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Abstract

This work exploits and extends the game-based framework of CTL model checking for counter-
example and incremental abstraction-refinement. We define a game-based CTL model checking for
abstract models over the 3-valued semantics, which can be used for verification as well as refutation.
The model checking process of an abstract model may end with an indefinite result, in which case we
suggest a new notion of refinement, which eliminates indefinite results of the model checking. This
provides an iterative abstraction-refinement framework. This framework is enhanced by an incremental
algorithm, where refinement is applied only where indefinite results exist and definite results from prior
iterationsare used within the model checking algorithm. We al so define the notion of annotated counter-
examples, which are sufficient and minimal counter-examples for full CTL. We present an algorithm that
uses the game board of the model checking game to derive an annotated counter-example in case the
examined system model refutes the checked formula.

1 Introduction

Thiswork exploitsand extends the game-based framework [33] of CTL model checking for counterexample
and incremental abstraction-refinement.

Thefirst goal of thiswork isto suggest a game-based new model checking algorithm for the branching-
time temporal logic CTL [8] in the context of abstraction. Model checking is a successful approach for
verifying whether a system model M satisfies a specification o, written as atemporal logic formula. Yet,
concrete (regular) models of realistic systemstend to be very large, resulting in the state explosion problem.
Thisraises the need for abstraction. Abstraction hides some of the system details, thus resulting in smaller
models. Abstractions are usually designed to be conservative w.r.t. some logic of interest. That is, if the
abstract model satisfies a formulain that logic then the concrete model satisfies it as well. However, if the
abstract model does not satisfy the formula then nothing is known about the concrete model.

Two types of semantics are availablefor interpreting CTL formulae over abstract models. The 2-valued
semantics defines a formula ¢ to be either true or false in an abstract model. True is guaranteed to hold
for the concrete model as well, whereas false may be spurious. The 3-valued semantics [16] introduces a
new truth value: the value of aformulaon an abstract model may be indefinite, which gives no information
on its value on the concrete model. On the other hand, both satisfaction and falsification w.r.t the 3-valued
semantics hold for the concrete model as well. That is, while abstractions over 2-valued semantics are
conservative w.r.t. only positive answers, abstractions over 3-valued semantics are conservative w.r.t. both
positive and negative results. Abstractionsover 3-valued semanticsthus give precise results more often both
for verification and falsification.

Following the above observation, we define a game-based model checking algorithm for abstract models
w.r.t. the 3-valued semantics, where the abstract model can be used for both verification and falsification.
However, a third case is now possible: model checking may end with an indefinite answer. This is an



indication that our abstraction cannot determine the value of the checked property in the concrete model
and therefore needs to be refined. The traditional abstraction-refinement framework [21, 7] is designed for
2-valued abstractions, wherefalse may be afalse-alarm, thusrefinement isaimed at eliminating fal se results.
Assuch, it isusually based on a counterexample analysis. Unlike this approach, the goal of our refinement
is to eliminate indefinite results and turn them into either definite true or definite false.

An advantage of thiswork liesin the fact that the refinement is then applied only to the indefinite part
of the model. Thus, the refined abstract model does not grow unnecessarily. In addition, model checking
of the refined model uses definite results from previous runs, resulting in an incremental model checking.
Our abstraction-refinement process is complete in the sense that for a finite concrete model it will always
terminate with a definite “yes’ or “no” answer.

The next goal of our work isto use the game-based framework in order to provide counterexamples for
the full branching-timetemporal logic CTL. When model checking amodel M with respect to a property ¢,
if M doesnot satisfy ¢ thenthe model checker triesto return a counterexample. Typically, acounterexample
isapart of the model that demonstratesthe reason for the refutation of ¢ on M. Providing counterexamples
isan important feature of model checking which hel pstremendously in the debugging of the verified system.

Most existing model checking toolsreturn as a counterexample either afinite path (for refuting formulae
of the form AG'p) or a finite path followed by a cycle (for refuting formulae of the form AFpt) [6, §].
Recently, this approach has been extended to provide counterexamples for al formulae of the universa
branching-time temporal logic ACTL [10]. In this case the part of the model given as the counterexample
hasthe form of atree. Other worksalso extract information from model checking [31, 13, 27, 34]. However,
thisinformation is presented in the form of atemporal proof, rather than a part of the model.

In this work we provide counterexamples for full CTL. Asfor ACTL, counterexamples are part of the
model. However, when CTL is considered, we face existential properties aswell. To prove refutation of an
existential formula F'v», one needs to show an initial state from which all paths do not satisfy «». Thus, the
structure of the counterexample becomes more complex.

Having such a complex counterexample, it might not be easy for the user to analyze it by looking at the
subgraph of M alone. We therefore annotate each state on the counterexample with a subformula of ¢ that
isfasein that state. The annotating subformulae being false in the respective states, provide the reason for
o to befasein theinitial state. Thus, the annotated counterexample gives a convenient tool for debugging.
We propose an algorithm that constructs an annotated counterexample and prove that it is sufficient and
minimal. We also discuss several ways to use and present thisinformation in practice.

Games for CTL model checking [33] isamost suitable framework for our goals. The model checking
game s played by two players, Vbelard, the refuter who wantsto show that M (= ¢, and Jloise, the prover
who wants to show that M = . The board of the game consists of pairs (s, 1) of a model state and a
subformula, with the meaning that the satisfaction of ¢ in the state s is examined. Vbelard proceeds from
such a node (s, 1) to a node that helps refuting > on s. Jloise chooses her moves with the intention to
prove that s satisfies :». All possible plays of a game are captured in the game-graph, whose nodes are the
elements of the game board and whose edges are the possible moves of the players. The initial nodes are
pairs (so, ¢) Where sq is an initial state of M. It can be shown that Vbelard has a winning strategy (i.e., it
can win the game regardless of Jloise moves) iff M [~ ¢. Jloisehasawinning strategy iff M = .

Model checking isthen done by applying a coloring algorithmon the game-graph [3]. It colors a node
(s,1) by T'iff loise has awinning strategy, which means « istruein s. It colorsit by F' iff Vbelard has a
winning strategy, which means > isfalsein s. Attermination, if all initial nodesare colored 7" then M = .
If at least oneinitial nodeiscolored I’ then M [~ « and we would like to supply a counterexample.

In our work we add abstraction to the discussion. Concrete models for CTL are state-transition graphs
(Kripke structures) in which nodes correspond to states of the system and transitions describe possible
moves between states. Abstract models consist of abstract states, representing (not necessarily digjoint)

1 AGp means“for every path, in every state on the path, p holds’, whereas A Fp means “along every path thereis a state which
satisfiesp”.



sets of concrete states. In order to be conservative w.r.t. CTL, two types of transitions are required: may-
transitions which represent possible transitionsin the concrete model, and must-transitions [22, 12] which
represent definite transitionsin the concrete model. May and must transitions correspond to over and under
approximations, and are needed in order to preserve formulae of theform A X v and F' X ¢, respectively.

We consider the 3-valued semantics of CTL formulae. We would like to maintain the property of the
3-valued semantics that both the positive and the negative answers are definite in the sense that they hold
for the concrete model aswell. To do so, we allow each player to have two rolesin the new 3-valued model
checking game. Thegoal of Ybelard iseither to refute - on M or to prevent dloise from verifying. Similarly,
the goal of dloiseis either to verify or to prevent Ybelard from refuting. As before, Ybelard has a winning
strategy iff M | ¢, and Jloise has awinning strategy iff M [~ . However, it is aso possiblethat none of
them has a winning strategy, in which case the value of ¢ in M isindefinite.

In order to check ¢ on the abstract model M, we propose a coloring algorithm over three colors: T,
F,and?. If dl theinitial nodes of the game-graph are colored by 7', then we conclude that M = . If
some initial node of the game-graph is colored by F', we know that M [~ . Both these results apply to the
concrete model as well. Yet, if none of the above holds, meaning that none of the initial nodes is colored
by F' and at least one of them is colored by 7, we have no definite answer. It is then desirable to refine the
abstract model.

We choose a criterion for refinement by examining the part of the game-graph which is colored by ?.
Once a criterion for refinement is chosen, the refinement is traditionally done by splitting abstract states
throughout the entire abstract model. That is, while the decision on the criterion for refinement islocal, the
refinement is global. However, the structure of the game-graph allows us to apply it only to the indefinite
part of the model. It also allows usto use definite resultsthat were obtained previously. Thus, previous runs
are not wasted and the abstract model does not grow where it is not needed.

Other researchers [16] have suggested to evaluate a property w.r.t the 3-valued semantics by reducing
the problem to two 2-valued model checking problems: one for satisfaction and one for refutation. Such
a reduction will result in the same answer as our algorithm. Yet, it is then not clear how to guide the
refinement, in case it is needed, since at least part of the information about the indefinite portion of the
game-graph islost. Thus, the application to refinement demonstrates the advantage of designing a 3-valued
model checking algorithm.

