[10] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative characteristics of
finite-state real-time systems. In |EEE Real-Time Systems Symposium, 1994.

[11] E.Clarke, O.Grumberg, and H. Hamaguchi. Another ook at Itl model checking. InD. Dill, editor, proceedings of
the Sixth Conference on Computer-Aided \erification, Lecture Notesin Computer Science 818, pages 415-427.
Springer-Verlag, 1994.

[12] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal logic.
In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981. Springer-Verlag, 1981. Lecture Notesin
Computer Science, volume 131.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactionson Programming Languagesand Systems, 8(2):244—263, 1986.

[14] P. C. Clements, C. L. Heitmeyer, B. G. Labaw, and A. T. Rose. MT: atoolset for specifying and analyzing
real-time systems. In |EEE Real-Time Systems Symposium, 1993.

[15] E.A. Emerson and Chin Laung Lei. Modalities for model checking: Branching time strikes back. Twelfth
Symposiumon Principles of Programming Languages, New Orleans, La., January 1985.

[16] A. N. Fredette and R. Cleaveland. RTSL: alanguage for real-time schedulability analysis. In IEEE Real-Time
Systems Symposium, 1993.

[17] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HyTech: the next generation. In IEEE Real-Time Systems
Symposium, 1995.

[18] IEEE Standard Board and American National Standards Institute. |EEE Standard Backplane Bus Specification
for Multiprocessor Architectures: Futurebus+, ansi/ieee std 896.1 edition, 1990.

[19] J. P Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda. Fixed priority scheduling theory for hard real-time
systems. In Foundations of Real-Time Computing — Scheduling and Resource Management. Kluwer Academic
Publishers, 1991.

[20] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specification.
In Proceedings of the twelfth Conference on Principle of Programming languages, January 1985.

[21] O.Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Conf. Logics of Programs, Lecture Notes
in Computer Science 193, pages 196-218. Springer-Verlag, 1985.

[22] C. L. LiuandJ W. Layland. Scheduling agorithms for multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1), 1973.

[23] Z.MannaandA. Pnueli. Theanchored version of thetemporal framework. InJ.W. deBakker, W.-P. deRoever, and
G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
L ecture Notesin Computer Science 354, pages 201-284. Springer-Verlag, 1989.

[24] K. L. McMillan. Symbolic model checking — an approach to the state explosion problem. PhD thesis, SCS,
Carnegie Mellon University, 1992.

[25] X. Nicallin, J. Sifakis, and S. Yovine. From atp to timed graphs and hybrid systems. In Lecture Notes in
Computer Science, Real-Time: Theory in Practice. Springer-Verlag, 1992.

[26] L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic analysis for real-time systems. In Foundations of
Real - Time Computing — Scheduling and Resource Management. Kluwer Academic Publishers, 1991.

[27] L. Sha, R. Rgikumar, and S. Sathaye. Generalized rate-monotonic scheduling theory: aframework for devel oping
real-time systems. In Proceedings of the IEEE, Jan 1994.

[28] J.Yang, A. Mok, and F. Wang. Symbolic model checking for event-driven real-time systems. In |EEE Real-Time
Systems Symposium, 1993.

13

Determining the existence of priority inversion is extremely important in the analysis of real-time systems. In our
example we have been able to check this parameter using interval model checking.

We are interested in determining the existence of priority inversion between the time the sensor produces data until
the time the tracking processor processes this data. Priority inversion occurs in thisinterval if the busisidle or the
lower priority process is executing. The lower priority process is either the sensor or tracking processor, depending
on the priority order. In both cases the network interface has higher priority, because it has a shorter period.

Usinginterval model checking we have been ableto check the LTL formulaG ! (bus.idle | bus_.granted
= lower priority) on theintervals between the sensor processor finishing sending data and the tracking pro-
cessor sending its data to the control processor. The origina design showed the existence of priority inversion, as
expected. In the modified design, on the other hand, the formula above is true in al intervals under consideration.
Notice that the formulais clearly false outside these intervals. This shows that the modified design is optimal with
respect to the prioritized utilization of the bus.

Themodified design hasabetter responsetime, and isclearly preferredinthisapplication. Butin other applications
this might not be true. There might be cases, for example, in which the tracking processor sends data to the sensor
processor. In those cases the modified design is worse than the original one. This again shows how selective
guantitativeanalysis and interval model checking can be used to analyze the different facets of asystem. The designer
can choose to optimize the behavior of a critical application, even if at the expense of a less critical one. 1t would
be easy to adapt this analysis to a different data pattern, and optimize the response time for any application that is
considered more important. In this example we considered the data path from the sensor to the control as the most
important one.

This example shows how the proposed method can assist in understanding the behavior of complex systems. We
have been able not only to check properties of the whole system, but also to analyze specific execution sequences of
interest. This allowed us to uncover subtleties about the application that might have been very difficult to discover
otherwise. We believe that this method can be of great use in analyzing and understanding other complex systems, as
it has been in analyzing this one.

References

[1] R. Alur, C. Courcourbetis, and D. Dill. Model-checking for real-time systems. In Symposium on Logic in
Computer Science, pages 414425, 1990.

[2] R. Alur and D. Dill. Automata for modeling real-time systems. In Lecture Notes in Computer Science, 17th
ICALP. Springer-Verlag, 1990.

[3] ANSI Std. FDDI Token Ring Media Access Control, s3t95/83-16 edition, 1986.

[4] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta Informatica, 20:207—226,
1983.

[5] R. E. Bryant. Graph-based algorithms for boolean function manipulation. |EEE Transactions on Computers,
C-35(8), 1986.

