Compositional Verification and 3-Valued Abstractions
Join Forces"

Sharon Shoham and Orna Grumberg

Computer Science Department, Technion, Haifa, Israel,
{sharonsh,orna  }@cs.technion.ac.il

Abstract. Two of the most promising approaches to fighting the state explosion
problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can deter-
mine the truth value of the fulk-calculus with respect to a given system.

Given a system\/ = M, || M2, we view each componemi/; as an abstraction
M; 1 of the global system. The abstract compon&fit] is defined using a 3-
valued semantics so that whenevegi-galculus formulay has a definite value
(true or false) onV/;7, the same value holds also fdf. Thus,e can be checked

on eitherM; 7T or M> 7 (or both), and if any of them returns a definite result,
then this result holds also fav/. If both checks result in an indefinite value,

the composition of the components needs to be considered. However, instead of
constructing the composition @/, T and M1, our approach identifies and com-
poses only the parts of the components in which their composition is necessary in
order to conclude the truth value of It ignores the parts which can be handled
separately. The resulting model is often significantly smaller than the full system.
We explain how our compositional approach can be combined with abstraction,
in order to further reduce the size of the checked components. The result is an
incremental compositional abstraction-refinement framework, which resembles
automatic Assume-Guarantee reasoning.

1 Introduction

Model checking [11] is a useful approach for verifying properties of systems. The main
disadvantage of model checking is the state explosion problem, which refers to its high
space requirements. Two of the most promising approaches to fighting the state explo-
sion problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can determine the
truth value of the fullu-calculus with respect to a given system.

In compositional model checking one tries to verify parts of the system separately
in order to avoid the construction of the entire system. To account for the dependencies
between the components, the Assume-Guarantee (AG) paradigm [22, 25] suggests how
to verify one module based on assumptiorabout the behavior of its environment,
where the environment consists of the other system modules. The environment is then
verified, in order toguaranteethat it actually satisfies the assumption. Many of the

* The first author would like to acknowledge the financial support of an IBM Ph.D. Fellowship.



works on compositional model checking are based on the AG paradigm and on learn-
ing [12, 5, 10] (see the related work section for more details). In contrast, our approach
is based on techniques taken from the 3-valued game-based model checking for abstract
models [26, 18, 19].

We first present our method for concrete systems, composed of concrete (unab-
stracted) components. We then extend it to abstract systems, in which one or both of
the components have been abstracted (separately). For simplicity we refer to systems
that consist of two componentt; || M. However, our approach can be extended to
the composition ofi components. In our settink/; and M- are Kripke structures that
synchronize on the joint labeling of the states. This composition is suitable for model-
ing synchronous systems with shared variables. In particular, it is suitable for hardware
designs that synchronize on their inputs and outputs, since our models can be viewed
as Moore machines [20]. The underlying ideas are applicable to other models as well,
such as Labeled Transition Systems (LTSs), where components synchronize on their
joint transitions and interleave their local transitions.

Given a system/ = M; || M-, we view each component/; as an abstractiof/;
of the global systemi/, in which the values of the local (unshared) variables and the
transitions of the other component are unknown. We consider the 3-valued semantics of
the p-calculus, in which the value of a formula in a model is either tt (true), ff (false),
or L (unknown).M;1 is defined so that whenevepacalculus formulap has a definite
value (tt or ff) onM; 1, the same value holds also féf. Thus,p can be checked on
either M1 or M57 (or both), and if any of them returns a definite result, then this result
holds also ford. Only if both checks result i, the value ofp in M is unknown.

For the 3-valued abstraction, when the model checking returtise abstract model
should berefinedin order to eliminate thel result. For our framework, a refinement
could be achieved by composid; T and M51. This, however, is not desired and not
necessary. Instead, only the parts of the abstract models for which the model check-
ing result is L are identified and composed. The resulting refined model is often sig-
nificantly smaller than the full system and is guaranteed to return the correct model
checking result.

More specifically, our approach is based on the 3-valued game for model checking
of p-calculus, suggested in [18, 19]. The game is played ganae graphwhose nodes
are labeled by F ¢, wheres is a state in the checked model ands a subformula
of the checked formula, s.t. the value¥fin s is relevant for determining the model
checking result. The model checking algorithm “colors” each node in the game graph
by T, F', or 7 iff the value ofty in sis tt, ff or L, respectively. Recall that we first apply
the model checking algorithm to each component separately. If the algorithm colors a
nodes F 1 of M, 1 with T' (F), then it is guaranteed that every state in the composed
systemM, whose first component is satisfies (falsifiesp. A similar property holds
for M,7. Thus, when the model checking returhghen only the subgraphs of nodes
whose color is? require further checking and are therefore composed. As such, the
game-based approach provides a natural way of identifying and focusing on the places
where the value of the checked formula remained inconclusive.

To further reduce the size of the checked components, we combine our composi-
tional approach with abstraction. Abstraction not only reduces the state-space of the



components, but also allows to handle infinite-state components by abstracting them
into finite-state components. Given a system composed of two (or more) components,
we first abstract each component separately. However, in order to guarantee preserva-
tion of both tt and ff we require that the common alphabet (e.g. common inputs and
outputs for hardware designs) will not be abstracted. Only local (unshared) variables
can be abstracted. While this limits the amount of reduction that can be achieved by the
abstraction on a single component, it enables additional reduction due to the composi-
tional reasoning.

