
Verifying Very Large Industrial Circuits Using 100 Processes
and Beyond

Limor Fix2, Orna Grumberg1, Tamir Heyman2, Assaf Schuster1

1Computer Science Department, Technion, Haifa, Israel
2Logic and Validation Technology, Intel Corporation, Haifa, Israel

Printing remark: The graphs are nicer when printed in colors.

Abstract

Recent advances in scheduling and networking open the way to the efficient exploitation of large-
scale distributed computing platforms, such as computational grids and huge clusters. Such infrastructure
holds a great promise for the highly resource-demanding task of verifying and checking large models,
given that model checkers would be designed with a high degree of scalability and flexibility in mind.

In this paper we focus on the mechanisms required to execute a high-performance, distributed, sym-
bolic model checker, on top of a large-scale distributed environment. We develop a hybrid algorithm
for slicing the state space and dynamically distribute the work among the worker processes. We show
that the new approach is faster, more effective, and thus much more scalable than previous slicing algo-
rithms. We then present a checkpoint-restart module that involves very low overhead. This module can
be used to combat failures which become probable with the size of the computing platform. However,
checkpoint-restart is even more handy for the scheduling system to avoid reservation of large numbers
of workers, thus making the distributed computation work-efficient. Finally, we discuss for the first time
the effect of reorder on the distributed model checker. We show how the distributed system performs
more efficient reordering than the sequential one.

We implemented our contributions on a network of 200 processors, using a distributed scalable
scheme that employs a high-performance industrial model checker from Intel. Our results in testing
execution on real-life examples, show that the system was able to verify models much larger than was
previously possible.

1

1 Introduction

This paper presents several novel techniques to enhance distributed reachability computation. The tech-
niques enable effective use of a network of 100 computers for the verification of large industrial hardware
designs that could not be verified by previously available tools.

For a long time the state explosion problem has been the showstopper of BDD-based (symbolic) model
checking [3]: The BDD structures simply can not squeeze into the RAM available to a single computer.
SAT-based model checking [2] can find errors in very large systems, but is limited when used for verifi-
cation [9]. In fact, BDD-based model checking is usually superior, when verification is required. Larger
systems usually have deeper diameter and therefore SAT-based bounded model checking can cover smaller
parts of their state space.

In recent years, several distributed BDD-based reachability algorithms have been suggested [8, 7, 6],
which run on a network of communicating computers with distributed memory. Reachability is an impor-
tant problem since model checking of all temporal safety properties can be reduced to it [1]. Distributed
reachability exploits the memory modules and the computation power of a heterogeneous cluster of com-
puters, where more and more machines can be employed on demand. The collective storage offered by
the cluster RAM is utilized in a memory- and work-efficient manner, essentially operating as a yet another
layer in the memory hierarchy.

However, in order to make these algorithms scalable for very large models which require hundreds of
computers, several enhancements are necessary.

First, fast and effective slicing is needed, in order to accommodate frequent splits of memory content
of overflowed computers. Second, a checkpoint/restart mechanism is needed in order to recover from a
single computer failure and in order to better utilize clusters of computers when memory requirements
vary significantly during computation. Finally, dynamic BDD variable reordering should be adapted to
work well with the distributed algorithm.

Our work provides solutions to all the requirements presented above. We developed ahybrid algorithm
for slicing very large sets, quickly and effectively. The user provides the algorithm with measures for
an effective slicer and the algorithm searches for an adequate one. The algorithm is aimed at spending
as little time as possible in finding an adequate slicer, not necessarily the best one. It starts with a fast
estimated computation. If no adequate slicer is found, it gradually applies more precise computations. We
compare our hybrid algorithm with the fast estimating algorithmEstimated [5]. We show that our
algorithm produces much less duplications. We also compare our algorithm with the exhaustive algorithm
Exhaustive [8] which is better or equal to other exhaustive algorithms[4, 11, 10]. We show that it is
faster thanExhaustive ˙ In fact, the difference in run time increases when the size of the BDD or the
size of its support increase.

We also propose a non-coordinated checkpoint/restart mechanism as part of the distributed reachability
computation. In the distributed reachability analysis [8] each workerownsa subset of the state space,
and iteratively computes the set of reachable states within its ownership. It may also find states owned by
others, which it sends to their owners. Likewise, it receives owned states, found by others. In the checkpoint
mechanism each worker occasionally freezes its configuration, including the set of states it owns, the set
of states computed so far, the iteration number, and the BDD variable ordering. Restart is performed by
finding a set of configurations, all taken from the same iteration, whose ownership covers the whole state
space. A set of new free workers is then initialized with these configurations and resumes the computation.