Asfor our second goal, we propose an algorithm that constructs an annotated counterexample in case
model checking endswith anegative answer, meaning that the checked property « isrefuted by the examined
model M. We first deal with the simpler case where model checking is applied to a concrete model. The
construction uses the colored game-graph and starts from an initial hode which is colored by F'. If the
formulain anode n is either AX v or 11 A 1y then we include in the counterexample one successor of 7,
which is colored by F'. This successor needs to be chosen wisely. If the formulain = is either £ Xy or
11 V 1p, then we include in the counterexample al the successors of » (which are all colored by F’). The
resulting counterexample is an annotated sub-model of M, with possibly some unwinding, that gives the
full reason for the refutation of ¢ on M.

Having defined the notion of an annotated counterexample, we then discuss the construction of anno-
tated counterexamples when abstract models are used. In the 3-valued case, concretization of an abstract
annotated counterexamplewill never fail since the 3-valued abstraction is conservativew.r.t. negative results
aswell. Thus, we can use an extension of the concrete algorithm to provide an abstract counterexample and
derive from it a concrete one.

To conclude, the main contributionsof thiswork are:

e A game-based CTL model checking for abstract models over the 3-valued semantics, which can be
used for verification as well asrefutation.

e A new naotion of refinement, that eliminates indefinite results of the model checking.
e Anincremental model checking within the framework of abstraction-refinement.
e A sufficient and minimal counterexample for full CTL.



Related Work. Other researchers have suggested abstraction-refinement mechanisms for various branching
time temporal logics. In [23] the tearing paradigm is presented as a way to obtain lower and upper approxi-
mations of the system . Yet, their techniqueisrestrictedto ACTL or ECTL. In[29, 30] thefull propositional
mu-calculusis considered. In their abstraction, the concrete and abstract systems share the same state space.
The simplification is based on taking supersets and subsets of a given set with a more compact BDD rep-
resentation. In [25] full CTL is handled. However, the verified system has to be described as a cartesian
product of machines. The initial abstraction considers only machines that directly influence the formula
and in each iteration the cone of influence is extended in a BFS manner. [1] handles ACTL and full CTL.
Their abstraction collapses all states that satisfy the same subformulae of ¢ into an abstract state. Thus,
computing the abstract model is at least as hard as model checking. Instead, they use partial knowledge on
the abstraction function and gain information in each refinement.

The rest of the paper is organized as follows. In the next section we give the necessary background for
game-based CTL model checking, abstractions and the 3-valued semantics. Due to technical reasons, we
start with the description of an annotated counterexample. Thus, in Section 3 we describe how to construct
an annotated counterexamplefor full CTL and show that it is sufficient and minimal. In Section 4 we extend
the game-based model checking algorithm to abstract models, using the 3-valued semantics. In Section 5
we present our refinement technique, as well as an incremental abstraction-refinement framework. Finally,
we discuss some conclusionsin Section 6.

2 Prdiminaries

Let AP be afinite set of atomic propositions. We define the set Lit of literals over AP to be the set
APU{-p:pe€ AP}.i.e foreachp € AP, both p and —p arein Lit. We identify ——p with p.

Definition 2.1 The Logic CTL in negation normal form is the set of formulae defined as follows: ¢ ::=
tt|ff|l|oAe|eVel| A | Ey wherel rangesover Lit, and ¢ isdefined by ¢ ::= X | oUgp | oV .
The (concrete) semantics of C'7'L formulae is defined with respect to a Kripke structure M = (S, S, —
, L), where S isafinite set of states, Sp C S isaset of initial states, -=C S x S isatransition relation,
which must betotal and L : S — 2% isalabeling function that associates each statein S with a subset of
literals, such that for every state s and atomic propositionp € AP, p € L(s) iff -p ¢ L(s). A pathin M is
an infinite sequence of states, = = sg, s1,...suchthat Vi > 0, s; — s;41. 7issaidtobefroms if s = sq.
[(M,s) E ¢] = tt (= ff) meansthat the CTL formula ¢ istrue (false) in the state s of a Kripke structure
M. The formal definition appears in Appendix A. We say that M satisfies ¢, denoted [M = ¢] = tt, if
Vsg € So : [(M, s0) E ¢] = tt. Otherwise, M refutes ¢, denoted [M = ¢] = ff. We omit M when clear
from the context.
Definition 2.2 Given a CTL formula ¢ of the form A(¢ Ugs), E(e1Ups), A(p1V ) of E(p1Vey), its
expansion is defined as:

exp(A(pUp2)) = {A(eiUes), p2 V (1 NAXA(01Ups)), o1 NAXA(p1Upa), AXA(o1Ugps)}
exp(E(o1Upz)) = {E(e1Up2), @2V (o1 ANEXE(01Ups)), o1 NEXE(01Ups), EXE(pUes)}
exp(A(p1Vee)) = {AleiVer), 2 A (o1 VAXA(@1Vir)), o1 VAXA(e1Ver), AXA(@1Via)}
exp(E(o1Ver)) = {E(@iVe2), w2 A (o1 VEXE(@e1Vs)), o1 VEXE(p V), EXE(eiVs)}

2.1 Game-based Model Checking Algorithm

In this section we present the Game-theoretic approach to Model Checking of CTL formulae in a (concrete)
Kripke structure [33, 24]. Given a Kripke structure M = (S, So, —, L) and a CTL formula ¢, the model
checking game of M and ¢ isdefined asfollows. Itsboard isthe Cartesian product S x sub(¢) of the set of
states S and the set of subformulae sub(y), where sub() isdefined asusual, except that if o = A(p1Up2),
E(p1Usps), A(p1Vipa) or E(p1V pa) then sub(g) = exp(p) U sub(pr) U sub(pz) .

Themodel checking gameis played by two players, Ybelard, the refuter, and Jloise, the prover. A single
play is a(possibly infinite) sequence C'y —,0 C1 —p1 Ca —2 ... Of configurations, where Cy € Sp x {¢},
Ci € S x sub(y) and p; € {V,3}. The subformulain C; determines which player p; makes the next move.



The possible movesat each step are:
1. C; = (s,ff), C; = (s,tt), or C; = (s,1) where [ € Lit: the play isfinished. Such configurations are
called terminal configurations.

2. C; = (s, AX ¢): Vbelard choosesatransition s — s’ and C; 11 = (¢, ¢).
3. (= (s, EX): Jloisechoosesatransition s — s’ and Ci11 = (¢, ¢).
4. C; = (s, 1 N\ g2): Vbelard chooses j € {1,2} and Ciq1 = (s, ;).

5. Ci = (s,¢1 V go): dloisechooses j € {1,2} and C';41 = (s, ¢;).

6. Ci = (s, A(prU2)): Cigr = (5,02 V (1 A AX A(p1Uepa))).

7. Ci = (s, E(p1U2)): Ciza = (5,02 V (o1 A EXE(p1Up2))).

8. i = (s, A(p1Vp2)): Cigr = (5,02 A (o1 V AX A1V ip3))).

9. Ci= (5, E(p1Ve2)): Cigr = (5,02 A (o1 V EXE(01V 03))).

In configurations 6-9 the move is deterministic, thus any player can make the move. A play is maximal
iff itisinfinite or endsin aterminal configuration. In[33] it is shown that a play isinfinite iff exactly one
{AU, FU, AV, EV} subformula occursinitinfinitely often. Such a subformulais called a witness.

Winning Criteria: Vbelard winsthe play iff (1) the play isfinite and endsin aterminal configuration of the
form C; = (s,ff), or C; = (s,1), where! ¢ L(s), or (2) the play isinfinite and the witnessis AU or EU.
Jloise winsthe play otherwise.

The model checking game consists of all the possible plays. A strategy is a set of rules for a player,
telling him how to move in the current configuration. A winning strategy is aset of rulesallowing the player
to win every play if he playsby therules.

Theorem 2.3 [33] Let M beaKripke structureand ¢ a CTL formula. Then, for each s € S
1. [(M,s) E ] =tt iff Jloise hasawinning strategy for the game starting at (s, ¢).
2. [(M,s) E ] =ff iff Vbelard hasawinning strategy for the game starting at (s, ¢).

The model checking algorithm for the evaluation of [M |= ¢] consists of two parts. First, it constructs
(part of) the game-graph, that describes all the possible plays of the game. The evaluation of the truth value
of ¢ in M isthen donein the second phase of the algorithm by coloring the game-graph.