We propose an automatic construction of the initial abstraction for each component
separately. We then proceed as before: we run a 3-valued model checking on each of the
components. If both returh, we identify and compose the parts where indefinite results
were obtained, and apply 3-valued model checking to the composed model. While in
the concrete case this step always terminates with a definite result, here we may obtain
an indefinite result due to abstraction. In such a case, we follow [26, 18, 19] in finding
the causefor the indefinite result on the composed model. However, the refinement
is applied on each of the components separately. Moreover, we adopt the incremental
approach of [26, 18, 19] and refine only the indefinite part of each component.

An abstraction of a component; (which comprises the environment of the other
component) can be viewed as providing an assumptiolari-rom this point of view,
when applying abstraction-refinement on one or both of the components, the result is
an automatic mechanism for assumption generation, which is either symmetric (refers
to both components) or asymmetric (abstracts only one component). In each iteration,
more information about the component is revealed, by need — based on the cause for
the indefinite result. This resembles iterative AG reasoning. The use of conservative
abstractions guarantees that the assumption describes the component correctly (by con-
struction). Thus unlike typical AG reasoning, this need not be verified.

In summary, our contribution is threefold:

— We introduce a new ingredient to compositional model checking, which enhances
its modularity. Namely, given a compositional system, our approach uses a model
checking game-graph as a means to identify and focus on the parts of the compo-
nents in which their composition is indeed necessary to conclude the truth value of
the checked property, due to dependencies between them. It uses the game-graph
to exchange information between the components in these points, by need, and ig-
nores the parts which can be handled separately. Thus, it avoids the construction of
the full composition. Furthermore, if a certain formula only depends on one com-
ponent, then it is resolved on this component alone while avoiding the composition
altogether. Our technique is orthogonal to the AG approach, and can also be ap-
plied when the composed system consists of a component and an assumption on its
environment.

— We develop a compositional, fully automatic, abstraction-refinement framework,
which has some resemblance to iterative AG-reasoning, but benefits from the mod-
ular model checking described above. The refinement is also applied to each com-
ponent separately. In addition, the abstraction-refinement is incremental in the sense
that results from previous iterations are re-used. From the AG point of view, our
compositional abstraction-refinement can be viewed as a new, automatic, mecha-
nism for assumption generation, which uses the power of abstraction-refinement.



— Finally, unlike most automatic AG approaches, which are limited to universal safety
properties, our technique is applicable to thk ;-calculus.

Related Work Recently, [12] followed by [5, 10], considered automatic assumption
generation for AG reasoning. They usarningalgorithms for finite automata in order

to automatically produce suitable assumptions for an AG rule. A similar approach is
taken in [7], where the AG rule used is symmetric. Assumption generation in a more
general setting is addressed in [16, 2]. These works are all restrictetiversal safety
properties. The learning algorithms used in these works also perform some kind of an
abstraction-refinement. However, these algorithms are not specifically tailored for ver-
ification. In particular, they do not always maintain a conservative abstraction of the
environment. As such, the assumption sometimes needs to be weakened and sometimes
needs to be strengthened. In our case an assumption (abstraction) should never be weak-
ened. Moreover, we increase the modularity of the model checking step by using the
game-based approach, which also enables an incremental analysis. Most importantly,
our approach is applicable to thdl u-calculus.

The game-based model checking enables us to identify the places where the value
of a subformula in a component’s state is the samalfa@nvironments. We exploit this
information to reduce the model checking instance of the entire system. Other authors
have also used similar information for reductions. In [1] the authors merge compo-
nent’s states that share the same value for a given CTL formula in all environments,
thus minimizing the component. In [3] the authors use reachability and controllability
information about the concrete components (gathered via game-theoretic techniques) in
order to construct abstract componentsifaarianceproperties. The composition of
the abstract components is then computed and model checked. We, on the other hand,
do not try to minimize each component. Instead, the game-graph enables us to prune
parts of each component’s model checking instance whose effect was already taken into
consideration. As a result, we reduce the state space exploration of the entire system.
This is applicable even if no states of the individual components can be merged.

[15] uses controllability information to speed up falsification of invariance proper-
ties. They identify unpreventable violations of the property based on each component
separately, which enables to prune the state space exploration of the compound system
before a violation is actually encountered. The authors state that their method can be ex-
tended to arbitrary LTL properties. However, they only use controllability information
w.r.t. the entire formula. Our approach enables to gather information about subformulas
as well, and thus can result in more substantial reductions. In addition, our approach is
aimed at both verification and falsification (with a 3-valued semantics) and is applicable
to a full branching time logic.

[24] also uses 3-valued model checking for modular verification. They consider
feature-oriented modules, where the composition is via interfaces and has a more se-
quential nature. As a result, they only refer to unknown propositions and not to un-
certainty in the transitions. A substantial part of their work is devoted to determining
what information needs to be included in a feature’s interface to support compositional
reasoning. In our case, we use the game graph for sharing such auxiliary information.

In [4] the authors suggest to use game structures to reason about composition of
components. [14, 6] suggest abstraction-refinement frameworks for such models, w.r.t.



alternating time temporal logics, which enable to describe properties of the interaction
between components. We are interested in properties of the compound system, thus the
focus in these works is different. In addition, they abstract each component separately
and then model check the entire system. The model checking step is not modular.

[9] develops a compositional counterexample-guided abstraction refinement for a
universal temporal logic (which extends ACTL). In their approach, the abstraction and
the refinement steps are performed on each component separately, but the model check-
ing step is done on the entire (abstract) system. In our approach, the model checking
step is also compositional, and the properties considered are not limited to a universal
logic.