[6] J. R.Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 10?° statesand
beyond. In Symposiumon Logic in Computer Science, 1990.

[7] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verifying the performance of the pci local bus using symbolic
techniques. In International Conference on Computer Design, 1995.

[8] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verus. atool for quantitativeanalysis of finite-state real-time
systems. In ACM Workshop on Languages Compilersand Tools for Real-Time Systems, 1995.

[9] S.V.Campos, E. M. Clarke, W. Marrero, and M. Minea. Timing analysis of industrial rea-time systems. In
Workshop on Industrial-strength Formal specification Techniques, 1995.

12

variablevideo. start)anditsprocessing inthecontrol processor by process 7 (signaled by variablet 5 . £inish).
Ideally, wewouldliketo compute thesetimeboundsusingMIN{MAX } [video.start, t5.finish]. However,
since in our model we have abstracted out synchronization between tasks, this would consider pathsin the model in
which t 5 finishes executing just after video, without going through the network interface. This execution sequence
corresponds to t 5 processing data generated by previousinstantiationsof video.

In order to identify the valid paths in the model, we have computed the same time bounds as before, but now
considering only paths that satisfy the constraint F interface.finish. Unfortunately, thisisstill not accurate
enough, as it alows for execution sequences in which interface executes before video finishes, or after t5
starts. The actual formula used to characterize the correct pathsis

F (video.finish & F (interface.finish & F t5.start))

Thisformula guarantees that the events video. finish, interface.finishand t5. start must occur, and
in that order. Moreover, by using bounded selective quantitative analysis we also guarantee that these events must
happen after video.start and before t5.finish. We are then able to eliminate from consideration all false
paths introduced in the model, and determine the correct response times.

Using thisformulafor computing thetime between video. start and t5. £inish resulted intheinterval [24,
96] (values are presented in the form [min, max]), that is, the multimediatraffic is schedulable. The audio traffic has
been analyzed in a similar way, and will not be presented here for brevity. The response time for the audio station is
[16, 96].

This analysis aso uncovered an ambiguity in the system description. Initially, we assumed that process =
processed the multimediatraffic in the control processor. In the original description this point is not clear. However,
the same analysisusing m» instead of 5 producestheinterval [100, 148], whichisclearly not schedulable. Discussions
with the authors of the original paper then clarified the issue, and in the model we introduced process 75 to handle
multimediatraffic.

Finally, we must check the deadline between a sensor reading in the sensor processor and the processing of this
data by 7 in the control processor. This deadlineis 785ms. In order to determine how long it takes for data to go
from the sensor processor to the control processor we must use a similar approach to the one described. The direct
computation of MIN{MAX } [sensor.observation, t3.finish] searches through pathsin which datadoes
not have time to go through all the stepsin the protocol.

We must, therefore, compute this time provided that a LTL formula describing the correct data path is satisfied.
The formulathat must be satisfied inthis caseis

F (sensor.finish & F (track.start & F (track.finish & F t3.start)))

By using this formula we have obtained the time between sensor observation and 75 processing to be in the
interval [197, 563], well within the deadline. However, by looking into the design we noticed a potential source for
inefficiencies in the Futurebus. Using standard model checking techniques we then printed a counterexample for the
longest response time. It confirmed our speculations.

In this system both sensor and tracking processors access the bus periodically, sending data every 160ms. In the
counterexample, however, data required two periods of 160msto reach the control processor. It was sent by the sensor
processor to the tracking processor, but this processor would only send it to the control processor in the next period.
Before this time, data was blocked at the tracking processor because of its periodicity. Further investigation of the
model showed that thiswas caused by the priority order in which processors accessed the bus. The tracking processor
had a higher priority than the sensor processor. This means that when the sensor processor sends data to the tracking
processor, it had already used the bus for this period, and would only request access again in 160ms.

The rate-monotonic theory was used to assign priorities to bus requests, and it states that shorter periods have
higher priorities. In this case however, both processors have the same period, and their relative priority isirrelevant
(from the rate-monotonic perspective). From the data transfer pattern, though, it seemed that exchanging the order of
these two processors would yield a better result. We modified the design by changing the priorities, and the response
time became [37, 403], an improvement of almost 50% in the response time.

Moreover, we have been able to compare the performance of both designs using interval model checking. One
of the most important problems with real-time systems is priority-inversion. It occurs when high-priority tasks are
blocked by low priority tasks. Thiscan happen even with priority scheduling, in most cases caused by synchronization.

11

Sensors Audio Video

|

FDDI network

v
network Tracking
interface processor
- | ¢ Futurebus)
v v
Sensor Control
processor processor

Figure 2: System Architecture

Process | Period | Exec. Time
1 100ms 5ms
T 150ms 78ms
T3 160ms 30ms
T4 300ms 10ms
T 100ms 3ms

Figure 3: Timing requirements for tasks in the control processor

for 7ms at each time. A sensor processor reads data from sensors every 40ms. It buffers this data and sends it once
every four readings to the tracking processor. The tracking processor processes this data and sends it to the control
processor. Both sensor and tracking data use the bus for 3ms each. The deadline for sensor data to be processed is
785ms. Accesstothebusisgranted using priority scheduling. Prioritiesare assigned according to the rate-monotonic
scheduling theory, processors with shorter periods have higher priority.

In the control processor there are several periodic tasks. The timing requirements for these tasks can be seen in
figure 3. Priority scheduling isalso used in the control processor, with prioritiesbeing assigned by the rate-monotonic
theory. Two of the tasks in the control processor have specia functions, s processes sensor data, and = processes
multimedia data.