The checkpoint/restart mechanism is particularly useful when running on a non-dedicated network.
Two tasks running on such a network may reach their memory peak at the same time, thus blocking each
other. It then might be necessary to freeze one of them, and enable the other to continue. When memory
requirement of the active task reduces, the freezed one can be resumed. In addition, when memory require-
ments vary significantly during computation, an effective utilization will require clusters of varying sizes at
different stages of the computation. This will be done by freezing the active workers, and restarting them
on a different cluster with an appropriate size.

In order to maintain the effectiveness of the dynamic reorder we suggest a distributed paradigm to
control the points at which dynamic variable reordering is performed. In sequential computation, reorder is
invoked after garbage collection, if the BDD size exceeds a certain threshold. The distributed computation
applies the same policy. In addition, for each worker, it uses two new controlling operations: enforcing

1

reorder when an overflow occurs; and updating the threshold following an action which reduces the BDD
size. Reorder when overflow occurs may save unnecessary splits.

Another improvement to the BDD package enforces timeout on BDD operations that do not terminate
within a reasonable time. Usually this is due to the size of their operands. We then split the BDDs and
resume the operations on two smaller BDDs.

To show the usefulness of our scheme we have implemented it as a large-scale distributed engine with
more than 100 computers, that uses a high-performance model checker. We ran our experiments on clusters
composed of ordinary PCs. Our results show that the system canverify (apply full reachability to) much
larger models than could previously be verified. In addition our results show that in some cases when
the distributed algorithm needs more processes than available, it still reaches further step than SAT-base
bounded model checking does.

In summary, the contribution of the paper are:

• A fast and effective slicing with small memory overhead.

• A checkpoint/restart mechanism.

• Enhanced BDD package: An adaptive dynamic variable reorder and timeout on BDD operations.

• Orthogonality to high-performance model checking: all features of the sequential model checking
remain effective in the distributed framework.

All of the above allows toverify large industrial components.
The rest of the paper is organized as follows. Section 2 presents a new algorithm for fast and effective

slicing of very large sets. Sections 3 describes the checkpoint/restart mechanism. Section 4 presents
our distributed reachability analysis including paradigm for dynamic variable reordering, and presents our
experimental results on verification of large industrial designs. Finally, Section??gives our conclusions.

2 Hybrid Algorithm for Slicing Very Large Sets

In this section we present a new algorithm for slicing very large sets quickly and effectively. The approach
makes use of user-supplied measures of effectiveness: the algorithm simply searches for a slicer that meets
the measures. The algorithm attempts to reduce the time spent in finding a slicer which is sufficiently
effective; it does not necessarily search for the best slicer. Rather than checking all variables in the support
of the set to be sliced, which is the method previously used for slicing, the proposed algorithm makes use
of the abundance of good slicers in the support to pick one from a randomly selected sample.

The algorithm gets as its input a set of states with characteristic functionf and returns a variablev
called slicer, which slicesf into two subsets:f ∧ v andf ∧ v. Such slicing iseffectiveif two requirements
are fulfilled. First, the size of each of the subsets is smaller than the size off itself: max|f∧v|,|f∧v|

|f | < δ1.

Second, theduplicationis not too big: |f∧v|+|f∧v|
|f | < δ2. The minimum reduction factor and the maximum

duplication factorδ1, δ2 are provided by the user, or the higher-level procedure calling the algorithm.
The algorithm proceeds through a sequence of three phases. In each consecutive phase the algorithm

spends more time than in the previous phase, trying to find an effective slicer. Once an effective slicer is
found the algorithm declares success and terminates. After three unsuccessful phases the algorithm returns
the best slicer it found so far.

In order to test the effectiveness of a candidate slicer the BDDs off ∧ v andf ∧ v must be built and
their relative sizes must be measured. This is time and memory consuming. In contrast, one can estimate
the sizes of the slices in a single scan of the BDD off without creating a new BDD [12]. Estimation is a
lot faster than precise calculation and requires much less resources.

