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Abstract. Thiswork extends the game-based framework of p-calculus model checking
to the multi-valued setting. In multi-valued model checking aformulais interpreted over
aKripkestructure defined over alattice. Thevalue of theformulais also an element of the
lattice. We define anew gamefor this problem and derive from it adirect model checking
algorithm that handles the multi-valued structure without any reduction. We investigate
the properties of the new game, both independently, and in comparison to the automata-
based approach. We show that the usual resemblance between the two approaches does
not hold in the multi-valued setting and show how it can be regained by changing the
nature of the game.

1 Introduction

Model checking [8] is a successful approach for verifying whether a system model A/ satisfies
a specification ¢, written as a temporal logic formula. In multi-valued model checking the
system is defined over alattice £. Both the labelling of states and the transitions of the system
are interpreted as elements from the lattice. The meaning of aformulain the model isthen also
given by an element of the lattice.

Multi-valued model checking has many important applicationswithin the verification frame-
work. For example, 3-valued model checking, where the logic is based on the lattice L5 (see
Fig. 1), has been used to reason about abstract structures or structures with partial informa-
tion [2,24,13]. In this context the value U is used to model uncertainty, with the meaning
that the value can either be T or L. Recently, [1] has used a 6-valued logic as an extension of
this approach for falsification of properties. There, the value U is refined to recognize that at
least one concrete state fal sifies the property or at |east one concrete state satisfies the property.
Another useful lettice is the lattice L, », with the values TL and LT representing disagree-
ment (see Fig. 1). Model checking using this lattice (or its generalizations) has been used to
handle inconsistent views of a system [11, 17]. Temporal logic query checking [5, 3, 15] can
also be reduced to multi-valued model checking, where the elements of the lattice are sets of
propositional formulas.

One way of handling the multi-valued model checking problem is the reduction approach,
where the problem is reduced to severa traditional 2-valued problems [12,17, 18, 14,4] or
3-valued problems[19].

Asopposed to thereduction approach, the direct approach checks the property onthe multi-
valued structure directly. It thus has the advantage of a more “on-the-fly” nature. Furthermore,
adirect model checker can provide auxiliary information that explainsitsresult [24, 13]. When
using the reduction approach such information can only be gathered for each problem sepa-
rately. It thus becomes less useful.

Several direct model checking agorithms for various multi-valued logics have been sug-
gested inthe literature. [2, 24, 13] studied the 3-valued case of CTL ([2, 24]) and the pi-calculus
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Fig. 1. Examplesof Lattices

([13]). In[6] thelogic LTL was considered over finite linear orders. The general multi-valued
version of CTL was handled in [7]. Finaly, an almost direct automata-based algorithm for
the multi-valued p-calculus was suggested in [4]. Their approach handled the multi-valued
labelling directly, but still used the reduction approach to handle multi-valued transitions.

In this paper we suggest a fully direct model checking for the multi-valued y-calculus,
where both the multi-valued labelling and the multi-valued transitionsare handled directly. The
p-calculus [20] is a powerful formalism for expressing properties of transition systems using
fixpoint operators. It contains, for example, both CTL and LTL as itsfragments. Our approach
refers to its multi-val ued semantics based on any finite distributive DeM organ lttice.

We base our algorithm on the game-theoretic approach [25] and thus gain al of its ad-
vantages [24, 13]. In the traditional game-based approach to model checking two players, the
verifier (called Jloise) and the refuter (called Ybelard), try to win a game. A formula ¢ istrue
inamodel M iff the verifier has awinning strategy, meaning that the verifier can win any play,
no matter what the refuter does.

We adapt this approach for the multi-valued case. In particular, we now talk about the
value of the game. It turns out that in the multi-valued case there does not necessarily exist a
best strategy for Jloise. Instead, strategies may be incomparable and the value of the game is
determined by their combination.

We suggest two definitions of a multi-valued game for the p-calculus and prove their cor-
rectness. The proof turns out to be interesting in itself, as it uses similar techniques to those
used in the reduction approach of [4]. Thisisin spite of the fact that our approach handles the
multi-valued structure directly and uses no reductions.

When comparing our definitions to the work of [4], a surprising property is revealed. The
direct algorithm of [4] is based on automata [21]. It is usually the case that the game-based
and the automata-based approaches to model checking have a strong resemblance [22]. Yet,
in the multi-valued case we find that our definition of the multi-valued game is different in
essence from the automata-based approach of [4]. We discuss this difference and suggest an
alternative multi-valued game that regains the similarity to automata. More importantly, our
resulting framework in fact generalizes the work of [4], as it handles directly not only the
multi-valued labelling, but also the multi-valued transitions.

The game-based approach to model checking was already generalized to the 3-valued
case [24, 13]. However, it turns out that handling a genera lattice, where there is more than
one intermediate value and the elements are only partially ordered, is substantially more com-
plex (see Section 7).

The rest of the paper is organized as follows. In Section 2 we give some background on
lattice theory, multi-valued p-calculus and model checking games. In Section 3 we provide our
main definition of the multi-valued model checking game and prove its correctness. A model
checking algorithm, based on the game, isthen described in Section 4. In Section 5 we suggest
an aternative definition for the game. We then discuss the relation to the automata-theoretic
approach, which yields another definition of a multi-valued game, in Section 6. Finally, we
compare the general multi-valued game to the much simpler 3-valued case in Section 7.



