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Abstract

This work exploits and extends the game-based framework of CTL model checking for counter-
example and incremental abstraction-refinement. We define a game-based CTL model checking for
abstract models over the 3-valued semantics, which can be used for verification as well as refutation.
The model checking process of an abstract model may end with an indefinite result, in which case we
suggest a new notion of refinement, which eliminates indefinite results of the model checking. This
provides an iterative abstraction-refinement framework. This framework is enhanced by an incremental
algorithm, where refinement is applied only where indefinite results exist and definite results from prior
iterations are used within the model checking algorithm. We also define the notion of annotated counter-
examples, which are sufficient and minimal counter-examples for full CTL. We present an algorithm that
uses the game board of the model checking game to derive an annotated counter-example in case the
examined system model refutes the checked formula.

1 Introduction
This work exploits and extends the game-based framework [33] of CTL model checking for counterexample
and incremental abstraction-refinement.

The first goal of this work is to suggest a game-based new model checking algorithm for the branching-
time temporal logic CTL [8] in the context of abstraction. Model checking is a successful approach for
verifying whether a system model M satisfies a specification �, written as a temporal logic formula. Yet,
concrete (regular) models of realistic systems tend to be very large, resulting in the state explosion problem.
This raises the need for abstraction. Abstraction hides some of the system details, thus resulting in smaller
models. Abstractions are usually designed to be conservative w.r.t. some logic of interest. That is, if the
abstract model satisfies a formula in that logic then the concrete model satisfies it as well. However, if the
abstract model does not satisfy the formula then nothing is known about the concrete model.

Two types of semantics are available for interpreting CTL formulae over abstract models. The 2-valued
semantics defines a formula � to be either true or false in an abstract model. True is guaranteed to hold
for the concrete model as well, whereas false may be spurious. The 3-valued semantics [16] introduces a
new truth value: the value of a formula on an abstract model may be indefinite, which gives no information
on its value on the concrete model. On the other hand, both satisfaction and falsification w.r.t the 3-valued
semantics hold for the concrete model as well. That is, while abstractions over 2-valued semantics are
conservative w.r.t. only positive answers, abstractions over 3-valued semantics are conservative w.r.t. both
positive and negative results. Abstractions over 3-valued semantics thus give precise results more often both
for verification and falsification.

Following the above observation, we define a game-based model checking algorithm for abstract models
w.r.t. the 3-valued semantics, where the abstract model can be used for both verification and falsification.
However, a third case is now possible: model checking may end with an indefinite answer. This is an
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indication that our abstraction cannot determine the value of the checked property in the concrete model
and therefore needs to be refined. The traditional abstraction-refinement framework [21, 7] is designed for
2-valued abstractions, where false may be a false-alarm, thus refinement is aimed at eliminating false results.
As such, it is usually based on a counterexample analysis. Unlike this approach, the goal of our refinement
is to eliminate indefinite results and turn them into either definite true or definite false.

An advantage of this work lies in the fact that the refinement is then applied only to the indefinite part
of the model. Thus, the refined abstract model does not grow unnecessarily. In addition, model checking
of the refined model uses definite results from previous runs, resulting in an incremental model checking.
Our abstraction-refinement process is complete in the sense that for a finite concrete model it will always
terminate with a definite “yes” or “no” answer.

The next goal of our work is to use the game-based framework in order to provide counterexamples for
the full branching-time temporal logic CTL. When model checking a modelM with respect to a property�,
ifM does not satisfy� then the model checker tries to return a counterexample. Typically, a counterexample
is a part of the model that demonstrates the reason for the refutation of � onM . Providing counterexamples
is an important feature of model checking which helps tremendously in the debugging of the verified system.

Most existing model checking tools return as a counterexample either a finite path (for refuting formulae
of the form AGp) or a finite path followed by a cycle (for refuting formulae of the form AFp1) [6, 8].
Recently, this approach has been extended to provide counterexamples for all formulae of the universal
branching-time temporal logic ACTL [10]. In this case the part of the model given as the counterexample
has the form of a tree. Other works also extract information from model checking [31, 13, 27, 34]. However,
this information is presented in the form of a temporal proof, rather than a part of the model.

In this work we provide counterexamples for full CTL. As for ACTL, counterexamples are part of the
model. However, when CTL is considered, we face existential properties as well. To prove refutation of an
existential formula E�, one needs to show an initial state from which all paths do not satisfy �. Thus, the
structure of the counterexample becomes more complex.

Having such a complex counterexample, it might not be easy for the user to analyze it by looking at the
subgraph of M alone. We therefore annotate each state on the counterexample with a subformula of � that
is false in that state. The annotating subformulae being false in the respective states, provide the reason for
� to be false in the initial state. Thus, the annotated counterexample gives a convenient tool for debugging.
We propose an algorithm that constructs an annotated counterexample and prove that it is sufficient and
minimal. We also discuss several ways to use and present this information in practice.

Games for CTL model checking [33] is a most suitable framework for our goals. The model checking
game is played by two players, �belard, the refuter who wants to show that M �j� �, and �loise, the prover
who wants to show that M j� �. The board of the game consists of pairs �s� �� of a model state and a
subformula, with the meaning that the satisfaction of � in the state s is examined. �belard proceeds from
such a node �s� �� to a node that helps refuting � on s. �loise chooses her moves with the intention to
prove that s satisfies �. All possible plays of a game are captured in the game-graph, whose nodes are the
elements of the game board and whose edges are the possible moves of the players. The initial nodes are
pairs �s�� �� where s� is an initial state of M . It can be shown that �belard has a winning strategy (i.e., it
can win the game regardless of �loise moves) iff M �j� �. �loise has a winning strategy iff M j� �.

Model checking is then done by applying a coloring algorithm on the game-graph [3]. It colors a node
�s� �� by T iff �loise has a winning strategy, which means � is true in s. It colors it by F iff �belard has a
winning strategy, which means � is false in s. At termination, if all initial nodes are colored T thenM j� �.
If at least one initial node is colored F then M �j� � and we would like to supply a counterexample.

In our work we add abstraction to the discussion. Concrete models for CTL are state-transition graphs
(Kripke structures) in which nodes correspond to states of the system and transitions describe possible
moves between states. Abstract models consist of abstract states, representing (not necessarily disjoint)

1AGp means “for every path, in every state on the path, p holds”, whereasAFp means “along every path there is a state which
satisfies p”.
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sets of concrete states. In order to be conservative w.r.t. CTL, two types of transitions are required: may-
transitions which represent possible transitions in the concrete model, and must-transitions [22, 12] which
represent definite transitions in the concrete model. May and must transitions correspond to over and under
approximations, and are needed in order to preserve formulae of the form AX� and EX�, respectively.

We consider the 3-valued semantics of CTL formulae. We would like to maintain the property of the
3-valued semantics that both the positive and the negative answers are definite in the sense that they hold
for the concrete model as well. To do so, we allow each player to have two roles in the new 3-valued model
checking game. The goal of �belard is either to refute � onM or to prevent �loise from verifying. Similarly,
the goal of �loise is either to verify or to prevent �belard from refuting. As before, �belard has a winning
strategy iff M j� �, and �loise has a winning strategy iff M �j� �. However, it is also possible that none of
them has a winning strategy, in which case the value of � in M is indefinite.

In order to check � on the abstract model M , we propose a coloring algorithm over three colors: T ,
F , and �. If all the initial nodes of the game-graph are colored by T , then we conclude that M j� �. If
some initial node of the game-graph is colored by F , we know that M �j� �. Both these results apply to the
concrete model as well. Yet, if none of the above holds, meaning that none of the initial nodes is colored
by F and at least one of them is colored by �, we have no definite answer. It is then desirable to refine the
abstract model.

We choose a criterion for refinement by examining the part of the game-graph which is colored by �.
Once a criterion for refinement is chosen, the refinement is traditionally done by splitting abstract states
throughout the entire abstract model. That is, while the decision on the criterion for refinement is local, the
refinement is global. However, the structure of the game-graph allows us to apply it only to the indefinite
part of the model. It also allows us to use definite results that were obtained previously. Thus, previous runs
are not wasted and the abstract model does not grow where it is not needed.

Other researchers [16] have suggested to evaluate a property w.r.t the 3-valued semantics by reducing
the problem to two 2-valued model checking problems: one for satisfaction and one for refutation. Such
a reduction will result in the same answer as our algorithm. Yet, it is then not clear how to guide the
refinement, in case it is needed, since at least part of the information about the indefinite portion of the
game-graph is lost. Thus, the application to refinement demonstrates the advantage of designing a 3-valued
model checking algorithm.

