
Multi-Valued Model Checking Games

Sharon Shoham and Orna Grumberg

Computer Science Department, Technion, Haifa, Israel,
fsharonsh,ornag@cs.technion.ac.il

Abstract. This work extends the game-based framework of �-calculus model checking
to the multi-valued setting. In multi-valued model checking a formula is interpreted over
a Kripke structure defined over a lattice. The value of the formula is also an element of the
lattice. We define a new game for this problem and derive from it a direct model checking
algorithm that handles the multi-valued structure without any reduction. We investigate
the properties of the new game, both independently, and in comparison to the automata-
based approach. We show that the usual resemblance between the two approaches does
not hold in the multi-valued setting and show how it can be regained by changing the
nature of the game.

1 Introduction

Model checking [8] is a successful approach for verifying whether a system model M satisfies
a specification �, written as a temporal logic formula. In multi-valued model checking the
system is defined over a lattice L. Both the labelling of states and the transitions of the system
are interpreted as elements from the lattice. The meaning of a formula in the model is then also
given by an element of the lattice.

Multi-valuedmodel checking has many important applications within the verification frame-
work. For example, 3-valued model checking, where the logic is based on the lattice L� (see
Fig. 1), has been used to reason about abstract structures or structures with partial informa-
tion [2, 24, 13]. In this context the value U is used to model uncertainty, with the meaning
that the value can either be � or �. Recently, [1] has used a 6-valued logic as an extension of
this approach for falsification of properties. There, the value U is refined to recognize that at
least one concrete state falsifies the property or at least one concrete state satisfies the property.
Another useful lattice is the lattice L���, with the values �� and �� representing disagree-
ment (see Fig. 1). Model checking using this lattice (or its generalizations) has been used to
handle inconsistent views of a system [11, 17]. Temporal logic query checking [5, 3, 15] can
also be reduced to multi-valued model checking, where the elements of the lattice are sets of
propositional formulas.

One way of handling the multi-valued model checking problem is the reduction approach,
where the problem is reduced to several traditional 2-valued problems [12, 17, 18, 14, 4] or
3-valued problems [19].

As opposed to the reduction approach, the direct approach checks the property on the multi-
valued structure directly. It thus has the advantage of a more “on-the-fly” nature. Furthermore,
a direct model checker can provide auxiliary information that explains its result [24, 13]. When
using the reduction approach such information can only be gathered for each problem sepa-
rately. It thus becomes less useful.

Several direct model checking algorithms for various multi-valued logics have been sug-
gested in the literature. [2, 24, 13] studied the 3-valued case of CTL ([2, 24]) and the �-calculus



�

�

�

�

U

�

�

�� ��

�

�

U�
U�

L� L� L��� L�

Fig. 1. Examples of Lattices

([13]). In [6] the logic LTL was considered over finite linear orders. The general multi-valued
version of CTL was handled in [7]. Finally, an almost direct automata-based algorithm for
the multi-valued �-calculus was suggested in [4]. Their approach handled the multi-valued
labelling directly, but still used the reduction approach to handle multi-valued transitions.

In this paper we suggest a fully direct model checking for the multi-valued �-calculus,
where both the multi-valued labelling and the multi-valued transitions are handled directly. The
�-calculus [20] is a powerful formalism for expressing properties of transition systems using
fixpoint operators. It contains, for example, both CTL and LTL as its fragments. Our approach
refers to its multi-valued semantics based on any finite distributive DeMorgan lattice.

We base our algorithm on the game-theoretic approach [25] and thus gain all of its ad-
vantages [24, 13]. In the traditional game-based approach to model checking two players, the
verifier (called �loise) and the refuter (called �belard), try to win a game. A formula � is true
in a model M iff the verifier has a winning strategy, meaning that the verifier can win any play,
no matter what the refuter does.

We adapt this approach for the multi-valued case. In particular, we now talk about the
value of the game. It turns out that in the multi-valued case there does not necessarily exist a
best strategy for �loise. Instead, strategies may be incomparable and the value of the game is
determined by their combination.

We suggest two definitions of a multi-valued game for the �-calculus and prove their cor-
rectness. The proof turns out to be interesting in itself, as it uses similar techniques to those
used in the reduction approach of [4]. This is in spite of the fact that our approach handles the
multi-valued structure directly and uses no reductions.

When comparing our definitions to the work of [4], a surprising property is revealed. The
direct algorithm of [4] is based on automata [21]. It is usually the case that the game-based
and the automata-based approaches to model checking have a strong resemblance [22]. Yet,
in the multi-valued case we find that our definition of the multi-valued game is different in
essence from the automata-based approach of [4]. We discuss this difference and suggest an
alternative multi-valued game that regains the similarity to automata. More importantly, our
resulting framework in fact generalizes the work of [4], as it handles directly not only the
multi-valued labelling, but also the multi-valued transitions.

The game-based approach to model checking was already generalized to the 3-valued
case [24, 13]. However, it turns out that handling a general lattice, where there is more than
one intermediate value and the elements are only partially ordered, is substantially more com-
plex (see Section 7).

The rest of the paper is organized as follows. In Section 2 we give some background on
lattice theory, multi-valued�-calculus and model checking games. In Section 3 we provide our
main definition of the multi-valued model checking game and prove its correctness. A model
checking algorithm, based on the game, is then described in Section 4. In Section 5 we suggest
an alternative definition for the game. We then discuss the relation to the automata-theoretic
approach, which yields another definition of a multi-valued game, in Section 6. Finally, we
compare the general multi-valued game to the much simpler 3-valued case in Section 7.