In the first phase the algorithm employs the methodEstimated [5] to search for an effective slicer.
This method initially computes an estimate to the size off ∧ v andf ∧ v, for each variablev in the support
of f . Then it selects as a slicer the variablev for which the maximum of the estimates forf ∧ v andf ∧ v
is minimal among all other variables. Next, precise calculation is used to derive the effectiveness ofv as a
slicer. If v is found to be effective, the algorithm terminates, otherwise it proceeds to the next phase.

2

The second phase starts by randomly selecting a subsetvarSet of variables out of the support off . The
size ofvarSet depends on the required degree of confidence of finding at least one effective variable (See
Subsection 2.1).effectiveSet holds all the variables invarSet that were first estimated as effective and
only those that seem to be effective are checked precisely. IfeffectiveSet is empty the second phase ends
unsuccessfully. Otherwise, the best slicer fromeffectiveSet is selected byExhaustive . We remark
that theExhaustive procedure itself is not different from the slicing mechanisms described in [8]. Thus,
in this paper, we use it as a black box.

The third phase is similar to the second. The difference is thateffectiveSet now holds all the variables
from varSet that slice effectively using precise check. Finally, if the third phase fails and none of the
variables is effective, theMostEffective is selected among the variables that computed in the third
phase and this variable is returned.

Figure 1 describes the algorithmslice for finding a slicer. Lines 1-2 describe the first phase that uses
the Estimated method to select a slicerv. If v found to be effective the algorithm terminates. Lines
3-6 describe the second phase wherevarSet is randomly selected from the variables in the support off .
TheneffectiveSet gets only the variables that are effective slicers. This computation is done by first
applying a fast estimated check and only then a precise check. The precise check is applied only on slicers
that are estimated to be effective. Finally, the algorithmExhaustive is used to find the best slicer out
of effectiveSet. Lines 7-9 describe the third phase where precise check is used on all the variables in
varSet. Line 10 is the last phase where the most effective slicer found so far is returned.

function Hybrid(f)
1 v=Estimated(f)
2 if effective(v, precise) return v
3 varSet=randomselect(support(f))
4 effectiveSet={v | v ∈ varSet ∧ effective(v, fast) ∧ effective(v, precise)}
5 if effectiveSet 6= ∅
6 return Exhaustive(f, efectiveSet)
7 effectiveSet={v | v ∈ varSet ∧ effective(v, precise)}
8 if effectiveSet 6= ∅
9 return Exhaustive(f, efectiveSet)

10 return MostEffective(f, efectiveSet)

Figure 1: Pseudo–code for the slicing algorithmHybrid

2.1 Size of the Random Selected Subset

In this section we discuss the relation between the confidence in finding at least one effective variable and
the number of samples. Lemma 1 defines this relation.

Lemma 1 [Sample size required] Letsup be the size of the support of a set. Letef be the number of
effective slicers in the support (ef ≤ sup). Lets be the number of randomly selected variables(s ≤ sup).
Letpr be the confidence in finding at least one effective slicer out ofs samples. Then,

pr ≥ 1−
(

1− ef

sup

)s

Proof: The probability to get ineffective variable in the first random sample is1− ef
sup . The probability to

get ineffective variable in theith random sample is1− ef
sup−(i−1) , assuming all previous samples were not

effective. The confidence in finding at least one effective variable ins samples

pr = 1−
∏

0≤i<s

(
1− ef

sup− i

)
.

3

Set BDD sizes range support sizes range number of sets of states
Small 0.5 - 3 Million 70 25
Large 0.5 - 6 Million 239 - 255 46
Extra large 0.5 - 7 Million 687 - 712 18

Table 1:Benchmark suite characteristics. For each set of examples we give the BDD size of the
sets of states and the support size.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6

S
cl

ic
in

g
tim

e
in

 s
ec

on
ds

Set size in Million BDD nodes

Exhaustive
Hybrid

(a) Run time.

-40

-20

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6
D

up
lic

at
io

n
pr

ec
en

t

Set size in Million BDD nodes

Exhaustive
Hybrid

Estimated

(b) Duplication.

Figure 2:comparing the slicing algorithms, support size 687 - 712.

Since1− ef
sup−i ≤ 1− ef

sup for all i, pr ≥ 1−
(
1− ef

sup

)s

.