2 Preiminaries

Lattices A lattice is a partialy ordered set (£, <) where for each finite subset of elements
there exists a unique greatest lower bound (glb) and least upper bound (lub). The glb is aso
called meet and isdenoted by « A y or A A (forx,y € £, A C £). Thelubisalso caled join
and isdenoted z v y or \/ A.

Throughout this paper we refer to finite distributive DeMorgan lattices. Every finite lattice
is complete, meaning that it has a greatest element, called top, denoted T, and a least element,
called bottom, denoted L. Inadistributivelatticez A (yVz) = (zAy)V(xAy) andaV (yAz) =
(zVy)A(xVy) fordl lattice elements , y, z. InaDeMorgan lattice every element « € £ has
a unique complement —z € £ such that ——z = z, DeMorgan’s laws hold, and z < y implies
y<-xt

A join-irreducible element = of a distributive lattice £ isan element # L for which z =
yVzimpliesz = y or z = 2 for every y, z € £. We denotethe set of join-irreducible elements
of L by J(L). For example LT € J(L22),but T ¢ J(L>2) (seeFig. 1).

p-calculus [20] Let P be a finite set of atomic propositions and V a set of propositional
variables. We consider the logic p-calculusin negation normal form, defined as follows:

e =g | nq | Z | oVe | eAe | Op | Be | pZe | vZy
where ¢ € P and Z € V. Let £, denote the set of closed formulas generated by the above
grammar, where the fixpoint quantifiers ¢ and v are variable binders. We will aso write n
for either 1+ or v. Furthermore we assume that formulas are well-named, i.e. no variable is
bound more than once in any formula. Thus, every variable 7 identifies a unique subformula
(7)) = nZ.4 of p, wherethe set Sub(y) of subformulasof ¢ isdefined in the usual way.

Semantics The concrete semantics of a p-calculus formulais given with respect to a Kripke
structure M = (S, R, @), where S isafinite set of states, R C § x Sisatransitionrelation,
which must be total, and @ : S — 27 isalabelling function [8].

In this work we consider the multi-valued pi-calculus [4], where formulas are interpreted
with respect to a Kripke structure defined over a lattice (also called yKripke structure). In
a Kripke structure over a lattice £, both the labelling and the transition relation have a multi-
valued nature: @ maps a state to amapping from P toelementsof £, thatis@ : § — (P — L).
Furthermore, R maps pairsof statesto latticeelements, thatisR : SxS§ — L (see Example 1).
The totality requirement of R isnow given by the requirement that for each s € S there exists
some state s’ € S withR (s, s’) # L.

The semantics [[go]];w of a £, formula ¢ w.rt. a Kripke structure M = (S, R, @) over
a lattice £ and an environment p : V — (S — L), where p explains the meaning of free
variablesin ¢, isamapping from S to L.

We assume M to be fixed and do not mention it explicitly anymore. With p[Z — ¢] we
denote the environment that maps 7 to ¢ and agrees with p on all other arguments. Later, when
only closed formulas are considered, we will also drop the environment from the semantic
brackets. In the following definition f is an element of (S — £) — (S — £), defined by
Ag-[¢] 1705 @ f, puf standfor thegreatest and least fixpointsof f. Accordingto[26], least
and greatest %ixpoi nts of this functional exist since the functionsin § — £ form a complete
lattice under pointwise ordering and the functional f is monotone w.r.t. this ordering.

! Sincewerefer to temporal logicin negation normal form, negation can be defined arbitrarily. We chose
to refer to DeMorgan lattices since they are most commonly used in this context.
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Fig. 2. The 2-valued model checking gamerulesfor £ ,.

[d], = As.0(s)(q)
[[ﬂq]]p = As.20(s)(q)
[21, = p(2)
[erVea], = Aser], Ve:l,
[er Apa], = Aser], Ale2],
[Oel, = As.V{R(s,s") Al (s) IR (s, s") # L}
[O¢], = As. A{=R(s,s") VIel,(s') [ R(s,s") # L}
[nZ.l, = nf
[vZ.e], = vf

Given ¢, (M, s) and £, computing the value of o] (s) is called the multi-valued model
checking problem.

A regular Kripke structure M can be viewed as a Kripke structure over lattice 7, (see
Fig. 1), by referring to the set of transitionsand the set of atomic propositionsthat |abel a state
by their characteristic functions. In this case we write (M, s) = ¢ for [[go]]M(s) = T and

(M, s) = ¢ for [o] ™ (s) = L.

Model Checking Games The 2-valued model checking game 'aq(sg, po) ONn a (regular)
Kripke structure M with state set S, state sp € S and a p-calculus formula g is played
by players 3loise (the prover) and Ybelard (the refuter) in order to determine the truth value
of g in sy, cf. [25]. Configurations are elements of C C S x Sub(yg), and writtent + .
Each play of I'am(so, ¢o) isamaximal sequence of configurations that starts with sg = ¢q.
The game rules are presented in Fig. 2. Each ruleis marked by 3/ V to indicate which player
makes the move. A ruleis applied when the player isin configuration C;, whichis of the form
of the upper part of the rule. ;4 isthen the configuration in the lower part of the rule. The
rules shown in the first and third lines present a choice which the player can make. Since no
choice is possible when applying the rules shown in the second line, both players can apply
them. If no rule can be applied the play terminates.