As for our second goal, we propose an algorithm that constructs an annotated counterexample in case
model checking ends with a negative answer, meaning that the checked property� is refuted by the examined
model M . We first deal with the simpler case where model checking is applied to a concrete model. The
construction uses the colored game-graph and starts from an initial node which is colored by F . If the
formula in a node n is either AX� or �� � �� then we include in the counterexample one successor of n,
which is colored by F . This successor needs to be chosen wisely. If the formula in n is either EX� or
�� � �� then we include in the counterexample all the successors of n (which are all colored by F ). The
resulting counterexample is an annotated sub-model of M , with possibly some unwinding, that gives the
full reason for the refutation of � on M .

Having defined the notion of an annotated counterexample, we then discuss the construction of anno-
tated counterexamples when abstract models are used. In the 3-valued case, concretization of an abstract
annotated counterexample will never fail since the 3-valued abstraction is conservative w.r.t. negative results
as well. Thus, we can use an extension of the concrete algorithm to provide an abstract counterexample and
derive from it a concrete one.

To conclude, the main contributions of this work are:
� A game-based CTL model checking for abstract models over the 3-valued semantics, which can be

used for verification as well as refutation.
� A new notion of refinement, that eliminates indefinite results of the model checking.
� An incremental model checking within the framework of abstraction-refinement.
� A sufficient and minimal counterexample for full CTL.
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Related Work. Other researchers have suggested abstraction-refinement mechanisms for various branching
time temporal logics. In [23] the tearing paradigm is presented as a way to obtain lower and upper approxi-
mations of the system . Yet, their technique is restricted to ACTL or ECTL. In [29, 30] the full propositional
mu-calculus is considered. In their abstraction, the concrete and abstract systems share the same state space.
The simplification is based on taking supersets and subsets of a given set with a more compact BDD rep-
resentation. In [25] full CTL is handled. However, the verified system has to be described as a cartesian
product of machines. The initial abstraction considers only machines that directly influence the formula
and in each iteration the cone of influence is extended in a BFS manner. [1] handles ACTL and full CTL.
Their abstraction collapses all states that satisfy the same subformulae of � into an abstract state. Thus,
computing the abstract model is at least as hard as model checking. Instead, they use partial knowledge on
the abstraction function and gain information in each refinement.

The rest of the paper is organized as follows. In the next section we give the necessary background for
game-based CTL model checking, abstractions and the 3-valued semantics. Due to technical reasons, we
start with the description of an annotated counterexample. Thus, in Section 3 we describe how to construct
an annotated counterexample for full CTL and show that it is sufficient and minimal. In Section 4 we extend
the game-based model checking algorithm to abstract models, using the 3-valued semantics. In Section 5
we present our refinement technique, as well as an incremental abstraction-refinement framework. Finally,
we discuss some conclusions in Section 6.

2 Preliminaries
Let AP be a finite set of atomic propositions. We define the set Lit of literals over AP to be the set
AP � f�p � p 	 APg. i.e. for each p 	 AP , both p and �p are in Lit. We identify ��p with p.

Definition 2.1 The Logic CTL in negation normal form is the set of formulae defined as follows: � ���
tt j ff j l j � � � j �� � j A� j E� where l ranges over Lit, and � is defined by � ��� X� j �U� j �V �.

The (concrete) semantics of CTL formulae is defined with respect to a Kripke structureM � �S� S��

� L�, where S is a finite set of states, S� � S is a set of initial states, 
� S � S is a transition relation,
which must be total and L � S 
 �Lit is a labeling function that associates each state in S with a subset of
literals, such that for every state s and atomic proposition p 	 AP , p 	 L�s� iff �p �	 L�s�. A path inM is
an infinite sequence of states, � � s�� s�� � � � such that �i 
 �, si 
 si��. � is said to be from s if s � s�.

��M� s� j� �	 � tt (� ff) means that the CTL formula � is true (false) in the state s of a Kripke structure
M . The formal definition appears in Appendix A. We say that M satisfies �, denoted �M j� �	 � tt, if
�s� 	 S� � ��M� s�� j� �	 � tt. Otherwise, M refutes �, denoted �M j� �	 � ff. We omit M when clear
from the context.
Definition 2.2 Given a CTL formula � of the form A���U���, E���U���, A���V ��� or E���V ���, its
expansion is defined as:
exp�A���U���� = fA���U���� �� � ��� � AXA���U����� �� � AXA���U���� AXA���U���g
exp�E���U���� = fE���U���� �� � ��� �EXE���U����� �� �EXE���U���� EXE���U���g
exp�A���V ���� = fA���V ���� �� � ��� �AXA���V ����� �� �AXA���V ���� AXA���V ���g
exp�E���V ���� = fE���V ���� �� � ��� � EXE���V ����� �� �EXE���V ���� EXE���V ���g

2.1 Game-based Model Checking Algorithm

In this section we present the Game-theoretic approach to Model Checking of CTL formulae in a (concrete)
Kripke structure [33, 24]. Given a Kripke structure M � �S� S��
� L� and a CTL formula �, the model
checking game of M and � is defined as follows. Its board is the Cartesian product S � sub��� of the set of
states S and the set of subformulae sub���, where sub��� is defined as usual, except that if � � A���U���,
E���U���, A���V ��� or E���V ��� then sub��� � exp���� sub���� � sub���� .

The model checking game is played by two players, �belard, the refuter, and �loise, the prover. A single
play is a (possibly infinite) sequence C� 
p� C� 
p� C� 
p� ��� of configurations, where C� 	 S�� f�g,
Ci 	 S � sub��� and pi 	 f�� �g. The subformula in Ci determines which player pi makes the next move.
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The possible moves at each step are:
1. Ci � �s� ff�, Ci � �s� tt�, or Ci � �s� l� where l 	 Lit: the play is finished. Such configurations are

called terminal configurations.
2. Ci � �s� AX��: �belard chooses a transition s
 s� and Ci�� � �s�� ��.
3. Ci � �s� EX��: �loise chooses a transition s
 s � and Ci�� � �s�� ��.
4. Ci � �s� �� � ���: �belard chooses j 	 f
� �g and Ci�� � �s� �j�.
5. Ci � �s� �� � ���: �loise chooses j 	 f
� �g and Ci�� � �s� �j�.
6. Ci � �s� A���U����: Ci�� � �s� �� � ��� � AXA���U�����.
7. Ci � �s� E���U����: Ci�� � �s� �� � ��� � EXE���U�����.
8. Ci � �s� A���V ����: Ci�� � �s� �� � ��� �AXA���V �����.
9. Ci � �s� E���V ����: Ci�� � �s� �� � ��� � EXE���V �����.

In configurations 6-9 the move is deterministic, thus any player can make the move. A play is maximal
iff it is infinite or ends in a terminal configuration. In [33] it is shown that a play is infinite iff exactly one
fAU�EU�AV�EVg subformula occurs in it infinitely often. Such a subformula is called a witness.

Winning Criteria: �belard wins the play iff (1) the play is finite and ends in a terminal configuration of the
form Ci � �s� ff�, or Ci � �s� l�, where l �	 L�s�, or (2) the play is infinite and the witness is AU or EU .
�loise wins the play otherwise.

The model checking game consists of all the possible plays. A strategy is a set of rules for a player,
telling him how to move in the current configuration. A winning strategy is a set of rules allowing the player
to win every play if he plays by the rules.

Theorem 2.3 [33] Let M be a Kripke structure and � a CTL formula. Then, for each s 	 S:
1. ��M� s� j� �	 � tt iff �loise has a winning strategy for the game starting at �s� ��.
2. ��M� s� j� �	 � ff iff �belard has a winning strategy for the game starting at �s� ��.

The model checking algorithm for the evaluation of �M j� �	 consists of two parts. First, it constructs
(part of) the game-graph, that describes all the possible plays of the game. The evaluation of the truth value
of � in M is then done in the second phase of the algorithm by coloring the game-graph.

2.1.1 Game-graph Construction and its Properties

The subgraph of the game-graph that is reachable from the initial configurationsS��f�g is constructed in a
BFS or DFS manner. The construction starts from the initial configurations (nodes) and applies each possible
move to get the successors in the game-graph of each new node. The result is denoted GM�� � �N�E�,
where N � S � sub���. The nodes (configurations) of the game-graph can be classified into three types.

1. Terminal configurations are leaves in the game-graph.
2. Nodes whose subformulae are of the form �� � �� or AX�� are �-nodes.
3. Nodes whose subformulae are of the form �� � �� or EX�� are �-nodes.