Q.E.D.
Our experimental results (Figures 6(a), 6(b), explained latter) show that the minimum percentage of

effective slicers is 4%. Therefore, confidence in finding at least one effective variable converges to 100%
exponentially fast in the number of samples. More importantly it does not depend on the number of
variables. If for example we want 90% confidence that we will get at least one effective variable and 5%
of the variables are effective we need only 45 samples.

2.2 Experimental Results

We compare three slicing algorithms. The new algorithmHybrid , presented in Figure 1; The exhaustive
algorithmExhaustive when working on the entire set of support; And the fast estimationEstimated
when working on the entire set of support.

We use three sets of examples, each with different support size. Each set includes variable size of BDDs
from half a million to 7 millions nodes. The characteristics of the three sets in Table 1.

2.2.1 Slicing Efficacy and Memory Overhead

We now analyze the run time and the duplication by the different slicing algorithms. Figures 2(a), 3(a), 4
display run time of the slicing algorithms. In each graph the run time ofHybrid , andExhaustive
algorithms is given compared to the size of the set being sliced. Figure 4 shows the benefit of including the
Estimated algorithm intoHybrid . For all the sets in Figure 4,Hybrid succeeds to find an effective
slicer in the first phase using theEstimated algorithm. Therefore,Hybrid needs only a few seconds
compared to up to two hours for theExhaustive algorithm.

Figures 2(a), 3(a) show that the run time of theExhaustive algorithm increases proportionally to
the BDD size and increases proportionally to the support size, while theHybrid algorithm run in constant
time.

Figures 2(b), 3(b) compare the duplication obtained by theEstimated algorithm to that obtained
by theHybrid algorithm. In each graph, the percentage of duplication in theEstimated and in the
Hybrid algorithms is given compared to the size of the set being sliced. The graphs show that when

4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 1 2 3 4 5 6

S
cl

ic
in

g
tim

e
in

 s
ec

on
ds

Set size in Million BDD nodes

Exhaustive
Hybrid

(a) Run time.

-40

-20

 0

 20

 40

 60

 80

 0 1 2 3 4 5 6

D
up

lic
at

io
n

pr
ec

en
t

Set size in Million BDD nodes

Exhaustive
Hybrid

Estimated

(b) Duplication.

Figure 3:comparing the slicing algorithms, support size 239 - 255.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
cl

ic
in

g
tim

e
in

 s
ec

on
ds

Set size in Million BDD nodes

Exhaustive
Hybrid

Figure 4:comparing the run time of the slicing algorithms, support size 70

5

-25
-20
-15
-10

-5
 0
 5

 10
 15
 20
 25

 0 1 2 3 4 5 6

D
up

lic
at

io
n

pr
ec

en
t

Set size in Million BDD nodes

120%
105%

(a) Duplication.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6

S
cl

ic
in

g
tim

e
in

 s
ec

on
ds

Set size in Million BDD nodes

120%
105%

(b) Run time.

Figure 5: Support size 239 - 255. 105 means maximum duplication factor 105%. 120 means
maximum duplication factor 120%.

the support size increases, theEstimated algorithm usually finds poorer slicing in terms of duplica-
tion. When the size of the support is 239 - 255 variables (Figure 3(b)), the average duplication of the
Estimated algorithm is 50%, while theHybrid algorithm creates 7% duplication on average. When
the size of the support is 687 - 712 variables (Figure 2(b)), the average duplication of theEstimated
algorithm is 89%, while theHybrid algorithm creates 3% duplication on average.

Figures 2(b), 3(b) also compares the duplication obtained by theExhaustive algorithm with the
Hybrid algorithm. The percentage of duplication of theExhaustive and theHybrid algorithms is
given compared to the size of the set being sliced. We set the maximum duplication factorδ2 to be 120%.
We set the minimum reduction factorδ1 to be 85%. For all set sizes that are not too small (larger than 100K
BDD nodes), the resulting slicer creates duplication which is smaller than the maximum duplication factor.
When the set size is very small, no effective slicer was found by any of the three phases. Thus, the final
phase finds a slicer with duplication of 150%. The small memory requirement by such small sets makes
slicing of them not effective (with higher duplication than required).

In some cases the duplication may be negative. This means that the sum of the sizes of the two subsets
is less than the original set size. TheExhaustive algorithm finds slicers with very small duplication
down to 30% smaller than the original set size. TheHybrid algorithm may miss these slicers since it
stops as soon as it finds an effective slicer.