2 Preliminaries

p-calculus [23] Let AP be a finite set of atomic propositions abda set of proposi-
tional variables. The set of literals ova® is Lit = APU{-p : p € AP}. We identify
——p with p. The logicu-calculusin negation normal fornover AP is defined by:

o =1L Z]ehe |l eVe | Op | Sp | uZy | vZe

wherel € Lit andZ € V. Intuitively, O stands for “all successors”, argstands for
“exists a successor}. denotes a least fixpoint, whereagenotes greatest fixpoint. We

will also write ) for eitherp or v. Let £, denote the set aflosedformulas generated

by the above grammar, where the fixpoint quantifieiendy are variable binders. We
assume that formulas are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variablg identifiesa unique subformulgp(Z) = nZ.¢ of ¢,

where the sefub(y) of subformulaf ¢ is defined in the usual way.

Concrete SemanticsConcrete systems are typically modelled<apke structuresA
Kripke structure [11] is a tuplé/ = (AP, S,s°, R, L), where AP is a finite set of
atomic propositionsS is a finite set of states? € S is an initial stateR C S x S is
a transition relation, and : S — 2% is a labeling function, such that for every state
and every € AP, exactly one op and—p isin L(s).

Theconcrete semantidsy]” of a closed formula> € L, over AP w.rt. a Kripke
structureM = (AP, S, s°, R, L) is a mapping front to {tt, ff}. [¢]" (s) = tt (= ff)
means that the formula is true (false) in the state of the Kripke structureM. If
[[go]]M(so) = tt (= ff), we say that)/ satisfies (falsifiesp, denotedVf = ¢ (M F~ ).

3-Valued Abstraction In the context of abstractiorkripke Modal Transition Sys-
tems[21, 17] are often used as abstract models that preserye th&ulus.

Definition 1. A Kripke Modal Transition SystetKMTS) is a tupleM = (AP, S, s°,
R*,R~,L),whereAP, S ands® are defined as befor&k*, R~ C S x S are must and
may transition relations (resp.) such th&t" C R—, andL : S — 2" is a labeling
function such that for every stateandp € AP, at mostone ofp and—p is in L(s).

The 3-valued semantichy]}’ of a closed formulay e L, wrt.aKMTSM is a

mapping fromS to {tt,ff, L} [8,21]. It preserves both satisfaction (tt) and refutation
(ff) from the abstract KMTS to the concrete model it representis a new truth value



whose meaning is that the truth value over the concrete model is unknown and can be
either tt or ff. The interesting cases in the definition of the 3-valued semantics are those
of the literals and the modalities.

13 (s) = ttifl € L(s), ffif -l € L(s), L otherwise
tt, if vt € S, if sR™t then[]2' (1) = tt
[Op]a (s) = { ff, if 3t € Ss.t.sRTtand[¢]y (t) = ff
1, otherwise
and dually for{>v when exchanging tt and ff. The notatioh = ¢ and M [~ ¢ are
used for KMTSs as well. In addition, [[ta]]éw(so) =1, the value ofp in M is indefinite.
The following definition formalizes the relation between two KMTSs that guaran-
tees preservation gf-calculus formulas w.r.t. the 3-valued semantics.

Definition 2 (Mixed Simulation). [13,17] Let M, = (AP, S1,s), Rf, Ry, L;) and
My = (AP, S, 59, RQF, R; , Ls) be two KMTSs, both defined ovéP. H C S; x Sy
is amixed simulatiorfrom M; to M if (s1,s2) € H implies:

1. LQ(SQ) g Ll(Sl).
2. if s1 Ry s}, then there is som&, € S, such thatsa R, s, and(s), s5) € H.
3. if sy RJ 54, then there is somg € S; such thats; R s} and (s, s,) € H.

If there is a mixed simulatiod! s.t. (s9,s3) € H, thenM, abstractsM/, denoted
M, < Ms,.

In particular, Def. 2 can be applied to a (concrete) Kripke structfirgeand an (abstract)
KMTS My, by viewing the Kripke structure as a KMTS wheRe" = R~ = R. For

a Kripke structure, the 3-valued semantics agrees with the concrete semantics. Thus,
preservation ol , formulas is guaranteed by the following theorem.

Theorem 1. [17] Let H C S; x S5 be the mixed simulation relation from a KMTS
M; to a KMTSAMs;. Then for every(s1,se) € H and everyp € L, we have that

Lels ™ (s2) L= [el3" (s1) = [e]3" (s2).

Abstract Model Checking A 3-valued game-based model checking for ghealculus

over KMTSs was suggested in [18, 19]. They introduce 3-valued parity games and trans-
late the 3-valued model checking problem into the problem of determining the winner
in a 3-valued satisfaction game, which is a special case of a 3-valued parity game. We
omit the details of the 3-valued satisfaction game, but continue witlgainee graph

which presents all the information “relevant” for the model checking.

Game Graph Let M = (AP, S,s", RT,R™, L) be a KMTS andp € LY. Thegame

graph G, or in shortG, is a graph(N, n°, ET, E~) where N C S x Sub(y) is

a set of nodes andlt C £~ C N x N are sets of must and may edges defined as
follows. n® = s - ¢ € IV is the initial node. The (rest of the) nodes and the edges are
defined by the rules of Fig. 1, with the meaning that wheneverN is of the form of

the upper part of the rule, the result in the lower part of the rule is also amfodeV
andE~ (n,n’). Moreover,E* (n,n’) holds as well in all cases except for an application

of the rules in the second column with a model's transitian) € R~ \ R™. Intuitively,

the outgoing edges aft- ¢ € N define “subgoals” for checking in s.
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Fig. 1. Rules for game graph construction

If E=(n,n') (E*(n,n’)) thenn’ is a may (must) son of. A noden = st 1 in
Gux, is classified as &, v, O, ¢ node, based on. If ¢ is of the formZ ornZ.¢)', n
is deterministic- it has exactly one son. if has no outgoing edges, then it itsaminal
node In a full game graph this means that eitheis a literal, ory is of the form<v)’
or (0y’, ands has no outgoing transition if/.

