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Abstract

This work presents a collection of methods� integrating symmetry reduction�
under�approximation� and symbolic model checking in order to reduce space and
time for model checking� The main goal of this work is falsi�cation� However�
under certain conditions our methods provide veri�cation as well�

We �rst present algorithms that perform on�the��y model checking for tempo�
ral safety properties� using symmetry reduction� We then extend these algorithm
for checking liveness properties as well�

Our methods are fully automatic� The user should supply some basic infor�
mation about the symmetry in the veri�ed system� However� the methods are
robust and work correctly even if the information supplied by the user is incorrect�
Moreover� the methods return correct results even in case the computation of the
symmetry reduction has not been completed due to memory or time explosion�

We implemented our methods within IBM�s model checker RuleBase� and
compared the performance of our methods with that of RuleBase� In most cases�
our algorithms outperformed RuleBase with respect to both time and space�
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� Introduction
This work presents a collection of methods� integrating symmetry reduction� under�
approximation� and symbolic model checking in order to reduce space and time for
model checking� The main goal of this work is falsi�cation� that is� proving that
a given system does not satisfy its speci�cation� However� under certain conditions
our methods provide also veri�cation� i�e�� they prove that the system satis�es its
speci�cation�

Our methods are fully automatic� The user should supply some basic information
about the symmetry in the veri�ed system� However� the methods are robust and
work correctly even if the information supplied by the user is incorrect� Moreover� the
methods return correct results even in case the computation of the symmetry reduction
has not been completed due to memory or time explosion�

Temporal logic model checking ��	 is a technique that accepts a �nite state model
of a system and a temporal logic speci�cation and determines whether the system
satis�es the speci�cation� The main problem of model checking is its high memory
requirements� Symbolic model checking �
�	� based on BDDs ��	� can handle larger
systems� but is still limited in its capacity� Thus� additional work is needed in order to
make model checking feasible for larger systems�

This work exploits symmetry reduction in order to reduce the memory and time
used by symbolic model checking� Symmetry reduction is based on the observation
that many systems consist of several similar components� Exchanging the role of such
components in the system does not change the system behavior� Thus� system states
can be partitioned into equivalence classes called orbits� and the system can be veri�ed
by examining only representative states from each orbit�

Two main problems arise� however� when combining symbolic model checking with
symmetry reduction� One is building the orbit relation and the other is choosing a
representative for each orbit� �
�	 proves that the BDD for the orbit relation is ex�
ponential in the number of the BDD variables� and suggests choosing more than one
representative for each orbit in order to obtain a smaller BDD for the orbit relation�
Yet� this method does not solve the problem of choosing the representatives� The choice
of representatives is signi�cant since it strongly in
uences the size of the BDDs repre�
senting the symmetry�reduced model� �
�	 suggests to choose generic representatives�
This approach involves compiling the symmetric program to a reduced model over the
generic states� and such a compilation can only be applied to programs written with
a special syntax in which symmetry is de�ned inside the program� �
�	 introduces an
algorithm for explicit model checking which chooses as a representative for an orbit
the �rst state from this orbit� discovered by the DFS� This method avoids choosing
the representative in advance� Unfortunately� it is not applicable to symbolic model
checking since performing DFS is very ine�cient with BDDs�

We suggest a new approach that avoids building the orbit relation and chooses
representatives on�the�
y while computing the reachable states� Unlike �
�	 the choice
of the representatives is guided by BDD criteria� Reachability is performed using under�
approximation which� at each step� explores only a subset of the reachable states� Some
of the unexplored states are symmetric to the explored ones� By exploiting symmetry
information� those states will never be explored� Thus� easier symbolic forward steps
are obtained�






We �rst apply this approach for verifying properties of the form AG�p��� where p is
a boolean formula� If we �nd a �bad� state that does not satisfy p� then we conclude
that the checked system does not satisfy AG�p�� On the other hand� if no �bad�
state is found we cannot conclude that the system satis�es AG�p� since reachability
with under�approximation does not necessarily explore every reachable state� We next
present a special version of the previous algorithm in which the under�approximation is
guided by hints ��	� Under certain conditions this algorithm can also verify the system�

The algorithms described above are based on reachability� and are often referred
to as on�the��y model checking� It is well known how to extend on�the�
y model
checking for AG�p� to verifying general safety temporal properties� This is done by
building an automaton describing the property and running it together with the system�
We speci�ed conditions on the automaton that guarantee the correctness of the on�
the�
y algorithm also when the automaton runs together with the symmetry�reduced
model� The suggested conditions hold for the tableau construction used for symbolic
LTL model checking ��	� when restricted to LTL safety properties� They also hold
for the satellite used in symbolic model checking of RCTL formulas ��	� By running
the automaton together with the reduced model we save both space and time while
verifying these type of formulas�

On�the�
y model checking cannot handle liveness properties� In order to handle
such properties we developed two extensions combining symmetry reduction with clas�
sical �not on�the�
y� symbolic model checking� One is easy to perform and is mainly
suitable for falsi�cation� The other is more expensive but can handle veri�cation as
well�

Previous works expect the user to provide a symmetry group that is also an in�
variance group �
�	� In many cases two formulas checked on the same model require
di�erent invariance groups since each formula breaks di�erently the symmetry of the
model� Thus� the user needs to supply di�erent invariance group for di�erent formulas�
In other works ���� �	 the program is written in a special syntax which enables �nding
the invariance group according to this syntax� In these cases only formulas which do
not break the symmetry of the model are allowed�

In contrast� we build the invariance group automatically� once the symmetry group
is given� Supplying the symmetry group usually requires only a high level understand�
ing of the system and therefore is easier than supplying the invariance group�

We implemented our methods within the enhanced model checking tool Rule�
Base �
	� developed by the IBM Haifa Research Laboratories� and compared the perfor�
mance of our methods with that of RuleBase� Our experiments show that our methods
performed signi�cantly better� with respect to both time and space� in checking live�
ness properties� For temporal safety properties they achieved better time requirements�
However� their space requirements were worse for small examples and identical for larger
ones�

The rest of the paper is organized as follows� Section � gives some basic de�nitions�
Section � shows how to build the invariance group� Section � presents an algorithm
for on�the�
y symbolic model checking with symmetry reduction and then introduces
hints into this algorithm� Section � and � handle temporal safety properties and liveness
properties� respectively and Section � presents our experimental results� We conclude

�AG�p� means that p holds along every path� in every state on the path�
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in Section � with directions for future research�

� Preliminaries
Let AP be a set of atomic propositions� We model a system by a Kripke structure M
over AP � M � �S� S�� R� L� where S is a �nite set of states� S� is a set of initial states�
R � S � S is a total transition relation� and L � S � �AP is a labeling function which
labels each state with the set of atomic propositions true in that state�

As the speci�cation language we use the branching time temporal logic CTL� de�ned
over AP� The semantics of CTL is de�ned with respect to a Kripke structure� We write
M j� � to denote that the formula � is true in M � For a formal de�nition of CTL and
its semantics see ��	�

ACTL is the sub�logic of CTL in which all formulas contain only universal path
quanti�ers� A CTL formula is boolean if it contains only atomic propositions and
boolean operators� A formula � is a maximal boolean sub�formula of a CTL formula �
if � is a boolean sub�formula of � and for all sub�formulas �� of �� if � is a sub�formula
of �� then �� is not boolean�

The bisimulation equivalence and simulation preorder are relations over Kripke
structures �see ��	 for de�nitions� that have useful logical characterizations� We write
M �bis M

� to denote that M and M � are bisimulation equivalent and M �sim M � to
denote that M is smaller than M � by the simulation preorder� The following lemmas
relate bisimulation and simulation with logics�

Lemma ��� ��� For every CTL formula � over atomic propositions AP and two Kripke
structures M� M � over AP� if M �bis M

� then M � j� ��M j� �	

Lemma ��� �
�� For every ACTL formula � over AP and two Kripke structures M�
M � over AP� if M �sim M � then M � j� ��M j� �	