2.2.2 Changing the Measures of Effectiveness

Figures 5(a), 5(b) present the effect of changing the maximum duplication factor from 120% to 105% on
run time and on duplication. In each graph the duplication is given compared to the size of the set being
sliced. Figure 5(a) presents the duplication for the maximum duplication factors of 105%, 120%. For all
set sizes, the final slicer creates duplication which is smaller than the maximum duplication factors, hence,
the duplication with 105% is less than or equal to the duplication with 120%.

Figure 5(b) presents the run time for duplication factors 105% and 120%. In most of the cases the run
time of the algorithm is longer when the maximum duplication factor is 105%. In cases the algorithm needs
to run more phases, the run time with 105% can take up to five times longer than that with 120%. Since
the algorithm uses a random selection, different runs may terminate with different results. The random
selection causes sometime deprecate results where the run time takes comparably longer when using larger
maximum duplication

2.2.3 Percentage of Effective Slicers

The experiments presented in this Section demonstrate that for different set sizes, regardless of the BDD
order, at least 4% of the variables are effective slicers. Figure 6(a) presents the percentage of effective
slicers in different sets. The percentage of effective slicers is given compared to the size of the set being
sliced. Figure 6(a) shows that regardless the set size, a minimum of 4% of the slicers are effective. This

6

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6

Pre
ce

nta
ge

 of
 ef

fec
tive

 sli
ce

rs

Set size in Million BDD nodes

(a) Support size 239 - 255.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1 2 3 4 5 6 7

Pre
ce

nta
ge

 of
 ef

fec
tive

 sli
ce

rs

BDD order Id

(b) Support size 242, different orders.

Figure 6:Percentage of effective slicers.

means that the confidence in finding at least one effective slicer converge to 100% exponentially fast in the
number of samples (see Section 2.1).

Figure 6(b) presents the percentage of effective slicers in a single set with different BDD orders. This
example has 242 variables in the support and the set size is 2.4 million BDD nodes with the best order.
The percentage of effective slicers is given for each order. Figure 6(b) shows that even when we change
the BDD order, as happen in the distributed reachability algorithm, a minimum of 4% of effective slicers is
maintained.

3 The Checkpoint Restart Algorithm

In this section we briefly describe the iterative BDD-based distributed algorithm for reachability [7]. We
explain how to extend this algorithm with checkpoints and how to exploit these checkpoints in order to
restart the reachability algorithm when needed according to some scheduling policy. Finally we present
experimental results which show that the associated overhead is negligible.

The basic paradigm followed by the algorithm is to compute the set of reachable states which are
reachable from a given set of initial states. Starting from the set of initial states, at each iteration the the set
R is computed, consisting of reachable states found so far, and the setN of undevelopedstates, that do not
belong inR and are reachable fromR in a single step, whose successors have not yet been found.

The distributed algorithm runs on a network of communicating workers with distributed memory. A
set ofwindow functionsdefines for each worker the subset of states itowns. This set iscomplete, meaning
that it covers the whole state space. Workerid with window functionWid computes the setsRid andNid,
both subsets ofWid.

Three coordinators control the distributed operation: thepool managerkeeps track of the free pro-
cesses; theexchange coordinatormaintains the window functions of the active workers, and thesmall
coordinator joins together the windows of workers whose memory utilization decreases below a certain
threshold.

Figure 7 describes an extension of the distributed algorithm with checkpoint-restart capability, called
reach checkpt. The pseudo code is described for a single worker. For brevity, we omit the worker subscript
id from Rid, Nid, andWid. We remark that the setsR andN , and the window functionW , may change
during the execution.

The algorithm follows the same lines of the distributed reachability algorithm, except at the end of each
iteration workers sometimes store checkpoints. The data stored in a checkpoint consists ofR, N, W , the
iteration number#it, and its current BDD orderbdd order (line 9). The checkpoint of a worker may be
stored on a persistent storage system, e.g., a distributed file system such as NFS, or simply on the private
disk of a peer worker (in which case it is assumed the peer worker does not crash in case the worker does).

Recall that the basic reachability paradigm is an iterative, synchronous process. Thus, the collection of
all checkpoints from all workers at the end of an iteration forms a consistent view of the global reachability
process at that point.