Each of the components of the system (FDDI, network and control processor) has been implemented separately.
No data is actually exchanged between the components in the model. Data has been abstracted out of the model,
because data dependencies would significantly increase the size of the model and the complexity of verification.

However, while simplifying verification, abstractions can also introduce invalid execution sequences. The con-
straints imposed by data dependencies significantly reduce the number of execution sequences that can actualy be
reached. In an abstract model such dependencies do not exist. In this example, selective quantitative analysis has
been used to ensure that only execution sequences that are valid have been considered during verification.

The first deadline to be checked is the deadline of 100ms between the generation of multimedia data (signaled by

10

The correctness of the algorithm relies on the fact (stated in Lemma 1) that P contains al intervals that are both in
T(f) and M. Moreover, intervals of T'(f) from sat(f) to prop satisfy f. Thus, the algorithms computed shortest
and longest lengths over intervalsfrom start to final that satisfy f.

When the maximum algorithm is computed over the set not_final of states not in final, it is necessary to require
that the transition relation of the structure istotal in order to guarantee that the computed intervalsterminate at a state
infinal. Here the maximum algorithm is computed over the set of states satisfying the formulaC. This guarantees that
the computed interval s terminate at final without the need to require that the transition relation is total .

4.3 Interval Model Checking

Given a structure M and two set of states start and final, we say that an interval o = [sq, .. ., s,] from a statein
start toastate in final ispureiff for all 0 < ¢ < n, s; isneither in start nor in final.

Given astructure M, two sets of states start and final, andan LTL formula f, theinterval model checking isthe
problem of checking whether the formula f, interpreted over intervals, istrue of all pure intervals between start and
final in M.

Interval model checking is useful in verifying periodic behavior of a system. A typical example is a behavior
occursin atransaction on abus. If we want to verify that a certain sequence of events, described by an LTL formula
f, occurs in atransaction we can define start to be the event that starts the transaction and final to be the event that
terminates the transaction. Interval model checking will verify that f holdson al intervals between start and final.

Let M, start, final, and f be as above. The agorithm given below determines the interval model checking
problem using the algorithm minimum of figure 1.

. Construct the tableau for - f, T'(—).
. Computethe product P of T'(—f) and M.

. Apply the algorithm minimum(st, fn) to P with st = sat(—f) x start and fn = prop x final.

A W DN P

. If minimum resultsin oo then thereis no pureinterval from start to final that satisfies —f. Thus, every such
interval satisfies f.

If minimum returns some value £, then the interval found by minimum can serve as a counterexample to the
checked property.

5 A Distributed Real-Time System

In this section we analyze a distributed real-time system using the techniques presented in this paper. Thisis a
complex and realistic application, its components are existing systems and protocols that are actually used in many
real situations. The example consists of three main components, a FDDI network, a multiprocessor connected to this
network and one of the processors in the multiprocessor, the control processor.

The FDDI network isa 100Mb/slocal/metropolitan area network that uses a token ring topology [3]. It has gained
popularity recently, particularly in real-time applications, since it alows communication time to be bounded. There
are severa stations connected to the network in the system. They generate multimedia and sensor data sent to the
control processor, aswell as additional traffic inside the network. Thereisadeadline of 100ms between the generation
of multimedia data and its processing by the control processor.

The traffic in the network has been modeled as proposed in [27]. Under this protocol, stations choose a target
token rotationtime (TTRT). Each station is then allocated a synchronous capacity such that if al stationsuse all their
synchronous bandwidth, the token returnsto a station at most 2* TTRT time unitsafter leaving it [27]. Inthisexample
the TTRT is 8. Traffic ismodeled such that every 16 units (2* TTRT) the stations utilize the network as follows:. video
station, 6 units; audio station, 1 unit; and remainder network traffic, 8 units (in this example we will analyze only the
behavior of video and audio. Therefore all the remaining traffic in the network has been grouped together).

In the multiprocessor, four active processors are connected through a Futurebus+ [18]. The first is the network
interface, it receives data from the network and sends it to the control processor. The network interface uses the bus

4. Construct P’, the restriction of P to the state set fair. P’ = (S, R', L') is defined as follows. S' = fair,
R = RN (S x S) andfor every s € fair, L'(s) = L(s).

5. Apply theagorithmsminimum(st, fn) and maximum(st, fn, not_fn)to P’, with st = (sat(f) x start)N fair,
fn = final N fair, and not_fn = fair — final.

To see why the agorithmswork correctly, note that by Lemma 1 P containsal paths of M that are also paths of
T(f). P'isrestrictedtothefair pathsof T'(f). Thus, every pathin P’ from sat(f) x start satisfies f. Consequently,
applying the algorithmsto P’ from sat(f) x start to final over statesin fair gives the desired results.

As mentioned before, in order to work correctly, the algorithm maximum must work on a structure with a total
transition relation. The transitionrelation of P is not necessarily total. However, the transition relation of P’ istotal
since every statein fair isthe beginning of some infinite (fair) path.

We have applied this method in the analysis of the PCI Local Bus to show how it can be used in the verification
of real systems [7]. In this example we have computed the minimum and maximum transaction times in the PCI
bus for several different configurations. One of the most important characteristics of the PCI bus is the ability to
abort a transaction and restart it later. This significantly affects response time, and therefore must be considered in
the implementation. Although in the actual system aborts can occur at any time, during verification they must be
restricted. The reason isthat if an unlimited number of aborts can occur, the maximum transaction time is infinity.
Even though thisis a possible behavior, it occurs rarely, and it does not provide any information about the behavior
of the system in most cases.