2



2 Preliminaries

Lattices A lattice is a partially ordered set �L��� where for each finite subset of elements
there exists a unique greatest lower bound (glb) and least upper bound (lub). The glb is also
called meet and is denoted by x � y or

V
A (for x� y � L, A 	 L). The lub is also called join

and is denoted x
 y or
W
A.

Throughout this paper we refer to finite distributive DeMorgan lattices. Every finite lattice
is complete, meaning that it has a greatest element, called top, denoted �, and a least element,
called bottom, denoted�. In a distributive lattice x��y
z� � �z�y�
�x�y� and x
�y�z� �
�z
y�� �x
y� for all lattice elements x� y� z. In a DeMorgan lattice every element x � L has
a unique complement �x � L such that ��x � x, DeMorgan’s laws hold, and x � y implies
�y � �x 1.

A join-irreducible element x of a distributive lattice L is an element �� � for which x �
y
z implies x � y or x � z for every y� z � L. We denote the set of join-irreducible elements
of L by J �L�. For example �� � J �L����, but� �� J �L���� (see Fig. 1).

�-calculus [20] Let P be a finite set of atomic propositions and V a set of propositional
variables. We consider the logic �-calculus in negation normal form, defined as follows:

� ��� q j �q j Z j � 
 � j � � � j � j �� j �Z�� j �Z��

where q � P and Z � V. Let L� denote the set of closed formulas generated by the above
grammar, where the fixpoint quantifiers � and � are variable binders. We will also write �

for either � or �. Furthermore we assume that formulas are well-named, i.e. no variable is
bound more than once in any formula. Thus, every variable Z identifies a unique subformula
fp�Z� � �Z�� of �, where the set Sub��� of subformulas of � is defined in the usual way.

Semantics The concrete semantics of a �-calculus formula is given with respect to a Kripke
structureM � �S�R� 	�, where S is a finite set of states, R 	 S � S is a transition relation,
which must be total, and 	 � S � �P is a labelling function [8].

In this work we consider the multi-valued �-calculus [4], where formulas are interpreted
with respect to a Kripke structure defined over a lattice (also called 
Kripke structure). In
a Kripke structure over a lattice L, both the labelling and the transition relation have a multi-
valued nature:	maps a state to a mapping fromP to elements ofL, that is	 � S � �P � L�.
Furthermore,Rmaps pairs of states to lattice elements, that isR � S�S � L (see Example 1).
The totality requirement ofR is now given by the requirement that for each s � S there exists
some state s� � S withR�s� s�� �� �.

The semantics �����M� of a L� formula � w.r.t. a Kripke structure M � �S�R� 	� over
a lattice L and an environment � � V � �S � L�, where � explains the meaning of free
variables in �, is a mapping from S to L.

We assume M to be fixed and do not mention it explicitly anymore. With ��Z �� g� we
denote the environment that maps Z to g and agrees with � on all other arguments. Later, when
only closed formulas are considered, we will also drop the environment from the semantic
brackets. In the following definition f is an element of �S � L� � �S � L�, defined by
�g��������Z ��g� and �f , �f stand for the greatest and least fixpoints of f . According to [26], least
and greatest fixpoints of this functional exist since the functions in S � L form a complete
lattice under pointwise ordering and the functional f is monotone w.r.t. this ordering.

1 Since we refer to temporal logic in negation normal form, negation can be defined arbitrarily. We chose
to refer to DeMorgan lattices since they are most commonly used in this context.

3



s � �� � ��

s � �i
� � i � f�� �g

s � �� � ��

s � �i
	 � i � f�� �g

s � �Z��

s � Z
��	

s � Z

s � �
��	 � if fp�Z� � �Z��

s � 
�

t � �
� � R�s� t� �� �

s � ��

t � �
	 � R�s� t� �� �

Fig. 2. The 2-valued model checking game rules for L�.

��q��� �� �s�	�s��q�

���q��� �� �s��	�s��q�

��Z��� �� ��Z�

���� 
 ����� �� �s�������� 
 �������
���� � ����� �� �s�������� � �������

������ �� �s�
W
fR�s� s�� � �������s

�� j R�s� s�� �� �g

������� �� �s�
V
f�R�s� s�� 
 �������s

�� j R�s� s�� �� �g

���Z����� �� �f

���Z����� �� �f

Given �, �M� s� and L, computing the value of �����M�s� is called the multi-valued model
checking problem.

A regular Kripke structure M can be viewed as a Kripke structure over lattice L� (see
Fig. 1), by referring to the set of transitions and the set of atomic propositions that label a state
by their characteristic functions. In this case we write �M� s� j� � for �����M�s� � � and
�M� s� �j� � for �����M�s� � �.

Model Checking Games The 2-valued model checking game M�s�� ��� on a (regular)
Kripke structure M with state set S, state s� � S and a �-calculus formula �� is played
by players �loise (the prover) and �belard (the refuter) in order to determine the truth value
of �� in s�, cf. [25]. Configurations are elements of C 	 S � Sub����, and written t � �.
Each play of M�s�� ��� is a maximal sequence of configurations that starts with s� � ��.
The game rules are presented in Fig. 2. Each rule is marked by � / � to indicate which player
makes the move. A rule is applied when the player is in configuration Ci, which is of the form
of the upper part of the rule. Ci�� is then the configuration in the lower part of the rule. The
rules shown in the first and third lines present a choice which the player can make. Since no
choice is possible when applying the rules shown in the second line, both players can apply
them. If no rule can be applied the play terminates.

Winning Criteria: Player � wins a play C�� C�� � � � iff

1. there is an n � N, s.t. Cn � t � q with 	�t��q� � � or Cn � t � �q with 	�t��q� � �,
or

2. the outermost variable that occurs infinitely often is of type �.
Player � wins a play C�� C� � � � iff

4. there is an n � N, s.t. Cn � t � q with 	�t��q� � � or Cn � t � �q with 	�t��q� � �,
or

5. the outermost variable that occurs infinitely often is of type �.