If a restart is needed because of a failure, or due to rescheduling of the reachability process on another
distributed system, the collection of checkpoints may set a starting point for pursuing the computation. The
restart algorithm searches for a set of checkpoints taken from the same iteration, which forms a complete set
of window functions. If an incomplete set is found, indicating that some but not all the workers succeeded

7

to store checkpoints for the corresponding iteration previous to the abort, then the algorithm searches for a
complete set that was stored at the end of a previous iteration. Such a set is guaranteed to exist since the
workers follow the same policy at the end of which iterations checkpoints are stored, and since a previous
checkpoint is never removed before the current global checkpoint is known to be complete (e.g., at the end
of the next iteration).

Every active worker in the restarted process is restored using its local checkpoint data, and is replaced
by a worker from the free pool in the new distributed system. The new worker restoresR andN according
to the BDD orderbdd order and assumesW as its window function.

functionreach checkpt(R,W,N)
1 Loop until termination()
2 N = Image(N), split if needed
3 send non-owned states(N \W) to their owners
4 N=N∪ (received states inW from others),

split if needed
5 N=N \R
6 R=R ∪N
7 Collect small(R, W,N)
8 if (W = ∅) return to pool
9 Checkpoint(R, W,N, #it, bdd order)

Figure 7:Pseudo–code for a worker in the distributed reachability computation with checkpoints.

3.1 Experimental Results

The resources consumed by the distributed algorithm are evaluated by considering the following two fig-
ures. Thereservationis the size of the cluster of machines carrying the computation. These machines are
either actively taking part in the computation, or otherwise they are part of the free pool, in which case they
might not be carrying any useful computation as they are reserved as potential additional resources for the
reachability computation. Theutilization is the number of active non-free workers that are actually taking
part in the reachability computation. Of course, at any point during computation the utilization is less than
the reservation.

Figure 8 presents the utilization and reservation of workers during the distributed reachability com-
putation. The graph shows how the checkpointing mechanism is used in order to reduce reservation to a
minimum. Checkpointing is used to vary the reservation, starting from a small cluster with only 10 ma-
chines. When more than 10 machines are required the run temporarily halts, the last checkpoint is moved
to a larger reservation with more machines, and the computation is resumed on that cluster. In this way the
free pool (of idle machines) is never too large relative to the utilization.

Clearly, yet another contribution of the checkpoint restart mechanism is in the case of termination as a
result of failure in one of the resources. In this case, in the absence of fail over mechanism, the amount of
resources that would have been wasted grows together with the integral over the reservation from the start
till the iteration where the failure appeared. Furthermore, the more machines take part in the computation,
and the more iterations are involved in the computation, the higher the chance of a failure. Thus, the
importance of the checkpoint restart mechanism increases with the number of iterations to fixpoint, and
with the scale of the model checked (as indicated by the reservation).

Figure 9 compares the run time of image computation and the time to store the checkpoint data. The
graph shows for each set size the run time required for image computation and the run time required to
store the checkpoint data. The graph shows that for all set sizes the checkpoint run time takes less than 20
seconds. Moreover, if there is no job failure, there is almost no overhead for storing checkpoints.

8

 0

 5

 10

 15

 20

 25

 30

 90 95 100 105 110 115 120 125 130 135 140

#w
ork

ers

BFS steps

utilization
reservation

Figure 8:reservation is the size of the cluster of machines carrying the computation. utilization is
the number of active non-free workers.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.5 1 1.5 2 2.5 3 3.5 4

Ru
n t

im
e

Set size in Million BDD nodes

checkpoit
image

Figure 9:Run time of image computation and the time to store the checkpoint data.

4 Distributed Reachability Analysis for Very Large Circuites Using
100 PCs

In the previous sections two enhancements to distributed reachability analysis were discussed. This section
describes the extensions to the algorithmreach checkpt which enable a high performance distributed
reachability analysis for very large circuites using 100 PCs. With these extensions, the algorithm verifies
circuits that could not be verified by any other tool. Furthermore, although an overflow in the required
number of workers occurs in several cases, the distributed scheme still reaches an iteration much farther
than that reached by the sequential BDD based model checker.

In order to have our distributed scheme scale out, two additional extensions toreach checkpt are
needed:distributed reorderandBDD operations timeout. We discuss the two extensions and then give
experimental results.

4.1 Distributed Dynamic Variable Reordering

Dynamic variable reorder suggested by Rudell [13], works well for the sequential algorithm. Here we show
how to use it also with our distributed approach.