��� BDDs
A Binary Decision Diagram �BDD� ��	 is a data structure for representing boolean
functions� BDDs are de�ned over boolean variables� they are often �but not always�
concise in their memory requirement� and most boolean operations can be performed
e�ciently on BDD representations� In �
�	 it was shown that BDDs can be very useful
for representing Kripke structures and performing model checking symbolically� One
of the most useful operations in model checking and in particular on�the�
y model
checking is the image computation� Given a set of states S and a relation T � represented
by the BDDs S��v� and T ��v� �v�� respectively� the image computation �nds the set of all
states related by T to some state in S�
De�nition ��� ImT �S��v�� � ��v�S��v� 	 T ��v� �v���

��� Partial search
While symbolic model checking can be very e�cient� it can still su�er from explosion
in the BDD size� One of the solutions is to perform partial search of the reachable
state space while avoiding large BDDs �
�	� Other methods perform partial search
which is guided by the user ��	 or by the checked speci�cation ��
	� In all methods the
set of reachable states discovered in each step is an under approximation of the set
of reachable states which would have been discovered in BFS� This property enables
combining partial search with on�the�
y model checking�
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��� The product model and the restricted model

We now de�ne two special Kripke structures that will be used later�
De�nition ��� Let M� M � be two Kripke structures de�ned over the sets of atomic
propositions AP and AP �� respectively	 The product structure of M and M � is a Kripke
structure over AP 
 AP � de�ned as follows	 M � M � � �SM�M � � S�M�M � � RM�M ��

LM�M �� where

� SM�M � � f �s� s�� j s � S 	 s� � S� 	 L�s� 
AP � � L��s�� 
APg	

� S�M�M � � f �s� s�� j �s� s�� � SM�M � 	 s � S� 	 s� � S�� g	

� ��s� s��� �t� t�� � SM�M � � ��s� s��� �t� t��� � RM�M � � �s� t� � R 	 �s�� t�� � R�	

� ��s� s�� � SM�M � � L��s� s��� � L�s� 
 L��s��	

De�nition ��� Let M be a Kripke structure and A be a subset of S	 The restricted
model M jA � �SjA� S�jA� RjA� LjA� is de�ned as follows�

� SjA � A	

� S�jA � S� 
A	

� �s� s� � SjA ��s� s�� � RjA � �s� s�� � R		

� �s � SjA �LjA�s� � L�s�		

Lemma ��� For every Kripke structure M and A � S� M jA �sim M 	

��� Symmetry
A permutation on a set A� � � A � A is a one�to�one and onto function� For a set
A� � A� ��A�� � faj�a� � A� ��a�� � ag� In this paper we use permutations over the
set of states of a Kripke structure� Given a CTL formula � and a structure M� ����
refers to applying � to the set of states in M that satisfy ��

A permutation group G is a set of permutations together with the functional compo�
sition such that the identity permutation e is in G� for every permutation � � G� there
is a permutation called ��� such that ���� � e and for every ��� �� � G� ���� � G�
If there exists � � G such that ��s� � s� we say that two states s�s� are symmetric�
De�nition ��� ��� ��� � � � � �k are generators of permutation group G 
denoted G �
h��� ��� � � � � �ki� if G is the closure of the set f��� ��� � � � � �kg under functional compo�
sition	

De�nition ��� A permutation group G is a symmetry group of a Kripke structure
M if every permutation � � G preserves the transition relation	 That is� �s� s� �
S ��s� s�� � R� ���s�� ��s��� � R		

De�nition ��	 A symmetry group G of a Kripke structure M is an invariance group
for formula � if for every maximal boolean sub�formula � of �� every � � G and s � S

�M� s j� � �M���s� j� �		

Given an invariance group G and a Kripke structure M we can partition S into
equivalence classes� The equivalence class of s is �s	 � fs�j�� � G� ��s� � s�g� Each �s	
is called an orbit and the relation OR � f�s� s��js� s� � S and �s	 � �s�	g is called the
orbit relation

For a Kripke structure M � �S� S�R�L� and an invariance group G for � the
quotient structure MG � �SG� S�G� RG� LG� is de�ned as follows�

� SG � f �s	 j s � S g
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� S�G � f �s	 j s � S� g