Winning Criteria: Player 3winsaplay Cq, C4, . . . iff
1. thereisann € N,st. C, =t F ¢ With®(t)(¢) = Tor C,, =t F =g with@(t)(¢) = L,
or
2. the outermost variable that occurs infinitely oftenis of type v.
Player Vwinsaplay Cy, C . . . iff
4. thereisann € N,st. C,, =t F ¢ with@(t)(¢) = Lor C,, =t —gwithO(t)(¢) = T,
or
5. the outermost variable that occurs infinitely often is of type .




Configurations of the form¢ - p or ¢ - —p are called terminal configurations.

A (memoryless) strategy for player 2 isapartial function o : ¢ — C, such that its domain
is the set of configurations where player (2 moves. Player () plays a game according to a
strategy o if all his choices agree with o. A strategy for player ) is called a winning strategy
if player @ wins every play where he plays according to this strategy.

We have the following relation between the game and the semantics.

Theorem 1. Given aKripkestructure M = (S, R,0),ans € S,andp € L,

€)) [[go]]M(s) = T iff Player 3 hasawinning strategy for 7'a(s, ¢),
(b) [[go]]M(s) = L iff Player ¥ hasawinning strategy for " a(s, ¢)

3 A Multi-Valued Gamefor the p-Calculus

In thissection weinvestigate the multi-valued model checking problem from the game-theoretic
point of view. For the rest of the section let M be a Kripke structure over lattice £, sg a
state in M and ¢, a p-calculus formula. We suggest a multi-valued model checking game,
' (s0, @o), for evaluating ¢, in state sy of M.

The new game is still played by two players, Jloise and Ybelard, and the moves of the
players are defined asin the 2-valued game (see Fig. 2). In particular, the players can base their
moves on the multi-valued transitions. However, the concept of winning needs to be adapted.
In fact, to capture the multi-valued nature of the problem, we no longer talk about winning a
play versus losing it. Instead, we now associate with each play a value which is an element
from the lattice.

In our definitions we take the point of view of 3loise (we could dually describe the game
from the point of view of Vbelard)). Intuitively, we think of the value of aplay as ameasure for
how close Jloise is to winning; Winning of Jloise in the 2-valued case now correspondsto the
top value. Winning of Ybelard corresponds to the bottom value, but more values are possible.
In these terms, the goal of the playersis no longer to win the play. Instead, the goal of Jloiseis
to maximize the resulting value, whereas the goal of Ybelard isto minimize thisvalue.

Notation We refer to the configurations of 1"} (so, ¢0) asnodesin a game graph. Nodes are
divided to V-nodes, where Jloise plays, versus A-nodes, where Ybelard plays. Moves between
configurations are edges in the graph. Each edge (move) has a value from the lattice: moves
that use a transition of the model get the value of the transition. The rest get the T value. We
abuse the notation of the transition relation and denote the value of an edge from » to n’ by
R(n,n'). Werefer to edgeswith values# T, L as indefinite edges.

Example 1. Consider the Kripke structure M of Fig. 3 over lattice £, suchthat =, y, z, w € L.
The labels of the transitionsdefine their values. Unlabelled transitionshave value T. The states
labelling denotes that @ (sg)(r) = z, O(so)(h) = wand O(s1)(g) = O(s2)(q) = T, where
q,r, h are atomic propositions. Fig. 3 also shows the game-graph of the model checking game
IV (s0, o), Where gy = $g A (r V R). Again, the edges are [abelled by their values.

3.1 Playsand their Values

A play in I'{;(so, o) is defined as before. To understand how we determine the value of a
multi-valued play, consider again a 2-valued play. As explained above, if the winner is Jloise,
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Fig. 3. Example of aMulti-Valued Game

then in the multi-valued context we view its value as T. Similarly, if the winner is VYbelard,
then we view the value as L. However, in the multi-valued case we have two extensions,
which introduce more values. First, the terminal nodes (¢ - ¢, t - —¢) are no longer classified
as winning or losing, but they have a value which resultsfrom the value of ¢ in the state¢. This
affects the values of finite plays.

Furthermore, the moves are al so multi-val ued, due to the multi-val ued nature of the model’s
transitions. The value that a player gains in the play also depends on the values of the transi-
tions that were used. Intuitively, one can think of the moves of Jloise as attempts at proving
the formula and the moves of Ybelard as attempts at refuting it. In this context, the use of in-
definite edges in the multi-valued case is interpreted as a weak attempt at proving or refuting
(depending on the player).

Recall that we think of the value of the play as ameasure for how close Jloiseistowinning.
Therefore, when evaluating a play we take the point of view of Jloise. Conceptually, we first
givetheplay abase value, whileignoringthe values of edges used. We then update the resulting
value based on the edges.

Definition 1. For aterminal noden = ¢ I ¢, we define val(n) tobe ©(t)(¢). For n =t - —¢
we define val(n) to be =0(¢)(q).

Definition 2. Let p beaplay inthegame. We define itsbase value, denoted base(p), asfollows.
If pisafinite play, base(p) = val(n), where n isthe terminal node in which p ends. If p is
infinite, then base(p) = T if p iswon by Jloisein the 2-valued game. Otherwise base(p) = L.