2.1.1 Game-graph Construction and its Properties

The subgraph of the game-graph that isreachable from theinitial configurations.Sy x { ¢} isconstructedin a
BFS or DFS manner. The construction startsfrom theinitial configurations(nodes) and applies each possible
move to get the successors in the game-graph of each new node. The result is denoted G'arx, = (N, L),
where N C S x sub(¢y). The nodes (configurations) of the game-graph can be classified into three types.

1. Terminal configurations are leaves in the game-graph.

2. Nodeswhose subformulae are of the form ; A ¢4 or A X o are A-nodes.

3. Nodeswhose subformulae are of theform 1 Vv @9 or F X o1 are VV-nodes.

Nodes whose subformulae are AU, U, AV, 2V can be considered either \V-nodes or A-nodes. Sometimes
we further distinguish between nodes whose subformulae are of the form A X ¢ (F X ) and other A-nodes
(v-nodes), by referring to them as AX-nodes (EX-nodes). The edges in the game-graph are also divided to
two types. Edges that originate in AX-nodes or EX-nodes are progress edges that reflect real transitions of
the Kripke structure. Other edges are auxiliary edges.

Lemma2.4 Let B be a non trivial strongly connected component (SCC) in a game-graph (a non-trivial
SCC contains at least one edge). Then the set of subformulae that are associated with the nodesin B is
exactly one of the setsexp (), where o € {A(p1Up2), E(p1Ups), Alp1Viea), E(e1Ve2)}.

Theformula¢ such that exp() isthe set of subformulae in anon-trivial SCC is called a witness. Each
non-trivial SCC isthen classified asan AU, AV, EU, or EV SCC, based on its witness.



2.1.2 Coloring Algorithm

The following Coloring Algorithm[3] labels each node in the game-graph G/ a«, by T or F', depending on
whether Jloise or Ybelard has awinning strategy for the game.

The game-graph is partitioned into its Maximal Strongly Connected Components (MSCCs), denoted
();'s, and an order < isdetermined onthe ();'s, such that an edge (n, n’), wheren € ); andn’ € ), exists
in the game-graph only if ¢); < ;. Such an order exists because the MSCCs of the game-graph form a
directed acyclic graph (DAG). It can be extended to atotal order < arbitrarily.

The coloring algorithm processes the () ;’s according to the determined order, bottom-up. Let (); be the
smallest MSCC with respect to < that is not yet fully colored. Hence, every outgoing edge of anodein @) ;
leads either to a colored node or to a node in the same set, ();. The nodes of (); are colored as follows.

1. Termina nodesin ¢); are colored by 7' if dloisewinsin them, and by F' otherwise.

2. Anv-node (A-node) is colored by T' (F) if it hasason that iscolored by 7' (F'), and by F (T) if dl
itssonsare colored by F' (7).

3. All the nodesin ¢); that remain uncolored, after the propagation of these rules, are colored according
to the witnessin (Q; (by Lemma 2.4 there exists exactly one such witness). They are colored by I if
thewitnessis of theform AU or EU, and are colored by 7 if the witnessisof theform AV or F'V.

The result of the coloring algorithmisacoloring function y : N — {7T', F'}.

Theorem 2.5 [33] Let G'arx, be a game-graph and let » be a node in the game-graph, then:
1. x(n) =17 iff Jloise hasawinning strategy for the game starting at n.
2. x(n) = F iff Ybelard hasa winning strategy for the game starting at ».

Theorem 2.6 [33] Let M beaKripkestructureand ¢ a CTL formula. Then, for eachn = (s, ¢1) € Garxe:
1. [(M,s) E ¢1] =tt iff n=(s,¢1)iscolored by T.
2. [(M,s) E 1] =ff iff n=(s,¢1)iscoloredby I

2.2 Abstraction

In this section we present abstract models and their relation with concrete models. Abstract models pre-
serving CTL have two transition relations [22, 12]. This is achieved by using Kripke Modal Transition
Systems[19, 14].
Definition 2.7 A KripkeModal Transition System (KMTS) isatuple M = (5, So, ==, =%, L), where S is
afinite set of states, Sy C S isa set of initial states, =>C S x S and —=%C S x S aretransition relations
such that 25C-™5 and L : S — 2% isa labeling function that associates each statein S with literals
from Lt, such that for each state s and atomic propositionp € AP, at most one of p and —p isin L(s).

A must (may) path in M is an infinite sequence of states, 7 = sg, sy, ... such that for every « > 0,
s; 25 Sip1 (55 =5 s441). If s = s, then 7 is said to be from s.

must

Note, that a Kripke structure can be viewed as a KMTS where — = *5="% and for each state s and
atomic proposition p € AP, we have that exactly one of p and —p isin L(s).

We consider abstractionsthat are done by collapsing setsof concrete states (from S ¢) into single abstract
states (in .S 4). Such abstractions can be described in the framework of Abstract Interpretation [26, 12].

Let Mc = (S¢, Soc, —, L) bea(concrete) Kripkestructure. Let (S4, C) beaposet of abstract states
and (v : Sy — 2%, a : 25 — S,) aGalois connection [11, 26] from (2°¢, C) to (S4,C). v isthe
concretization function that maps each abstract state to the set of concrete states that it represents. « isthe
abstraction function that maps each set of concrete states to the abstract state that representsit.

An abstract model M 4 can then be defined as follows. The set of initial abstract states Sq 4 is defined
such that sg, € Spa iff there exists so. € Soc for which so. € v(s0q). An abstract state s, islabeled by
[ € Lit, only if al the concrete states that it represents are labeled by [ as well. Thus, it is possible that
neither p nor —p areiin L 4(s,). The may-transitionsin an abstract model are computed such that they



represent every concrete transition between two states: if Js. € v(s,) and 3s. € v(s),) suchthat s. — s,
then there existsamay-transition s, — s’ . Notethat it is possiblethat there are additional may-transitions.
The must-transitionsrepresent concrete transitionsthat are common to all the concrete states represented by
the origin abstract state: a must-transition s, —— s, existsonly if Vs, € ~(s,) we have that 3, € (")
suchthat s. — s.. Itispossiblethat there are less must-transitionsthan allowed by thisrule.

Other constructions of abstract models, based on Galois connections, can be found in [12, 15].

The resulting abstract model is more abstract than M ¢ as defined by the following definition.

Definition 2.8 [12, 14] Let M = (S¢, Soc, —, L) be a concrete Kripke structure, and let M4 =
(S4, S04, ==, 5 L), be an abstract KMTS. We say that I C S¢ x S4 isa mixed simulation from
Mc to My if (s¢, s4) € H impliesthe following:

1. La(sa) C Le(se).

2. ifs. — sl thenthereissome s/, € S, suchthat s, — s/, and (s., s,) € H.

must

3. ifs, — ¢, thenthereissome s/, € S¢ suchthat s, — s/ and (s, s),) € H.

If there existsa mixed simulation H such that for each s. € Sy thereexists s, € Sp4 for which (s., s,) €
H, we say that M 4 is more abstract than M, denoted by Mo < M 4.

Themixed simulationrelation H C S¢ x S 4 from M to an abstract model whichis constructed based
on a Galois connection as described above is defined such that (s.,s,) € H iff s, € v(s,). Theresults
presented in this paper are applicable to any abstract model that is more abstract than the concrete model
w.r.t. the mixed simulation relation, and are not limited to our construction of an abstract model.

[19] defines the 3-valued semantics of a CTL formula over a KMTS, preserving both satisfaction and
refutation of a formula from the abstract model to the concrete one. However, a new truth value, L is
introduced. If the truth value of aformulain an abstract model is L, then its value over the concrete model
is not known and can be either tt or ff.

Definition 2.9 The 3-valued semantics of a CTL formula ¢ in a state s of a KMTS M = (9, S, —», =%
L), denoted [(M, s) £ ], is defined inductively as fol lows:

(M, s) Eti] =t
(M, 5) 1 = ff
tt ifle L(s)
(M, s) 21 = { ffif=l e L(s)
1 otherwise
, ttit[(M,5) o] = ttand (M, 5) B o] =t
[(Mys) EerAwal = ff if[(M,s) B o] =ffor [(M,s) E o] = ff
1 otherwise
, tit[(M,s) o] = ttor [(M,5) P o] =t
[(Mys) EerVil = 4 ff if[(M,s) B ] =fand [(M, 5) B @] =
1 otherwise
. tt if for each may-path = : [(M, ) )g Pl =tt
[(M, s) E Ad] = ff  if there existsa must-path = such that : [(M, )  v] =
1 otherwise
. tt if there existsa must-path = such that : [(M, 7) ): S
[(M, s) & EY] = ff iffor each may-path = : [(M, =) B ¥] = ff
1 otherwise




For amay or must pathm = sg, s1, ..., [(M, ) |i 1] isdefined as follows.
3 3

(M, 7) F X ] [(M, 1) |= ]
tt if3k>0:[([(M,sk)
ff ifvk>0:[([(M,sg)
1 otherwise
ttifVk > 0:[(V) < k:[(M.s;) o] £ ) = (M, 52) ] = )]
ffif3k > 0: (V) <k [(M,5)) B i) = ) A (M, 5) 2] = )]
1 otherwise
Preservation of CTL formulae from an abstract to a concrete model is guaranteed by the following theorem.
Theorem 2.10 [14] Let H C S¢ x 54 be the mixed simulation relation from a Kripke structure M ¢ to a
KMTS M 4. Then for every (s, s,) € H and every CTL formula ¢, we have that:
(D [(Ma,52) B o] =tt= [(Me,s) ¢l =t and () [(Ma,s.) B ] = = [(Mo,s.) b o] = ff
We conclude that (1) [M 4 )i pl=tt=[Mc E ] =1t and (2) [M4 )i o] =ff=[Mc E ¢] =ff.