In order to restrict the number of aborts we have implemented an abort counter in the model that is incremented
whenever an abort happens. Thenwe used theLTL formulaG abort_counter < n toselect thepathsconsidered
for verification. This method produced information about the protocol for a specific subset of execution sequences
without the need to change the model. Moreinformation about this analysis can be found in[7].

4.2 Selective Quantitative Analysis — Over Intervals

In this section we adapt the minimum and maximum algorithms of Figure 1 to apply to a set of selected intervalsin a
given structure M.

Giventwo sets of states start and final and an LTL formula f, we compute thelengths of a shortest and alongest
intervalsfromastatein start toastatein final such that f holdsaongtheinterval. Here theformula f isinterpreted
over intervals and we consider only the intervals between start and final that satisfy f.

We will use a specia formula prop to identify the set of tableau states that contain only atomic propositions.

prop = {s|s € P(AP)}.
We will also use a CTL formulaC to identify the set of states over which the maximum algorithm is computed.
C = = final A E[-final U (prop A EF final)].

Thisformulaistrue of astate s if s isnotin final. Furthermore, there exists an interval that leads from s to astate in
prop without going through statesin final, and thisinterval has a continuation to a state in final.
The Interval Selective minimumand maximum Algorithms:

1. Construct the tableau for f, T'(f).

2. Construct the product P of T'(f) and M.

3. Usethe model checking system SMV on P to identify the set of states that satisfy the CTL formulaC.
4

. Let st = sat(f) x start andlet fn = prop x final. The dgorithm minimum(st, f») applied to P will return
the length of the shortest interval between start and final that satisfies f. The algorithm maximum(st, final,
C) applied to P will return the length of alongest interval between start and final that satisfies f.

proc minimum (start, final)
1=0;
1 =start;
r'=T()ur,
while (I’ # 1) A (IN final = §)) do
1=1+1;
I1=1;
r=r{ur,
if (1N final #0)
then return ¢;
else return oc;

proc maximum (start, final, not_final)
if (start N (final U not_final) = 0)
then return oc;
1=0;
I =TRUE;
I' =not_final;
while (I’ # I) A (I’ N start £ () do
1=1+1;
I1=1;
I' =T71(I') N not_final;
if (I = I/)
then return oc;
else return ¢;

Figure 1: Minimum and Maximum Delay Algorithms

As before, the algorithm is implemented using BDDs, however, a backward search is required in this case. Both
algorithmsare proven correct in [10].

4 New Verification Techniques

Inthefollowingsubsectionswe present three verification techniques, based on the tabl eau and the quantitativeanalysis,
presented in previous sections. In Section 5we combine all three techniquesin the verification of acomplex example.

4.1 Selective Quantitative Analysis — Over Paths

In this section we describe how to adapt the minimum and maximum algorithms given in Figure 1 to apply to a set of
selected paths of a given structure M .

Giventwo sets of states start and final in M and an LTL formula f, we compute thelengthsof a shortest interval
and alongest interval from astate in start to astatein final along pathsfrom start that satisfy f. The formula f is
interpreted over infinite paths and is used to select the paths over which the computation is performed.

Let fair be a set of states such that s € fa:r iff s isthe beginning of a path which isfair with respect to Fair(f).
The Path Selective minimum and maximum Algorithms:

1. Construct the tableau for f, T'(f).
2. Construct the product P of T'(f) and M.

3. Usethe model checking system SMV on P to identify the set of statesfair in P.

3 Known Verification Techniques

The variety of verification techniques that we develop in the next section are based on the tableau, as described inthe
previous section, and in addition on two verification techniques: CTL model checking and quantitative analysis.

3.1 CTL Model Checking

CTL [4, 12] isabranching-time temporal logic that is similar to LTL except that each temporal operator is preceded
by a path quantifier — either E standing for “there exists a path” or A standing for “for al paths’. CTL isinterpreted
over a state in a Kripke structure. The path quantifiers are interpreted over the infinite paths of the structure that start
at that state.

CTL model checking is the problem of finding the set of states in a Kripke structure where a given CTL formula
istrue. One approach for solving this problem is a symbolic model checking using a representation called binary
decision diagram (BDD) [5] for the transition relation of the structure. This representation is often very concise. We
use the SMV model checking system [24] that takes a CTL formula f, and the BDD that represents the transition
relation. SMV returns exactly those states of the system that satisfy the formula f.

SMV can aso handle model checking of a CTL formula with respect to a structure together with fairness
constraints. The path quantifiersin the CTL formulaare then restricted to fair paths. The CTL model checking under
given fairness constraints can also be performed using BDD.

3.2 Quantitative Analysis

Several methods have been proposed to verify timed systems, as has been discussed in theintroduction. These verifiers
assume that timing constraints are given explicitly in some notation like temporal logic and determine if the system
satisfies the constraint. In [10] we have described how to verify timing properties using algorithms that explicitly
compute timing information as opposed to simply checking a formula. This section briefly describes that approach,
whichislater used in this work.

A Kripke structure is the model of the system in our method. Currently the system is specified in the SMV
language [24]. The structureis represented symbolically using BDDs. It is then traversed using algorithms based on
symbolic model checking techniques[6]. All computations are performed on states reachable from a predefined set
of initial states. We also assume that the transitionrelationistotal. Thisrequirement isnot necessary for the minimum
algorithm, however, it is essential for the correctness of the maximum algorithm described bel ow.