We update the base value by taking into consideration the val ues of the edges used by both
playersin the play. Intuitively, when Jloise plays, she tries to show an evidence for truth. For
her evidence to be “convincing”, she needs to both continue to a position which is good for
her (meaning that the certainty of her verification from it is high), and a so use an edge with a
high value (which correspondsin away to high certainty). Consequently, the value of the play
is given by the glb of the value of the edge and the value of the rest of the play. On the other
hand, when Ybelard plays, he tries to refute. When looking at the situation from the point of
view of Jloise, she succeeds in her goal better if Vbelard either reaches a position that is good
for her, or if he uses an edge of low value (alternatively: high negated value), in which case the
certainty of his refutation is low. Therefore, the value of the play in this case is given by the
lub of the negation of the value of the edge and the value of the rest of the play.

Thisintuitionleads to a bottom-up computation of the value of aplay. In order to formally
define it we need the following definitions.

Definition 3. Letp = ng, n1, .. ., ng beafinite prefix of aplay, andlet » € £ be abasevalue.
We define update(p, ») by reverse induction. Initially, val, = z. Given val;, we define val; 4



depending on the player that made the move from n;_; to n;. If it is 3loise, then val;_; =
R(ni—1,n;) A val;. If the player isVbelard, then val;_1 = =R (n;—1, n;) V val;. Finally, we
let update(p, x) = valp.

Notethat edgeswithvalue T do not changethebasevaluesince TAz = zand—-TVe =«
fordl « € £ (sinceinaDeMorgan lattice—T = 1).

This definition is directly applicable to defining the value of afinite play by taking = to be
the base of p. Unfortunately, it is not suitable for infinite plays.

To handleinfinite plays, we use the following key observations. First, since the set of edges
in the game graph is finite, we know that the set of edges used in the play is finite, and thus
there exists afinite prefix of the (infinite) play that contains al of them. Furthermore, it turns
out that computing the value of the play by considering only such a (finite) prefix is sufficient,
in thefollowing sense. We define the value val(p;) of aprefix p; of aninfiniteplay p similarly
to the definition of the value of afinite play, except that the base value is set to the base value
of theentireinfinite play p. That is, val(p;) = update(p;, base(p)). We now have the property
that the value of any prefix that contains all the edges used in p isthe same.

Lemmal. Let p bean infiniteplay and let p;, p; be two finite prefixes of p that contain all of
the edges that appear in p. Then val(p;) = val(p;).

In other words, the play has a limit value. This property is surprising since when con-
sidering the values of increasingly longer prefixes, the resulting sequence is not necessarily
monotonic. Lemma 1 also impliesthat any finite prefix that contains all the edges of theplay is
agood representative for computing thisvalue. Intuitively, thisresultsfrom the property that an
instance of an edge that is closer to theinitial node, “absorbs’ the effect of afurther instance of
the same edge. We therefore define the value of an infinite play to be the value of the minimal
prefix that contains all the edges.

To sum up, the value of a play is defined as follows.

Definition 4. For afiniteplay p, val(p) = update(p, base(p)). For aninfiniteplay p, val(p) =
update(p;, base(p)), where p; istheminimal prefix of p that containsall edges used in p.

Example 2. Consider again the game described in Fig. 3. Terminal nodes in the game-graph
are labelled by their values. One possible play in the game is < ng, ni,ns >. ltsvaue is
STV (zAT) = z. Another exampleistheplay < ng, ns, ns > whosevaueis—TV (T Az) =
z. More plays exist.

3.2 Strategiesand their Values

As always, in order to talk about the relation to model checking, we need to talk about strate-
gies, rather than a single play. In the 2-valued game we talked about winning strategies and
we were guaranteed that exactly one of the players had one. In the multi-valued case, we no
longer talk about winning. Instead, we talk about the gain of each player in the game. There-
fore, the notion of awinning strategy isno longer what we need. Instead we need to talk about
strategies for gaining a value.

Consider again the 2-valued game. A winning strategy for 3loise in the 2-valued game
guarantees that every play, where Jloise plays by the strategy is winning for Jloise (or has
value T). On the other hand, a non-winning strategy for 3loise is such that there exists a play
where Jloise plays by the strategy, but the play is winning for Vbelard (has value L). Thus,



we can say that a winning strategy for Jloise ensures the value T, whereas a non-winning
strategy ensuresonly L (asit ensuresavalue > L, but not better than that). Furthermore, each
strategy is either winning for Jloise (ensures value T) or non-winning (ensures only > 1).
Thus, strategies are comparable, and there always exists a best strategy. The best strategy isa
winning strategy if one exists, or a non-winning one otherwise.

When we move to the general multi-valued case, a strategy for Jloise is defined as usual.
However, unlikethe usual case, here plays can have many values, which may be incomparable
to one another. Given a strategy o3 for Jloise, the value that will be achieved in practice
depends on the choices of Vbelard. We want the value of o5 to be alower bound on the set of
all possible values that can be achieved in plays where Jloise plays by ¢3, with the meaning
that the strategy ensures avalue whichis greater or equal than itsvalue. We choose the greatest
possible lower bound, which characterizes the strategy as precisely as possible.

Definition 5. Let o3 beastrategy for Jloise. We defineval(o3) = A{val(p) |pisaplayby o3}

Thisdefinitionimpliesthat Jloise can dways achieve avalue > val(o3) inany play where
she plays by the strategy o3. Note that since val(o3) is given by the glb of possibly incom-
parable values, it is now possible that there does not exist a play with value val(o3) by this
strategy, but still the strategy cannot ensure a strictly better (higher) value.