Fig. 2(b) presents examples of game graphsger O(—i vV $o) and the models
from Fig. 2(a), where all transitions are considered may transitions.

Coloring Algorithm The model checking algorithms of [18, 19] can be viewed as
coloring algorithms that label (color) each nade- st ¢ in the game graph by, F', ?
depending on the truth value ¢fin the states in M/ (based on the 3-valued semantics).
The result of the coloring is &valued coloring functiory : N — {T, F,?}.

In both cases the coloring is performed by solving the 3-valued parity game for
satisfaction, where each color stands for a possible result in the game. The algorithm
of [18] is a generalization of Zielonka’s algorithm for solving (2-valued) parity games.
In [19], the 3-valued satisfaction game is reduced into two (2-valued) parity games,
improving the coloring’s complexity. The following formalizes the correctness of the
coloring. For a (possibly not closed) formula«* denotes the result of replacing every
free occurrence of € Vin ¢ by fp(Z). Note that ify is closed, ther)* = .

Definition 3. Let G« be a game graph for a KMT8/ andy € L. A (possibly
partial) coloring functiony : N — {T, F,?} for G (or its subgraph) isorrectif
for everyst1 € N, whenever (st ) is defined, then:

1 [ ] (s) = tt iff x(sky) =T.
2. [y (s) =ff iff x(skv) =F.
3. [wrls" (s) =L iff x(stkv) =7,

Theorem 2. [18, 19] Let xr be the (total) coloring function returned by the coloring
algorithm of [18] or [19] for Gy %, Theny is correct.

Moreover, in both cases, the final coloring of the nodes reflects the 3-valued seman-
tics of the logic: AA-node or alJ-node is colored iff all its may sons are colored
T (and in particular if it has no may sons), it is color£dff it has a must son which
is coloredF', and otherwise it is colored Dually for aVv-node or &(-node when ex-
changingl" andF'. The color ofs-1forl € LitisT iff | € L(s), F'iff =l € L(s), and
7 otherwise. The result of the coloring is demonstrated in Fig. 2(b).

Refinement If the model checking result of an abstract model is indefinifg & refine-
ment is needed. When using the coloring algorithms of [18, 19], an indefinite result is
accompanied with failure stateand afailure cause The failure cause is either a literal
whose value in the failure state is or an outgoing may transition of the failure state



in the underlying model which is not a must transition. Refinement is then performed
by splitting the abstract states in a way that eliminates the failure cause (see [18, 19]).

3 Partial Coloring and Subgraphs

In the following sections we use the game-based model checking in order to identify and
focus on the places where the dependencies between components of the system affect
the model checking result. In this section we set the basis for this, by investigating
properties of the game graph and the coloring algorithms.

Due to their nature, as algorithms for solving a 3-valued parity game, the coloring
algorithms of [18, 19] have the important property that they can be applied on a partially
colored graph, in which case they extend the given coloring to the rest of the graph
in a correct way. Moreover, the coloring can also be applied on a partially colored
subgraphand under certain assumptions it will yield a correct coloring of the subgraph.

To formalize this, we need the following definitions.

Definition 4. Let G be a game graph andr its final coloring function. For a non-
terminal noden in G we define itsvitnessing sonas follows, depending on its type:

A, [O: the witnessing sons are those colo@ar ? by x r.
V, <>: the witnessing sons are those colofEar ? by x r.
deterministic: the witnessing son is the only son.

The sons are witnessing in the sense that they suffice to determine the color of
the node, thus removing the rest of the node’s sons from the graph does not damage
the result of the coloring. For example, if/anode or ald-node has no witnessing
sons, meaning all its sons are colofEdthen we know it should be coloréf, and
this is indeed how the coloring algorithms will color the node when keeping only the
witnessing sons. Otherwise, the witnessing sons determine whether the node should be
coloredF or ?, thus one can correctly color the node by considering only them.

Definition 5. A subgraphGG’ of a game graplty is closedif every node i’ is either
a terminal node, oall its witnessing sons (and corresp. edges) fi@rare also inG’.

Theorem 3. Consider a closed subgraghf of a game grapldZ with a partial coloring
functiony which is correct and defined over (at least) all the terminal nod&%'imrhen
applying the coloring algorithm of [18] or [19] orG’ with x as an initial coloring
results in a correct coloring of+’.

In fact, for the coloring of the subgraph to be correct, albtthe witnessing sons
are needed, as long as there is enough information to explain the correct coloring of
each uncolored node. However, we will see that in our case we will need all of them,
as we will deduce from the game graph of one component to the game graph of the full
system, where some of the nodes will be removed and for some an indefiniteolor (
will change intoT" or F'. This means that some of the witnessing sons will not remain
witnessing sons in the game graph of the full system. Thus, we will not be able to know
a-priori which of them is the “right” choice to include in a way that will also provide
the necessary information for a correct coloring in the game graph of the full system.

Another notion that we will need later is the following.



Definition 6 (?-Subgraph).LetG be a colored graph whose initial node is colored
The?-subgraplis the least subgraptv-, of G that obeys the following:

— the initial node is inG; (and is the initial node of7-).
— For each node in=; which is colored? in G all its witnessing sons (and corre-
sponding edges) i& are included inG-.