Nodes whose subformulae are AU�EU�AV�EV can be considered either �-nodes or �-nodes. Sometimes
we further distinguish between nodes whose subformulae are of the form AX� (EX�) and other �-nodes
(�-nodes), by referring to them as AX-nodes (EX-nodes). The edges in the game-graph are also divided to
two types. Edges that originate in AX-nodes or EX-nodes are progress edges that reflect real transitions of
the Kripke structure. Other edges are auxiliary edges.

Lemma 2.4 Let B be a non trivial strongly connected component (SCC) in a game-graph (a non-trivial
SCC contains at least one edge). Then the set of subformulae that are associated with the nodes in B is
exactly one of the sets exp���, where � 	 fA���U���� E���U���� A���V ���� E���V ���g.

The formula � such that exp��� is the set of subformulae in a non-trivial SCC is called a witness. Each
non-trivial SCC is then classified as an AU , AV , EU , or EV SCC, based on its witness.
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2.1.2 Coloring Algorithm

The following Coloring Algorithm [3] labels each node in the game-graph GM�� by T or F , depending on
whether �loise or �belard has a winning strategy for the game.

The game-graph is partitioned into its Maximal Strongly Connected Components (MSCCs), denoted
Qi’s, and an order� is determined on theQi’s, such that an edge �n� n��, where n 	 Qi and n� 	 Qj , exists
in the game-graph only if Qj � Qi. Such an order exists because the MSCCs of the game-graph form a
directed acyclic graph (DAG). It can be extended to a total order � arbitrarily.

The coloring algorithm processes the Qi’s according to the determined order, bottom-up. Let Qi be the
smallest MSCC with respect to � that is not yet fully colored. Hence, every outgoing edge of a node in Qi

leads either to a colored node or to a node in the same set, Qi. The nodes of Qi are colored as follows.
1. Terminal nodes in Qi are colored by T if �loise wins in them, and by F otherwise.
2. An �-node (�-node) is colored by T (F ) if it has a son that is colored by T (F ), and by F (T ) if all

its sons are colored by F (T ).
3. All the nodes in Qi that remain uncolored, after the propagation of these rules, are colored according

to the witness in Qi (by Lemma 2.4 there exists exactly one such witness). They are colored by F if
the witness is of the form AU or EU , and are colored by T if the witness is of the form AV or EV .

The result of the coloring algorithm is a coloring function � � N 
 fT� Fg.

Theorem 2.5 [33] Let GM�� be a game-graph and let n be a node in the game-graph, then:
1. ��n� � T iff �loise has a winning strategy for the game starting at n.
2. ��n� � F iff �belard has a winning strategy for the game starting at n.

Theorem 2.6 [33] LetM be a Kripke structure and� a CTL formula. Then, for eachn � �s� ��� 	 GM��:
1. ��M� s� j� ��	 � tt iff n � �s� ��� is colored by T .
2. ��M� s� j� ��	 � ff iff n � �s� ��� is colored by F .

2.2 Abstraction

In this section we present abstract models and their relation with concrete models. Abstract models pre-
serving CTL have two transition relations [22, 12]. This is achieved by using Kripke Modal Transition
Systems [19, 14].

Definition 2.7 A Kripke Modal Transition System (KMTS) is a tupleM � �S� S��
must
�
�

may
�
� L�, where S is

a finite set of states, S� � S is a set of initial states,
must
�
� S � S and

may
�
� S � S are transition relations

such that
must
�
�

may
�
, and L � S 
 �Lit is a labeling function that associates each state in S with literals

from Lit, such that for each state s and atomic proposition p 	 AP , at most one of p and �p is in L�s�.
A must (may) path in M is an infinite sequence of states, � � s�� s�� � � � such that for every i 
 �,

si
must
�
 si�� (si

may
�
 si��). If s � s�, then � is said to be from s.

Note, that a Kripke structure can be viewed as a KMTS where 
 =
must
�
�

may
�
, and for each state s and

atomic proposition p 	 AP , we have that exactly one of p and �p is in L�s�.
We consider abstractions that are done by collapsing sets of concrete states (from SC ) into single abstract

states (in SA). Such abstractions can be described in the framework of Abstract Interpretation [26, 12].
LetMC � �SC � S�C�
� LC� be a (concrete) Kripke structure. Let �SA�v� be a poset of abstract states

and �� � SA 
 �SC � 	 � �SC 
 SA� a Galois connection [11, 26] from ��SC ��� to �SA�v�. � is the
concretization function that maps each abstract state to the set of concrete states that it represents. 	 is the
abstraction function that maps each set of concrete states to the abstract state that represents it.

An abstract model MA can then be defined as follows. The set of initial abstract states S�A is defined
such that s�a 	 S�A iff there exists s�c 	 S�C for which s�c 	 ��s�a�. An abstract state sa is labeled by
l 	 Lit, only if all the concrete states that it represents are labeled by l as well. Thus, it is possible that
neither p nor �p are in LA�sa�. The may-transitions in an abstract model are computed such that they
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represent every concrete transition between two states: if �sc 	 ��sa� and �s�c 	 ��s�a� such that sc 
 s�c,
then there exists a may-transition sa

may
�
 s�a. Note that it is possible that there are additional may-transitions.

The must-transitions represent concrete transitions that are common to all the concrete states represented by
the origin abstract state: a must-transition sa

must
�
 s�a exists only if �sc 	 ��sa� we have that �s�c 	 ��s�a�

such that sc 
 s�c. It is possible that there are less must-transitions than allowed by this rule.
Other constructions of abstract models, based on Galois connections, can be found in [12, 15].
The resulting abstract model is more abstract than MC as defined by the following definition.

Definition 2.8 [12, 14] Let MC � �SC � S�C �
� LC� be a concrete Kripke structure, and let MA �

�SA� S�A�
must
�
�

may
�
� LA�, be an abstract KMTS. We say that H � SC � SA is a mixed simulation from

MC to MA if �sc� sa� 	 H implies the following:
1. LA�sa� � LC�sc�.
2. if sc 
 s�c, then there is some s�a 	 SA such that sa

may
�
 s�a and �s�c� s

�

a� 	 H .

3. if sa
must
�
 s�a, then there is some s�c 	 SC such that sc 
 s�c and �s�c� s

�

a� 	 H .

If there exists a mixed simulationH such that for each s c 	 S�C there exists sa 	 S�A for which �sc� sa� 	
H , we say thatMA is more abstract thanMC , denoted by MC �MA.

The mixed simulation relationH � SC �SA from MC to an abstract model which is constructed based
on a Galois connection as described above is defined such that �sc� sa� 	 H iff sc 	 ��sa�. The results
presented in this paper are applicable to any abstract model that is more abstract than the concrete model
w.r.t. the mixed simulation relation, and are not limited to our construction of an abstract model.

[19] defines the 3-valued semantics of a CTL formula over a KMTS, preserving both satisfaction and
refutation of a formula from the abstract model to the concrete one. However, a new truth value, � is
introduced. If the truth value of a formula in an abstract model is �, then its value over the concrete model
is not known and can be either tt or ff.

Definition 2.9 The 3-valued semantics of a CTL formula � in a state s of a KMTS M � �S� S��
must
�
�

may
�


� L�, denoted ��M� s� j�
3
� �	, is defined inductively as follows:

��M� s� j�
3
� tt	 = tt

��M� s� j�
3
� ff	 = ff

��M� s� j�
3
� l	 =

��
�

tt if l 	 L�s�
ff if �l 	 L�s�
� otherwise

��M� s� j�
3
� �� � ��	 =

���
��

tt if ��M� s� j�
3
� ��	 � tt and ��M� s� j�

3
� ��	 � tt

ff if ��M� s� j�
3
� ��	 � ff or ��M� s� j�

3
� ��	 � ff

� otherwise

��M� s� j�
3
� �� � ��	 =

���
��

tt if ��M� s� j�
3
� ��	 � tt or ��M� s� j�

3
� ��	 � tt

ff if ��M� s� j�
3
� ��	 � ff and ��M� s� j�

3
� ��	 � ff

� otherwise

��M� s� j�
3
� A�	 =

���
��

tt if for each may-path � � ��M��� j�
3
� �	 � tt

ff if there exists a must-path � such that � ��M��� j�
3
� �	 � ff

� otherwise

��M� s� j�
3
� E�	 =

���
��

tt if there exists a must-path � such that � ��M��� j�
3
� �	 � tt

ff if for each may-path � � ��M��� j�
3
� �	 � ff

� otherwise
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For a may or must path � � s�� s�� � � �, ��M��� j�
3
� �	 is defined as follows.