Rudell’s algorithm is called by the BDD package according to the growth in the number of BDD nodes.
A dynamic reorder thresholddr this maintained, where the next threshold is set after each invocation of
reorder, according to the number of nodes in the new order. The threshold is examined after each cycle
of the garbage collection, and variable reordering is triggered if the number of nodes allocated after the
garbage collection is greater thandr th.

In the distributed scheme the BDD package uses Rudell’s algorithm in the same way. However, since
in the distributed scheme there are events such as splits and joins which affect the size of the BDD package,
the distributed algorithm also controls the value ofdr th externally. The worker forces the BDD packages
to adjust the value ofdr thafter splitting a worker, in which the number of nodes reduces dramatically, and
after exchanging nonowned states, in which the number of nodes may decrease or increase due to exchange
of non-owned states.

In addition, in case of overflow, triggering reorder may reduce the size of the BDD and thus avoid the
costly splitting. Therefore, when an overflow occurs after a long computation of a micro step but before the
micro step is completed, the worker invokes reorder and then tries to complete the micro step computation.
However, in case the BDD package triggered reorder just before the micro step overflowed, the worker
avoids the additional reorder since it is unlikely to prevent the splitting.

9

Circuit #vars Overflow step Overflow| R |
H21 274 55 3,203,064
H20 276 44 3,922,742
I1 147 98 8,006,120
H11 300 44 5,211,955
I3 793 46 5,557,672
I3s 439 54 7,076,762
s1423 88 14 9,705,214

Table 2:Benchmark suite characteristics. In each example we give the step in which the memory
requirements by the sequential model checker overflow and the size of the BDD representing the
set of reachable states R at that step.

4.2 Escape from BDD Operation Livelock Using Timeouts

BDD engines use cache for previously executed BDD operations. Using this cache, the run time commonly
becomes linear in the sizes of the BDD operators, rather than exponential. Since the size of the cache cannot
hold all the BDD operations, the engine replaces old results with new ones. Sometime the result of a BDD
operation that has been replaced is needed, and therefore recalculated. Recalculation increases the run
time, and in some cases, can cause the execution of a single BDD operation to proceed for hours.

In the distributed scheme a split can help a single worker if it stuck on a single BDD operation, as the
size of the cache is effectively doubled as a result of the split. To this end, if a single micro step turns out
too long, it is stopped as if a memory overflow occurred, and split is invoked. Our experiments show that
cases in which a large number of recalculations take hours can be efficiently avoided in this way.

4.3 Experimental results

Our parallel testbed consists of 100 PC machines, each a two way 2.4GHz Pentium 4 processors with 1GB
memory. For optimal utilization of this configuration we let two workers execute on the same machine. The
communication between the nodes uses a Fast Ethernet. The sequential runs uses a PC machine consisting
of four way 3.1GHz Pentium 4 with 4GB memory.

The distributed algorithm that we have tested followsreach checkpt enhanced with the algorithm
Hybrid , the distributed dynamic reordering and the micro steps timeout. The external model checker
used by the distributed algorithm is a high-performance industrial tool from Intel.

We conducted our experiments using examples for which the fixpoint was never reached before, such
as the s1423 design from the ISCAS89 benchmarks. We remark that other examples from this benchmark
suit, such as s3330, s1269 and s5378, require only a single process when using the high-performance model
checker of Intel. Thus, they are not suitable as benchmarks for the distributed system. In addition to s1423,
we experimented with six large examples which are components in Intel’s designs.

The characteristics of the six test cases are given in Table 2.
The distributed reachability analysis results are given in Table 3. Four examples reached fixpoint and

the verification completed. Three examples required more workers than was available to us at this point
(we did not always have all 100 machines at our disposal), therefore worker overflow occurred at some
step, always much further than the step reached by the sequential model checker.

We next compare the results in Table 3 to the results of the high performance industrial SAT model
checker tool of Intel. The SAT model checker could not complete the verification of any of the examples.
Computing bounded model checking with timeout of 10,000 seconds SAT reached the bounds of 85 and
94 on I3s and I3, respectively.