4



Configurations of the form t � p or t � �p are called terminal configurations.
A (memoryless) strategy for player Q is a partial function � � C � C, such that its domain

is the set of configurations where player Q moves. Player Q plays a game according to a
strategy � if all his choices agree with �. A strategy for player Q is called a winning strategy
if player Q wins every play where he plays according to this strategy.

We have the following relation between the game and the semantics.

Theorem 1. Given a Kripke structure M � �S�R� 	�, an s � S, and � � L�:

(a) �����M�s� � � iff Player � has a winning strategy for M�s� ��,

(b) �����M�s� � � iff Player � has a winning strategy for M�s� ��

3 A Multi-Valued Game for the �-Calculus

In this section we investigate the multi-valued model checking problem from the game-theoretic
point of view. For the rest of the section let M be a Kripke structure over lattice L, s� a
state in M and �� a �-calculus formula. We suggest a multi-valued model checking game,
m
M

�s�� ���, for evaluating �� in state s� ofM.
The new game is still played by two players, �loise and �belard, and the moves of the

players are defined as in the 2-valued game (see Fig. 2). In particular, the players can base their
moves on the multi-valued transitions. However, the concept of winning needs to be adapted.
In fact, to capture the multi-valued nature of the problem, we no longer talk about winning a
play versus losing it. Instead, we now associate with each play a value which is an element
from the lattice.

In our definitions we take the point of view of �loise (we could dually describe the game
from the point of view of �belard)). Intuitively, we think of the value of a play as a measure for
how close �loise is to winning; Winning of �loise in the 2-valued case now corresponds to the
top value. Winning of �belard corresponds to the bottom value, but more values are possible.
In these terms, the goal of the players is no longer to win the play. Instead, the goal of �loise is
to maximize the resulting value, whereas the goal of �belard is to minimize this value.

Notation We refer to the configurations of m
M

�s�� ��� as nodes in a game graph. Nodes are
divided to 
-nodes, where �loise plays, versus �-nodes, where �belard plays. Moves between
configurations are edges in the graph. Each edge (move) has a value from the lattice: moves
that use a transition of the model get the value of the transition. The rest get the � value. We
abuse the notation of the transition relation and denote the value of an edge from n to n� by
R�n� n��. We refer to edges with values �� ��� as indefinite edges.

Example 1. Consider the Kripke structureM of Fig. 3 over lattice L, such that x� y� z� w � L.
The labels of the transitions define their values. Unlabelled transitions have value�. The states
labelling denotes that 	�s���r� � z, 	�s���h� � w and 	�s���q� � 	�s���q� � �, where
q� r� h are atomic propositions. Fig. 3 also shows the game-graph of the model checking game
m
M

�s�� ���, where �� � q � �r 
 h�. Again, the edges are labelled by their values.

3.1 Plays and their Values

A play in m
M

�s�� ��� is defined as before. To understand how we determine the value of a
multi-valued play, consider again a 2-valued play. As explained above, if the winner is �loise,

5



r � z
h � w

x y

s�

s� s�q � � q � � x y� �

�

n�

n� n�

n� n� n� n�

s� � ��

s� � 
q s� � r � h

s� � q � � s� � q � � s� � r � z s� � h � w

M �m
M�s�� ��� for �� � 
q � �r � h�

Fig. 3. Example of a Multi-Valued Game

then in the multi-valued context we view its value as �. Similarly, if the winner is �belard,
then we view the value as �. However, in the multi-valued case we have two extensions,
which introduce more values. First, the terminal nodes (t � q, t � �q) are no longer classified
as winning or losing, but they have a value which results from the value of q in the state t. This
affects the values of finite plays.

Furthermore, the moves are also multi-valued, due to the multi-valued nature of the model’s
transitions. The value that a player gains in the play also depends on the values of the transi-
tions that were used. Intuitively, one can think of the moves of �loise as attempts at proving
the formula and the moves of �belard as attempts at refuting it. In this context, the use of in-
definite edges in the multi-valued case is interpreted as a weak attempt at proving or refuting
(depending on the player).

Recall that we think of the value of the play as a measure for how close �loise is to winning.
Therefore, when evaluating a play we take the point of view of �loise. Conceptually, we first
give the play a base value, while ignoring the values of edges used. We then update the resulting
value based on the edges.

Definition 1. For a terminal node n � t � q, we define val�n� to be 	�t��q�. For n � t � �q
we define val�n� to be �	�t��q�.

Definition 2. Let p be a play in the game. We define its base value, denoted base�p�, as follows.
If p is a finite play, base�p� � val�n�, where n is the terminal node in which p ends. If p is
infinite, then base�p� � � if p is won by �loise in the 2-valued game. Otherwise base�p� � �.

We update the base value by taking into consideration the values of the edges used by both
players in the play. Intuitively, when �loise plays, she tries to show an evidence for truth. For
her evidence to be “convincing”, she needs to both continue to a position which is good for
her (meaning that the certainty of her verification from it is high), and also use an edge with a
high value (which corresponds in a way to high certainty). Consequently, the value of the play
is given by the glb of the value of the edge and the value of the rest of the play. On the other
hand, when �belard plays, he tries to refute. When looking at the situation from the point of
view of �loise, she succeeds in her goal better if �belard either reaches a position that is good
for her, or if he uses an edge of low value (alternatively: high negated value), in which case the
certainty of his refutation is low. Therefore, the value of the play in this case is given by the
lub of the negation of the value of the edge and the value of the rest of the play.