Similarly to the phenomenon of several values achieved by a single strategy, it may be
the case that Jloise has several different strategies, with incomparable values. 3loise chooses
which of her strategies to use. We therefore define the value that she achieves in the game to
be the least upper bound on the values of all her strategies. It gives us an upper bound, precise
as possible, for the values that Jloise can achieve in the game, with the meaning that Vbelard
cannot enforce any value which is strictly lower than that.

Definition 6. Let I'}} (s0, ¢0) be a multi-valued play. Then
val (' (s0, ¢0)) = \/{a | Jloise has a strategy o3 with value val(o3) = o}

Note that in the general case, Jloise does not necessarily have a best strategy that achieves
the lub. However, if the lattice has atotal order then such a best strategy exists.

Example 3. In the game of Fig. 3 Jloise has two possible moves from n; and n» (these are
the nodes where she moves). Therefore she has four possible (memoryless) strategies— onefor
each combination. Consider for example the strategy & in which 3loise always proceeds to
the left successor. The choice in ng isof Ybelard, therefore there are two possible plays by this
strategy: < ng, n1, n3 > (When Ybelard chooses the left successor of ny) and < ng, no, ns >
(when Vbelard chooses the right successor of ng) whose values are = and = respectively (see
Example 2). Since the choice between the playsis of Vbelard, the value of the strategy is the
glb of their values. That is, val(s1) = = A z. This means that by o+, Jloise can only ensure
avaluewhichis> z A z, where possibly = A z is strictly smaller than both = and z (see for
example LT and TLin L, »).

Similarly, we get val(c2) = « A w, val(cs) = y A z and val(os) = y A w. Since Jloise
chooses which strategy to use, the value of the game is then defined to be val (I (so, o)) =
val(o1) V val(oz) V val(os) Vval(oy) = (x Az) V(e Aw)V (y Az)V (y Aw). Note,
that if al the latter values are incomparable, then Jloise does not have a unique best strategy.
By distributivity, we now get that val (1" (s0, ¢0)) = (£ A (z Vw)) V (y A (2 Vw)) =
(2 Vy) A (zVw). Aninspection of themodel showsthat thisisthevalue of [o]™ (so), which
demonstrates the correctness of the game (see Theorem 2 in the following section).



Remark 1. One can think of the value of the game in the regular 2-valued case (from the point
of view of Jloise), as defined by the following formula
doaVoy : val(outcome(oa,oy)) =T

where oy denotes a strategy for Vbelard and outcome(os, o) isthe (unique) play defined by
the combination of 3 and o. This formula describes the condition for a game to be won by
dloise: it requiresthat 3loise has awinning strategy o3, meaning that for each possible strategy
oy of Ybelard, the resulting play is winning for 3loise (hasvalue T).

Similarly, in the multi-valued case, the definition of val(c3) can berephrased asval(o3) =
/\Uv {val(outcome(ca, ov))}. Thismakes

val (I (so, 0)) = \/{/\{val(outcome(ag ,ov)) 1}

That is, weinfact replace the 3 quantifier by the lub operator and replace the vV quantifier by the
olb operator, since there isno longer a best strategy for Jloise, and no longer abest strategy for
Vbelard. A similar phenomenon happenswhen considering probabilisticgames[10], whereitis
possiblethat the limit probability inwhich 3loisewinsis 1, but thereis no strategy that achieves
probability 1. Instead, for every probability, as close to 1 as we want, there is a strategy that
achievesit. Wethen also replace the 3 and vV quantifiersby supremum and infimumrespectively.

3.3 Correctness

We now formalize and prove the correctness of the multi-valued model checking game.
Theorem 2. Let M be aKripke structure over lattice £, sy a statein M and ¢ a p-calculus
formula. Then val (I, (s0, o)) = [wo]™ (s0).

To provethetheorem, wefirst give an aternative definitionfor thevalue of val (17 (so, ¢o)),
which mainly results from Birkhoff’s representation theorem for finite distributive | attices.
Lemma2. val(I'y(s0,0)) = V{a | loisehasastrategy o3 withvalue val(c3) > o}

=\/{o € 7(£) | Acise has a strategy o3 withvalue val(o3) > o}

We now use similar techniques to those used in the reduction approach of [4]. There, the
multi-valued model checking problem is reduced to several 2-valued model checking prob-
lems. First, to avoid a technical problem with negated atomic propositions, the formula is
transformed to aformulawith no negation symbols, by replacing each negated proposition —¢
by a new atomic proposition ¢’. The labelling function © of M is extended to @' by setting

O'(s)(¢') = —O(s)(q). Then, the Kripke structure M over L is reduced to several Kripke
Modal Transition Systems (KMTSs).

Definition 7. [16] AKripkeModal Transition System (KMTS) isatuple M = (S, Rt R~,0)
withamust transitionrelation Rt C S x § and amay transitionrelation R~ C § x S. The
labellingisgivenby @ : S — (P — Ls).

More specifically, given ajoin-irreducibleelement « of £, areduced KMTS M,, isdefined
by setting
Oa(s)(q) = O(s)(q) > a
RY(s,s') = R(s,5") > «
R, (s,5') = —R(s,s') } a

The formulais then interpreted over the KMTS M, w.r.t. a 2-valued semantics, with the
main difference being that



[Oel)' = As. V{RE (s, 8") ATl (s7) | all 57}
[Opl)" == Xs. AN{=RZ (s, 8") V [l (s') |l 5'}

Asshown in[4], it then holdsthat (M ., s0) £ w0 < o <[] (s0), and the following
lemmaisimplied.