��M��� j�
3
� X�	 = ��M� s�� j�

3
� �	

��M��� j�
3
� ��U��	 =

���
��

tt if �k 
 � � ����M� sk� j�
3
� ��	 � tt� � ��j 
 k � ��M� sj� j�

3
� ��	 � tt�	

ff if �k 
 � � ����M� sk� j�
3
� ��	 � ff� � ��j 
 k � ��M� sj� j�

3
� ��	 � ff�	

� otherwise

��M��� j�
3
� ��V ��	 =

���
��

tt if �k 
 � � ���j 
 k � ��M� sj� j�
3
� ��	 �� tt�� ���M� sk� j�

3
� ��	 � tt�	

ff if �k 
 � � ���j 
 k � ��M� sj� j�
3
� ��	 � ff� � ���M� sk� j�

3
� ��	 � ff�	

� otherwise
Preservation of CTL formulae from an abstract to a concrete model is guaranteed by the following theorem.
Theorem 2.10 [14] Let H � SC � SA be the mixed simulation relation from a Kripke structure MC to a
KMTS MA. Then for every �sc� sa� 	 H and every CTL formula �, we have that:

(1) ��MA� sa� j�
3
� �	 � tt � ��MC � sc� j� �	 � tt, and (2) ��MA� sa� j�

3
� �	 � ff � ��MC � sc� j� �	 � ff.

We conclude that (1) �MA j�
3
� �	 � tt � �MC j� �	 � tt, and (2) �MA j�

3
� �	 � ff � �MC j� �	 � ff.

3 Using Games to Produce Annotated Counter-Examples
In this section we describe how to construct an annotated counter-example from the coloring of a game-
graph for M and � in case M does not satisfy �.

First, the coloring algorithm is changed to identify and remember the cause of the coloring of an �-node
n that is colored by F . If n was colored by its sons, then cause�n� is the son that was the first to be colored
by F . If n was colored due to a witness, then cause�n� is chosen to be one of its sons which resides on the
same SCC and was colored by witness as well. There must exist such a son, otherwise n would be colored
by its sons. Note that cause�n� depends on the execution of the coloring algorithm.

Given a game-graph GM��, for a Kripke structure M and a CTL formula �, and given its coloring
� and an initial node n� � �s�� �� such that ��n�� � F , the following DFS/BFS-like algorithm finds an
annotated counter-example, denoted C, which is a subgraph of GM�� colored by F .

The algorithm ComputeCounter
Initially: new = f�s�� ��g, C = �.
while new �� �
n = remove �new�
� if n was already handled - continue.
� if n is a terminal node - continue. n� sons � � �n

� if n is an �-node, then for each son n� of n add n� to new and �n� n�� to C.
� if n is an �-node, then add cause�n� to new and �n� cause�n�� to C.

Complexity: Clearly, the construction of the annotated counter-example has a linear running time in the
size of its result. The result is linear (in the worst case) with respect to the size of the game-graph GM��.
The latter is bounded by O�jM j � j�j�.

The computed annotated counter-example can be viewed as the part of the winning strategy of the refuter
that is sufficient to guarantee its victory. We formalize and prove this notion in the next section. Intuitively
speaking, it is indeed a counter-example in the sense that it points out the reasons for �’s refutation on the
model. Each node in C is marked by a state s and by a subformula ��, such that ���s� ���� � F , thus
by Theorem 2.6, �s j� ��	 � ff. The edges point out the reason (cause) for the refutation of a certain
subformula in a certain state: the refutation in an �-node is shown by refutation in one of its sons, whereas
the refutation in an �-node is shown by all its sons. Hence, by analyzing the annotated counter-example,
one can understand why each subformula, and in particular the main formula, is refuted in the relevant state.

Note that, for the correctness of the annotated counter-example, it is mandatory to choose for an �-node
the son that caused the coloring of the node, and not any son that was colored by F . An example that
demonstrates its importance appears in Appendix B.
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3.1 Properties of the Annotated Counter-example

The annotated counter-example is a subgraph of the game-graph, and as such it has the properties of the
game-graph. In addition, for each node n 	 C, ��n� � F . Another important property is:

Lemma 3.1 The annotated counter-example contains non-trivial SCCs if and only if at least one of the
nodes in the SCC was colored due to a witness.

Corollary 3.2 Non-trivial SCCs in the annotated counter-example are either AU -SCCs or EU -SCCs.

Corollary 3.2 results from Lemma 3.1, since only nodes inAU orEU SCCs are colored byF due to witness.
The property of the annotated counter-example described in Lemma 3.1, along with Corollary 3.2, imply

that any non-trivial SCC that appears in the annotated counter-example indicates a refutation of the U op-
erator, which results, at least partly, from an infinite path, where weak until is satisfied, but not strong until.
This intuition results from the properties of the coloring algorithm. If a node is colored due to a witness,
then finite information alone is not sufficient to cause its color. In the case of A���U���, this means that
there is no finite path where �� stops being satisfied before �� is satisfied, and the refutation results from an
infinite path where �� is always satisfied, but �� is never satisfied. In case of E���U���, this means that
the refutation results, at least partly, from infinite evidence of this form and not only from finite paths.

3.2 The Annotated Counter-Example is Sufficient and Minimal

In this section we first informally describe our requirements of a counter-example. We then formalize these
requirements for annotated counter-examples and show that the result of algorithm ComputeCounter
fulfills them. Generally speaking, for a sub-model to be a counter-example, it is expected to:

1. falsify the given formula.
2. hold “enough” information to explain why the original model does not satisfy the formula.
3. be minimal, in the sense that every state and transition are needed to maintain 1 and 2.

In order to formalize the second requirement with respect to an annotated counter-example, we need the
following definitions.

Definition 3.3 Let G � �N�E� be a game-graph and let A be a subgraph of G. The partial coloring algo-
rithm of G with respect toA works as follows. It is given an initial coloring function � I � N nA
 fT� Fg
and computes a coloring function for G. The algorithm is identical to the (original) coloring algorithm,
except for the addition of the following rule:

� A node n 	 N nA is colored by �I�n� and its color is not changed.

Any result of the partial coloring algorithm of G with respect toA is called a partial coloring function of G
with respect to A, denoted � � N 
 fT� Fg.

As opposed to the usual coloring algorithm that has only one possible result, referred to as the coloring
function of the game-graph, the partial coloring algorithm has several possible results, depending on the
initial coloring function �I . Each one of them is considered a partial coloring function of the game-graph
w.r.t A. By definition, the usual coloring algorithm is a partial coloring algorithm of G with respect toG.

Definition 3.4 Let G be a game-graph and let � be the result of the coloring algorithm on G. A subgraph
A of G is independent of G if for each � that is a partial coloring function of G with respect to A, and for
each n 	 A, we have that ��n� � ��n�.

Basically, a subgraph is independent of a game-graph if its coloring is absolute in the sense that every
completion of its coloring to the full game-graph does not change the color of any node in it. In fact, one
may notice that the colors of terminal nodes determine the coloring function of the full game-graph. Thus,
to capture this notion, it suffices to refer to a partial coloring algorithm that allows arbitrary coloring of the
terminal nodes inN nA, but maintains the consistency of the coloring of the rest of the nodes. However, for
simplicity, we strengthen the definition and allow non-deterministic coloring of all the nodes inN nA.

We can now formalize the notion of an annotated counter-example.
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Definition 3.5 Let G be a game-graph, and let � be its coloring function, such that ��n�� � F for some
initial noden�. A subgraph �C ofG containingn� is an annotated counter-example if it satisfies the following
conditions. (1) For each node n 	 �C, ��n� � F ; (2) �C is independent of G; and (3) �C is minimal.

The first two requirements in Definition 3.5 imply that �C is sufficient for explaining why the initial node
is colored by F . Therefore, it also explains why the formula is refuted by the model. First it guarantees
that all the nodes in �C are colored by F . In addition, since �C is independent of G, we can conclude that
regardless of the other nodes in G, all the nodes in �C, and in particular the initial node, will be colored by
F . The third condition shows that �C is also “necessary”.

We now show that the result of algorithm ComputeCounter, denoted C, is indeed an annotated
counter-example. The first requirement is obviously fulfilled, as described in Section 3.1. The following
theorems prove that C satisfies the other two conditions as well.

Theorem 3.6 C is independent of G.

The correctness of Theorem 3.6 strongly depends on the choice of cause�n� as the son of an �-node in
the algorithm ComputeCounter.