� RG � f ��s	� �s�	� j �s� s�� � R g

� LG��s	� � L�s�

In �

� 
�	 it has been proved that MG �bis M � By Lemma ��
 we therefore have that
for every CTL formula � over the same AP as �� MG j� � �M j� ��

In order to build the quotient structure a representative is chosen from each orbit
and a representative function � � S � Rep� which maps each state s to its orbit
representative� is de�ned� MG is now de�ned by SG � Rep and RG � f �s� s�� j s� s� �
Rep 	 �s�� � S �R�s� s��� 	 ��s��� � s�	g�

In many cases� however� it is easier to choose more than one representative for each
orbit� � is then a representative relation � � Rep � S which satis�es �s� s�� � � � s �
Rep 	 �s	 � �s�	� In this case we de�ne the structure Mm � �Sm� S

�
mRm� Lm� �m for

multiple representatives� where Sm � Rep� S�m � Rep 
 S�� Rm � ���R and Lm � L�
�
�	 shows that Mm �bis MG �bis M �

� Building the invariance group
In this section we show how to automatically compute the generators of an invariance
group given the generators of a symmetry group�

Our method works as follows� Given a set of generators for a symmetry group G�
an invariance group Ginv is de�ned by restricting the generators of G to those �i that
satisfy �i��� � � for every � � AP � As a result� the orbits of Ginv obtained by its
generators� do not contain both states that satisfy � and states that do not� This
implies that Ginv is an invariance group� The following lemma states the correctness
of our approach�

Lemma ��� Let ��� ��� � � � � �k be generators of a symmetry group G of a Kripke struc�
ture M and let � be a formula over maximal atomic formulas in AP	 Then IG �
f�ij�� � AP� �i��� � �g generates an invariance group Ginv of M for �	

The invariance group Ginv generated by IG may not be the largest invariance group
for M� The largest invariance group can be obtained by restricting the largest symmetry
group G as follows� Ginv � f � � G j �� � AP� ���� � �g� However� the number
of permutations in G may be exponential in the number of generators of G� Thus it is
not practical to construct Ginv directly from G�

� Symmetry with on�the��y representatives
The symbolic algorithm Symmetry MC presented in this section is aimed at avoiding
the two main problems of symmetry reduction� namely building the orbit relation and
choosing a representative for each orbit�

Let M � �S� S�� R� L� be a Kripke structure and ��� � � � � �k be a set of generators
of a symmetry group G of M� Also let � � AG�p� where p is a boolean formula� The
algorithm Symmetry MC� presented in Figure 
� applies on�the�
y model checking
for M and �� using under�approximation and symmetry reduction�

The algorithm works in iterations� Starting with the set of initial states� at each
iteration a subset under of the current set of states is chosen� The successors of under
are computed� However� every state which is symmetric to �i�e�� in the same orbit with�
a previously reached state is removed� The states that are �rst found for each orbit
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are taken to be the orbit representatives� Note that an orbit may have more than one
representative if several of its states are reached when the orbit is encountered for the
�rst time� At any step� the set of representatives are checked to see if they include a
state that violets p� If such a state is found �line �� then the computation is stopped
and a counterexample is produced� We then conclude that M �j� AG�p��

A useful optimization can be performed by deleting from memory the BDD for
the set full reach immediately after is has been used �after line ��� This may avoid
memory explosion� since the BDD for full reach is often quite large� In addition� the
forward step in line � usually requires large memory utilization� By removing the BDD
for full reach before computing the forward step we decrease the memory usage in
each iteration�

Symmetry MC�M� �� ��� � � � �k	

 Calculate the generators of the invariance group of M

IG � f�ij for all maximal boolean sub�formula � of �� �i��	 � �g

 reach rep � S�� i��
� while Si �� �
� choose under � Si �under is an under�approximation of Si	
� Si�� � ImR�under	
� full reach � � Step�reach rep	
� Si�� � Si�� � full reach

� reach rep � reach rep �Si��
� if Si����p �� �

� generate a counter example and break�


 i � i�
�

Figure 
� The algorithm Symmetry MC performs on�the��y model checking of � on M � using
symmetry reduction