Lemma3. [4] [eo] (s0) = V{e € T(L) | (Ma, 50) £ 01}

We use the above results to prove the correctness of our multi-valued game. For this pur-
pose we show that

Lemmad. \/{a € J(L£) | Jloisehasastrategy o3 withvalueval(cz) > a} = V{a €
J(L) [ (Ma; 50) = ¢o}-

Combining thislemmawith Lemmas 2 and 3 impliesthat val(I'}; (so, o)) = [ol™ (s0).

Proof. To prove Lemma 4 we refer to the 2-valued game for KMTSs, defined in [23]. The 2-
valued game for KMTSs is similar to the 2-valued game for Kripke structures. The difference
is that Jloise uses only must-transitions, whereas Ybelard uses may-transitions. The winning
conditionsremain as before, with the exception that a player can get stuck (if T or R~ isnot
total), inwhich case heloses. Theorem 1 holdsfor thiscase aswell. In our case this means that
Jloise has awinning strategy in the 2-valued game over M, iff (M, so) | ¢o.

We show a 1-1 correspondence between strategies of 3loise with value > « in the multi-
valued game over M and winning strategies for Jloise in the 2-valued game over the KMTS
M.

We use the following property of join-irreducible elements in a distributive lattice £. If «
isajoin-irreducibleelement of Landy,z € £,thena <y Vziffa <yora < z[9].

Let o beastrategy for Iloisewith val(o) > «. We show that the same strategy isawinning
strategy in the 2-valued game. Consider a play played by this strategy in the 2-valued case. We
show that Jloise winsit. We know that in the multi-valued game itsvalue is> «.

First, if the play isinfinite (in the 2-valued case) then the value y of each edge used by
Vbelard is such that —y # « (otherwise it does not exist as a may-edge). Thus for the value
of the play to be > «, its base value has to be T. This is because only edges of Ybelard can
increase the value and by the previous property they cannot increase a base value of | to be
> «, since « isjoin-irreducible. Since the base value is T, we conclude that the play fulfills
thewinning criteria of Jloise in the 2-valued game.

If the play isfinite (in the 2-valued case) then we first show that it cannot be the case that
dloiseis stuck. If Jloiseis stuck it means that the strategy defines for her to use an edge with
avauey 7 « (that does not exist as a must-edge in the 2-valued case). The same reasoning as
before shows that for the value of the play to be > «, there had to be an earlier edge of Vbelard
with value y such that -y > «, but such an edge does not exist as a may-edge in the 2-valued
play, which leads to contradiction. Thus, either Vbelard gets stuck, in which case Jloise wins,
or the play ends in aterminal node labeled by an atomic propositionn = s F ¢. Inthe latter
case, we again conclude by the same reasons that val(n) > «, thus @(s)(¢) > a andin the
KMTS M., thisimplies©,(s)(¢) = T and Jloisewins.

For the other direction, let o be a winning strategy for Jloise in the 2-valued game. Once
again, we show that the same strategy has a value > « in the multi-valued game, with the
exception that if o does not define a move from some configuration, we extend it arbitrarily.
To prove that val(o) > « we show that the value of every play where Jloise plays by (the
extended) o in the multi-valued game has value > «. Consider such a play.

10



First, if the same play exists in the 2-valued game, then it is winning for Jloise, making
its base value T. Furthermore, al the edges used by 3loise are must-edges, with values > «.
Since only edges of Jloise can decrease the value of the play, this ensures that the value of the
play is> «.

If the play does not exist in the 2-valued game, it means that one of two possibilities oc-
curred. The first one is that Ybelard used an edge that does not exist as a may-edge in the
2-valued game, meaning that its value y fulfills =y > «. But thisimmediately increases the
value of the suffix of the play from that point to be > «. By the same reasons as before the
prefix of the play does not decrease the value below «, and thus it remains > «. The second
possibility isthat 3loise used an edge that does not exist in the 2-valued game. This could only
happen if the play reached a configuration where o was extended. This means that originaly,
in the 2-valued game, this configuration was not reachable by o. But then it has to be the case
that in order to reach it Ybelard made a move that was not possible in the 2-valued game, and
we return to thefirst possibility. O

4 Solving the Multi-Valued Game

In this section we discuss how to solve the multi-valued model checking game. Given a game
I'% (s0, o) our purpose isto compute its value. By Theorem 2 this gives us the result of the
multi-valued model checking problem for M, sy and . Since the game is defined directly
on the multi-valued Kripke structure, we get a direct model checking algorithm for the multi-
valued problem, that has all the advantages of the game-theoretic approach [24, 13].

Asusual, we solve the game by processing the game-graph and evaluating each nodein it.
The difference as opposed to the 2-valued case is that we need to propagate values from the
lattice. We demonstrate this change for the alter nation-free fragment of the u-calculus, where
no nesting of fixpointsis allowed.

We partition the game graph to Maximal Srongly Connected Components (M SCCs) and
determine a (total) order on them, reflected by their numbers: @4, . .., Q. The order fulfills
the rule that if + < j then there are no edges from @; to ;. Such an order exists because the
M SCCs of the game-graph form a directed acyclic graph (DAG). The components are handled
bottom-up.