=t A (VG < ki [(M,s5) 1]
=V (35 <k:[(M,s;) ]

)]
ff)]

[(M, ) )i 01U o]

[(M,7) B o1V )]

3 Using Gamesto Produce Annotated Counter-Examples

In this section we describe how to construct an annotated counter-example from the coloring of a game-
graph for M and ¢ in case M does not satisfy ¢.

First, the coloring algorithm is changed to identify and remember the cause of the coloring of an A-node
n that iscolored by F. If n was colored by its sons, then cause(n) isthe son that was thefirst to be colored
by F. If n was colored due to awitness, then cause(n) ischosen to be one of its sons which resides on the
same SCC and was colored by witness as well. There must exist such a son, otherwise » would be colored
by itssons. Note that cause(n) depends on the execution of the coloring algorithm.

Given a game-graph G'as ., for a Kripke structure A/ and a CTL formula ¢, and given its coloring
x and an initial node ng = (so, ) such that x(ng) = F, the following DFS/BFS-like algorithm finds an
annotated counter-example, denoted C', which isa subgraph of G/, colored by F.

Thealgorithm ComputeCounter
Initialy: new ={(sg, )}, C =0.
whilenew # ()

n = remove (new)

e if n wasaready handled - continue.

e if n isaterminal node- continue. \x sons = () *\

e if nisan v-node, then for each son»’ of n add n’ to new and (n, n’) to C.

e if nisan A-node, then add cause(n) to new and (n, cause(n)) to C.
Complexity: Clearly, the construction of the annotated counter-example has a linear running time in the
size of itsresult. Theresultislinear (in the worst case) with respect to the size of the game-graph G /..
Thelatter isbounded by O(|M] - |¢]).

The computed annotated counter-example can be viewed asthe part of the winning strategy of the refuter
that is sufficient to guarantee itsvictory. We formalize and prove this notion in the next section. Intuitively
speaking, it isindeed a counter-example in the sense that it points out the reasons for ’'s refutation on the
model. Each node in C' is marked by a state s and by a subformula ¢4, such that x((s, ¢1)) = F, thus
by Theorem 2.6, [s = 1] = ff. The edges point out the reason (cause) for the refutation of a certain
subformulain a certain state: the refutation in an A-node is shown by refutation in one of its sons, whereas
the refutation in an vV-node is shown by al its sons. Hence, by analyzing the annotated counter-example,
one can understand why each subformula, and in particular the main formula, is refuted in the rel evant state.

Notethat, for the correctness of the annotated counter-example, it is mandatory to choose for an A-node
the son that caused the coloring of the node, and not any son that was colored by F'. An example that
demonstrates its importance appears in Appendix B.



3.1 Propertiesof the Annotated Counter-example

The annotated counter-example is a subgraph of the game-graph, and as such it has the properties of the
game-graph. In addition, for each noden € C, x(n) = F. Another important property is:

Lemma 3.1 The annotated counter-example contains non-trivial SCCs if and only if at least one of the
nodesin the SCC was colored due to a witness.

Corallary 3.2 Non-trivial SCCsin the annotated counter-example are either AU-SCCsor FU-SCCs.

Corallary 3.2 resultsfrom Lemma 3.1, sinceonly nodesin AU or FUU SCCsare colored by F' dueto witness.

The property of the annotated counter-example described in Lemma 3.1, along with Corollary 3.2, imply
that any non-trivial SCC that appears in the annotated counter-example indicates a refutation of the U op-
erator, which results, at least partly, from an infinite path, where weak until is satisfied, but not strong until.
This intuition results from the properties of the coloring algorithm. If a node is colored due to a witness,
then finite information alone is not sufficient to cause its color. In the case of A(¢1U¢2), this means that
thereisno finite path where ¢, stopsbeing satisfied before o, is satisfied, and the refutation resultsfrom an
infinite path where ¢, is aways satisfied, but ¢, is never satisfied. In case of E(p1U ), this means that
the refutation results, at |east partly, from infinite evidence of thisform and not only from finite paths.

3.2 TheAnnotated Counter-Exampleis Sufficient and Minimal

In this section we first informally describe our requirements of a counter-example. We then formalize these
requirements for annotated counter-examples and show that the result of algorithm ComputeCounter
fulfillsthem. Generally speaking, for a sub-model to be a counter-example, it is expected to:

1. falsify the given formula

2. hold “enough” information to explain why the original model does not satisfy the formula.

3. beminimal, in the sense that every state and transition are needed to maintain 1 and 2.

In order to formalize the second requirement with respect to an annotated counter-example, we need the
following definitions.

Definition 3.3 Let G = (N, £') be a game-graph and let A be a subgraph of . The partial coloring algo-
rithm of G with respect to A worksas follows. It isgiven an initial coloring functiony ; : N\ A — {7, I'}
and computes a coloring function for ¢. The algorithmis identical to the (original) coloring algorithm,
except for the addition of the following rule:

e Anoden € N \ Aiscoloredby y;(n) anditscolor isnot changed.

Any result of the partial coloring algorithmof ¢ with respect to A iscalled a partial coloring function of ¢
with respectto A, denoted Y : N — {7’ F'}.

As opposed to the usual coloring algorithm that has only one possible result, referred to as the coloring
function of the game-graph, the partial coloring algorithm has several possible results, depending on the
initial coloring function y ;. Each one of them is considered a partial coloring function of the game-graph
w.rt A. By definition, the usual coloring algorithmis a partial coloring algorithm of G with respect to G.

Definition 3.4 Let G be a game-graph and let y be the result of the coloring algorithmon ¢G. A subgraph
A of G isindependent of  if for each Y that isa partial coloring function of G with respect to A, and for
eachn € A, we havethat x(n) = X(n).

Basically, a subgraph isindependent of a game-graph if its coloring is absolute in the sense that every
completion of its coloring to the full game-graph does not change the color of any node init. In fact, one
may notice that the colors of terminal nodes determine the coloring function of the full game-graph. Thus,
to capture this notion, it suffices to refer to a partial coloring algorithm that allows arbitrary coloring of the
terminal nodesin N \ A, but maintainsthe consistency of the coloring of therest of the nodes. However, for
simplicity, we strengthen the definition and allow non-deterministic coloring of al the nodesin N \ A.

We can now formalize the notion of an annotated counter-example.



Definition 3.5 Let ¢ be a game-graph, and let x be its coloring function, such that x(no) = I’ for some
initial nodenq. Asubgraph C' of (¢ containing no isan annotated counter-exampleif it satisfiesthefollowing
conditions. (1) For eachnoden € C, x(n) = F; (2) C isindependent of &; and (3) C'isminimal.

Thefirst two requirementsin Definition 3.5 imply that C' is sufficient for explaining why theinitial node
iscolored by F'. Therefore, it also explains why the formula is refuted by the model. First it guarantees
that all the nodes in C' are colored by F. In addition, since C' is independent of ¢, we can conclude that
regardless of the other nodesin &, all the nodesin €', and in particular the initial node, will be colored by
F. Thethird condition showsthat ' is also “necessary”.

We now show that the result of algorithm ComputeCounter, denoted ', is indeed an annotated
counter-example. The first requirement is obviously fulfilled, as described in Section 3.1. The following
theorems prove that ' satisfies the other two conditions as well.

Theorem 3.6 (' isindependent of G.

The correctness of Theorem 3.6 strongly depends on the choice of cause(n) asthe son of an A-nodein
the algorithm ComputeCounter.

Theorem 3.7 ' isminimal in the sense that removing a node or an edge will result in a subgraph that is
not independent of G.