This intuition leads to a bottom-up computation of the value of a play. In order to formally
define it we need the following definitions.

Definition 3. Let p � n�� n�� � � � � nk be a finite prefix of a play, and let x � L be a base value.
We define update�p� x� by reverse induction. Initially, valk � x. Given vali, we define vali��

6



depending on the player that made the move from ni�� to ni. If it is �loise, then vali�� �
R�ni��� ni� � vali. If the player is �belard, then vali�� � �R�ni��� ni� 
 vali. Finally, we
let update�p� x� � val�.

Note that edges with value� do not change the base value since��x � x and��
x � x

for all x � L (since in a DeMorgan lattice �� � �).
This definition is directly applicable to defining the value of a finite play by taking x to be

the base of p. Unfortunately, it is not suitable for infinite plays.
To handle infinite plays, we use the following key observations. First, since the set of edges

in the game graph is finite, we know that the set of edges used in the play is finite, and thus
there exists a finite prefix of the (infinite) play that contains all of them. Furthermore, it turns
out that computing the value of the play by considering only such a (finite) prefix is sufficient,
in the following sense. We define the value val�pi� of a prefix pi of an infinite play p similarly
to the definition of the value of a finite play, except that the base value is set to the base value
of the entire infinite play p. That is, val�pi� � update�pi� base�p��. We now have the property
that the value of any prefix that contains all the edges used in p is the same.

Lemma 1. Let p be an infinite play and let pi� pj be two finite prefixes of p that contain all of
the edges that appear in p. Then val�pi� � val�pj�.

In other words, the play has a limit value. This property is surprising since when con-
sidering the values of increasingly longer prefixes, the resulting sequence is not necessarily
monotonic. Lemma 1 also implies that any finite prefix that contains all the edges of the play is
a good representative for computing this value. Intuitively, this results from the property that an
instance of an edge that is closer to the initial node, “absorbs” the effect of a further instance of
the same edge. We therefore define the value of an infinite play to be the value of the minimal
prefix that contains all the edges.

To sum up, the value of a play is defined as follows.

Definition 4. For a finite play p, val�p� � update�p� base�p��. For an infinite play p, val�p� �
update�pi� base�p��, where pi is the minimal prefix of p that contains all edges used in p.

Example 2. Consider again the game described in Fig. 3. Terminal nodes in the game-graph
are labelled by their values. One possible play in the game is � n�� n�� n� �. Its value is
��
�x��� � x. Another example is the play� n�� n�� n� � whose value is��
���z� �
z. More plays exist.

3.2 Strategies and their Values

As always, in order to talk about the relation to model checking, we need to talk about strate-
gies, rather than a single play. In the 2-valued game we talked about winning strategies and
we were guaranteed that exactly one of the players had one. In the multi-valued case, we no
longer talk about winning. Instead, we talk about the gain of each player in the game. There-
fore, the notion of a winning strategy is no longer what we need. Instead we need to talk about
strategies for gaining a value.

Consider again the 2-valued game. A winning strategy for �loise in the 2-valued game
guarantees that every play, where �loise plays by the strategy is winning for �loise (or has
value �). On the other hand, a non-winning strategy for �loise is such that there exists a play
where �loise plays by the strategy, but the play is winning for �belard (has value �). Thus,

7



we can say that a winning strategy for �loise ensures the value �, whereas a non-winning
strategy ensures only� (as it ensures a value � �, but not better than that). Furthermore, each
strategy is either winning for �loise (ensures value �) or non-winning (ensures only � �).
Thus, strategies are comparable, and there always exists a best strategy. The best strategy is a
winning strategy if one exists, or a non-winning one otherwise.

When we move to the general multi-valued case, a strategy for �loise is defined as usual.
However, unlike the usual case, here plays can have many values, which may be incomparable
to one another. Given a strategy �� for �loise, the value that will be achieved in practice
depends on the choices of �belard. We want the value of �� to be a lower bound on the set of
all possible values that can be achieved in plays where �loise plays by ��, with the meaning
that the strategy ensures a value which is greater or equal than its value. We choose the greatest
possible lower bound, which characterizes the strategy as precisely as possible.

Definition 5. Let �� be a strategy for �loise. We define val���� �
V
fval�p� j p is a play by ��g

This definition implies that �loise can always achieve a value� val���� in any play where
she plays by the strategy ��. Note that since val���� is given by the glb of possibly incom-
parable values, it is now possible that there does not exist a play with value val���� by this
strategy, but still the strategy cannot ensure a strictly better (higher) value.

Similarly to the phenomenon of several values achieved by a single strategy, it may be
the case that �loise has several different strategies, with incomparable values. �loise chooses
which of her strategies to use. We therefore define the value that she achieves in the game to
be the least upper bound on the values of all her strategies. It gives us an upper bound, precise
as possible, for the values that �loise can achieve in the game, with the meaning that �belard
cannot enforce any value which is strictly lower than that.

Definition 6. Let m
M

�s�� ��� be a multi-valued play. Then

val�m
M�s�� ���� �

�
f� j �loise has a strategy �� with value val���� � �g

Note that in the general case, �loise does not necessarily have a best strategy that achieves
the lub. However, if the lattice has a total order then such a best strategy exists.

Example 3. In the game of Fig. 3 �loise has two possible moves from n� and n� (these are
the nodes where she moves). Therefore she has four possible (memoryless) strategies – one for
each combination. Consider for example the strategy �� in which �loise always proceeds to
the left successor. The choice in n� is of �belard, therefore there are two possible plays by this
strategy: � n�� n�� n� � (when �belard chooses the left successor of n�) and � n�� n�� n� �

(when �belard chooses the right successor of n�) whose values are x and z respectively (see
Example 2). Since the choice between the plays is of �belard, the value of the strategy is the
glb of their values. That is, val���� � x � z. This means that by ��, �loise can only ensure
a value which is � x � z, where possibly x � z is strictly smaller than both x and z (see for
example �� and �� in L���).