G- is accompanied with a partial coloring functiop; which is defined over the
terminal nodes irG-, and colors them as the coloring functign of G.

The?-subgraphG, and its initial coloring meet the conditions of Thm. 3. Intuitively,
this means that?» containsall the information regarding the indefinite result. Fig. 2(b)
provides examples aFsubgraphs.

4 Compositional Model Checking

In compositional model checking the goal is to verify a formylan a compound
systemM; || M. In our settingM; and M, are Kripke structures that synchronize on
the joint labelling of the states. Since a Kripke structure is a special case of a KMTS
whereR = Rt = R, we define the composition for the more general case of KMTSs.
In the following we denote by.it; andLit, the sets of literals ovet P, and AP, resp.

Definition 7. Two KMTSsM; = (A.Pl, Sl, 8(1)7 Rf, R;, Ll) and M, = (APQ, 527 88,
RY, Ry, Ly) are composabléf their initial states agree on their joint labeling, i.e.
Ll(S(l)) N Lity = LQ(S%) N Lit;.

Definition 8. Let M, = (AP, S1,s9, R, Ry, L) and My = (AP, S, 9, RS, R,
L,) be two composable KMTSs. We define their composition, dedétéd/,, to be
the KMTS(AP, S, s°, RY, R, L), where

— AP = AP, UAP;

— S ={(s1,82) € S1 xS | L1(s1) N Lita = La(s2) N Lit1}

— 5% = (s1,55)

- Rt = {((81,52), (t1,t2)) IS S| (817151) S Ri‘— and(52,t2) S R;}
- R = {((81,82), (tl,tg)) eSxS | (81,t1) € Ry and(52,t2) S R;}
L((S1, 52)) = L(Sl) @] L(Sz)

In particular, if M; and M, are Kripke structures with transition relation®; and
R, resp., then || M is a Kripke structure withR = {((s1, s2), (t1,t2)) € S x
S ‘ (Sl,tl) e R, and(SQ,tz) S RQ}

From now on we fixAP to be AP, U AP,. Fori € {1,2} we use: to denote the
remaining index in{1,2} \ {i}.

We use the mechanism produced for abstractions of full branching time logics for
the purpose of compositional verification. The basic idea is to view each Kripke struc-
ture M; as a partial model that abstradif || Mo.

Definition 9. Let M; = (AP, S;, s?, R;, L;) be a Kripke structure. We lifd/; into a
KMTSM;T= (AP, S;,s?, R} 1, R; 1,L;1) over AP whereR; 1= 0, R; 1= R; and
LT (s) = Li(s).



That is, we viewM; as a KMTSM; | over AP (rather thand ;). This immediately
makes the value of each literal ovéP \ AP; in each state ol/;T indefinite (as neither

p nor—p are inL;(s)) — indeed, it depends akf;. In addition, each transition df/; is
considered a may transition (since in the composition it might be removed if a matching
transition does not exist ifd;, but transitions can never be added).

Theorem 4. M;|| My =< M;1. The mixed simulation i§((s1, s2), s;) | (s1, $2) € S}.

Since eachV/;1 abstracts\/; || M2, we are able to first consider each component sepa-
rately: Thm. 1 ensures thatgf has a definite value (it or ff) id/;T under the 3-valued
semantics, then the same value holdsVin|| M, as well. In particular, the values in
M, 1 and M5 1 cannot be contradictory, and it suffices that one of them is definite in
order to determine the value M || M.
The more typical case is that the valuebn both A/, T and Ms 1 is indefinite.
This reflects the fact thap depends on both components and their synchronization.
Typically, an indefinite result requires some refinement of the abstract model. In our
case refinement means considering the composition with the other component. Still, in
this case as well, having considered each component separately can guide us into focus-
ing on the places where we indeed need to consider the composition of the components.
The game-based approach to model checking provides a convenient way for pre-
senting this information. If the KMT3/;7 is model checked using the algorithm of [18]
or [19], then the result is a colored game graph, in whithnd F' represent definite
results (i.e. truth values that hold no matter what the environment is), bt ¢btor
needs to be resolved by considering the composition. This is whereshiegraph (see
Def. 6) becomes handy, as it points out the places where this is really needed.
The?-subgraph for each component is computed top-down, starting from the initial
node. As long as a hode coloréds encountered, the search continues in a BFS manner
by including the witnessing sons. Definite nodes which are included in the subgraph
become terminal nodes, and their coloring defines the initial coloring function.
The?-subgraphs of the two colored graphs present all the indefinite information that
results from the dependencies between the components. Thus, to resolve the indefinite
result, we compose thesubgraphs.