Theorem 3.7 C is minimal in the sense that removing a node or an edge will result in a subgraph that is
not independent of G.

3.3 Practical Considerations

Since the annotated counter-example may be big and difficult to understand, several simplifications may be
suggested. Each non-trivial MSCC can be replaced by a single node, annotated with its witness. Auxiliary
edges may be collapsed, resulting in a sub-model. Node annotations can either be removed or partially
remembered. These simplifications reflect the trade-off between the size of the counter-example and the ad-
ditional information originating from the formula. Note that we present a single annotated counter-example
but can (interactively) give them all, using a variation of the algorithm ComputeCounter.

4 Game-Based Model Checking On Abstract Models
We suggest a generalization of the game-based model checking algorithm for evaluating a CTL formula �
over a KMTS M according to the 3-valued semantics. A discussion on solving the 3-valued problem by
reducing it to two instances of the 2-valued problem, as suggested in [16], appears in Appendix C, where
the advantages of the direct solution, described in this section, are presented.

We start with the description of the 3-valued game. The main difference arises from the fact that KMTSs
have two types of transitions. Since the transitions of the model are considered only in configurations with
subformulae of the form AX�� or EX��, these are the only cases where the rules of the play need to be
changed. Intuitively, in order to be able to both prove and refute each subformula, the game needs to allow
the players to use both may and must transitions in such configurations. The reason is that for example,
truth of a formula AX�� should be checked upon may-transitions, but its falseness should be checked upon
must-transitions.
The new moves of the game are:

2. if Ci � �s� AX��, then �belard chooses a transition s
must
�
 s� (for refutation) or s

may
�
 s� (for

satisfaction), and Ci�� � �s�� ��.

3. if Ci � �s� EX��, then �loise chooses a transition s
must
�
 s� (for satisfaction) or s

may
�
 s� (for

refutation), and Ci�� � �s�� ��.

Intuitively, the players use must-transitions in order to win, while they use may transitions in order to prevent
the other player from winning. As a result it is possible that none of the players wins the play, i.e. the play
ends with a tie. As before, a maximal play is infinite if and only if exactly one witness, which is either
an AU ,EU ,AV or EV -formula, appears in it infinitely often. However, the winning rules become more
complicated. A player can only win the play if he or she are “consistent” in their moves:
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Definition 4.1 A play is called true-consistent if in each configuration of the form C i � �s� EX��, �loise
chooses a move based on

must
�
 transitions. It is called false-consistent if in each configuration of the form

Ci � �s� AX��, �belard chooses a move based on
must
�
 transitions.

The new winning criteria:
� �belard wins the play iff the play is false-consistent and in addition one of the following holds:

1. The play is finite and ends in a configuration Ci � �s� ff�, or Ci � �s� l�, where �l 	 L�s�.

2. The play is infinite and the witness is of the form AU or EU .
� �loise wins the play iff the play is true-consistent and in addition one of the following holds:

1. the play is finite and ends in configuration Ci � �s� tt�, or Ci � �s� l�, where l 	 L�s�.

2. the play is infinite and the witness is of the form AV or EV .
� Otherwise, the play ends with a tie.

We now have the following correspondence between the game and the truth value of a formula in a
certain state under the 3-valued semantics.

Theorem 4.2 Let M be a KMTS and � a CTL formula. Then, for each s 	 S:

1. ��M� s� j�
3
� �	 � tt iff �loise has a winning strategy for the game starting at �s� ��.

2. ��M� s� j�
3
� �	 � ff iff �belard has a winning strategy for the game starting at �s� ��.

3. ��M� s� j�
3
� �	 �� iff none of the players has a winning strategy for the game starting at �s� ��.

In order to use the above correspondence for model checking, we generalize the game-based model
checking algorithm. The construction of the (3-valued) game-graph, denoted GM��, is defined as for the
“concrete” game. The nodes of the game-graph, denoted N , can again be classified as �-nodes, �-nodes,
AX-nodes andEX-nodes. Similarly, the edges can be classified as progress edges or auxiliary edges. But
now, we distinguish between two types of progress edges, two types of sons and two types of SCCs.

� Edges that are based on must-transitions are referred to as must-edges. Edges that are based on may-
transitions are referred to as may-edges.

� A node n� is a may-son of the node n if there exists a may-edge �n� n��. n� is a must-son of n if there
exists a must-edge �n� n��.

� An SCC in the game-graph is a may-SCC if all its progress edges are may-edges. It is a must-SCC if
all its progress edges are must-edges.

The coloring algorithm of the 3-valued game-graph needs to be adapted as well. First, a new color,
denoted �, is introduced for configurations in which none of the players has a winning strategy.

Second, the partition to Qi’s that is based on MSCCs is affected because there are two types of MSCCs
in GM��. However,

must
�
�

may
�
, thus each must-edge is also a may-edge and every must-SCC is a sub-SCC

of a may-SCC. As a result, we can have the graph partitioned to MSCCs based on may-edges, and each such
may-MSCC can be further partitioned to MSCCs based on the must-edges in it. Lemma 2.4 holds for both
types of SCCs in the 3-valued game-graph GM��. Thus, the notion of a witness in an SCC is also valid.

In practice, the type of a non-trivial MSCC of interest depends on the witness that is associated with
it. For example, for an AU witness loops can only be used for refutation. To identify “real” loops, we
need to use must-edges. Thus for such a witness, we need a must-MSCC. On the other hand, for an AV -
witness, loops can contribute to satisfaction, and satisfaction of universal properties should be examined
upon may-transitions. Thus for such a witness, we need a may-MSCC. Similarly, for an EU witness, we
need a may-MSCC, whereas for an EV witness, a must-MSCC is used.

The (3-valued) coloring algorithm :

Partition: The game-graph is partitioned into its may-MSCCs. Each non-trivial may-MSCC with an AU
or EV witness is further partitioned into its must-MSCCs, such that the original may-MSCC is replaced by
its must-MSCCs. The resulting sets are denotedQi’s. A partial order is determined on the Qi’s as follows.
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Order: The initial partition to may-MSCCs induces an initial partial order such that transitions go out of a
set only to itself or to a “smaller” set. All the must-MSCCs that result from the partitioning of a may-MSCC
have a partial order between them such that must transitions go out of a set only to itself or to a “smaller”
set. The combination of the initial partial order and the partial order within each may-MSCC result in a
partial order between all the Qi’s. The partial order can be extended to a total order � arbitrarily.

Coloring: The coloring algorithm consists of two phases, which are executed alternately.
1. Sons-coloring phase:

Apply the following rules to all the nodes inGM�� until none of them is applicable.
� A terminal node is colored by T if �loise wins in it, byF if �belard wins in it, and by � otherwise.
� An AX-node is colored by (T) if all its may-sons are colored T ; (F) if it has a must-son that is

colored F ; (?) if all its must sons are colored T or � and it has a may-son that is colored F or �.
� An EX-node is colored by (T) if it has a must-son that is colored T ; (F) if all its may-sons are

colored F ; (?) if it has a may-son that is colored T or � and all its must-sons are colored F or �.
� An �-node, other than AX-node, is colored by (T) if both its sons are colored T ; (F) if it has a

son that is colored F ; (?) if it has a son that is colored � and the other one is colored � or T .
� An �-node, other than EX-node, is colored by (T) if it has a son that is colored T ; (F) if both

its sons are colored F ; (?) if it has a son that is colored � and the other one is colored � or F .
2. Witness-coloring phase:

If after the propagation of the rules of phase 1 there are still nodes in GM�� that remain uncolored,
then let Qi be the smallest set with respect to � that is not yet fully colored. Q i must be either a
non-trivial may-MSCC or a subgraph of such an MSCC that has exactly one witness (by Lemma 2.4).
The uncolored nodes in Qi are colored according to the witness in two phases, as follows.
� The witness is of the form A���U��� or E���U���:
(a) Repeatedly color � each node in Qi satisfying one of the following, until there is no change.

- An �-node (AX-node) that all its (must) sons are colored by T or �.
- An �-node (EX-node) that has a (may) son that is colored by T or �.

(b) Color the remaining nodes inQi by F .

� The witness is of the form A���V ��� or E���V ���:
(a) Repeatedly color � each node in Qi satisfying one of the following, until there is no change.

- An �-node (AX-node) that has a (may) son that is colored by F or �.
- An �-node (EX-node) that all its (must) sons are colored by F or �.

(b) Color the remaining nodes inQi by T .
Note that only nodes from a singleQi are colored in this phase.