We consider first the algorithm that computes the minimum delay between two given events (figure 1). Let start
and final be two nonempty sets of states, often given as formulas in the logic. The minimum algorithm returns the
length of (i.e. number of edges in) a shortest interval from a state in start to astate infinal. If no such interval exists,
the algorithm returns infinity. The function 7'(S*) gives the set of states that are successors of some statein 5'. The
function T', the state sets I and I’, and the operations of intersection and union can all be easily implemented using
BDDs[6, 24]. The minimum algorithm is relatively straightforward. Intuitively, the loop in the algorithm computes
the set of states that are reachable from start. If at any point, we encounter a state satisfying final, we return the
number of steps taken to reach that state.

The second algorithm returnsthe length of alongest interval from a statein start to a state infinal. If there exists
an infinite path beginning in a state in start that never reaches a state in final, the algorithm returns infinity. The
function 7-1(S") gives the set of states that are predecessors of some statein .5’. not_final represents the states that
do not satisfy final.

Informally, the algorithm computes at stage ¢ the set I’ of all states at the beginning of an interval of size ¢, all
contained in not_final. The algorithm stops in one of two cases. Either I’ does not contain states from start at stage
i. Sinceit contained states from start at stage ¢ — 1, the size of the longest interval in not_final from a statein startis
i — 1. Sincethe transition relation istotal, thisinterval has a continuation to a state outside not final, i.e. toastatein
final. Thus, thereisan interval of length ¢ from start to final and the algorithm returns .

In the other case, afixpoint isreached meaning that there is an infinite path within not_final from a state in start.
The algorithm in this case returnsinfinity.

e el(gUh)={X(g Uh)}Uel(g) Uel(h).

Thus, the set of states S7 of the tableau isP(el(f)). Thelabeling function Ly is defined so that each stateislabeled
by the set of atomic propositionscontained in the state.

In order to construct the transition relation R, we need an additional function sat that associates with each
elementary subformulag of f aset of statesin Sp. Intuitively, sat(g) will be the set of states that satisfy g¢.

o sat(g) = {s | g € s} whereg € el(f).

o sat(=g) = {s | s ¢ sat(g)}.

e sat(gV h) = sat(g) U sat(h).

e sat(g U h) = sat(h) U (sat(g) N sat(X(g U h))).

We want the transition relation to have the property that for every elementary formula X ¢ of f, X g isin a state
iff X ¢ istruein that state. Clearly, if X ¢ isin some state s, then all the successors of s should satisfy ¢g. Moreover,
if X g isnotin s, then no successor of s should satisfy ¢g. Thus, the definition for R is

Rr(s,s") = /\ s € sat(X g) & s € sat(yg).
Xgeel(f)

Unfortunately, the definition of Ry does not guarantee that eventuality properties are fulfilled. Consequently, an
additional conditionisnecessary in order toidentify those pathsand intervalsalong which f holds. In order to identify
the paths along which f holds we define a set of fairness constraints, F'air C P(S7),

Fair(f) = {sat(~(¢ U k) Vv h) | ¢ U hoccursin f}.
Theorem 2.1 Let T'(f) bethetableau for f.
1. For every path 7 inT'(f), if 7 startsfroma state s € sat(f) and = isfair for Fair(f) thenT(f), 7 Epatn f.
2. Foreveryinterval o = [to, ..., t,] INT(f), ifto € sat(f) andt, € P(AP)thenT(f), 0 =im: [

The following theorem makes precise the intuitive claim that 7'(f) includes every path and every interval which

satisfies f. In order to state this property, we must introduce some new notation. A path = = tg,%1,... in
T(f) corresponds to a path ©' = sy, s1,... in a structure M iff for every ¢ > 0, L(s;) N AP; = Lp(t;). An
interval ¢ = [to,...,t,] In T(f) corresponds to an interval o’ = [sg,...,s,] in M iff for every 0 < i < n,

L(Sl) N APf = LT(ti).
Theorem 2.2 Let T'(f) bethetableau for theformula f and let M be a Kripke structure.

1. If 7" isapath of M suchthat M, 7’ |=pq4n f thenthereisa path 7 in T'(f) such that (i) = corresponds to 7,
(i) = startswith a state in sat(f) and (iii) = isa fair path with respect to Fair(f).

2. If o’ isaninterval in M suchthat M, o’ |=;,: f thenthereisainterval ¢ inT'(f) such that (i) & corresponds
too’, (ii) o startswith a statein sat(f) and (iii) thelast state of o isinP(AP).

Next, we want to compute the product P = (S, R, L) (also caled the intersection) of the tableau T'(f) =
(St, Rr, Ly) and the Kripke structure M = (Sas, Rar, Lag).

o S=1{(s,5)]|s€Sp,s €Sy and Ly (s')NAP; = Lp(s)}.
o R((s,s), (t,t")iff Rp(s,t) and Rar(s',t').
o L((s,8)) = Lr(s).
We extend the function sat to be defined over the set of states of the product P by (s, s') € sat(g) iff s € sat(g).

Lemmal 7" = (so,s}), (s1,5}),...isapathor aninterval in P with L p((s;, s;)) = Ly (s;) for ¢ > 0 if and only

)

ifthereexist 7 = sg, 51, ...InT(f), and 7/ = sp,s7,...in M with Ly (s;) = La(s;) N AP; for i > 0.
091 7

4.0 Fint X 01 < o] > 0and o' Fine g1 ,
5.0FEimtig1Ugs < theeexistsal < k < nsuchthat o |=;,; g2 andforall 0 < j < k, 07 Fint g1

The following abbreviations are used inwriting LTL formulas:
e fAg=-(-fV-yg) oFf=trueUf oG f=-F—f.

