstract componentsM̂1 andM̂2

results in an abstract model forM1||M2. However, we do not wish to construct̂M1||M̂2

and model check it. Instead, we suggest to model checkM̂1||M̂2 compositionally.

Compositional (abstract) Model Checking The general scheme is similar to the con-
crete case: we first try to make the most out of each (abstract) component separately, and
if this does not result in a definite answer, we consider the product of the?-subgraphs
which enable to exchange information via a compact representation. We start by view-
ing each abstract component̂Mi as a partial model that abstracts their composition
M̂1||M̂2.

Definition 14. Let M̂i = (APi, Ŝi, ŝ
0
i , R

+
i , R−i , L̂i) be a KMTS. We liftM̂i into a

KMTSM̂i ↑= (AP, Ŝi, ŝ
0
i , R

+
i ↑, R−i ↑, L̂i ↑) over AP whereR+

i ↑= ∅, R−i ↑= R−i
andL̂i↑ (ŝ) = L̂i(ŝ).

That is, whenM̂i is lifted intoM̂i↑, only the may transitions of̂Mi are useful, because
must transitions are not really must w.r.t.M̂1||M̂2. Similarly to the concrete case:

Theorem 8. M̂1||M̂2 ¹ M̂i↑.

Corollary 1. If M̂i is an appropriate abstract model forMi w.r.t. AP1 ∩ AP2, then
M1||M2 ¹ M̂i↑.
Therefore one can model check each ofM̂i↑ separately, and the definite results follow
through toM1||M2. In fact, it is possible to show thatM1||M2 ¹ M̂i↑ holds even if we
omit the appropriateness requirement. Thus appropriateness is not needed for this step.
However, it is needed for the next steps, where we deduce fromM̂1||M̂2 to M1||M2.

If both checks result in indefinite results, the (abstract)?-subgraphs for both game
graphs are produced and their product is considered. Having composed the?-subgraphs
of the two components resolves dependencies between them, but the result is still ab-
stract, as it refers to theabstractcompositionM̂1||M̂2. This results in two differences
compared to the concrete case.

First, the may edges do not necessarily become must edges. Instead, the distinction
between may and must edges is determined by the type of the underlying transitions in
the (unlifted) abstract modelŝMi, which have been ignored so far. Second, it is now
possible that a terminal noden = (ŝ1, ŝ2) ` ψ in G|| with ψ = l for a local literal
l ∈ Lit \ (Lit1 ∩ Lit2) results from terminal nodeŝs1 ` l and ŝ2 ` l which areboth
colored by? in their subgraphs (one, sincel is local to the other component, and is thus
treated as indefinite, and the other due to the abstraction). We add this possibility as
case (c) to Prop. 1 which characterizes the terminal nodes in the product graphG||. It is
taken into account when determining the initial coloring ofG||.

Definition 15 (Abstract Product Graph). LetG?1 andG?2 be two abstract?-subgraphs
as above. Their product graphG|| = (N||, n0

||, E
+
|| , E−

||) is defined as before, except for

the definition ofE+
|| : an edge((ŝ1, ŝ2)`ψ, (ŝ′1, ŝ

′
2)`ψ′) in E−

|| is also inE+
|| iff ŝiR

+
i ŝ′i

for eachi ∈ {1, 2}. The initial coloring function is defined as before, with the addition
that a terminal node that fulfills case (c) in the adapted version of Prop. 1 is colored?.

Theorem 9. The resulting abstract product graphG|| is a closed subgraph of the game

graph overM̂1||M̂2. In addition, the initial coloring function is correct and defined over
all the terminal nodes in the subgraph.

Along with Thm. 3, this implies thatG|| can be colored correctly (w.r.t. the model

checking ofϕ on M̂1||M̂2) using the 3-valued algorithm. If the initial node is colored
by a definite color, then by Thm. 7 the result holds inM1||M2 as well and we are done.

Compositional RefinementSince an abstraction is used, the result of the model check-
ing can be⊥, in which case the coloring of [18, 19] returns a failure cause that needs to
be eliminated. The failure cause is either a literal whose value in a certain state is⊥, or
a may transition of the underlying model which is not a must transition.

In our setting, the refinement step is done compositionally: If the failure cause is a
literal l whose value in the failure state of̂M1||M̂2 is⊥, thenl has to be a local literal

of one of the components. This is because the abstraction is appropriate w.r.t.AP1 ∩
AP2, which implies that no indefinite values for the joint atomic propositions occur in
M̂1||M̂2. Thus, refinement need only be applied on the corresponding component.

Otherwise, the failure cause is a may transition (which is not a must transition) of
M̂1||M̂2 that needs to be refined in order to result in a must transition or no transition at
all. Let ((ŝ1, ŝ2), (ŝ′1, ŝ

′
2)) be this may transition. Then it results from may transitions

(ŝ1, ŝ
′
1) and(ŝ2, ŝ

′
2) of M̂1 andM̂2 resp., such that at least one of them is not a must

transition. In order to refine((ŝ1, ŝ2), (ŝ′1, ŝ
′
2)), one needs to refine the individual may

transitions in each component separately. If both of them are not must transitions, then
refinement should be applied in each component. This is because a must transition in the
composition results from must transitions inboth components. Otherwise, refinement
should only be applied in the component where it is not a must transition.