The result of the coloring algorithm is a 3-valued coloring function � � N 
 fT� F� �g. Note, that a node is
colored � only if there is evidence that it can no longer be colored otherwise. In other cases, another method
is used to determine its color. Appendix D presents an example of a 3-valued game-graph and its coloring.

Theorem 4.3 Let GM�� be a 3-valued game-graph and let n be a node in the game-graph, then:

1. ��n� � T iff �loise has a winning strategy for the game starting at n.
2. ��n� � F iff �belard has a winning strategy for the game starting at n.
3. ��n� �� iff none of the players has a winning strategy for the game starting at n.

Implementation issues and Complexity: The coloring algorithm can be implemented in linear running
time with respect to the size of the game-graph GM��, using a variation of an AND/OR graph, similarly to
the algorithm described in [20] for checking the nonemptiness of the language of a simple weak alternating
word automaton. Thus, its running time is bounded by O�jM j � j�j�.
As a conclusion of Theorem 4.2 and Theorem 4.3, we get the following theorem.

Theorem 4.4 Let M be a KMTS and � a CTL formula. Then, for each n � �s� ��� 	 GM��:
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1. ��M� s� j�
3
� ��	 � tt iff n � �s� ��� is colored by T .

2. ��M� s� j�
3
� ��	 � ff iff n � �s� ��� is colored by F .

3. ��M� s� j�
3
� ��	 �� iff n � �s� ��� is colored by �.

After coloring the game-graph, if all the initial nodes are colored byT , or if at least one of them is colored
by F , then by Theorem 4.4 along with Theorem 2.10, there is a definite answer as for the satisfaction of � in
the concrete model. This is because there exists a mixed simulation from the concrete to the abstract model.
Furthermore, if the result is ff, a concrete annotated counter-example can be produced, using an extension
of the ComputeCounter algorithm, as described in Appendix E.

5 Refinement
In this section, we show how to exploit the abstract game-graph in order to refine the abstract model in case
that the model checking resulted in an indefinite answer. When the result is �, there is no reason to assume
either one of the definite answers tt or ff. Thus, we would like to base the refinement not on a counter-
example as in [21, 7, 2, 9, 5], but on the point(s) that are responsible for the indefinite answer. The goal of
the refinement is to discard these points, in the hope of getting a definite result on the refined abstraction.

Let MC � �SC � S�C �
� LC� be a concrete Kripke structure and let MA � �SA� S�A�
must
�
�

may
�
� LA�

be an abstract KMTS. Let � � SA 
 �SC be the concretization function. Given the abstract 3-valued game-
graph G, based on MA, and its coloring function � � N 
 fT� F� �g, such that ��n�� �� for some initial
node n�, we use the information gained by the coloring algorithm of G in order to refine the abstraction.
The refinement is done by splitting abstract states according to criteria obtained from failure nodes. A node
is a failure node if it is colored by �, whereas none of its sons is colored by � at the time it gets colored by
the algorithm. Such a node is a failure node in the sense that it can be seen as the point where the loss of
information occurred. Note that a failure node may have uncolored sons at the time it was colored, some of
which may eventually be colored by �. Also note, that a terminal node that is colored by � is also considered
a failure node. The coloring algorithm is adapted to remember failure nodes. In addition, for each node
n that is colored by �, but is not a failure node, the coloring algorithm remembers a son that was already
colored � by the time n was colored, denoted cont�n�.

Searching For a Failure Node: A failure node is found by a DFS-like greedy algorithm, starting from n�.
� If the current node n is a failure node, the algorithm ends.
� As long as n is not a failure node, the algorithm proceeds to cont�n�.

Lemma 5.1 A failure node is a node colored by �, which is either a terminal node, or one of the following.
� An AX-node (EX-node) that has a may-son colored by F (T ), or
� An AX-node (EX-node) that was colored during phase 2a based on an AU (EV ) witness, and has

a may-son colored by �.

Failure Analysis: Given a failure noden, it provides us with criteria for refinement. The refinement problem
is reduced to the problem of separating sets of (concrete) states. This problem can be solved by known
techniques, depending on the type of abstraction used (e.g. [9, 7]). The criterion for the separation depends
on the type of n and is found by the following analysis.

1. n � �sa� l� is a terminal node. In this case, its indefinite color results from the fact that sa represents
both concrete states that are labeled by l and by �l. The indefinite color is avoided by separating
��sa� to two sets fsc 	 ��sa� � l 	 LC�sc�g and fsc 	 ��sa� � �l 	 LC�sc�g.

2. n � �sa� AX��� with a may-son colored F , or n � �sa� EX��� with a may-son colored T . Let K
stand for F or T . We define sonsK �

S
f��s�a� � �s�a� ��� 	 may-sons�n� � ���s�a� ���� � Kg

and concK � ��sa� � fsc 	 SC � �s�c 	 sonsK � sc 
 s�cg. For the AX�� case, K � F and concK
is the set of all concrete states, represented by sa, that definitely refute AX��. For the EX�� case,
K � T and concK is the set of all concrete states, represented by sa, that definitely satisfyEX��. In
both cases, our goal is to separate the sets concK and ��sa� n concK .
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3. n � �sa� AX��� or n � �sa� EX��� was colored during phase 2a based on anAU or anEV witness,
and has a may-sonn� � �s�a� ��� colored by �. Let conc� � ��sa��fsc 	 SC � �s�c 	 ��s�a�� sc 
 s�cg
be the set of all concrete states, represented by sa, that have a son represented by s�a. Our goal is to
separate the sets conc� and ��sa� n conc�.

It is possible that one of the sets obtained during the failure analysis is empty and provides no criterion
for the split. Yet, new information can be gained from it as well. Consider case 2, where the failure node
n is an AX-node. If concF � ��sa�, then every state represented by sa has a refuting son. Thus, n can
be colored by F instead of �. If concF � �, then none of the concrete states in ��sa� has a transition to a
concrete state represented by the F -colored may-sons of n. Thus, the may-edges from n to such sons may
be removed: none of them represents concrete transitions. Similar arguments apply to the rest of the cases
as well. Either way, the game-graph can be recolored starting from the may-MSCC containing n.

The purpose of the split derived from cases 1-2 is to allow us to conclude definite results about (at least
part) of the new abstract states obtained by the split of the failure node. These new definite results can be
used by the incremental algorithm, suggested below. We now consider case 3. Intuitively, in this case we
know that by the time the failure node n got colored, its may-son n � that is colored by � was not yet colored
(otherwise n would not be a failure node). By the description of the algorithm, if n � was a must-son of n,
then as long as it was uncolored, n would remain uncolored too and would eventually be colored in phase
2b by a definite color. Thus, our goal in this case is to obtain a must edge between (parts of) n and n �.
Theorem 5.2 For finite concrete models, iterating the abstraction-refinement process is guaranteed to ter-
minate with a definite answer.

5.1 Incremental Abstraction-Refinement Framework

We refine abstract models by splitting their states. The criterion for the refinement is decided locally, based
on one node, but has a global effect. In practice, there is no reason to split states for which the model
checking results are definite. The game-based model checking algorithm provides a convenient frame-
work to use previous results. This leads to an incremental model checking algorithm based on iterative
abstraction-refinement, where each iteration consists of abstraction, model checking and refinement. After
each iteration, we now remember the (abstract) nodes colored by definite colors, as well as nodes for which a
definite color was discovered during failure analysis. During the construction of a new refined game-graph,
we prune the game-graph in nodes that are sub-nodes of nodes from previous iterations. A node �sa� ��
is a sub-node of �s�a� �

�� if � � �� and the set of concrete states represented by sa is a subset of those
represented by s�a. As a result, only the reachable subgraph that was previously colored by � is refined. The
coloring algorithm considers the nodes where the game-graph was pruned as terminal nodes and colors them
by their previous colors. Since previous runs use coarser abstractions, the number of nodes from previous
runs should be much smaller than the number of refined nodes. Therefore, this pruning is worth-while.

Note, that for many abstractions, checking if a node is a sub-node of another is simple. For example, in
the framework of predicate abstraction [17, 32, 28, 15], this means that the abstract states “agree” on all the
predicates that exist before the refinement.

6 Conclusion
In this work, we have exploited the game-theoretic approach of CTL model checking to produce anno-
tated counter-examples for full CTL. We have generalized this approach to 3-valued abstract models and
suggested an incremental abstraction-refinement framework based on our generalization.

Traditional game-based model checking algorithms determine a winning strategy for the winning player.
The winning strategy holds all the relevant information as for the result of the model checking, but it has
redundancies. The annotated counter-example introduced in this paper may be seen as a minimal part of it
that is sufficient to explain the result.