In the sequel, whenever we refer to apath that satisfies aformula, the satisfaction is with respect to |=,4:,. Whenever
an interval is considered the satisfaction is with respect to =;+.

Note that, in the definition of [so, . ..s,] = f we do not consider successors of s,, (whether exist or not). This
definition is meant to capture the notion of an interval satisfying a formulaindependently of its suffix (satisfactionis
always defined independently of the prefix).

It isaso important to notice that LTL formulas might have quite a different meaning when interpreted over paths
or over intervals. For instance, a path will satisfy the formula G F « iff « holds infinitely often along the path. On
the other hand, an interval will satisfy this formula iff the last state of the interval satisfies a. Furthermore, while
the formulas — X @ and X —a are equivalent over paths, these formulas are not equivalent over intervals. To see this,
consider an interval [sq] of size 0. [so] Ein: = X a but [so] Fin: X —a.

Let f bean LTL formula. We construct a Kripke structure 7'(f), called the tableau for f, that contains all paths
and intervals satisfying f. The tableau described below is based on the construction given in [11]. There, the tableau
was used for checking that the LTL formulais true for all paths of a given Kripke structure. Here we will use the
tableau for three purposes:

1. Selecting the set of paths of a structure that satisfy f and computing minimum and maximum delays over those
paths;

2. Selecting the set of intervals of a structure that satisfy f and computing minimum and maximum delays over
thoseintervals;

3. Checking that a specified set of intervals of a structure satisfy f.

We first introduce the notion of fairness constraints, needed for some of the tableau applications. A fairness
constraint for astructure A/ can be an arbitrary set of statesin A/, usualy described by aformulaof thelogic. A path
in M issaid to be fair with respect to a set of fairness constraints if each constraint holds infinitely often along the
path.

We now give an informal description of the tableau. A state of the tableau isa set of formulas, intended to be true
along al pathsin the tableau that start with that state. The transition relation of the tableau guarantees the satisfaction
of al formulas except formulas of the form f U ¢4. If f U ¢ isincluded in a state, then the tableau construction
guarantees that f istrue aslong as ¢ is not true. In the case of LTL over paths, fairness constraints are required in
order to identify those infinite paths along which ¢ will eventually betrue. For LTL over finiteintervals, it is sufficient
to consider those intervals that have a final state that does not contain any formula of the form X ¢. Intuitively, X ¢
formulas can be viewed as transferring to next states the requirements that are necessary for the satisfaction of f and
are not yet fulfilled. Thus a state that contains no formula of the form X ¢ indicates that all necessary requirements
have already been fulfilled.

We next describe the construction of the tableau 7'(f) in detail. Let AP; be the set of atomic propositionsin f.
The tableau associated with f isastructure T'(f) = (S7, Rr, L) with AP, asitsset of atomic propositions. Each
statein thetableau isa set of elementary formulas obtained from f. The set of elementary subformulas of f isdenoted
by el(f) and is defined recursively as follows:

o cl(p) = {ptifpe AP;.

o el(—g) = el(g).

(gV h) = el(g) Uel(h).
(X

9) = {X g} Uel(g).

o el

e cl(X

third component is one of the processors of the multiprocessor, the control processor, which receives the audio/video
signals from the network, as well as data from other processors in the system.

The specification determines deadlines between data sources (audio/video on the network and sensor data on the
multiprocessor), and their processing in the control processor. However, verifying that these deadlines are met using
standard techniques is made more difficult because of the distributed nature of the problem. Analytical methods such
as the rate monotonic scheduling must impose restrictions on the system, for example, intermediate deadlines [27].
The complex interaction between the various components of the system also makes itsanalysis using continuoustime
models unmanagesble.

Our tools, on the other hand, were able to analyze the system and verify that the deadlines are met by the design.
Moreover, we have been able to identify inefficiencies that caused the response time to increase significantly (about
50%). After changing the design we not only verified that the response time was lower, but were also able to
determine the causes for the poor performance of the original model using interval model checking. The final model
uses approximately 5000 bdd nodes, and has about 10?! states. Verification time varied from seconds for the simplest
propertiesto several minutes for the most complex ones using a pentium based workstation.

The remainder of this paper is organized as follows. In Section 2 we define the logic LTL, give two semantics
for the logic, and construct a tableau for LTL formulas that suits both semantics. Section 3 shortly describes CTL
model checking and quantitativeanalysis. In Section 4 selective quantitativeanalysis and interval model checking are
described. Section 5 concludes with the verification of acomplex example using a combination of our new techniques.

2 A tableau for LTL

Our specification language is a linear-time temporal logic called LTL. The logic is used for two different purposes.
Oneisto specify a property of the system that needs to be verify. The other isto specify a set of selected paths. In the
latter case, only the selected paths will be verified. In both cases we use a tableau for the formula

We first give the syntax of LTL. Given a set of atomic propositions A P, the linear-time temporal logic LTL is
defined inductively as follows. Every atomic propositionisan LTL formula. Moreover, if f and ¢ are LTL formulas
then—f, fVvg, X fand f UgareasoLTL formulas.

The semantics of LTL is defined with respect to alabeled state transition graph called Kripke Structure. A Kripke
structure M = (S, R, L) has afinite set of states S, R C S x S isthetransitionrelation,and Z : S — P(AP) isthe
labeling function that associates with each state the set of atomic propositionstruein that state.