In each component where refinement is necessary, the refinement can be done as
in [26, 18, 19]. Moreover, in each component we adopt the incremental approach of [26,
18, 19] and avoid unnecessary refinement. In this approach, only nodes with indefinite
colors are refined. In our setting, this corresponds to the?-subgraph of each component.
The result is the following compositional abstraction-refinement loop.

Step 0 For i ∈{1, 2}, abstractMi into M̂i appropriately w.r.t.AP1∩AP2 (e.g. as in Def.12).
Step 1 Model check eacĥMi↑ separately (fori ∈ {1, 2}):

1. Construct the game graphGi for ϕ andM̂i↑.
2. Apply the 3-valued coloring onGi. Let χi be the resulting coloring function.

If χ1(n
0
1) or χ2(n

0
2) is definite, return the corresp.model checking result forM1||M2.

Step 2 Consider the composition̂M1||M̂2:

1. Construct the?-subgraphs forG1 andG2.
2. Construct the (abstract) product graphG|| of the?-subgraphs.
3. Apply the 3-valued coloring onG|| (with the initial coloring function).

If χ||(n
0
||) is definite, return the corresp.model checking result forM1||M2.

Step 3 Refine: Consider the failure cause returned by the coloring ofG|| (whereχ||(n
0
||) =?).

If it is l ∈ Liti then refineM̂i; Else let it be the may transition((ŝ1, ŝ2), (ŝ
′
1, ŝ

′
2)). Then:

1. If (ŝ1, ŝ
′
1) is not a must transition in̂M1, refineM̂1.

2. If (ŝ2, ŝ
′
2) is not a must transition in̂M2, refineM̂2.

Refine the?-subgraphs ofG1 andG2 accordingly (as in the incremental approach);
Go to Step 1(2) with the refined subgraphs.

Note that the must transitions of each abstract component are only used whenG|| is
constructed. Thus, their computation can be deferred to step 2 and be limited to must
transitions that are needed during model checking. Hyper-transitions can also be used,
e.g. with the algorithm of [27].

Using the compositional abstraction-refinement starting from the most coarse ab-
straction w.r.t.AP1 ∩AP2 of one or both of the components results in the asymmetric,
resp. symmetric, approach described in Section 5.1.

Theorem 10. For finite concrete components, iterating the compositional abstraction-
refinement process is guaranteed to terminate with a definite answer.

References

1. V. A. Aziz, T. R. Shiple and A. L. Sangiovanni-vincentelli. Formula-dependent equivalence
for compositional CTL model checking. InCAV, 1994.

2. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifications for Java
classes. InPOPL, 2005.

3. R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Automating modular verification.
In CONCUR, 1999.

4. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. InFOCS, 1997.
5. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning

assumptions. InCAV, 2005.
6. T. Ball and O. Kupferman. An abstraction-refinement framework for multi-agent systems.

In LICS, 2006.
7. H. Barringer, D. Giannakopoulou, and C. Pasareanu. Proof rules for automated composi-

tional verification through learning. InSAVCBS, 2003.
8. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal

logics. InCAV, 1999.
9. S. Chaki, E. Clarke, O. Grumberg, J. Ouaknine, N. Sharygina, T. Touili, and H. Veith.

State/event software verification for branching-time specifications. InIFM, 2005.
10. S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee reasoning for

simulation conformance. InCAV, 2005.
11. E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT press, 1999.
12. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for compo-

sitional verification. InTACAS, 2003.
13. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.ACM

Transactions on Programming Languages and Systems (TOPLAS), 19(2), 1997.
14. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games: Uncer-

tainty, but with precision. InLICS, 2004.
15. L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Detecting errors before reaching them. In

CAV, 2000.
16. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation for software

component verification. InASE, 2002.
17. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.

In CAV, 2002.
18. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in theµ-calculus. In

VMCAI, 2005.
19. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not losing is better than win-

ning: Abstraction and refinement for the fullµ-calculus. Information and Compuatation,
2007. doi: 10.1016/j.ic.2006.10.009.

20. O. Grumberg and D. Long. Model checking and modular verification.TOPLAS, 16(3), 1994.
21. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation for three-

valued program analysis. InESOP, 2001.
22. C. Jones. Specification and design of (parallel) programs. InIFIP, 1983.
23. D. Kozen. Results on the propositionalµ-calculus.TCS, 27, 1983.
24. H. C. Li, S. Krishnamurthi, and K. Fisler. Modular verification of open features using three-

valued model checking.Autom. Softw. Eng., 12(3), 2005.
25. A. Pnueli. In transition for global to modular temporal reasoning about programs. InLogics

and Models of Concurrent Systems, volume 13, 1984.
26. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-

valued abstraction-refinement. InCAV, 2003. To appear in TOCL.
27. S. Shoham and O. Grumberg. 3-valued abstraction: More precision at less cost. InLICS,

2006.