Definition 10 (Product Graph). Let G»; and G+, be two?-subgraphs as above with
initial nodess! - ¢ and sy - ¢ resp. We define their product to be the least graph
G| = (NHv”\(\)vE\TvE[) such that:
— nf = (51, s3) - ¢ is the initial node in.
—If (s1,82) F € Nyand(s; F9,s) F9') € By and(sy 1,55 F ') € By
and Li(s}) N Lity = Lo(sh) N Lity (i.e. (s}, sh) is a state ofM;||Ms), then:
(s1,85) ' € Njand((s1,52) -9, (s, 85) ') isin B} and B

Note that all the edges i are must edges, whereas in theubgraphs we had
may edges (the transitions of each component were treated as may transitions in the
lifted version). This is because the product graph already refers to the complete system
M || M>, where all transitions are concrete transitions (modeled as must transitions).
The product graph is constructed by a top-down traversal of the subgraphs, where,
starting from the initial nodes, nodes that share the same formulas and whose states



agree on the joint labeling are composed (recall #§and s$ agree on their joint la-
beling). Whenever two non-terminal nodes are composed, the outgoing edges are com-
puted as the product of their outgoing edges, limited to legal nodes (w.r.t. the restriction
to states that agree on their labeling). In particular, this means that if a node in one sub-
graph has no matching node in the other, then it will be omitted from the product graph.
In addition, when a terminal node of one subgraph is composed with a non-terminal
node of the other, the resulting node is a terminal nod&in

We accompanyx with an initial coloring function for its terminal nodes based on
the initial coloring functions of the two subgraphs. We use the following observation:

Proposition 1. Letn = (s1, s2) -+ be a terminal node ii. Then one of the follow-

ing holds. Either (a) at least one ef |- ¢ ands; - ¥ is a terminal node in its subgraph,

in which case at least one of them is colored by a definite color by the initial coloring
of its subgraph, and contradictory definite colors are impossible. We denote this color
by col(n); Or (b) boths; 1 and s, I- ¢ are non-terminal nodes but no outgoing edges
were left in their composition.

Definition 11. We define the initial coloring functiog; of GG as follows. Let: be a
terminal node inV). If it fulfills case (a) of Prop. 1, thei;(n) = col(n). If it fulfills
case (b), thery;(n) = T if nis aA-node or aJ-node, andy;(n) = Fif nis aVv-node
or a {-node.y; is undefined for the rest of the nodes.

In particular, if a terminal node it results from a terminal node which is colored
by ? in one subgraph and a terminal node which is colored by some definite color in the
other, then the definite color takes over.

Note that the initial coloring function of the product graph colors all the terminal
nodes by definite colors. Along with the property that all the edges in the product graph
are must edges, this reflects the fact that the composition resolves all the indefinite in-
formation that existed in each component when it was considered separately. Therefore,
when applying (one of) the coloring algorithm to the product graph, all the nodes are
colored by definite colors (in fact, a 2-valued coloring can be applied).

Theorem 5. The resulting product graplir is a closed subgraph of the game graph
over M || M. In addition, the initial coloring function is correct w.r.f/, || M, and
defined over all the terminal nodes in the subgraph.

By Thm. 3, this means that colorirgg, results in a correct result w.r.t. the model check-
ing of ¢ in M| M. Thus, to model checl on M, || M it remains to coloi. Note
that the full graph fo\/; || M is not constructed. To sum up, the algorithm is as follows.

Step 1 Model check eactd/;T separately (foi € {1,2}):
1. Construct the game gragh; for ¢ and M.
2. Apply the 3-valued coloring ory;. Let x; be the resulting coloring function.
If x1(n?) or x2(n3) is definite, return the corresp.model checking resultiar Mo.
Step 2 Consider the compositiof/; || Mo:

1. Construct the-subgraphs fot; andGs.
2. Construct the product graphy of the ?-subgraphs.
3. Apply the 3-valued coloring ot/ (with the initial coloring function).

Return the model checking result corresponding ton|).
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Fig. 2. (a) Components, (b) their game graphs and theaiubgraphs (enclosed by a line), and (c)
the product graph. Dashed edges denote may edges which are not must edges. The colors reflect
the coloring function: white stands f@t, dark gray stands faF' and light gray stands fot.

Example 1.Consider the components depicted in Fig. 2(a). The atomic proposition
(short foroutput) is local toM;, i (input) is local to Ms, andr (receive) is the only

joint atomic proposition that/; and M, synchronize on. Suppose we wish to verify in

M || M5 the property1(—i V o), which states that in all the successor states of the ini-
tial state, annput signal implies that there is a successor state whereuthe:t signal

holds. Fig. 2(b) depicts the colored game graph of each (lifted) component, and high-
lights the?-subgraph of each of them. The product graph and its coloring is depicted in
Fig. 2(c), as an “intersection” of the two subgraphs. All the edges in the product graph
are must edges. All nodes, and in particular the initial node, are colbyékus the
property is verified. One can see that most of the efforts were done on each component
separately, and the product graph only considers a small part of the compound system.

5 Adding Abstraction

In Section 4 we considered concrete components. The indefinite results on each compo-
nent resulted only from their interaction, and were resolved by composing the indefinite
parts. We now combine this idea with existing abstraction-refinement techniques.

5.1 Motivation

Composing th&-subgraphs of two components, as suggested in Section 4, corresponds
to refiningall possible failure causes. We now show how to use abstraction in order to
make the refinement more local and gradual by eliminadimgfailure cause at a time.
Suppose that the coloring of the game-graphfor the lifted concrete component
M, 7 results in an indefinite result. We wish to eliminate the failure cause returned by



the coloring algorithm fol/; 7. Suppose that is the failure state. It abstracts all the
states of)M; || M- that consist ok and a matching state dff,. Eliminating the cause
for failure amounts to exposing frofvs the information that involves the failure, and
splitting s accordingly. For example, in Fig. 2, a possible failure causé'ins the
may transition ofA/; 1 from s; to s5. In order to either remove it or turn it into a must
transition, we need to consider all the stated®fwhich are composable with . These
are the states labeled We need to find out which of them have a transition to a state
labeledr (i.e., a state composable with), and which of them do not.