The set of symmetric states that should be removed are computed using the proce�
dure � Step �Figure �� instead of using the orbit relation� � Step applies Im�i �sym states��

� Step�A� ��� ��� � � � � �k	

 sym states � A�

 old sym states � �
� while old sym states �� sym states

� old sym states � sym states

� for i � 
 � � � k
� new sym states � Im�i�sym states	
� sym states � sym states � new sym states

� return sym states

Figure �� The algorithm � Steps calculates the states belonging to the orbits of states in A

in order to obtain the states which are related by �i to states in sym states� It re�
peatedly computes Im�i for i � 
� � � � � k� until a �xed point is reached� For a set of
states A and a set of generators IG � f ��� � � � � �k g� � Step returns the set of all
states belonging to the orbits of states in A according to G � hIGi�

��i can be viewed as the binary relation �v � ���v��
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By using � Step we exploit symmetry information without building the orbit re�
lation� There are several reasons to expect that � Step will result in a BDD which
is smaller than that of the orbit relation� First� it represents a set of states and not
a relation� Thus� it depends on one set of BDD variables� while the orbit relation
depends on two sets� Second� it is applied only to reachable states which are usually
represented by smaller BDDs� Indeed� our experiments successfully applied � Step to
designs for which building the orbit relation was impossible�

Computationally� � Step is quite heavy� To avoid this problem� in most of our
experiments we stopped the computation of � Step before it got to a �xed point�
In general there is a tradeo� between the amount of computation in � Step and the
symmetry reduction obtained by Symmetry MC�

��� Robustness of Symmetry MC

We now discuss the robustness of the algorithm Symmetry MC for falsi�cation in
the presence of an incomplete � Step and an incorrect set of generators� Consider �rst
the case in which the computation of procedure � Step is stopped before a �xed point
is reached� � Step then returns only a subset of the states in the orbits of states in
A� In this case� less states are removed from Si�� and as a result reach rep contains
more states� Thus� we might have more representatives for each orbit�

Consider now the case in which the algorithm is given an incorrect set of generators�
If a �bad� generator �a permutation which associates states that are not symmetric� is
given� then � Step returns states which are not symmetric to any state in reach rep�
These states are removed from Si�� and we might not add any representatives of
their orbits to reach rep� Thus� reach rep represents an under�approximation of
the reachable orbits� However� reach rep does not contain a representative of an
unreachable orbit� Thus� if there is a state s � reach rep which does not satisfy
p� this state is reachable in the original model and the counterexample generated by
Symmetry MC actually exists in the original model�

If a �good� generator �a permutation which associates pairs of symmetric states�
is missing� then � Step returns less states and as a result there is more than one rep�
resentative for each orbit� However� like in the previous case� reach rep contains only
reachable states and therefore Symmetry MC generates only real counterexamples�
The following lemma summarizes the discussion above�
Lemma ��� Given any set of generators� the algorithm Symmetry MC is sound for
falsi�cation	

At termination of Symmetry MC� if reach rep contains at least one state from
each reachable orbit then Mm� de�ned according to reach rep �Sm � reach rep� is
bisimilar to M �see Section ����� Thus� if Mm j� AG�p� then M j� AG�p� as well�
Note that Mm j� AG�p� can be checked on�the�
y�

Several BDD optimizations may be useful for procedure � Step� One is to simplify
�i according to sym states in each iteration� Another is to apply partitioned transition
relation with early quanti�cation in the computation of Im�i � This is applicable since
often a permutation is given as a conjunction of simpler expressions�
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��� Symmetry reduction combined with hints

In this section we present a special case of the algorithm Symmetry MC in which
the under�approximation is guided by a sequence of hints given by the user ��	�

Let M � �S�S��R�L� be a Kripke structure� ��� � � � � �k be a set of generators of a
symmetry group G on M� and h�� � � � � hl be a sequence of hints where hl � TRUE� Also�
let � � AG�p� be a formula where p is a boolean formula� The algorithmHints Sym�
presented in Figure �� applies on�the�
y model checking for M and � using hints and
symmetry reduction�

If ��� � � � � �k contain no �bad� generator
� then our hints guarantee that when Si � ��

reach rep contains at least one state from each orbit� In this case� the algorithm
Hints Sym is suitable for veri�cation as well as falsi�cation�

A useful optimization is to compute the set full reach only once for each hint and
to use it in order to remove states in all steps in which this hint is used� This save
computation time but may use more space since full reach is in memory when ImR

is computed� Again there is a tradeo� here between time and space�

Hints Sym�M� �� ��� ��� � � � � �k� h�� h�� � � � � hl	

 Calculate IG � f�ij for all maximal boolean sub�formula � of �� �i��	 � �g

 reach rep � S�� i � �� hint � h�� j � 

� while Si �� �
� under � Si� hint

� Si�� � ImR�under	
� full reach � � Step�reach rep	
� Si�� � Si���full reach

� reach rep � reach rep �Si��
� if Si����p �� �

� generate counter example and break


 if Si��� � � j 	 l



 hint � hintj


� j � j�


� Si�� � reach rep


� i � i�


� � is TRUE

Figure �� The algorithmHints Sym applies on�the��y model checking of � on M � using hints and
symmetry reduction

� Extension for temporal safety properties
There are several known algorithms which use a construction A� for the evaluated
formula� and the product modelM�A� in order to do model checking more e�ciently�
We now show that it is possible to combine symmetry reduction with these algorithms�
We �rst specify the requirements on the construction A� so that it can be used with
symmetry reduction�
De�nition ��� Given a logic L and a construction that associates with each � � L a
structure A�� the construction A� is safe for symmetry reduction w	r	t L if it satis�es
the following conditions�

�In many cases� the nonexistenceof bad generators can be easily determinedby the program syntax�
In other cases it is expensive but possible to check whether all generators are good�
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	 ���� � L �M j� �� M �A� j� ��	

�	 For every invariance group Ginv of M for �� every � � Ginv and every �s� t� �
SM�A�

� ���s� t�� � ���s�� t� �	

�	 For every maximal boolean formula � of � and every
�s� t�� �s�� t� � SM�A�

� �s� t� j� � � �s�� t� j� �	

The second condition requires that � is de�ned only on s and leaves t unchanged	
The third condition requires that the truth of all � in � depend only on t	

Lemma ��� For every construction A� which is safe for symmetry reduction w	r	t L�
if G is an invariance group of structure M for formula � � L then G is an invariance
group of structure M � A� for formula �	

Corollary ��� For every construction A� which is safe for symmetry reduction w	r	t
L and for every � � L and � � CTL� the quotient structure �M � A��G� built for
M � A� and an invariance group G of M� satis�es �M �A��G j� � �M j� �	

Note that using safe construction enables us to �nd the generators of the invariance
group of M according to � and then to evaluate formula � on M �A� with symmetry
reduction that use the same generators� There are several A� constructions which are
safe for symmetry reduction w�r�t logic L� One example is the tableau construction in
��	 when restricted to LTL safety properties� In this case the tableau includes no fairness
constraints and it ful�lls the requirements of De�nition ��
� Another safe construction
is the satellite for RCTL formulas de�ned in ��	� By combining safe construction with
symmetry reduction we make symmetry reduction applicable with a new set of algo�
rithms� like symbolic on�the 
y model checking and symbolic LTL model checking� for
which it was not applicable until now� We implemented our algorithms using the con�
struction introduced in ��	� which enabled us to check RCTL formulas on�the�
y while
using a symmetry reduction�

� Extensions for liveness formulas
We now describe two possible extensions that combine classical �not on�the�
y� sym�
bolic model checking with symmetry reduction� These extensions are useful for checking
liveness properties� and other properties which cannot be checked on�the�
y�

��� Liveness restricted to representatives

The purpose of this extension is to falsify ACTL formulas with respect to a structure
M � while avoiding the construction of its quotient model MG� The idea is to get a set
of representatives Rep and to construct the restricted modelM jRep �see De�nition �����
Since M jRep �sim M � we have that for every ACTL formula �� if M jRep �j� � then
M �j� �� Thus� � can be checked on the smaller model M jRep�

Note that in principle this idea works correctly with any set of representatives�
even such that does not include a representative for each orbit� There are however
advantages to choosing as Rep the set reach rep which results from the algorithm
Symmetry MC� First� since reach rep includes only reachable states� its BDD is
usually smaller than the BDD of an arbitrarily chosen set of states� Second� by con�
struction� the states in reach rep are connected by transitions while an arbitrary set

�since s and ��s� agree on AP� 	�s� t� � SM�A� � ���s�� t� � SM�A� 
�

�



of representatives Rep might not be connected� Thus� M jreach rep often includes more
behaviors than M jRep� As a result� it is more likely that a bad behavior� if exists� will
be found in M jreach rep� Third� the states in reach rep represent many other states in
the system� thus if the system includes a bad behavior� it is more likely that reach rep

will re
ect it�
Following the discussion above we suggest the Algorithm Live Rep that works as

follows� it �rst runs Symmetry MC to obtain reach rep and then performs classical
symbolic model checking on M jreach rep�

��� Liveness with the representative relation

We now present another possibility for handling liveness properties� It is applicable
only if no bad generators exist� This method is more expensive computationally� but is
suitable for veri�cation of liveness properties� Similarly to the previous section we �rst
compute reach rep using the algorithm Symmetry MC� However� now we apply the
procedure Create �� presented below� in order to compute the representative relation
� � reach rep �S �see de�nition in Section ����� Next we construct a new structure
M � � �S�� S��� R

�� L�� where S� � reach rep� S�� � S� 
 S�� R� � ���R and L� � L�
Finally� we run classical symbolic model checking on � and M ��
Lemma 	�� If S� contains at least one representative for each orbit then M �bis M

�	
Otherwise� M � �sim M 	
If reach rep is the result of the algorithmHints Sym� then reach rep indeed contains
at least one representative for each orbit� and M � is bisimilar to M � Thus� M � can be
used for verifying full CTL�

Figure � presents the BDD�based procedure Create � for building the representa�
tive relation � for a given set of representatives Rep and a set of generators ��� � � � � �k
of an invariance group G of M for ��

Suppose that each �i is represented by a BDD �i��v� �v�� and Rep is represented by a
BDD Rep��v�� Create � returns the BDD ���v� �v�� for the relation � � Rep� S� Line

Create ����� �� � � � �k� Rep	

 ���v� �v�	 � Rep��v	 � ��v � �v�	

 old ���v� �v�	 � �

� while old ���v� �v�	 �� ���v� �v�	
� old ���v� �v�	 � ���v� �v�	
� for i � 
 � � � k
� new��v� �v��	 � 
�v�����v� �v�	 � �i��v

��� �v�		
� ���v� �v�	 � ���v� �v�	 � new��v� �v�	
� return ���v� �v�	

Figure �� The algorithm Create � for computing � � Rep� S

� is implemented with the operator compose odd �
�	 which computes ��v�����v� �v�� 	
�i��v��� �v��� using only two sets of BDD variables instead of three�

	 Experimental results
We implemented the algorithms Hints Sym� Live Rep� and Create � in the IBM�s
model checker RuleBase �
	� We ran it on a number of examples which contain symme�


�



try� For each example we tuned our algorithms according to the evaluated formula� the
di�culty level of computing the reachable states and the di�culty level of building the
transition relation� In most cases� our algorithms outperformed RuleBase with respect
to both time and space� In the tables below time is measured by seconds� memory
�mem� in bytes� and the transition relation size �TR size� in number of BDD nodes�

The Futurebus example
 We ran the algorithm Live Rep in order to check
liveness properties on the Futurebus cache�coherence protocol with a single bus and
a single cache line for each processor� We checked the property �along every path
in�nitely often some processor is in exclusive write�� This property fails since our
model does not include fairness constraints� The table in Figure � presents the results
of evaluating the property for a di�erent number of processors� For comparison we
ran also the RuleBase classical symbolic model checking algorithm� Both algorithms
applied dynamic BDD reordering� The BDD order is very important since the best
BDD order for the classical algorithm is di�erent from the best BDD order of our
algorithm� In order to obtain a fair comparison between these algorithms we ran each
algorithm twice� In the �rst run the algorithm reordered the BDD without time limit
in order to �nd a good BDD order� The initial order of the second run was the BDD
order which was found by the �rst run�

The most di�cult step in the Futurebus example is building the transition relation�
By restricting the transition relation to the representatives which were chosen on�the�

y� the transition relation became smaller and as a result the evaluation became easier�
In this case we chose to complete the calculation of � Step in order to obtain the
maximal reduction in the size of the transition relation� Figure � shows that both
time and space were reduced dramatically using Live Rep� We can also observe that
the larger the number the processors was the better the results were� This is to be
expected� as the increase in the number of the reachable representatives is smaller than
the increase in the number of reachable states�

� � classic algorithm Live Rep
of processors vars time mem TR size time mem TR size
� �� 
�
 ��M 
����� 
�
 �
M 


���
� �� ��� 

�M 
���
� 
�� ��M 

���

� �� 
��
 
��M �
���
 ��� ��M ����
�
� �
 ���� ���M ������ ��
� 
�
M �����

� �
 �
�
�
 ���M 
������ ���
 
��M �
���


� �� � � 
G � ���� 

�M ��
���

Figure �� Hints Sym on Future bus example

The Arbiter example
 We ran algorithm Hints Sym on an arbiter example
with n processes� We checked the arbiter w�r�t� RCTL formulas which were translated
to safe A� and �� For comparison we ran RuleBase on�the�
y model checking and on�
the�
y model checking with hints �without symmetry�� All algorithms used dynamic
BDD reordering and partitioned transition relation �
�	� In this case we calculated
� Step only when we changed hints and stopped � Step before the �xed point has
been reached� The table in Figure � presents the results of the three algorithms on
arbiter with ��� and 
� processes� For each case we checked one property that passed
and one that failed� We notice that Hints Sym reduced time but not necessarily







space� This can be explained by the fact that � Step produced large intermediate
BDDs but resulted in a signi�cant reduction in Si� thus reduced the computation time
of the image steps�

� status � on�the��y on�the��y � hints Hints Sym
of processors vars time mem time mem time mem
� passed �� �� ��M �� ��M �
 ��M
� failed �� 

� �
M �� �
M �
 ��M
� passed �� ��
 ��M 
�� ��M 
�� ��M
� failed �� ��� �
M �
� �
M 
�
 ��M

� passed 
�� 
��� ��M ��� ��M ��� �
M

� failed 
�� 

�� ��M ��� ��M �
� �
M

Figure �� Hints Sym compared to other on�the��y algorithms

Comparing Create � and Orbit To �
 �
�	 presents an algorithm for computing
� by building the orbit relation and then choosing the representatives� We refer to
this algorithm by Orbit To �� We compare this algorithm with Create �� Both
algorithms �nd the representative relation � � Rep � S for the set of representatives
Rep chosen according to the lexicographic order� The results in Figure � show that
Create � gave better results in both time and space� We believe that this is due to
the fact that it saves less information while building ��

num of generators num of vars orbit to � Create �

time mem time mem
� 
� ��
� 
�M ��
� 
�M
� 
� ���� ��M 
�
 
�M
� 
� 
�
� 

�M 
� �
M
� 
� � �
��G ��� 
�
M
� �
 � �
��G 
���� 
�
G

Figure �� Create � compared to Orbit To �


 Directions for future research
Our liveness algorithms can easily be extend to models with fairness constraints� This
will be done by requiring that the generators of the invariance group satisfy ���� � �

for maximal boolean formulas in the fairness constraints as well as in the checked
formula�

It is possible to use the algorithm Symmetry MC with other partial search algo�
rithms which choose the next set of states to be explored according to criteria di�erent
than hints� such as High�Density Reachability presented in �
�	� � Step can be used in
other search algorithms like Prioritized Traversal �
�	� There� the BDDs in the priority
queue can be reduced by eliminating states which are in the orbits of states that were
already explored�
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