Similarly, we get val���� � x � w, val���� � y � z and val��	� � y � w. Since �loise
chooses which strategy to use, the value of the game is then defined to be val�m

M
�s�� ���� �

val���� 
 val���� 
 val���� 
 val��	� � �x � z� 
 �x � w� 
 �y � z� 
 �y � w�. Note,
that if all the latter values are incomparable, then �loise does not have a unique best strategy.
By distributivity, we now get that val� m

M
�s�� ���� � �x � �z 
 w�� 
 �y � �z 
 w�� �

�x
y�� �z
w�. An inspection of the model shows that this is the value of ������
M�s��, which

demonstrates the correctness of the game (see Theorem 2 in the following section).

8



Remark 1. One can think of the value of the game in the regular 2-valued case (from the point
of view of �loise), as defined by the following formula

������ � val�outcome��� � ���� � �

where �� denotes a strategy for �belard and outcome���� ��� is the (unique) play defined by
the combination of �� and ��. This formula describes the condition for a game to be won by
�loise: it requires that �loise has a winning strategy ��, meaning that for each possible strategy
�� of �belard, the resulting play is winning for �loise (has value �).

Similarly, in the multi-valued case, the definition of val���� can be rephrased as val���� �V
��
fval�outcome���� ����g. This makes

val�m
M�s�� ���� �

�

��

f
�

��

fval�outcome���� ����gg

That is, we in fact replace the � quantifier by the lub operator and replace the � quantifier by the
glb operator, since there is no longer a best strategy for �loise, and no longer a best strategy for
�belard. A similar phenomenon happens when considering probabilisticgames [10], where it is
possible that the limit probability in which �loise wins is 1, but there is no strategy that achieves
probability 1. Instead, for every probability, as close to 1 as we want, there is a strategy that
achieves it. We then also replace the � and � quantifiers by supremum and infimum respectively.

3.3 Correctness

We now formalize and prove the correctness of the multi-valued model checking game.

Theorem 2. LetM be a Kripke structure over lattice L, s� a state inM and �� a �-calculus
formula. Then val�m

M
�s�� ���� � ������

M
�s��.

To prove the theorem, we first give an alternative definition for the value of val�m
M

�s�� ����,
which mainly results from Birkhoff’s representation theorem for finite distributive lattices.

Lemma 2. val�m
M

�s�� ���� �
W
f� j �loise has a strategy �� with value val���� � �g

�
�
f� � J �L� j �loise has a strategy �� with value val���� � �g

We now use similar techniques to those used in the reduction approach of [4]. There, the
multi-valued model checking problem is reduced to several 2-valued model checking prob-
lems. First, to avoid a technical problem with negated atomic propositions, the formula is
transformed to a formula with no negation symbols, by replacing each negated proposition�q
by a new atomic proposition q�. The labelling function 	 of M is extended to 	� by setting
	��s��q�� � �	�s��q�. Then, the Kripke structure M over L is reduced to several Kripke
Modal Transition Systems (KMTSs).

Definition 7. [16] A Kripke Modal Transition System (KMTS) is a tuple �M � � �S � R�� R�� �	�
with a must transition relation R� 	 S � S and a may transition relation R� 	 S � S. The
labelling is given by �	 � �S � �P � L��.

More specifically, given a join-irreducible element � ofL, a reduced KMTSM� is defined
by setting

	��s��q� � 	�s��q� � �

R�
� �s� s�� � R�s� s�� � �

R�� �s� s�� � �R�s� s�� �� �

The formula is then interpreted over the KMTS M� w.r.t. a 2-valued semantics, with the
main difference being that

9



�����M�

� �� �s�
W
fR�

� �s� s�� � �����M�

� �s�� j all s�g

������M�

� �� �s�
V
f�R�� �s� s�� 
 �����M�

� �s�� j all s�g

As shown in [4], it then holds that �M�� s�� j� �� � � � ������
M�s��, and the following

lemma is implied.

Lemma 3. [4] ������
M�s�� �

W
f� � J �L� j �M�� s�� j� ��g.

We use the above results to prove the correctness of our multi-valued game. For this pur-
pose we show that

Lemma 4.
W
f� � J �L� j �loise has a strategy �� with value val���� � �g �

W
f� �

J �L� j �M�� s�� j� ��g.

Combining this lemma with Lemmas 2 and 3 implies that val�m
M

�s�� ���� � ������
M

�s��.

Proof. To prove Lemma 4 we refer to the 2-valued game for KMTSs, defined in [23]. The 2-
valued game for KMTSs is similar to the 2-valued game for Kripke structures. The difference
is that �loise uses only must-transitions, whereas �belard uses may-transitions. The winning
conditions remain as before, with the exception that a player can get stuck (if R� or R� is not
total), in which case he loses. Theorem 1 holds for this case as well. In our case this means that
�loise has a winning strategy in the 2-valued game over M� iff �M�� s�� j� ��.

We show a 1-1 correspondence between strategies of �loise with value � � in the multi-
valued game over M and winning strategies for �loise in the 2-valued game over the KMTS
M�.

We use the following property of join-irreducible elements in a distributive lattice L. If �
is a join-irreducible element of L and y� z � L, then � � y 
 z iff � � y or � � z [9].

Let � be a strategy for �loise with val��� � �. We show that the same strategy is a winning
strategy in the 2-valued game. Consider a play played by this strategy in the 2-valued case. We
show that �loise wins it. We know that in the multi-valued game its value is � �.