3.3 Practical Considerations

Since the annotated counter-example may be big and difficult to understand, several simplificationsmay be
suggested. Each non-trivial MSCC can be replaced by a single node, annotated with itswitness. Auxiliary
edges may be collapsed, resulting in a sub-model. Node annotations can either be removed or partially
remembered. These simplificationsreflect the trade-off between the size of the counter-example and the ad-
ditional information originating from the formula. Note that we present a single annotated counter-example
but can (interactively) give them al, using a variation of the algorithm ComputeCounter.

4 Game-Based M odel Checking On Abstract M odels

We suggest a generalization of the game-based model checking algorithm for evaluating a CTL formula ¢
over aKMTS M according to the 3-valued semantics. A discussion on solving the 3-valued problem by
reducing it to two instances of the 2-valued problem, as suggested in [16], appears in Appendix C, where
the advantages of the direct solution, described in this section, are presented.

We start with the description of the 3-valued game. The main difference arisesfrom the fact that KM TSs
have two types of transitions. Since the transitions of the model are considered only in configurations with
subformulae of the form AX ¢, or F X ¢4, these are the only cases where the rules of the play need to be
changed. Intuitively, in order to be able to both prove and refute each subformula, the game needs to allow
the players to use both may and must transitionsin such configurations. The reason is that for example,
truth of aformula A X ¢, should be checked upon may-transitions, but its fal seness should be checked upon
must-transitions.

The new movesof thegameare:

2. if C; = (s, AX ), then Ybelard chooses a transition s = s’ (for refutation) or s — s (for
satisfaction), and Cis; = (', ).

3. if C; = (s, EX¢), then Jloise chooses a transition s = s (for satisfaction) or s —= ' (for
refutation), and C 1 = (¢, ¢).

Intuitively, the playersuse must-transitionsin order to win, while they use may transitionsin order to prevent
the other player from winning. As aresult it is possible that none of the playerswinsthe play, i.e. the play
ends with a tie. As before, a maximal play is infinite if and only if exactly one witness, which is either
an AU,FU,AV or EV-formula, appears in it infinitely often. However, the winning rules become more
complicated. A player can only win the play if he or she are “consistent” in their moves:
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Definition 4.1 A play is called true-consistent if in each configuration of theformC'; = (s, F X ¢), Jloise
chooses a move based on = transitions. It is called false-consistent if in each configuration of the form
C; = (s, AX ¢), Ybelard chooses a move based on ™= transitions.

The new winning criteria:

e Vbelard winsthe play iff the play is false-consistent and in addition one of the following holds:
1. Theplay isfinite and endsin a configuration C'; = (s, ff), or C; = (s, 1), where =l € L(s).
2. Theplay isinfinite and the witnessis of theform AU or E'U.

¢ dJloisewinsthe play iff the play istrue-consistent and in addition one of the following holds:
1. theplay isfinite and endsin configuration C'; = (s, tt), or C; = (s, 1), wherel € L(s).
2. theplay isinfinite and the witnessisof theform AV or E'V.

e Otherwise, the play endswith atie.

We now have the following correspondence between the game and the truth value of a formulain a
certain state under the 3-valued semantics.

Theorem 4.2 Let M beaKMTSand ¢ a CTL formula. Then, for each s € S:
1. [(M,s) )i ] = tt iff Jloise hasa winning strategy for the game starting at (s, ¢).
2. [(M,s) )i o] = ff iff Vbelard hasa winning strategy for the game starting at (s, ¢).
3. [(M,s) )i ] =L iff none of the playershasa winning strategy for the game starting at (s, ¢).

In order to use the above correspondence for model checking, we generalize the game-based model
checking algorithm. The construction of the (3-valued) game-graph, denoted Gy, iS defined as for the
“concrete” game. The nodes of the game-graph, denoted N, can again be classified as A-nodes, V-nodes,
AX-nodesand ' X -nodes. Similarly, the edges can be classified as progress edges or auxiliary edges. But
now, we distinguish between two types of progress edges, two types of sonsand two types of SCCs.

e Edgesthat are based on must-transitionsare referred to as must-edges. Edges that are based on may-

transitionsare referred to as may-edges.

e A noder’ isamay-son of the node n if there existsamay-edge (n, n’). n’ isamust-son of » if there

existsamust-edge (n, n').

e An SCC in the game-graph isa may-SCC if all its progress edges are may-edges. It isamust-SCC if

all its progress edges are must-edges.

The coloring algorithm of the 3-valued game-graph needs to be adapted as well. First, a new color,
denoted 7, isintroduced for configurationsin which none of the players has a winning strategy.

Second, the partitionto ¢);’sthat is based on MSCCsiis affected because there are two types of MSCCs
in Grv,. However, ™5 C ™, thus each must-edge is al'so a may-edge and every must-SCC is a sub-SCC
of amay-SCC. Asaresult, we can have the graph partitioned to M SCCs based on may-edges, and each such
may-MSCC can be further partitioned to M SCCs based on the must-edgesin it. Lemma 2.4 holds for both
types of SCCsin the 3-valued game-graph G .. Thus, the notion of awitnessin an SCC isalso valid.

In practice, the type of a non-trivial MSCC of interest depends on the witness that is associated with
it. For example, for an AU witness loops can only be used for refutation. To identify “real” loops, we
need to use must-edges. Thus for such a witness, we need a must-M SCC. On the other hand, for an AV -
witness, loops can contribute to satisfaction, and satisfaction of universal properties should be examined
upon may-transitions. Thus for such a witness, we need a may-MSCC. Similarly, for an FU witness, we
need a may-M SCC, whereas for an £’V witness, a must-MSCC is used.

The (3-valued) coloring algorithm :

Partition: The game-graph is partitioned into its may-MSCCs. Each non-trivial may-MSCC with an AU
or F'V witnessis further partitioned into its must-M SCCs, such that the original may-M SCC isreplaced by
itsmust-M SCCs. The resulting sets are denoted ();'s. A partial order is determined on the ;' s as follows.
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Order: Theinitia partition to may-MSCCs induces an initial partial order such that transitionsgo out of a
set only toitself or toa“smaller” set. All the must-M SCCsthat result from the partitioning of amay-MSCC
have a partial order between them such that must transitions go out of a set only to itself or to a “smaller”
set. The combination of the initial partial order and the partial order within each may-MSCC result in a
partial order between all the ;’s. The partial order can be extended to atotal order < arbitrarily.
Coloring: The coloring algorithm consists of two phases, which are executed alternately.
1. Sons-coloring phase:
Apply the following rulesto all the nodes in G 57, until none of them is applicable.
e Aterminal nodeiscolored by 7' if Jloisewinsinit, by F'if Vbelard winsinit, and by 7 otherwise.
e An AX-nodeiscolored by (T) if al its may-sons are colored 7'; (F) if it has a must-son that is
colored F'; (?) if al itsmust sonsare colored T or 7 and it has amay-son that is colored £ or 7.
e An EX-nodeis colored by (T) if it has a must-son that is colored T'; (F) if al its may-sons are
colored F'; (?) if it hasamay-son that iscolored T or 7 and all its must-sonsare colored F' or 7.
e An A-node, other than A X' -node, is colored by (T) if both itssonsare colored T'; (F) if it hasa
sonthat iscolored F; (?) if it hasa sonthat is colored ? and the other oneis colored ? or T'.
e AnV-node, other than £/ X -node, is colored by (T) if it has a son that is colored T'; (F) if both
itssonsare colored F'; (?) if it hasa son that iscolored 7 and the other oneis colored 7 or F.
2. Witness-coloring phase:
If after the propagation of the rules of phase 1 there are still nodes in G s, that remain uncolored,
then let ); be the smallest set with respect to < that is not yet fully colored. ¢; must be either a
non-trivial may-M SCC or a subgraph of such an MSCC that has exactly one witness (by Lemma 2.4).
The uncolored nodesin ¢)); are colored according to the witnhessin two phases, as follows.
e Thewitnessisof theform A(yp1Ups) or E(¢1Ugz):
(@) Repeatedly color 7 each nodein ¢); satisfying one of the following, until there is no change.
- An A-node (A X -node) that al its (must) sons are colored by 7" or 7.
- An v-node (F X -node) that has a (may) son that iscolored by 7" or 7.
(b) Color theremaining nodesin ); by F'.
e Thewitnessis of theform A(¢1Vg) or E(¢1Va):
(@) Repeatedly color 7 each nodein ¢); satisfying one of the following, until there is no change.
- An A-node (A X -node) that has a (may) son that is colored by £ or 7.
- An v-node (F X -node) that all its (must) sons are colored by F or 7.
(b) Color theremaining nodesin@); by 7.
Notethat only nodesfrom asingle (); are colored in this phase.