Consider asingle component ;. Welabel each of itsnodes » withavalue, denoted res(n),
as follows. A terminal node n is given the value val(n). For an V-node n we set res(n)
to be \/{R(n,n') A res(n’) | R(n,n') # L}. Similarly, if n is an A-node then res(n) =
N R (n,n') Vres(n') | R(n,n') # L}.

To handle @;’s that form a non-trivial MSCC, we use the following observation: when
dealing with the alternation-free fragment of the p-calculus, an infinite play has exactly one
variable that occurs infinitely often [25]. Therefore, if (); isa non-trivial MSCC then it con-
tains exactly onefixpoint variable 7. In this case wefirst label the nodesin @; with temporary
values, temp(n), that are updated iteratively. For nodes of the form n,, =t - 7 weinitialize
temp(ny ) to Tif 7 isof typev, orto L if Z isof type p1 (therest of the nodes remain unini-
tialized). We then apply the previous rules until the temporary values do not change anymore.
Finally, we set res(n) = temp(n) for every node n in );. Intuitively, this algorithm imitates
theiterative computation of the fixpoint.

Several optimizations can be made on this computation. For example, consider an vV-node
n with a successor »’ for which res(n’) is aready computed. Furthermore, suppose that the
values of edges|eading totherest of the successors of n havevalues < R(n, n')Ares(n’). This

11
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Fig. 4. New rulesfor "% (so, ¢0).

means that the rest of the successors cannot increase the result of the lub over al successors of
n and we can immediately set res(n) to be R(n, n’) A res(n’), regardless of whether or not
the rest of its successors were handled. Such optimizations can spare us the need to process
big subgraphs.

Theorem 3. Let M be a Kripke structure over £. Then for every state s in M and every
closed y-calculus formula ¢, we have that val (17 (so, o)) = res(so = o). We conclude

that [[goo]]MD(So) =res(so o).

5 Avoiding Multi-Valued Edgesin the Game

Recall that the multi-valued edges used in the game posed a problem when we wanted to
define the value of an infinite play. Our treatment of such plays strongly relied on the finite
nature of the Kripke structure and the game graph. In this section we suggest a different way
of overcoming the problem, which is aso suitable for infinite structures. The new definition
makes the value of aplay much simpler to define.

We change the rules of the game, and in fact reduce the multi-valued edges into more
multi-valued terminal nodes. We wish to emphasize that the reduction is performed in the
game level, rather than the model level. That is, the Kripke structure that the game is based on
till has multi-val ued transitions.

The main idea is to split every move along a multi-valued transition (of the model) into
two moves: first the player who is supposed to play chooses a transition. Then, the opponent
chooses whether he wants to examine the value of the transition or to continue in the play. If
he chooses the transition, the play ends with this value. This means that there are no longer
multi-valued edges in the game. We only have multi-valued terminal nodes.

Formally, given a Kripke structure M over lattice £, a state sp and a p-calculus formula
vo, we define I'{, (so, o) asfollows.

The configurations of the game are as before, with additional configurations of the form
(s,t) F O, (s,t) F Oy, (s,t) - T and (s,¢) - L. Thenew configurations act as intermediate
configurations for the new rules of the game. The rules are given by Fig. 2, where therulesin
thethird line are replaced by therulesin Fig. 4.

For example, in a configuration of the form s = ¢, Jloise chooses, as usua, atransition
that is supposed to show evidence for {>. Since it is a move of Jloise, we have the meaning
of the lub of all possibilities. However, the next move is a move of Ybelard, with the meaning
of the glb between the two options. This means that for each possibility of 3l0ise we examine
the glb of both the value of the transition and the value of the rest of the play. Configurations
of theform s - Oy are handled dualy.

Configurations of the form (s,¢) = T and (s,t) F L are (new) terminal configurations.
A configuration of the form (s, ¢) - T isreached when Vbelard challenges the transition that
Jloise chose from s = {¢. It expresses the fact that we are interested in the value of R (s, )
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that determines the certainty in which Jloise tries to prove the existential property. Dually,
a configuration of the form (s,¢) - L isreached when Jloise challenges the transition that
Vbelard chose from s F O¢. Inthiscase, we areinterested in the value of —R (s, t), since from
the point of view of Jloise, her chances of proving are better as the value of R (s, t) used by
Vbelard for refutation is lower (alternatively: =R.(s, t) is higher). Following this intuition, we
add the following definition.

Definition 8. For aterminal node n = (s,t) = T, we define val(n) to be R(s,t). For n =
(s,t) F L wedefine val(n) tobe =R (s, t).

Since there are no longer multi-valued edges in the game, the value of a play is now deter-
mined to be the base value, as defined earlier (see Definition 2) — no update is needed. The rest
of the definitions of strategies, their values and the value of the game remain unchanged. The
following theorem ensures that we get the same value in the new game, thusthe correctness of
the game is maintained.

Theorem 4. Let M be a Kripke structure over lattice £, with a state s, and let ¢, be a p-
calculus formula. Then val(Ff\l,l (s0,¢0)) = val(I'} (s0, ¢0)).