First, if the play is infinite (in the 2-valued case) then the value y of each edge used by
�belard is such that �y �� � (otherwise it does not exist as a may-edge). Thus for the value
of the play to be � �, its base value has to be �. This is because only edges of �belard can
increase the value and by the previous property they cannot increase a base value of � to be
� �, since � is join-irreducible. Since the base value is �, we conclude that the play fulfills
the winning criteria of �loise in the 2-valued game.

If the play is finite (in the 2-valued case) then we first show that it cannot be the case that
�loise is stuck. If �loise is stuck it means that the strategy defines for her to use an edge with
a value y �� � (that does not exist as a must-edge in the 2-valued case). The same reasoning as
before shows that for the value of the play to be � �, there had to be an earlier edge of �belard
with value y such that �y � �, but such an edge does not exist as a may-edge in the 2-valued
play, which leads to contradiction. Thus, either �belard gets stuck, in which case �loise wins,
or the play ends in a terminal node labeled by an atomic proposition n � s � q. In the latter
case, we again conclude by the same reasons that val�n� � �, thus 	�s��q� � � and in the
KMTS M� this implies 	��s��q� � � and �loise wins.

For the other direction, let � be a winning strategy for �loise in the 2-valued game. Once
again, we show that the same strategy has a value � � in the multi-valued game, with the
exception that if � does not define a move from some configuration, we extend it arbitrarily.
To prove that val��� � � we show that the value of every play where �loise plays by (the
extended) � in the multi-valued game has value � �. Consider such a play.

10



First, if the same play exists in the 2-valued game, then it is winning for �loise, making
its base value �. Furthermore, all the edges used by �loise are must-edges, with values � �.
Since only edges of �loise can decrease the value of the play, this ensures that the value of the
play is � �.

If the play does not exist in the 2-valued game, it means that one of two possibilities oc-
curred. The first one is that �belard used an edge that does not exist as a may-edge in the
2-valued game, meaning that its value y fulfills �y � �. But this immediately increases the
value of the suffix of the play from that point to be � �. By the same reasons as before the
prefix of the play does not decrease the value below �, and thus it remains � �. The second
possibility is that �loise used an edge that does not exist in the 2-valued game. This could only
happen if the play reached a configuration where � was extended. This means that originally,
in the 2-valued game, this configuration was not reachable by �. But then it has to be the case
that in order to reach it �belard made a move that was not possible in the 2-valued game, and
we return to the first possibility. ut

4 Solving the Multi-Valued Game

In this section we discuss how to solve the multi-valued model checking game. Given a game
m
M

�s�� ��� our purpose is to compute its value. By Theorem 2 this gives us the result of the
multi-valued model checking problem for M, s� and ��. Since the game is defined directly
on the multi-valued Kripke structure, we get a direct model checking algorithm for the multi-
valued problem, that has all the advantages of the game-theoretic approach [24, 13].

As usual, we solve the game by processing the game-graph and evaluating each node in it.
The difference as opposed to the 2-valued case is that we need to propagate values from the
lattice. We demonstrate this change for the alternation-free fragment of the �-calculus, where
no nesting of fixpoints is allowed.

We partition the game graph to Maximal Strongly Connected Components (MSCCs) and
determine a (total) order on them, reflected by their numbers: Q�� � � � � Qk. The order fulfills
the rule that if i � j then there are no edges from Qi to Qj. Such an order exists because the
MSCCs of the game-graph form a directed acyclic graph (DAG). The components are handled
bottom-up.

Consider a single componentQi. We label each of its nodes nwith a value, denoted res�n�,
as follows. A terminal node n is given the value val�n�. For an 
-node n we set res�n�
to be

W
fR�n� n�� � res�n�� j R�n� n�� �� �g. Similarly, if n is an �-node then res�n� �V

f�R�n� n�� 
 res�n�� j R�n� n�� �� �g.
To handle Qi’s that form a non-trivial MSCC, we use the following observation: when

dealing with the alternation-free fragment of the �-calculus, an infinite play has exactly one
variable that occurs infinitely often [25]. Therefore, if Qi is a non-trivial MSCC then it con-
tains exactly one fixpoint variable Z. In this case we first label the nodes in Qi with temporary
values, temp�n�, that are updated iteratively. For nodes of the form nw � t � Z we initialize
temp�nw� to � if Z is of type �, or to � if Z is of type � (the rest of the nodes remain unini-
tialized). We then apply the previous rules until the temporary values do not change anymore.
Finally, we set res�n� � temp�n� for every node n in Qi. Intuitively, this algorithm imitates
the iterative computation of the fixpoint.

Several optimizations can be made on this computation. For example, consider an 
-node
n with a successor n� for which res�n�� is already computed. Furthermore, suppose that the
values of edges leading to the rest of the successors of n have values� R�n� n���res�n��. This

11



s � 
�

�s� t� � 
�
� � R�s� t� �� �

s � ��

�s� t� � ��
	 � R�s� t� �� �

�s� t� � 
�

�s� t� � � or t � �
	

�s� t� � ��

�s� t� � � or t � �
�

Fig. 4. New rules for �d
M�s�� ���.

means that the rest of the successors cannot increase the result of the lub over all successors of
n and we can immediately set res�n� to be R�n� n�� � res�n��, regardless of whether or not
the rest of its successors were handled. Such optimizations can spare us the need to process
big subgraphs.

Theorem 3. Let M be a Kripke structure over L. Then for every state s� in M and every
closed �-calculus formula ��, we have that val�m

M
�s�� ���� � res�s� � ���. We conclude

that ������
M� �s�� � res�s� � ���.