The result of the coloring algorithmis a 3-valued coloring function y : N — {7, F’, 7}. Note, that anodeis
colored ? only if thereis evidence that it can no longer be colored otherwise. In other cases, another method
is used to determineits color. Appendix D presents an example of a 3-valued game-graph and its coloring.
Theorem 4.3 Let Gy« ., be a 3-valued game-graph and let » be a node in the game-graph, then:

1. x(n) =17 iff Jloise hasawinning strategy for the game starting at n.

2. x(n) = F iff Ybelard hasa winning strategy for the game starting at ».

3. x(n) =7 iff none of the playershas a winning strategy for the game starting at n.
Implementation issues and Complexity: The coloring algorithm can be implemented in linear running
time with respect to the size of the game-graph Gy« ., using avariation of an AND/OR graph, similarly to
the algorithm described in [20] for checking the nonemptiness of the language of a simpleweak alternating

word automaton. Thus, its running time isbounded by O (| M| - |¢|).
Asaconclusion of Theorem 4.2 and Theorem 4.3, we get the following theorem.

Theorem 4.4 Let M bea KMTSand ¢ a CTL formula. Then, for each n = (s, 1) € Garx,,:
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1 [(M,s) B o] =tt iff n=(s,1)iscoloredbyT.

2. [(M,s) E 1] =ff iff n=(s,¢)iscolored by F.

3. [(M,s) )i ¢1) =L iff n = (s, ;) iscoloredby ?.

After coloring the game-graph, if all theinitial nodesare colored by 7', or if at |east one of them iscolored
by F', then by Theorem 4.4 along with Theorem 2.10, there isa definite answer asfor the satisfaction of ¢ in
the concrete model. Thisis because there existsa mixed simulation from the concrete to the abstract model.
Furthermore, if the result is ff, a concrete annotated counter-example can be produced, using an extension
of the ComputeCounter agorithm, as described in Appendix E.

5 Refinement

In this section, we show how to exploit the abstract game-graph in order to refine the abstract model in case
that the model checking resulted in an indefinite answer. When theresult is L, there isno reason to assume
either one of the definite answers tt or ff. Thus, we would like to base the refinement not on a counter-
exampleasin[21, 7, 2, 9, 5], but on the point(s) that are responsible for the indefinite answer. The goal of
the refinement isto discard these points, in the hope of getting a definite result on the refined abstraction.

Let Mc = (S¢, Soc, —, L¢) be a concrete Kripke structure and let M4 = (S4, Soa4, o, L)
be an abstract KMTS. Let v : S4 — 2°¢ be the concretization function. Given the abstract 3-valued game-
graph &, based on M 4, and its coloring function x : N — {7, I, 7}, such that x(no) =? for some initial
node ng, we use the information gained by the coloring algorithm of ' in order to refine the abstraction.
The refinement is done by splitting abstract states according to criteria obtained from failure nodes. A node
isafailure nodeif it is colored by 7, whereas none of itssonsis colored by 7 at the time it gets colored by
the algorithm. Such a node is a failure node in the sense that it can be seen as the point where the loss of
information occurred. Note that afailure node may have uncolored sons at the time it was colored, some of
which may eventually be colored by ?. Also note, that aterminal nodethat is colored by ? isaso considered
afailure node. The coloring agorithm is adapted to remember failure nodes. In addition, for each node
n that is colored by 7, but is not a failure node, the coloring agorithm remembers a son that was already
colored ? by the time » was colored, denoted cont(n).

Searching For a Failure Node: A failure nodeisfound by a DFS-like greedy algorithm, starting from n.
e If the current node » isafailure node, the algorithm ends.
e Aslongasn isnot afailure node, the algorithm proceedsto cont(n).

Lemmab5.1 Afailurenodeisa node colored by 7, which is either a terminal node, or one of the following.
e An A X -node (F X -node) that has a may-son colored by £ (1), or
e An AX-node (F X -node) that was colored during phase 2a based on an AU (F'V') witness, and has
a may-son colored by 7.

FailureAnalysis: Givenafailurenoden, it providesuswith criteriafor refinement. Therefinement problem
is reduced to the problem of separating sets of (concrete) states. This problem can be solved by known
techniques, depending on the type of abstraction used (e.g. [9, 7]). The criterion for the separation depends
on the type of n and isfound by the following analysis.

1. n = (s4,!) isaterminal node. In thiscase, itsindefinite color results from the fact that s,, represents
both concrete states that are labeled by [ and by —/. The indefinite color is avoided by separating
v(sq) totwo sets {s. € y(s,) : 1 € Lo (s.)} and {s. € v(sq) : =l € Le(se) ).

2. n = (84, AX ) withamay-son colored F, or n = (s,, /X 1) with amay-son colored 7'. Let K
stand for I or 7. We define sonsyi = ({7 (s)) : (s, 1) € may-sons(n) A x((s,, 1)) = K}
and concig = vy(s,) N{s. € S¢ : 3s. € sonsk,s. — s.}. Forthe AX ¢; case, K = I and concg
isthe set of all concrete states, represented by s, that definitely refute A X ¢,. For the 2. X ¢ case,
K =T and concg isthe set of all concrete states, represented by s, that definitely satisfy £/ X ¢4. In
both cases, our goal isto separate the sets conc i and y(s,) \ concg .
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3. n = (sq, AX 1) Orn = (s,, £ X 1) wascolored during phase 2abased onan AU or an £'V witness,
andhasamay-sonn’ = (s/,, 1) coloredby 7. Let concr = v(s,){s. € S¢ : 3s. € y(s)),s. = s.}
be the set of all concrete states, represented by s,,, that have a son represented by s/,. Our goal isto
separate the sets conc» and v (s,) \ concs.

Itis possiblethat one of the sets obtained during the failure analysisis empty and provides no criterion
for the split. Yet, new information can be gained from it as well. Consider case 2, where the failure node
n isan AX-node. If concp = 7(s,), then every state represented by s, has a refuting son. Thus, n can
be colored by F' instead of 7. If concy = (), then none of the concrete statesin v(s,) has atransitionto a
concrete state represented by the F'-colored may-sons of n. Thus, the may-edges from » to such sons may
be removed: none of them represents concrete transitions. Similar arguments apply to the rest of the cases
aswell. Either way, the game-graph can be recolored starting from the may-M SCC containing 7.

The purpose of the split derived from cases 1-2 is to allow us to conclude definite results about (at |east
part) of the new abstract states obtained by the split of the failure node. These new definite results can be
used by the incremental algorithm, suggested below. We now consider case 3. Intuitively, in this case we
know that by the time the failure node » got colored, itsmay-son »’ that is colored by ? was not yet colored
(otherwise n would not be a failure node). By the description of the algorithm, if »’ was a must-son of n,
then as long as it was uncolored, » would remain uncolored too and would eventually be colored in phase
2b by a definite color. Thus, our goal in this case is to obtain a must edge between (partsof) » and n’.
Theorem 5.2 For finite concrete models, iterating the abstraction-refinement process is guaranteed to ter-
minate with a definite answer.

5.1 Incremental Abstraction-Refinement Framework

We refine abstract models by splitting their states. The criterion for the refinement is decided locally, based
on one node, but has a global effect. In practice, there is no reason to split states for which the model
checking results are definite. The game-based model checking algorithm provides a convenient frame-
work to use previous results. This leads to an incremental model checking algorithm based on iterative
abstraction-refinement, where each iteration consists of abstraction, model checking and refinement. After
each iteration, we now remember the (abstract) nodes colored by definite colors, aswell asnodesfor which a
definite color was discovered during failure analysis. During the construction of a new refined game-graph,
we prune the game-graph in nodes that are sub-nodes of nodes from previous iterations. A node (s,, ¢)
is a sub-node of (s, ¢’) if ¢ = ¢’ and the set of concrete states represented by s, is a subset of those
represented by s/,. Asaresult, only the reachable subgraph that was previously colored by ? isrefined. The
coloring algorithm considersthe nodes where the game-graph was pruned as terminal hodes and colorsthem
by their previous colors. Since previous runs use coarser abstractions, the number of nodes from previous
runs should be much smaller than the number of refined nodes. Therefore, this pruning is worth-while.

Note, that for many abstractions, checking if anodeis a sub-node of another issimple. For example, in
the framework of predicate abstraction[17, 32, 28, 15], thismeans that the abstract states“agree” on al the
predicates that exist before the refinement.

6 Conclusion

In this work, we have exploited the game-theoretic approach of CTL model checking to produce anno-
tated counter-examples for full CTL. We have generalized this approach to 3-valued abstract models and
suggested an incremental abstraction-refinement framework based on our generalization.

Traditional game-based model checking al gorithms determine awinning strategy for the winning player.
The winning strategy holds all the relevant information as for the result of the model checking, but it has
redundancies. The annotated counter-example introduced in this paper may be seen as a minimal part of it
that is sufficient to explain the result.