An infinite sequence so, s1, . . . Of statesin S is a path in the structure M from a state s iff s = s, and for every
i >0, (sj,5741) € R. Let @ = sg,51,... beapath, we use 7/ to denote the suffix of = starting at s;. A finite
sequence s, . . ., s,] isaninterval inastructure A/ fromastate s iff s = s andforevery 0 < j < n, (s;,sj41) € R.
Aninterval may be a prefix of either afinite or an infinite path. Thus, s,, may or may not have successorsin A . Let
o = [so0,...,s,] beaninterval, then the size of o, denoted ||, isn. ¢/ isdefined iff 0 < j < n and it denotes the
suffix of o, starting at s .

For aformula f, apath 7, and aninterval o, M, © =pq¢5 f meansthat f holdsalong path 7 in the Kripke structure
M. M,c [Einy f meansthat f holdsalonginterval o in M. Given a designated set of initial states So, we say that
M, Sy Eparn fiff for every path = from every statein Sy, M, 7 Epatn f. Given two designated sets of states start
and final, we say that M, [start, final] |=paen fiff fOr every interval o from some state in start to some state in
final, M, o |=in: f. Notethat thisdefinition does not require that intervalswill be digjoint. Unless otherwise stated,
overlapping intervals are allowed.

Therelation =,4:5 isdefined inductively as follows (the structure M is omitted whenever clear from the context).

L7Epanp & p € L(sg),forpe AP.
2.7 ':path _'fl e ™ I?gpath fl-

3-77':path fl \/f2 e 7"":path fl or 7"":path f2-
4. 7 ':path X g1 e 771 ':path g1-

5. 7 FEpatn 91 Uga & thereexistsak > 0 suchthat 7 |=,ain g2 andforal 0 < j < k, 7 Epaen 91-

The relation |=;,,; isidentical to |=,q45 for atomic propositionsand boolean connectives. For temporal operatorsitis
defined by

An important characteristic of the method proposed is that it counts the number of computation steps between
events, or the number of occurrences of events in an interval. Because of thisit finds application in synchronous
systemsin general, such as computer circuits and protocols. Another areain which the method has been successfully
used isin the verification of real-time systems, as will be seen in the example verified in this paper. These systems
are inherently asynchronous, and would not seem to be appropriate for our method. However, they are subject to tight
timing constraints, which are difficult to satisfy in an asynchronous design. For this reason designers of real-time
systems often significantly reduce asynchronism in their systems to ensure predictability. In fact, severa real-time
systems we have analyzed are even more synchronous than traditional circuits, and have been successfully verified
using techniques such as the one proposed [10, 9, 8].

Another advantage of this approach is that it is amenable to symbolic implementations using bdds [5]. This
makes it possible to verify systems with extremely large state spaces, alowing realistic and interesting problems to
be handled.

Moreover, the fact that properties are verified over finiteintervals, allows very different types of propertiesto be
expressed. Itispossibleto check for “traditional” properties such as safety and liveness, but also to investigate system
behavior in more detail. In the real-world not all possible execution sequences are equally interesting. Nor are all
possibletime intervalswithin apath. Understanding how the system reacts in different situations allowsfor a detailed
analysisthat can aid not only in determining if the system works, but al so in understanding how well the system works.

Related Methods: There are severa other approaches to the verification of timed systems. For example, dense
timeis modeled by [1, 2, 25, 17]. Those methods provide a very accurate notion of passage of time. However, the
state space of dense time models is infinite, and these verification tools rely on the construction of a finite quotient
structure called region graph. This construction is extremely expensive, limiting the size of problems that can be
handled.

Discrete time is used by other tools such as [16, 28]. The tool described in [28] aso uses symbolic algorithms
using BDDs. These tools, however, do not allow the quantitative analysis of systems as the proposed method. In [14]
guantitative analysis isimplemented, but with a more limited scope.

Analytical methods for analyzing real-time systems al so exist, such as the rate-monotonic scheduling theory [22,
19, 26]. In this method a real-time system is characterized by a set of periodic tasks, each having a period and
an execution time. Assumptions about system behavior are made (such as no task preempts itself), and if these
assumptions are satisfied, simple formulas determine the schedulability of the system. The rate-monotonic theory
algorithms have much simpler complexity than the other verification methods discussed, but they also generate more
restricted information.

More important when comparing these methods, however, is the fact that these tools do not alow a selective
verification of propertiesas the proposed method. They provide no natural way in which a subset of behaviors can be
analyzed inisolation, not allowing as rich an analysis as the proposed method.

Linear-timetemporal logicsinterpreted over bothinfinitepathsand finiteinterval shave been introducedin[21, 23].
However, they use tableau only for satisfiability and did not handle either quantitative analysis or interval model
checking.

The closest method to our selection of paths or intervalsis the use of fairness constraintsin model checking [13,
24, 15]. However, there afairly restricted types of properties were used for selection, while we can handleany LTL
formula. Moreover, only infinite paths can be selected in these works.

A Distributed Real-Time System: To demonstrate the usefulnessof our method, we have appliedit to adistributed
real-time system of realistic complexity, derived from the example described in [27]. Real-time systems are used in
many critical applications such as aircraft control or medical monitoring systems. Because of the consequences of
failuresin such systems, determining their correctness isa vital task.

Several features of this example make it an interesting target for our techniques. It is a system of redlistic
complexity, its components are existing systems and protocols executing a mixture of multimedia, traditional real-
time and non-real time tasks. Also, the distributed nature of the system makes the interaction among its various
components much richer. This also makes its analysis more difficult.

The system consists of three mgjor components, the first being an FDDI network to which are connected audio
and video data sources. The network is connected to a multiprocessor, where other data is generated. Finally the

1 Introduction

Thiswork presents a verification methodology that can provide both quantitative and qualitative analysis of systems.
The analysis can aid not only in determining if the system works correctly, but also in understanding how well the
system works. The suggested methodology consists of selective quantitative analysis and interval model checking
and it is based on two concepts — quantitative analysis, and tableaux for linear-time temporal logic.