Clearly, the complete composition of tlesubgraphs achieves this goal. However,
it exposes more information than relevant for the given failure cause. Thus we do not
want to resort to that (in this example it is indeed necessary, but in the general case not
all the causes for failure need to be eliminated). We now sketch the idea that allows
us to only consider the information fro, that is needed for eliminating the failure
cause of?/; 1. This will be described more formally in Section 5.2.

We abstrach//, into M. We start with a most coarse abstractiodf w.r.t. AP, N
AP,, where each state is abstracted by its labeling, restrictéd?on AP;.

Definition 12. Let M; = (AP;, S;, s, R;, L;) be a Kripke structure. Theost coarse

abstractiorfor M; w.r.t. AP’ C AP; is the KMTSM* = (AP;, 247" L;(s%) N AP, 0,
2AP" 5 9AP" I*) where fors € 247", L*(3) = 3U {-p|p € AP"\ 3}.

Theorem 6. M; < M. The mixed simulation i§(s;, L;(s;) N AP’) | s; € S;}.

The construction of the most coarse abstraction requires almost no knowledge of the
component. More precise transitions can be computed as in [26]. Starting from the
most coarse abstraction 8f,, we iteratively model check the composition &, and

the abstract modelZ,. The model checking is performed in a compositional fashion,
similarly to Section 4, without computing the full composition. If the result in some
iteration is indefinite, we refind/, depending on the failure cause O\MﬁHMQ. Re-

call that our purpose was to eliminate a failure cause @¥et. Since we start with a

most coarse abstraction 81, w.r.t. the joint atomic propositions\/; || M is initially
isomorphic toM; 1. As a result, in the first iteration the failure cause ovér|| M, re-

flects the failure cause ovét; T, and the refinement dfl,, indeed exposes the relevant
information fromM,. Similarly, in the next iterations, the failure cause OM{HJ\ZIQ
reflects the failure cause ovér; 7, after taking into consideration the elimination of
previous failure causes. In this sense, in each iteration we eliminate one failure cause
over M; 1, and M, “accumulates” the information required to eliminate these failure
causes.

This means that we keep one of the componeWts,concrete, and construct an ab-
stract environment for it, by applying an iterative abstraction-refinemedtfgrwhere
refinement is aimed at eliminating the indefinite results that arise when considéring
with the abstract environment. This approach is reminiscent of an asymmetric Assume-
Guarantee rule. The next step is to make the approach symmetric by abstracting both
components. This amounts to constructing abstract environments for both the compo-
nents. In this case, refinement also needs to be applied on both components.



5.2 Compositional Abstraction-Refinement

We now describe in detail the combination of the compositional approach with abstraction-
refinement. This provides a framework for using both the asymmetric and the symmet-
ric approaches sketched above. On the one hand, we enhance the compositional model
checking of Section 4 by using abstraction and a more gradual refinement. On the other
hand, we enhance the abstraction-refinement framework by making both the abstract
model checking and the refinement compositional. We no longer require that the state
spaces of the concrete components are finite, as long as the abstract state spaces are.

Compositional Abstraction Composition of abstract models (KMTSs) is defined in
Def. 8. In order to ensure that the composition of two abstract madels- (AP, S’l,
89, Rf, Ry, L)) and M, = (AP, 85,39, RS, Ry , L), for M, and M, respectively,
results in an abstract model f&f, | M, we consideappropriateabstract models w.r.t.
AP N AP,. We say that\Z; is anappropriateabstract model ob; w.r.t. AP, N AP,

if M, and M, are related by a mixed simulation relation which is appropriate w.r.t.
AP; N AP,, as defined below.

Definition 13. Let H C S; x S; be a mixed simulation from/; to M;, both defined
over AP;. We say that is appropriatew.r.t. AP" C AP, if for every(s;,s;) € H,
L;(s;) N Lit’ = L;(5;) N Lit’, whereLit’ denotes the set of literals overP’.

In particular, the most coarse abstraction wA.E; N AP, (see Def. 12) is appro-
priate w.r.t. AP, N AP,. Appropriateness o/, and M, w.r.t. AP, N AP, means that
the abstraction of each component only identifies states that agree on their labelings
w.r.t. the joint atomic propositions. It ensures thatdf, s,) is a state of the abstract
composition and; abstracts; ands, abstractss,, then sinces; andss agree on the
joint labeling, then so de; ands,. This ensures thdts, s2) is a state of the concrete
composition, abstracted ¥, 32). We now have the following.

Theorem 7. Let MZ be an appropriate abstract model faf; w.r.t. AP, N AP,. Then
My || My = My || Ms.

Thus, if each of\f; and M is abstracted separately by an appropriate abstraction w.r.t.
AP;NAP;, then the composition of the corresponding abstract compoﬂép&ndMg
results in an abstract model faf; || M». However, we do not wish to construkf; HMQ

and model check it. Instead, we suggest to model ch|kM2 compositionally.

Compositional (abstract) Model Checking The general scheme is similar to the con-
crete case: we first try to make the most out of each (abstract) component separately, and
if this does not result in a definite answer, we consider the product ¢fsudgraphs

which enable to exchange information via a compact representation. We start by view-
ing each abstract componeft; as a partial model that abstracts their composition
My || Ms.

Definition 14. Let M; = (AP;,S;, 8,Rf Ry ,L;) be a KMTS. We lift\/; into a
KMTS M, 1= (AP, 5,8 RF1, R 1,Li 1) overAP where R 1= 0, R; 1= R;

andL;] (8) = L;(3).



That is, when\Z; is lifted into AZ;1, only the may transitions af/; are useful, because
must transitions are not really must w.i\tf; | 5. Similarly to the concrete case:

Theorem 8. M, || M, < M;].