Our 3-valued game-based model checking and in particular the failure nodes provide information for
refinement, in case the outcome is indefinite. Additional information can be extracted from them and be
used for further optimizations of the refinement.
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The incremental abstraction-refinement algorithm described in this paper can be viewed as a generaliza-
tion of Lazy abstraction [18], which allows different parts of the abstract model to exhibit different degrees
of abstraction. Lazy abstraction refers to safety properties, whereas our approach is applicable to full CTL.

This work is based on the game-theoretic approach to model checking. This approach is closely related
to the Automata-theoretic approach [20], as described in [24]. Thus, our work can also be described in this
framework, using alternating automata. In addition, it can easily be extended to alternation-free �-calculus.
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A Semantics of CTL formulae
The truth value 	 ftt� ffg of a CTL formula � in a state s of a Kripke structureM � �S� S��
� L�, denoted
��M� s� j� �	, is defined inductively as follows:

��M� s� j� tt	 = tt
��M� s� j� ff	 = ff
��M� s� j� l	 = tt iff l 	 L�s�, where l 	 Lit

��M� s� j� �� � ��	 = ��M� s� j� ��	� ��M� s� j� ��	
��M� s� j� �� � ��	 = ��M� s� j� ��	� ��M� s� j� ��	
��M� s� j� A�	 = tt iff �� from s � ��M��� j� �	 � tt
��M� s� j� E�	 = tt iff �� from s � ��M��� j� �	 � tt
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Figure 1: (a) A colored game-graph, where white nodes are colored by T , grey nodes are colored by F and
bold edges point to the cause of an �-node, (b) Its annotated counter-example and (c) A possible result of
ComputeCounter without the use of the cause in �-nodes.

For � � s�� s�� � � �, ��M��� j� �	 is defined as follows.
��M��� j� X�	 = ��M� s�� j� �	
��M��� j� ��U��	 = tt iff �k 
 � � ����M� sk� j� ��	 � tt� � ��j 
 k � ��M� sj� j� ��	 � tt�	
��M��� j� ��V ��	 = tt iff �k 
 � � ���j 
 k � ��M� sj� j� ��	 � ff�� ���M� sk� j� ��	 � tt�	

B The Importance Of the Cause In Algorithm ComputeCounter
Figure 1 demonstrates the necessity of choosing cause�n� as a son of an �-node n when computing an
annotated counter-example. Figure 1(a) presents a colored game-graph G, where grey nodes are colored by
F , whereas white nodes are colored by T , and bold edges point to the cause of an �-node. The initial node
�s� A�pV q�� is colored by F , i.e. �s j� A�pV q�	 � ff. Figure 1(b) presents the annotated counter-example
computed by ComputeCounter, where it can be seen that the reason for refutation is the existence of the
path s� s�� �� where q is not satisfied in s�, although it was not released by p (p does not hold in s). On the
other hand, Figure 1(c) presents a subgraph of theG, that is computed by a variation of ComputeCounter,
where for an �-node, an arbitrary son that is colored by F is chosen. In the example, the node �s� A�pV q��
was chosen as a son of �s� AXA�pV q�� rather than �s�� A�pV q��, which is its cause. The resulting subgraph
implies that the refutation of A�pV q� results from the path s� s� ���. However, this path satisfies pV q, such
that it does not prove refutation. It can be shown that this subgraph is not independent of G.

C 2-Valued Game-Based Model Checking
In our discussion on abstract models, we have used the 3-valued semantics for the interpretation of a CTL
formula over a KMTS. The 3-valued semantics preserves both truth and falseness of a formula from the
abstract model to the concrete one.

The definition of ��M� s� j� �	 can be extended to a KMTS using a 2-valued semantics as well [12].
The definition is similar to the concrete semantics with the following changes. Universal properties, of the
form, A�, are interpreted along may paths. Existential properties, of the form E�, are interpreted along

must paths. This gives us the 2-valued semantics of CTL formulae over KMTSs, denoted by ��M� s� j�
2
� �	.

The 2-valued semantics is designed to preserve the truth of a formula from the abstract model to the concrete
one. However, false alarms are possible, where the abstract model falsifies the property, but the concrete
one does not.

17



Theorem C.1 [12] Let H � SC � SA be a mixed simulation relation from MC to MA. Then for every

�sc� sa� 	 H and every CTL formula�, we have that ��MA� sa� j�
2
� �	 � tt implies that ��MC � sc� j� �	 � tt.

The game-based model checking algorithm can be extended to deal with KMTSs based on the 2-valued
semantics in a more natural way than was needed to deal with the 3-valued semantics. The 2-valued seman-
tics is aimed at proving �: it preserves only truth from the abstract model to the concrete one. Therefore,
the game’s purpose is also to prove �’s satisfaction. As such, �loise’s moves in configurations with EX� �

formulae need to use
must
�
 transitions, since by the semantics definition, existential formulae are interpreted

over must-paths. Similarly, �belard’s moves in configurations withAX�� formulae need to use
may
�
 transi-

tions, since universal formulae are interpreted over may-paths. The rest of the moves, as well as the winning
criteria remain the same, with the following exception. The transition relation

must
�
 is not necessarily total.

Thus, a configuration of the form �s� EX��� may also be a terminal configuration, if s has no outgoing
must
�


transitions. A play that ends in such a configuration is won by �belard.
Clearly, the relation between the existence of winning strategies and satisfaction of the formula, as

described in Theorem 2.3 for the concrete game, holds for the new game and the 2-valued semantics. This
results from the fact that the change in the allowed moves of the players corresponds exactly to the change
in the 2-valued interpretation of a formula over a KMTS.

The model checking algorithm, induced by the game consists of two parts: construction of a game-graph
based on the rules of the game, and its coloring. Once the moves for the new game are defined, the game-
graph is defined as well. Recall that in the 3-valued case, the resulting game-graph had a different structure
and thus the coloring algorithm needed to be changed as well. However, in the 2-valued case, the resulting
game-graph has the same structure as a concrete game-graph (with the exception of a new type of terminal
nodes): Although the abstract model has two types of transitions for each state, when the game-graph is
constructed, the edges become uniform. We no longer distinguish between them, since there is only one
type in each node. As a result, in terms of the game-graph there is only one type of edges. Thus, the same
coloring algorithm can be applied on the (abstract) game-graph in order to check which player has a winning
strategy, with the small change that terminal nodes of the form �s� EX��� need to be colored by F . The
correctness of the coloring algorithm, as described in Theorem 2.5 for the concrete case, is maintained since
the new game has the same properties as a concrete game: the same possible moves from each configuration
(with the type of transitions adapted to match the semantics) and the same winning rules. Thus we are
guaranteed that the game-graph is colored by the color of the player that has a winning strategy.

Altogether, we get that the resulting coloring function corresponds to the truth value of the formula over
the abstract model, under the 2-valued interpretation of a formula over a KMTS. This is formalized by the
next theorem.

Theorem C.2 Let M be a KMTS and � a CTL formula. Then, for each n � �s� ��� 	 GM��:

1. ��M� s� j�
2
� ��	 � tt iff n � �s� ��� is colored by T .

2. ��M� s� j�
2
� ��	 � ff iff n � �s� ��� is colored by F .

Complexity: Clearly, the running time of the coloring algorithm remains linear with respect to the size of
the game-graph GM��. The latter is bounded by the size of the underlying KMTS times the length of the
CTL formula, i.e. O�jM j � j�j�.

C.1 Application to 3-valued Model Checking

We have the following correspondence between the 2-valued semantics and the 3-valued semantics.

Theorem C.3 Let M be a KMTS. Then for every CTL formula� and for every s 	 S, we have that:

1. if ��M� s� j�
2
� �	 � tt then ��M� s� j�

3
� �	 � tt.

2. if ��M� s� j�
2
� ��	 � tt then ��M� s� j�

3
� �	 � ff.

3. otherwise ��M� s� j�
3
� �	 ��.
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Figure 2: A satisfaction graph (a) versus a refutation graph (b) for AX�

where �� denotes the CTL formula equivalent to ��, with negations pushed to the literals.

Thus, given an abstract KMTS MA, such that MC � MA one may suggest using two instances of the
previously described 2-valued model checking in order to evaluate the 3-valued truth value of � over MA.

First, evaluate � over MA using the 2-valued semantics. The constructed game-graph is referred to as
the satisfaction graph, since it was built for the purpose of proving the satisfaction of �. If the result is tt for

all the initial states, then we have that �MA j�
3
� �	 � tt and we can conclude that �MC j� �	 � tt.