Our 3-valued game-based model checking and in particular the failure nodes provide information for
refinement, in case the outcome is indefinite. Additional information can be extracted from them and be
used for further optimizations of the refinement.
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Theincremental abstraction-refinement algorithm described in this paper can be viewed as a generaliza-
tion of Lazy abstraction [18], which allows different parts of the abstract model to exhibit different degrees
of abstraction. Lazy abstraction refers to safety properties, whereas our approach is applicableto full CTL.

Thiswork isbased on the game-theoretic approach to model checking. This approach is closely related
to the Automata-theoretic approach [20], as described in [24]. Thus, our work can also be described in this
framework, using alternating automata. In addition, it can easily be extended to aternation-free p-calculus.
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A Semanticsof CTL formulae

Thetruth value € {tt, ff} of aCTL formula ¢ in astate s of aKripke structure M = (.9, So, —, L), denoted
[(M,s) E ¢], isdefined inductively as follows:

[(M,s) =t = tt

[(M.5) = 1f -

[(M,s) =] = ttiffl € L(s), wherel € Lit
[(M,s) E @i Apa] = [(M,s) | @] AN(M,5) | @]
[(M,s) E @1V = [(M,s) @]V I[(M,s) | ¢
[(M,s) = A] = ttiff Vo froms: [(ZW7 ) Ey]=tt
[(M,s) = EY] = ttiff Ir froms: [(M,7) E¢] =t
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Figure 1: (a) A colored game-graph, where white nodes are colored by 7°, grey nodes are colored by F’ and
bold edges point to the cause of an A-node, (b) Its annotated counter-example and (c) A possible result of
ComputeCounter without the use of the cause in A-nodes.

(s, AXA(pVq))

For 7 = sg, s1, ... [(M, 7) = 1] isdefined asfollows.
(M) EXe] = (M) g
(M) [ pilga] = W3k > 02 [([(Msy)  ga] = ) A (%] < & [(M, 5) = ] = 10]
(Mm)E Vsl = HffVE > 0 [(V) < k2 [(M, 55) = oa] = 1) = (M, 52) = 2] = 1)

B Thelmportance Of the Cause In Algorithm ComputeCounter

Figure 1 demonstrates the necessity of choosing cause(n) as a son of an A-node » when computing an
annotated counter-example. Figure 1(a) presents a colored game-graph &, where grey nodes are colored by
F, whereas white nodes are colored by 7', and bold edges point to the cause of an A-node. The initial node
(s, A(pVq)) iscolored by F,i.e. [s = A(pVq)] = ff. Figure 1(b) presents the annotated counter-example
computed by ComputeCounter, where it can be seen that the reason for refutation isthe existence of the
path s, sy, .. where ¢ isnot satisfied in sy, although it was not released by p (p does not hold in s). On the
other hand, Figure 1(c) presentsa subgraph of the (7, that is computed by a variation of ComputeCounter,
where for an A-node, an arbitrary son that is colored by [ is chosen. In the example, the node (s, A(pV ¢))
waschosenasason of (s, AX A(pVq)) rather than (s1, A(pV ¢)), whichisitscause. Theresulting subgraph
implies that the refutation of A(pV¢) resultsfrom the path s, s, .... However, this path satisfies pV/ ¢, such
that it does not prove refutation. It can be shown that this subgraph is not independent of G

C 2-Valued Game-Based Model Checking

In our discussion on abstract models, we have used the 3-valued semantics for the interpretation of a CTL
formula over a KMTS. The 3-valued semantics preserves both truth and falseness of a formula from the
abstract model to the concrete one.

The definition of [(M, s) &= ¢] can be extended to a KMTS using a 2-valued semantics as well [12].
The definition is similar to the concrete semantics with the following changes. Universal properties, of the
form, A+, are interpreted along may paths. Existential properties, of the form F'sp, are interpreted along
must paths. This gives us the 2-valued semantics of CTL formulae over KMTSs, denoted by [(M, s) )% ®].
The 2-valued semanticsis designed to preserve the truth of aformulafrom the abstract model to the concrete
one. However, false alarms are possible, where the abstract model falsifies the property, but the concrete
one does not.
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Theorem C.1 [12] Let H C S¢ x S, be a mixed simulation relation from M~ to M 4. Then for every
(se, Sa) € H andevery CTL formula e, we havethat [(M 4, s,) )é o] = ttimpliesthat [(M¢, s.) = ¢] = tt.

The game-based model checking algorithm can be extended to deal with KM T Ss based on the 2-valued
semantics in amore natural way than was needed to deal with the 3-valued semantics. The 2-valued seman-
ticsisaimed at proving ¢: it preserves only truth from the abstract model to the concrete one. Therefore,
the game’s purpose is also to prove 's satisfaction. As such, Jloise’'s moves in configurations with £.X ¢’
formulae need to use ~—» transitions, since by the semantics definition, existential formulae are interpreted
over must-paths. Similarly, Ybelard’s movesin configurationswith AX o’ formulag need to use —— transi-
tions, since universal formulae are interpreted over may-paths. The rest of the moves, aswell asthe winning
criteria remain the same, with the following exception. The transition relation -~ is not necessarily total.
Thus, a configuration of theform (s, X ¢') may also be aterminal configuration, if s has no outgoing
transitions. A play that endsin such a configuration iswon by Ybelard.

Clearly, the relation between the existence of winning strategies and satisfaction of the formula, as
described in Theorem 2.3 for the concrete game, holdsfor the new game and the 2-valued semantics. This
results from the fact that the change in the allowed moves of the players corresponds exactly to the change
in the 2-valued interpretation of aformulaover aKMTS.

The model checking algorithm, induced by the game consistsof two parts: construction of agame-graph
based on the rules of the game, and its coloring. Once the moves for the new game are defined, the game-
graph isdefined as well. Recall that in the 3-valued case, the resulting game-graph had a different structure
and thus the coloring algorithm needed to be changed as well. However, in the 2-valued case, the resulting
game-graph has the same structure as a concrete game-graph (with the exception of a new type of terminal
nodes): Although the abstract model has two types of transitions for each state, when the game-graph is
constructed, the edges become uniform. We no longer distinguish between them, since there is only one
typein each node. Asaresult, in terms of the game-graph there is only one type of edges. Thus, the same
coloring algorithm can be applied on the (abstract) game-graph in order to check which player hasawinning
strategy, with the small change that terminal nodes of the form (s, X ¢’) need to be colored by F'. The
correctness of the coloring algorithm, as described in Theorem 2.5 for the concrete case, ismaintained since
the new game has the same properties as a concrete game: the same possible moves from each configuration
(with the type of transitions adapted to match the semantics) and the same winning rules. Thus we are
guaranteed that the game-graph is colored by the color of the player that has a winning strategy.

Altogether, we get that the resulting coloring function corresponds to the truth value of the formula over
the abstract model, under the 2-valued interpretation of aformula over a KMTS. Thisisformalized by the
next theorem.

Theorem C.2 Let M bea KMTSand ¢ a CTL formula. Then, for each n = (s, 1) € Garx,,:

1 [(M,s) & o] =tt iff n= (s, 1) iscoloredbyT.

2. [(M,s) & ] =ff iff n= (s, 1) iscolored by F.
Complexity: Clearly, the running time of the coloring algorithm remains linear with respect to the size of
the game-graph G'as«,. The latter is bounded by the size of the underlying KM TS times the length of the
CTL formula, i.e. O(|M]| - |¢]).
C.1 Application to 3-valued Model Checking
We have the foll owing correspondence between the 2-valued semantics and the 3-valued semantics.
Theorem C.3 Let M bea KMTS. Then for every CTL formula  and for every s € S, we have that:

1. if[(M, s) & ¢] = ttthen[(M, 5) £ o] = tt.

2. if[(M, s) & —¢] = ttthen[(M, s) E ¢] = ff.

3. otherwise [(M, s) E o] =L.
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Figure 2: A satisfaction graph (a) versus a refutation graph (b) for AX ¢

where - denotesthe CTL formula equivalent to —, with negations pushed to the literals.

Thus, given an abstract KMTS M 4, such that M~ < M 4 one may suggest using two instances of the
previously described 2-valued model checking in order to evaluate the 3-valued truth value of ¢ over M 4.

First, evaluate ¢ over M 4 using the 2-valued semantics. The constructed game-graph is referred to as
the satisfaction graph, sinceit was built for the purpose of proving the satisfaction of . If theresultistt for

al theinitia states, then we have that [M 4 )i ] = tt and we can conclude that [M ¢ = ¢] = tt.
Otherwise, evaluate - over M 4 using the 2-valued semantics (with negations pushed to the literals).