5 Avoiding Multi-Valued Edges in the Game

Recall that the multi-valued edges used in the game posed a problem when we wanted to
define the value of an infinite play. Our treatment of such plays strongly relied on the finite
nature of the Kripke structure and the game graph. In this section we suggest a different way
of overcoming the problem, which is also suitable for infinite structures. The new definition
makes the value of a play much simpler to define.

We change the rules of the game, and in fact reduce the multi-valued edges into more
multi-valued terminal nodes. We wish to emphasize that the reduction is performed in the
game level, rather than the model level. That is, the Kripke structure that the game is based on
still has multi-valued transitions.

The main idea is to split every move along a multi-valued transition (of the model) into
two moves: first the player who is supposed to play chooses a transition. Then, the opponent
chooses whether he wants to examine the value of the transition or to continue in the play. If
he chooses the transition, the play ends with this value. This means that there are no longer
multi-valued edges in the game. We only have multi-valued terminal nodes.

Formally, given a Kripke structure M over lattice L, a state s� and a �-calculus formula
��, we define d

M
�s�� ��� as follows.

The configurations of the game are as before, with additional configurations of the form
�s� t� � �, �s� t� � ��, �s� t� � � and �s� t� � �. The new configurations act as intermediate
configurations for the new rules of the game. The rules are given by Fig. 2, where the rules in
the third line are replaced by the rules in Fig. 4.

For example, in a configuration of the form s � �, �loise chooses, as usual, a transition
that is supposed to show evidence for �. Since it is a move of �loise, we have the meaning
of the lub of all possibilities. However, the next move is a move of �belard, with the meaning
of the glb between the two options. This means that for each possibility of �loise we examine
the glb of both the value of the transition and the value of the rest of the play. Configurations
of the form s � �� are handled dually.

Configurations of the form �s� t� � � and �s� t� � � are (new) terminal configurations.
A configuration of the form �s� t� � � is reached when �belard challenges the transition that
�loise chose from s � �. It expresses the fact that we are interested in the value of R�s� t�

12



that determines the certainty in which �loise tries to prove the existential property. Dually,
a configuration of the form �s� t� � � is reached when �loise challenges the transition that
�belard chose from s � ��. In this case, we are interested in the value of �R�s� t�, since from
the point of view of �loise, her chances of proving are better as the value of R�s� t� used by
�belard for refutation is lower (alternatively: �R�s� t� is higher). Following this intuition, we
add the following definition.

Definition 8. For a terminal node n � �s� t� � �, we define val�n� to be R�s� t�. For n �
�s� t� � � we define val�n� to be �R�s� t�.

Since there are no longer multi-valued edges in the game, the value of a play is now deter-
mined to be the base value, as defined earlier (see Definition 2) – no update is needed. The rest
of the definitions of strategies, their values and the value of the game remain unchanged. The
following theorem ensures that we get the same value in the new game, thus the correctness of
the game is maintained.

Theorem 4. Let M be a Kripke structure over lattice L, with a state s� and let �� be a �-
calculus formula. Then val� d

M
�s�� ���� � val�m

M
�s�� ����.

6 Discussion: Games versus Automata

In this paper we have investigated the multi-valued model checking problem from the game-
theoretic point of view. In [4] the same problem was considered from the automata-theoretic
point of view. There, model checking is performed by checking the nonemptiness of an au-
tomaton that represents the product of the model and the checked formula. In this section we
discuss the essential difference between the two approaches in the multi-valued case.

It is well-known that the two approaches – game-based and automata-based – are closely
related in the 2-valued setting: an accepting run corresponds to a winning strategy for �loise
and vice versa [22]. Surprisingly, the same relation does not hold anymore in the multi-valued
case. More specifically, in [4] extended alternating automata (EAAs) were used as the basis for
model checking. To capture the multi-valued nature they referred to the value of an accepting
run. They showed that there always exists an accepting run of the EAA with a maximal value.
This maximal value defines the value of the emptiness of the automaton. In the multi-valued
game, on the other hand, it is not necessarily the case that there exists a strategy of �loise with
a maximal value. This clearly demonstrates the discrepancy between automata and games in
the multi-valued setting.

It is possible to regain the relation to the automata-theoretic approach by defining the game
differently. The alternative game is still played over the same game-graph, but the moves are
different. Initially, �loise makes a statement with respect to the value of the initial node n�,
denoted bet�n��. In each node she proceeds by associating (possibly a subset) of its successors
with a value in a consistent way based on the type of the node: in an 
-node n the values have
to fulfill the rule bet�n� �

W
fR�n� n�� � bet�n�� j R�n� n�� �� �g. In an �-node the values

have to fulfill the rule bet�n� �
V
f�R�n� n�� 
 bet�n�� j R�n� n�� �� �g. Once a bet is made

on the value of a node it cannot be changed. The role of �belard is then to choose one successor
n� for which �loise needs to continue and prove the value bet�n��. Intuitively, �belard will try
to choose a successor for which the value is incorrect.

In this definition we return to talking about winning versus losing. Intuitively, �loise wins
if she manages to proceed without contradictions. Formally, if �loise is stuck (meaning she

13



cannot associate the successors of the current node with values according to the above rules)
then �belard wins. If the play ends in a terminal configuration of the form s � q or s � �q,
then �loise wins iff the value she gave the node matches its real value (	�s��q� or �	�s��q�
resp.). In an infinite play the winner is determined by the 2-valued winning conditions.