We also compare the results in Table 3 to the results obtained in previous distributed symbolic model
checking [7] and [8]. In [8] a high performance model checker was used, still, s1423 reached only step
17, while the distributed algorithm reached step 19. Other examples from ISCAS89 are so small they were
completed by the sequential model checker. Other examples from [8] are not published to the public. In [7]
a non-sophisticated model checker was used, therefore a relatively small example such as s3330 required

10

Circuit Fixpoint Max workers Time maxite

∑
i | Ri | at Seq Overflow∑

i | Ri | #workers
H21 85 3 23h
H20 85 9 11h
I1 139 25 70h 15.5M 6.6M 3
H11 98 7 28.5h 4.4M 1.3M 4
I3 WOvf(60) >50 47.2M 7.1M 5
I3s WOvf(118) >150 358.8M 7.1M 4
s1423 WOvf(19) >200 208.3M 8.8M 8

Table 3: Distributed reachability on the benchmark suite. Four examples reached fixpoint and
verification completed. Three examples required more workers than was available to us, therefore
worker overflow occurred. The Max workers column describes the maximum number of active
workers during the computation. The run time in case the verification is completed is given in
hours. Two measures are given for the iteration the sequential algorithm overflows: The sum of
sizes of the BDDs representing the subsets of reachable states, and the number of active workers
at this iteration

54 workers to complete. The high performance model checker used in this work can complete this example
using a single worker.

It is especially interesting to compare the Tables 2 and 3. It turns out that at the point where the
sequential algorithm overflows, the aggregate space requirement by the distributed algorithm (given in the
tables as the size ofR in BDD nodes) issmallerthan the corresponding size in the sequential algorithm!
This means that the distributed algorithm is more efficient in maintaining its data structures, sometimes to
a factor of two or more. This comes as a surprise, since the common wisdom would have expected some
overhead and duplication of work, rather than increased efficiency.

The explanation, however, is straightforward. Recall that with the distributed scheme reorder is opti-
mized individually at every worker, taking into account the worker data only. In this way, the distributed
algorithm becomes much more efficient in its reorder activity, as order at every worker better fits the worker
data. The overall effect is an aggregate reduction in the number of BDD nodes, which implies improved
overall efficiency. Furthermore, as a side-effect it also implies a better sequential algorithm that follows by
simulating the distributed parallel scheme.

References
[1] I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An Industry-Oriented Formal Verification Tool. In

33rd Design Automation Conference, pages 655–660, 1996.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking using SAT Procedures
Instead of BDDs. In36th Design Automation Conference, pages 317–320, 1999.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:1020 states and
beyond. Information and Computation, 98(2):142–171, June 1992. Special Issue: Selections from 1990 IEEE
Symposium on Logic in Computer Science.

[4] G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis of Large FSM. InProceedings of the IEEE
International Conference on Computer Aided Design, pages 354–360. IEEE Computer Society Press, June 1996.

[5] R. Fraer, G. Kamhi, B. Ziv, M.Y. Vardi, and L. Fix. Prioritized Traversal: Efficient Reachability Analysis for
Verification and Falsification. InProc. of the 12th International Conference on Computer Aided Verification,
LNCS, 2000.

[6] O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. Achieving speedups in distributed symbolic reachability
analysis through asynchronous computation. InCHARME (to appear), 2005.

[7] O. Grumberg, T. Heyman, and A. Schuster. A Work-Efficient Distributed Algorithm for Reachability Analysis.
In Proc. of the 15th International Conference on Computer Aided Verification, LNCS, 2003.

[8] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in Parallel Reachability Analysis of
Very Large Circuits.Formal Methods in System Design, 21(2):317–338, November 2002.

11

[9] K.L. McMillan. Interpolation and SAT-Based Model Checking. InProc. of the 15th International Conference on
Computer Aided Verification, LNCS, 2003.

[10] A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli. Reachability Analysis Using
Partitioned-ROBDDs. InProceedings of the IEEE International Conference on Computer Aided Design, pages
388–393. IEEE Computer Society Press, June 1997.

[11] A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-ROBDDs. InProceedings of the
IEEE International Conference on Computer Aided Design, pages 547–554. IEEE Computer Society Press, June
1996.

[12] Kavita Ravi, Kenneth L. McMillan, Thomas R. Shiple, and Fabio Somenzi. Approximation and Decomposition
of Binary Decision Diagrams. In35th Design Automation Conference, pages 445–450, 1998.

[13] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. InIntl. Conf. on Computer Aided
Design, Santa Clara, Ca., November 1993.

12