Otherwise, evaluate �� over MA using the 2-valued semantics (with negations pushed to the literals).
The constructed game-graph is referred to as the refutation graph, since it was built for the purpose of
proving satisfaction of the negation of � (which is equivalent to proving refutation of �). If the result is tt

for at least one initial state, we have that �MA j�
3
� �	 � ff and we can conclude that �MC j� �	 � ff. In

addition, a concrete annotated counter-example may be produced from the refutation graph.
This can be better understood using the following observation. Note, that instead of evaluating�� using

the previous 2-valued game-based model checking algorithm, it is possible to define a game with different
rules that is designed to refute the formula �. In such a game the players use the opposite type of transitions
in each configuration (node): �belard uses must transitions in AX-nodes and �loise uses may-transitions
in EX-nodes. As a result, F is preserved from the corresponding abstract game-graph to the concrete one,
but T is not. Note, that the game-graph obtained by these rules is isomorphic to the refutation graph and
the result of its coloring is equivalent to the result of the previous algorithm applied on ��. Obviously, if
an initial node in such a game-graph is colored by F , then we can easily find an abstract annotated counter-
example by the algorithm ComputeCounter. The abstract annotated counter-example is guaranteed not
to be spurious and can be matched with a concrete one by a greedy algorithm, as described in Appendix E.

If none of the above holds, we have that �MA j�
3
� �	 ��. Thus, MA needs to be refined. One would

suggest to try and use both the satisfaction graph and the refutation graph and their coloring functions to
find a criterion for refinement. In a sense they complement each other, because they are based on opposite
types of transitions. However, these two game-graphs have different nodes (because reachability is also
based on opposite transitions), so most chances are that we can not find enough needed information in their
intersection. This is demonstrated in Figure 2, where in the satisfaction graph (a) the initial node �s� AX��
is colored by F since its son �s�� �� is colored by F . However, in the refutation graph (b) �s� AX��
is colored by T . Thus, the result of the model checking in indefinite. Unfortunately, the refuting son
from the satisfaction graph, �s�� ��, does not appear in the refutation graph, since it is not a must-son of
�s� AX��. Thus, combining the information of both these graphs does not supply enough information for
the refinement.

In summary, this approach provides the same information as the 3-valued algorithm about nodes that
appear in both the satisfaction and the refutation graphs. Since the initial nodes appear in both of them,

this approach is sufficient in order to answer the question “�M j�
3
� �	 ?”, as accurately as the direct 3-

valued approach. However, for the refinement analysis we are interested in the inner nodes as well, that
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Figure 3: A colored 3-valued game-graph, where dashed edges are may-edges, solid edges are must-edges
or auxiliary edges, and rectangles depict the partition of the nodes. White nodes are colored by T , dark grey
nodes are colored by F , and light grey nodes are colored by �.

are not necessarily mutual to both the graphs. Thus, using two such game-graphs does not provide us
with full information (in terms of edges) about all of them. Hence, the 3-valued game-based algorithm is
advantageous in terms of the refinement.

Note, that this approach is similar in spirit to the result of translating the KMTS to an equivalent partial
Kripke structure (PKS) as described in [16] and then model checking the PKS under the 3-valued semantics
by running a standard 2-valued model checker twice, as described in [4].

D 3-valued Coloring Example
Figure 3 presents a 3-valued game-graph G, where dashed edges represent may-edges and solid edges
represent must-edges, as well as auxiliary edges. G has a single non-trivial may-MSCC with an AU -
witness. Thus, it is partitioned into two must-MSCCs. The resulting partition of G to Q i’s is depicted by
rectangles in Figure 3, where their numbers 1-6 determine the order �. The coloring algorithm starts from
phase 1 by coloring the terminal nodes (in Q�-Q�). The node �s�� p � AXA�pUq�� is then colored by F
(due to its son �s�� p�). The node �s�� q � �p � AXA�pUq��� is colored by T (due its son �s�� q�), which
causes the node �s�� A�pUq�� to be colored by T as well. At this point, none of the remaining nodes can be
colored. Thus, the algorithm proceeds to phase 2, where Q	 is the smallest set with uncolored nodes, and its
witness is of the form AU . The node �s�� AXA�pUq�� is colored by � in phase 2a, since it is an AX node
and its only must son is colored by T . The algorithm then returns to phase 1, however, none of the rules is
applicable. Thus,Q
 is tackled in phase 2. None of its nodes can be colored by �. Thus, they are all colored
by F in phase 2b. This example demonstrates that if a node is left uncolored after phase 2a in a set with an
AU witness, then it lies on a non-trivial must-SCC that provides evidence for refutation. The final coloring
function can be seen in Figure 3.

E Constructing a Concrete Counter Example
In this section we show how to produce a concrete annotated counter-example from the 3-valued abstract
game-graph that was used for model checking when one of the initial nodes was colored by F , meaning that
�M j� �	 � ff.

LetMC � �SC � S�C �
� LC� be a concrete Kripke structure and let MA � �SA� S�A�
must
�
�

may
�
� LA� be

a abstract KMTS, such thatMC �MA. Let � � SA 
 �SC be the concretization function. Given the abstract
3-valued game-graph GA, based on the abstract model MA, and its coloring function � � N 
 fT� F� �g,
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such that��n�a� � F for some initial noden�a, we can use a variation of the algorithmComputeCounter
to produce an abstract annotated counter-example CA. The difference is that in an AX-node we choose a
must-son for the annotated counter-example and in an EX-node, we add all its may-sons to the annotated
counter-example.

In order to find a concrete annotated counter-example, we need to replace each abstract state sa, that
represents a set of concrete states, with a single concrete state sc from ��sa�. Since we are dealing with
the annotated counter-example, some of the edges between nodes are auxiliary edges, that do not really
represent advancements along transitions of the structure. If this is the case then the same concrete state
should eventually match both these nodes. For an AX-node, the annotated counter-example shows one son
that refutes the property. Given such a node na, and its only son in the counter-example n�a, we need to
match both their states with concrete states that have a concrete transition between them. For an EX-node,
the annotated counter-example shows refutation in all its sons. Hence, given such a node na, we need to
match its abstract state sa with a concrete state sc and add all its concrete sons to the concrete annotated
counter-example.

Hence, the concretization algorithm of CA for producing a concrete annotated counter-example, CC , is
described as follows.

� Choose the initial concrete node to be n�c � �s�c� ��, where s�a is the initial abstract state that
appears in n�a and s�c is an arbitrary node from ��s�a� � S�C .

� Apply the recursive procedure ComputeSons on �n�c� n�a�.

Given a concrete node nc � �sc� �
�� and the abstract node na � �sa� �

�� 	 CA that matches it, the procedure
ComputeSons�nc � na� creates the concrete sons of nc as follows:

� If �� � EX��, then for each state s�c such that sc 
 s�c, the node �s�c� ��� is added to the concrete
annotated counter-example as a son of nc. Each such node matches an abstract node �s�a� ���, such
that s�c 	 ��s�a� which is a son of na in the abstract annotated counter-example.

� If �� � AX��, then na has one son n�a � �s�a� ��� in CA. An arbitrary state s�c is chosen from
fs�c 	 SC � sc 
 s�cg � ��s�a� and the node �s�c� ��� is added to the concrete annotated counter-
example as a son of nc. The resulting son matches n�a.

� If �� � �� � ��, then the nodes �sc� ��� and �sc� ��� are added to the concrete annotated counter-
example as sons of nc. They match the abstract nodes �sa� ��� and �sa� ��� respectively, which are
both sons of na in CA.

� If �� � �� � ��, then na has one son n�a � �sa� �i� in CA, where i 	 f
� �g. The node �sc� �i� is
added to the concrete annotated counter-example as a son of nc. The resulting son matches n�a.

In any case, we then recursively call the procedure on the new concrete nodes (each one and the abstract
node that it matches).

Basically, this is a greedy algorithm. The only situation where there is “freedom” in the choice of
concrete states is in case of sons of AX-nodes. In EX-nodes the algorithm makes sure to include all the
concrete sons in the annotated counter-example. As for other nodes, whose sons result from auxiliary edges,
the algorithm makes sure to attach both the parent and the son with the same state.

Complexity: The running time of the concretization algorithm is linear in the size of the concrete annotated
counter-example, which is bounded by the size of the concrete Kripke structure MC times the length of the
CTL formula �, i.e. O�jMC j � j�j�.

Lemma E.1 The concretization algorithm does not fail.

The following theorem guarantees the correctness of the concretization algorithm.

Theorem E.2 CC is an annotated counter-example for the concrete game-graphGC , based on MC and �.

21