The constructed game-graph is referred to as the refutation graph, since it was built for the purpose of

proving satisfaction of the negation of ¢ (which is equivalent to proving refutation of ). If theresult is tt

for at least one initial state, we have that [M 4 )i @] = ff and we can conclude that [M¢ | ] = ff. In
addition, a concrete annotated counter-example may be produced from the refutation graph.

Thiscan be better understood using the following observation. Note, that instead of evaluating — using
the previous 2-valued game-based model checking algorithm, it is possible to define a game with different
rulesthat is designed to refute the formula ¢. In such agame the players use the opposite type of transitions
in each configuration (node): Ybelard uses must transitionsin A X -nodes and Jloise uses may-transitions
in ¥ X-nodes. Asaresult, F' is preserved from the corresponding abstract game-graph to the concrete one,
but 7" is not. Note, that the game-graph obtained by these rules is isomorphic to the refutation graph and
the result of its coloring is equivalent to the result of the previous algorithm applied on —. Obvioudly, if
aninitial node in such agame-graph is colored by F’, then we can easily find an abstract annotated counter-
example by the algorithm ComputeCounter. The abstract annotated counter-example is guaranteed not
to be spurious and can be matched with a concrete one by a greedy algorithm, as described in Appendix E.

If none of the above holds, we have that [M 4 )i @] =L. Thus, M4 needs to be refined. One would
suggest to try and use both the satisfaction graph and the refutation graph and their coloring functions to
find a criterion for refinement. In a sense they complement each other, because they are based on opposite
types of transitions. However, these two game-graphs have different nodes (because reachability is also
based on opposite transitions), so most chances are that we can not find enough needed information in their
intersection. Thisis demonstrated in Figure 2, where in the satisfaction graph (a) the initial node (s, A X ¢)
is colored by F' since its son (s3,¢) is colored by F. However, in the refutation graph (b) (s, AX¢)
is colored by T. Thus, the result of the model checking in indefinite. Unfortunately, the refuting son
from the satisfaction graph, (sz, ¢), does not appear in the refutation graph, since it is not a must-son of
(s, AX ¢). Thus, combining the information of both these graphs does not supply enough information for
the refinement.

In summary, this approach provides the same information as the 3-valued algorithm about nodes that
appear in both the satisfaction and the refutation graphs. Since the initial nodes appear in both of them,

this approach is sufficient in order to answer the question “[M )é @] 7", as accurately as the direct 3-
valued approach. However, for the refinement analysis we are interested in the inner nodes as well, that
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Figure 3. A colored 3-valued game-graph, where dashed edges are may-edges, solid edges are must-edges
or auxiliary edges, and rectangles depict the partition of the nodes. White nodesare colored by 7', dark grey
nodes are colored by F, and light grey nodes are colored by 7.

are not necessarily mutua to both the graphs. Thus, using two such game-graphs does not provide us
with full information (in terms of edges) about all of them. Hence, the 3-valued game-based agorithm is
advantageousin terms of the refinement.

Note, that this approach is similar in spirit to the result of translating the KM TS to an equivalent partial
Kripke structure (PKS) as described in [16] and then model checking the PK'S under the 3-valued semantics
by running a standard 2-valued model checker twice, as described in [4].

D 3-valued Coloring Example

Figure 3 presents a 3-valued game-graph G, where dashed edges represent may-edges and solid edges
represent must-edges, as well as auxiliary edges. ' has a single non-trivial may-MSCC with an AU-
witness. Thus, it is partitioned into two must-MSCCs. The resulting partition of GG to ) ;'s is depicted by
rectangles in Figure 3, where their numbers 1-6 determine the order <. The coloring agorithm starts from
phase 1 by coloring the terminal nodes (in 1-Q4). The node (s1,p A AX A(pUgq)) isthen colored by F
(duetoitsson (s, p)). Thenode (s1,qV (p A AX A(pUq))) is colored by 1" (due its son (s1, ¢)), which
causes the node (s1, A(pUq)) to be colored by 7" aswell. At this point, none of the remaining nodes can be
colored. Thus, the algorithm proceeds to phase 2, where (75 isthe smallest set with uncolored nodes, and its
witnessis of theform AU. Thenode (s;, AX A(pUq)) iscolored by 7 in phase 2a, sinceitisan AX node
and itsonly must son is colored by 7. The algorithm then returnsto phase 1, however, none of the rulesis
applicable. Thus, )¢ istackled in phase 2. None of its nodes can be colored by ?. Thus, they are all colored
by F' in phase 2b. This example demonstratesthat if a node isleft uncolored after phase 2ain a set with an
AU witness, then it lies on a non-trivial must-SCC that provides evidence for refutation. Thefinal coloring
function can be seenin Figure 3.

E Constructing a Concrete Counter Example

In this section we show how to produce a concrete annotated counter-example from the 3-valued abstract
game-graph that was used for model checking when one of theinitial nodeswas colored by F', meaning that
[M = o] = ff.

Let Mc = (S¢, Soc, —, Lc) beaconcrete Kripke structureand let M4 = (S4, So4, s, L4)be
aabstract KMTS, suchthat M < M 4. Lety : S4 — 25¢ bethe concretization function. Given the abstract
3-valued game-graph G 4, based on the abstract model M 4, and its coloring function xy : N — {T', '\, 7},
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suchthat x(ng,) = F for someinitial noden,, we can use avariation of the algorithm ComputeCounter
to produce an abstract annotated counter-example C'4. The difference isthat in an A X -node we choose a
must-son for the annotated counter-example and in an F X -node, we add all its may-sons to the annotated
counter-example.

In order to find a concrete annotated counter-example, we need to replace each abstract state s,, that
represents a set of concrete states, with a single concrete state s. from ~(s,). Since we are dealing with
the annotated counter-example, some of the edges between nodes are auxiliary edges, that do not really
represent advancements along transitions of the structure. If this is the case then the same concrete state
should eventually match both these nodes. For an A X -node, the annotated counter-example shows one son
that refutes the property. Given such a node n,, and its only son in the counter-example »/,, we need to
match both their states with concrete states that have a concrete transition between them. For an /X -node,
the annotated counter-example shows refutation in all its sons. Hence, given such a node » ,, we need to
match its abstract state s, with a concrete state s, and add all its concrete sons to the concrete annotated
counter-example.

Hence, the concretization algorithm of C'4 for producing a concrete annotated counter-example, Ce, is
described asfollows.
e Choose the initial concrete node to be ng. = (so., ¢), Where so, is the initial abstract state that
appearsin ng, and so. isan arbitrary node from v (sg,) N Soc-
e Apply the recursive procedure ComputeSons 0N (ng., Noq)-

Given aconcretenoden. = (s., ¢') andtheabstract node n, = (s4, ¢') € C'4 that matchesit, the procedure
ComputeSons(n., n,) createsthe concrete sons of n. asfollows:

o If ' = EX ¢y, then for each state s such that s. — s/, the node (s’ ¢;) is added to the concrete
annotated counter-example as a son of n.. Each such node matches an abstract node (s, 1), such
that s’ € ~(s/,) whichisason of n, inthe abstract annotated counter-example.

o If ¢ = AX ¢y, then n, hasone son n!, = (s, 1) in C4. An arbitrary state s’ is chosen from
{sl. € S¢ :s. = s.} N~(s)) and the node (s, 1) is added to the concrete annotated counter-
example as ason of n.. The resulting son matches n/,.

o If ¢ = 1 V g, then the nodes (s., ¢1) and (s., ¢2) are added to the concrete annotated counter-
example as sons of n.. They match the abstract nodes (s,, v1) and (s,, ¢2) respectively, which are
both sonsof n, inC/y4.

o If ¢ = 1 A 2, then n, hasone son n!, = (s,, ¢;) INC4, where: € {1,2}. The node (s., ¢;) is
added to the concrete annotated counter-example as a son of ... The resulting son matches n’/,.

In any case, we then recursively call the procedure on the new concrete nodes (each one and the abstract
node that it matches).

Basically, thisis a greedy agorithm. The only situation where there is “freedom” in the choice of
concrete states is in case of sons of A X -nodes. In £ X -nodes the algorithm makes sure to include all the
concrete sonsin the annotated counter-example. Asfor other nodes, whose sonsresult from auxiliary edges,
the algorithm makes sure to attach both the parent and the son with the same state.

Complexity: The runningtime of the concretization algorithmislinear in the size of the concrete annotated
counter-example, which is bounded by the size of the concrete Kripke structure M times the length of the
CTL formulag,i.e O(|Mc| - |¢|).

LemmaE.1 The concretization algorithmdoes not fail.

The following theorem guarantees the correctness of the concretization al gorithm.
Theorem E.2 C isan annotated counter-examplefor the concrete game-graph & ¢, based on M and ¢.
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