In[10] it has been proposed how quantitative symbolic algorithms can be used to analyze the model of a system.
The technique suggested there computes minimum and maximum delays between the occurrence of two events, as
well as the number of times a specified condition occursin such an interval. The timing correctness of a system can
be evaluated by this method. The schedulability of a real-time task set can be determined by computing response
times for al processes. Reaction time to important events can also be computed in the same manner. In general,
performance parameters can be analyzed using this technique.

Typicaly, the quantitative analysis investigates all intervals between a set of initial states start and a set of fina
states final. In many cases, however, it is desirable to restrict the consideration to only execution paths that satisfy a
certain condition. Being able to select the execution paths considered during verification, can help in understanding
how the system reactsto different conditions. For example, one common technique for achieving good performanceis
to optimize adesign for the most frequent cases, while maintaining correctnessfor theinfrequent ones. If the designer
can restrict system behavior to only the most common cases, he can optimize response time. Later he can remove the
restrictions and check the correctness of the system in al cases.

In thiswork we suggest how to apply selective quantitative analysis. We use aformula of the linear-time temporal
logic LTL inorder to specify the paths selected to be verified. Quantitative analysisisthen applied only to those paths
along which the formula holds.

Sometimes amore precise analysisisneeded, requiring that the selecting formulaistrue exactly ontheinvestigated
interval and not just anywhere on the path. Thus, if the LTL formulais Ga (meaning “« holds globally”) then an
interval is selected only if all stateson theinterval satisfy «. If theformulais F'a (meaning “« holds eventually”) then
there must be a state on the interval that satisfies a.

To maintain selecting of either infinite paths or finite intervalswe will consider two semantics for thelogic LTL —
over infinite paths and over finite intervals.

To strengthen our verification methodology, we combine the selective quantitative analysis with model checking
techniques. Traditionally, LTL model checking procedures[20, 11] accept a structure that models the system, a set of
designated states, and an LTL formula. The procedures determine whether the formula holds on all infinite paths of
the structure that start from some designated state. In this work we extend the construction of [11] also for interval
model checking, that is, checking aformulawith respect to finite intervals. We use Tableaux for LTL formulas as the
main tool for both selecting and model checking.

Using tableaux for LTL formulas: A tableau for an LTL formula f isa structure that includes all possible paths
that satisfy the formula. In order to verify that all paths of a system have some property f, we construct the tableau
for the negation of f, —f, and check that no path of the system is included in the tableau for —f. Thisis done by
constructing the intersection of the system and the tableau and checking that the intersection includes no path.

In order to select the set of all paths that satisfy a formula f, we construct the tableau for f and intersect it with
the system. Verification is then applied to the intersection structure.

We show how the same tableau can also represent all finite intervals satisfying a formula. Thus, intersecting with
the tableau for —f can also be used to check that all intervalsin the system satisfy f and intersecting with the tableau
for f can be used to select theintervals satisfying f.

Main Characteristics: Both interval model checking and selective quantitative analysis can be used to extract
information related to specific “parts’ of a system without changing the model. Similar information sometimes can
be obtained by restricting the model to disable uninteresting behaviors, or by marking the interesting ones using
observer modules. However, these techniques frequently modify system behavior, and consequently properties are
checked on amodel different than the original one, possibly hiding important errors, or introducing false ones. Also,
such methods are usually ad hoc; the class of execution sequences that can be analyzed cannot be characterized in a
straightforward way. They are aso more difficult to implement and error-prone.

Selective Quantitative Analysis and Interval Model Checking:
Verifying Different Facets of a System

Sérgio Campos Edmund M. Clarke Orna Grumberg
Carnegie Mellon University* Carnegie Méllon University' The Technion?
January 4, 1996
Abstract

In this work we propose a verification methodology consisting of selective quantitative analysis and interval
model checking. Our methods can aid not only in determining if a system works correctly, but also in understanding
how well the system works.

The selective quantitative algorithms compute minimum and maximum delays over a selected subset of system
executions. We use aformula of the linear-time temporal logic LTL in order to select either infinite paths or finite
intervals over which the computation is performed. We therefore define two semanticsfor LTL — over infinite paths
and over finite intervals. We show how tableaux for LTL formulas can be used for selecting either paths or intervals
and can also be used for model checking formulas interpreted over pathsor intervals.

We haveimplemented a tool based on our techniques. To demonstrate the usefulness of our methodswe verified
a complex distributed real-time system. Severa features of this example make it an interesting target for our
techniques. It is a system of realistic complexity, its components are existing systems and protocols executing a
mixture of multimedia, traditional real-time and non-real time tasks. Also, the distributed nature of the system makes
the interaction among its various components much richer. This also makesits analysis more difficult.

Out tool were able to analyze the system and verify that the deadlines are met by the design. Moreover, we
have been able to identify inefficiencies that caused the response time to increase significantly (about 50%). After
changing the design we not only verified that the responsetime was|ower, but were al so able to determine the causes
for the poor performance of the original model using interval model checking.

*Address: School of Computer Science, Pittsburgh, PA 15213, USA. Email: Sergio.Campos@cs.cmu.edu
t Address: School of Computer Science, Pittsburgh, PA 15213, USA. Email: Edmund . Clarke@cs . cmu. edu
{ Address: Department of Computer Science, Haifa 32000, Isragl. Email: orna@cs.technion.ac.il