Note that here �loise moves in both types of nodes, which changes the basic nature of the
game. However, we now have the desired property that the game is equivalent to the definition
used in the context of EAA. It now holds that an accepting run of the automaton with value
� corresponds to a winning strategy for �loise with an initial bet of value �, and vice versa.
Thus, there exists a maximum value for which �loise has a winning strategy and this value is
the multi-valued model checking result.

Our definition of the game is in fact more general than the automaton used in [4] as it
handles the multi-valued transitions of the structure directly.

7 Comparison to the 3-Valued Game

One of the most useful applications of multi-valued model checking is the 3-valued case.
In [24, 13] the regular model checking game has been generalized to a 3-valued game over
a KMTS (see Definition 7). A KMTS M can be viewed as a Kripke structure over lattice L�
by giving the must transitions in R� value �, the may transitions in R� nR� value U and the
rest value �. In this section we compare the game of [13] to our general multi-valued game
m
M

�s� �� and point out the main differences that make the 3-valued game much simpler.
When considering the 3-valued case, a play can have three possible values: �,� or U (see

L� in Fig. 1). In this case it is possible to give the indefinite value U an intuitive meaning of a
tie. If in addition we define � as winning of �loise and � as winning of �belard we have the
following correspondence between the value of the game and the formula, given by a variant
of Theorem 1, with an additional possibility [13]:

(c) �����M�s� � U iff no player has a winning strategy for M�s� ��

That is, in the 3-valued case we can still talk about the notion of winning in a way that
corresponds to the three possible values f�� U��g in the logic [13]. This is unlike the multi-
valued case where we need to talk about the general notion of a value of a play or a game.

Another major difference arises from the fact that the lattice L� has a total order, meaning
that all values are comparable. As a result, in the 3-valued case a strategy has a precise value
(rather than a lower bound) and the same holds for the game. That is, strategies are comparable
and there always exists a best strategy (either winning or non-winning) that determines the
value of the game.

The combination of these differences results in another interesting property of the 3-valued
game. As in the general multi-valued case, the result of the play in the 3-valued case also
depends on the values of the edges that were used. However, in [13] this effect is captured by
a consistency requirement that says that in order to win, the winner has to use only must edges
(with value �). The surprising part is that the opponent can use either type. Recall that in the
general multi-valued case, on the other hand, we need to consider not only the edges that one
player uses, but also those used by the opponent.

This results from the fact that in the 3-valued case only one intermediate result is possible.
Furthermore, we have a total order on the elements of the lattice, which means that a value
cannot be achieved by a combination of values that are all different from it. Thus the values of
the edges that the opponent uses in the 3-valued game cannot improve the result for the other

14



player beyond a tie (or U ). Thus they are irrelevant when we determine a winner in the play –
recall that in the 3-valued case we are interested in the winner of the play. This is no longer the
case in the multi-valued case, where we are interested in the (more general notion of a) value
that each player achieves and this value can be achieved by a combination of several values,
possibly incomparable ones.

References

1. T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. In CAV, 2005.
2. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal logics. In

Computer Aided Verification, pages 274–287, 1999.
3. G. Bruns and P. Godefroid. Temporal logic query checking. In LICS. IEEE, 2001.
4. G. Bruns and P. Godefroid. Model checking with multi-valued logics. In ICALP, 2004.
5. W. Chan. Temporal-logic queries. In CAV, volume 1855 of LNCS, pages 450–463, 2000.
6. M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space systems with fine-

grained abstractions using spin. In SPIN Workshop, volume 2057 of LNCS, 2001.
7. M. Chechik, B. Devereux, A. Gurfinkel, and S. Easterbrook. Multi-valued symbolic model-checking.

Technical Report CSRG-448, University of Toronto, April 2002.
8. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, 1999.
9. B.A. Davey and H.A. Priestly. Introduction to Lattices and Order. Cambrifge University Press,

1990.
10. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. In STOC, 2001.
11. S.M. Easterbrook and M. Chechik. A framework for multi-valued reasoning over inconsistent view-

points. In ICSE, pages 411–420, 2001.
12. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking. In CAV,

volume 2404 of LNCS, pages 137–150, 2002.
13. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in the �-calculus. In VMCAI,

2005.
14. A. Gurfinkel and M. Chechik. Multi-valued model checking via classical model checking. In CON-

CUR, pages 263–277, 2003.
15. A. Gurfinkel, B. Devereux, and M. Chechik. Model exploration with temporal logic query checking.

In FSE, pages 139–148. ACM, 2002.
16. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation for three-valued

program analysis. In ESOP, volume 2028, pages 155–169, 2001.
17. M. Huth and S. Pradhan. Lifting assertion and consistency checkers from single to multiple view-

points. Technical Report 2002/11, Dept. of Computing, Imperial College, London, 2002.
18. B. Konikowska and W. Penczek. Reducing model checking from multi-valued CTL* to CTL*. In

CONCUR, volume 2421 of LNCS, 2002.
19. B. Konikowska and W. Penczek. Model checking multi-valued modal mu-calculus: Revisited. In

Proc. of CS&P’04, 2004.
20. D. Kozen. Results on the propositional �-calculus. TCS, 27, 1983.
21. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model

checking. Journal of the ACM (JACM), 47(2):312–360, 2000.
22. M. Leucker. Model checking games for the alternation free mu-calculus and alternating automata.

In LPAR, 1999.
23. S. Shoham. A game-based framework for CTL counterexamples and abstraction-refinement. Mas-

ter’s thesis, Dept. of Computer Science, Technion - Israel Institute of Technology, 2003.
24. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-valued

abstraction-refinement. In CAV, volume 2725 of LNCS, pages 275–287, 2003.
25. C. Stirling. Local model checking games. In CONCUR, volume 962 of LNCS, 1995.
26. A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific J.Math., 5:285–309,

1955.

15