Corollary 1. If M, is an appropriate abstract model favl; w.r.t. AP, N AP,, then
M| My < M1

Therefore one can model check each\éf| separately, and the definite results follow
through toM || M. In fact, it is possible to show thatf, | M, < M, holds even if we

omit the appropriateness requirement. Thus appropriateness is not needed for this step.
However, it is needed for the next steps, where we deduceMQWQ to M || M.

If both checks result in indefinite results, the (abstréesjbgraphs for both game
graphs are produced and their product is considered. Having composestithgraphs
of the two components resolves dependencies between them, but the result is still ab-
stract, as it refers to tk@bstractcomposition]ﬁh||MQ. This results in two differences
compared to the concrete case.

First, the may edges do not necessarily become must edges. Instead, the distinction
between may and must edges is determined by the type of the underlying transitions in
the (unlifted) abstract model&/;, which have been ignored so far. Second, it is now
possible that a terminal node = (51, 32) -+ in G| with /) = [ for a local literal
l € Lit\ (Lity N Lity) results from terminal nodes + [ and s, - [ which areboth
colored by? in their subgraphs (one, sintés local to the other component, and is thus
treated as indefinite, and the other due to the abstraction). We add this possibility as
case (c) to Prop. 1 which characterizes the terminal nodes in the product(@albls
taken into account when determining the initial coloring gt

Definition 15 (Abstract Product Graph). LetG+; andG-, be two abstract-subgraphs

as above. Their product grapfi| = (NH,nﬁ, E‘T, EH‘) is defined as before, except for

the definition ofE”+: an edge((31, 2) -, (81, 85) ') in By is also inEm iff §; R 3!

for eachi € {1,2}. The initial coloring function is defined as before, with the addition
that a terminal node that fulfills case (c) in the adapted version of Prop. 1 is cotored

Theorem 9. The resulting abstract product graghy is a closed subgraph of the game

graph overM, || M. In addition, the initial coloring function is correct and defined over
all the terminal nodes in the subgraph.

Along with Thm. 3, this implies thats can be colored correctly (w.r.t. the model

checking ofp on M; || M) using the 3-valued algorithm. If the initial node is colored
by a definite color, then by Thm. 7 the result holds\if || M as well and we are done.

Compositional RefinementSince an abstraction is used, the result of the model check-
ing can bel, in which case the coloring of [18, 19] returns a failure cause that needs to
be eliminated. The failure cause is either a literal whose value in a certain stateris
a may transition of the underlying model which is not a must transition.

In our setting, the refinement step is done compositionally: If the failure cause is a
literal I whose value in the failure state 81, ||/ is L, then! has to be a local literal



of one of the components. This is because the abstraction is appropriatelrn
AP,, which implies that no indefinite values for the joint atomic propositions occur in
MlHMg. Thus, refinement need only be applied on the corresponding component.
Otherwise, the failure cause is a may transition (which is not a must transition) of
M, HMg that needs to be refined in order to result in a must transition or no transition at
all. Let ((31, 82), (81, 85)) be this may transition. Then it results from may transitions
(81, 8,) and (3, 8,) of M, and M, resp., such that at least one of them is not a must
transition. In order to refing(s;, 32), (87, §5)), one needs to refine the individual may
transitions in each component separately. If both of them are not must transitions, then
refinement should be applied in each component. This is because a must transition in the
composition results from must transitionshnth components. Otherwise, refinement
should only be applied in the component where it is not a must transition.
In each component where refinement is necessary, the refinement can be done as
in [26, 18, 19]. Moreover, in each component we adopt the incremental approach of [26,
18, 19] and avoid unnecessary refinement. In this approach, only nodes with indefinite
colors are refined. In our setting, this corresponds t@tbebgraph of each component.
The result is the following compositional abstraction-refinement loop.

Step 0 Fori € {1, 2}, abstractM; into M, appropriately w.rtAP; N AP, (e.g. as in Def.12).
Step 1 Model check eacti/;] separately (foi € {1,2}):
1. Construct the game gragh; for ¢ and M.
2. Apply the 3-valued coloring ory';. Let x; be the resulting coloring function.
If x1(nY) or x2(n3) is definite, return the corresp.model checking resultar| M.
Step 2 Consider the compositioft; || Ma:
1. Construct the&-subgraphs foz, andGa.
2. Construct the (abstract) product gra@i of the 7-subgraphs.
3. Apply the 3-valued coloring ot (with the initial coloring function).
If (nﬁ) is definite, return the corresp.model checking resultibr| M-.
Step 3 Refine: Consider the failure cause returned by the coloringofwherey (nﬁ) =7).
Ifitis I € Lit; then refineM;; Else let it be the may transitiof{3:, 52), (81, 85)). Then:
1. If (31, 8}) is not a must transition i, refine M, .
2. If (32, 85) is not a must transition ifV/, refine M.
Refine the?-subgraphs o1 andG-» accordingly (as in the incremental approach);
Go to Step 1(2) with the refined subgraphs.

Note that the must transitions of each abstract component are only used:yien
constructed. Thus, their computation can be deferred to step 2 and be limited to must
transitions that are needed during model checking. Hyper-transitions can also be used,
e.g. with the algorithm of [27].

Using the compositional abstraction-refinement starting from the most coarse ab-
straction w.r.tAP; N AP, of one or both of the components results in the asymmetric,
resp. symmetric, approach described in Section 5.1.

Theorem 10. For finite concrete components, iterating the compositional abstraction-
refinement process is guaranteed to terminate with a definite answer.
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