6 Discussion: Games versus Automata

In this paper we have investigated the multi-valued model checking problem from the game-
theoretic point of view. In [4] the same problem was considered from the automata-theoretic
point of view. There, model checking is performed by checking the nonemptiness of an au-
tomaton that represents the product of the model and the checked formula. In this section we
discuss the essential difference between the two approaches in the multi-valued case.

It is well-known that the two approaches — game-based and automata-based — are closely
related in the 2-valued setting: an accepting run corresponds to a winning strategy for 3loise
and vice versa[22]. Surprisingly, the same relation does not hold anymore in the multi-valued
case. More specificaly, in [4] extended alternating automata (EAAs) were used as the basisfor
model checking. To capture the multi-valued nature they referred to the value of an accepting
run. They showed that there always exists an accepting run of the EAA with amaximal value.
This maximal value defines the value of the emptiness of the automaton. In the multi-valued
game, on the other hand, it is not necessarily the case that there exists a strategy of Jloise with
a maximal value. This clearly demonstrates the discrepancy between automata and games in
the multi-valued setting.

Itis possibleto regain the relation to the automata-theoreti c approach by defining the game
differently. The aternative game is still played over the same game-graph, but the moves are
different. Initially, Jloise makes a statement with respect to the value of the initial node ny,
denoted bet (ng). In each node she proceeds by associating (possibly a subset) of its successors
with avaluein a consistent way based on the type of the node: in an v-node n the values have
to fulfill therule bet(n) = \/{R(n,n') A bet(n’) | R(n,n’) # L}.Inan A-node the values
have to fulfill the rule bet (n) = A{=R(n,n’) V bet(n’) | R(n,n’) # L}. Once abet ismade
on thevalue of anodeit cannot be changed. The role of Ybelard isthen to choose one successor
n’ for which Jloise needs to continue and prove the value bet(n’). Intuitively, Ybelard will try
to choose a successor for which the valueisincorrect.

In this definition we return to talking about winning versus losing. Intuitively, 3loise wins
if she manages to proceed without contradictions. Formally, if Jloise is stuck (meaning she
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cannot associate the successors of the current node with values according to the above rules)
then VYbelard wins. If the play endsin atermina configuration of the form s - ¢ or s - —g¢,
then Jloise winsiff the value she gave the node matches its real value (©(s)(¢) or =@(s)(g)
resp.). In an infinite play the winner is determined by the 2-valued winning conditions.

Note that here Jloise moves in both types of nodes, which changes the basic nature of the
game. However, we now have the desired property that the game is equivalent to the definition
used in the context of EAA. It now holds that an accepting run of the automaton with value
« corresponds to a winning strategy for Jloise with an initial bet of value «, and vice versa
Thus, there exists a maximum value for which 3loise has a winning strategy and thisvalue is
the multi-valued model checking result.

Our definition of the game is in fact more general than the automaton used in [4] as it
handles the multi-valued transitions of the structure directly.

7 Comparison to the 3-Valued Game

One of the most useful applications of multi-valued model checking is the 3-valued case.
In [24, 13] the regular model checking game has been generalized to a 3-valued game over
a KMTS (see Definition 7). A KMTS M can be viewed as a Kripke structure over lattice /5
by giving the must transitionsin R+ value T, the may transitionsin R~ \ RT vaue U/ and the
rest value L. In this section we compare the game of [13] to our general multi-valued game
I'% (s, @) and point out the main differences that make the 3-valued game much simpler.

When considering the 3-valued case, a play can have three possiblevalues: T, L or U (see
L3 inFig. 1). Inthiscase it is possible to give the indefinite value U an intuitive meaning of a
tie. If in addition we define T as winning of Jloise and L as winning of Ybelard we have the
following correspondence between the value of the game and the formula, given by a variant
of Theorem 1, with an additional possibility [13]:

(© [[go]]M(s) = U iff no player has awinning strategy for I"'a(s, ¢)

That is, in the 3-valued case we can till talk about the notion of winning in a way that
corresponds to the three possible values { T, U, L} in the logic [13]. This is unlike the multi-
valued case where we need to talk about the general notion of avalue of aplay or agame.

Another major difference arises from the fact that the lattice L5 has atotal order, meaning
that all values are comparable. As a result, in the 3-valued case a strategy has a precise value
(rather than alower bound) and the same holdsfor the game. That is, strategies are comparable
and there always exists a best strategy (either winning or non-winning) that determines the
value of the game.

The combination of these differences resultsin another interesting property of the 3-valued
game. As in the general multi-valued case, the result of the play in the 3-valued case also
depends on the values of the edges that were used. However, in[13] this effect is captured by
a consistency requirement that says that in order to win, the winner has to use only must edges
(with value T). The surprising part is that the opponent can use either type. Recall that in the
general multi-valued case, on the other hand, we need to consider not only the edges that one
player uses, but aso those used by the opponent.

Thisresultsfrom the fact that in the 3-valued case only one intermediate result is possible.
Furthermore, we have a total order on the elements of the lattice, which means that a value
cannot be achieved by a combination of valuesthat are all different from it. Thus the values of
the edges that the opponent uses in the 3-valued game cannot improve the result for the other
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player beyond atie (or U). Thus they are irrelevant when we determine awinner in the play —
recall that in the 3-valued case we are interested in the winner of the play. Thisisno longer the
case in the multi-valued case, where we are interested in the (more general notion of a) value
that each player achieves and this value can be achieved by a combination of several values,
possibly incomparable ones.
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