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Abstract

This work presents a modular technique for minimizing a �nite�
state machine �FSM� while preserving its equivalence to the original
system� Being modular� the minimization technique should consume
less time and space� Preserving equivalence� the resulting minimized
model can be employed in both temporal logic model checking and
sequential equivalence checking� thus reducing their time and space
consumption�

Most systems have a natural modular structure� and we suggest
using this structure in the minimization of their model� The complexity
of minimizing a single module can be exponentially smaller than that
of minimizing the entire system� �The actual reduction in complexity
depends on the module connectivity to the other parts of the system��
Thus the method has great potential�

This modular algorithm has been implemented on an Intel system
in Intel Haifa� and it has been tested on real hardware designs�

� Introduction

The fast development of the hardware and software industry has increase
the need for formal veri�cation tools and techniques� Two widely used for�
mal veri�cation methods are temporal logic model checking and sequential
equivalence checking� Both model checking and equivalence checking are
fully automatic� However� they both su�er from the state explosion prob�
lem� that is� their space requirements are high and limit their applicability
to large systems�

Many approaches for overcoming the state explosion problem have been
suggested� including abstraction� partial order reduction� modular veri�ca�
tion methods� and symmetry ��	� All are aimed at reducing the size of the






model to which formal veri�cation methods are applied� thus extending their
applicability to larger systems� When reduction methods are applied� the
veri�cation technique has to be able to deduce properties of the system by
verifying the reduced model� We therefore require the result of the reduction
to be equivalent to the original model�

Two of the most commonly used equivalence relations are language equiv�
alence and bisimulation �
�	� The former is suitable for equivalence checking
as well as model checking for the linear�time logic LTL �
�	� The latter is
suitable for model checking of the expressive ��calculus �
	 logic and the
widely used logics CTL ��� �	 and LTL�

Minimizing a model with respect to language equivalence is PSPACE�
complete �
	� while minimizing a model with respect to bisimulation is
polynomial� Thus� bisimulation minimization appears to be more tractable�
However� computing bisimulation minimization in a naive way may still be
quite costly in terms of time and space ��	� This motivated the development
of more re�ned reduction methods for a variety of equivalence relations� We
describe some of these works below�

The algorithm in �
�	 minimizes models with respect to bisimulation� In
order to improve e�ciency� the algorithm refers only to reachable states and
computes equivalence classes for bisimulation instead of pairs of equivalent
states� This appears to consume less memory for BDD�based ��	 implemen�
tations� In ��	� the algorithm presented in �
�	 is applied to the intersection
of the model with an automaton representing the property that should be
satis�ed by the model� In ��	� a reduction with respect to symmetry equiva�
lence is performed� The symmetry equivalence is a bisimulation equivalence�
but not necessarily the maximal one� ��	 reports that computing this reduc�
tion is more e�cient in the BDD framework than reduction with respect to
bisimulation�

Other works exploit modularity for reduction� The modular reduction
in �
	 preserves a given formula which should be checked for truth in the
model� This method can result in a small model� however� since it pre�
serves a single formula� it cannot be used for equivalence checking� In �	�
the equivalence relation is a combination of language equivalence and fair�
ness constraints� Since computing this relation is PSPACE�complete� an
approximation equivalence relation is computed and the quotient model is
de�ned with respect to it� �
�	 presents an algorithm that constructs an
abstract model of a system through a sequence of approximations� where
the �nal approximation is equivalent to the original system with respect to
the speci�cation language� The approximations are constructed according





to interface speci�cations given by the user� ��	 suggests decomposing the
model� reducing each module in separate and composing the result�

��� Modular minimization

In this paper we present a new modular minimization algorithm that im�
proves the naive modular algorithm� The naive modular algorithm ��	 is
based on partitioning the system into components� It minimizes the model
in iterations� In each iteration two components are selected and composed�
Then the result is minimized� This process is repeated until all components
are composed to form the full minimized system� The advantages of this
approach are�

� Time and space requirements of minimization algorithms depend on
the size of the model to which they are applied� By minimizing compo�
nents instead of the full system� we expect a better overall complexity�
Moreover� we will be able to minimize a system in parts even when the
problem of minimizing the full system is intractable due to its size�

� It is sometimes impossible to complete the construction of the min�
imized system due to the size of intermediate components� In such
cases� it might still be possible to apply some formal veri�cation pro�
cedures to a partially minimized model� composed of minimized and
unminimized components�

The improved algorithm we present improves each iteration in the naive al�
gorithm� Given two components� the improved algorithm constructs the
minimized model without ever constructing the non�minimized result of the
composition� Thus the algorithm avoids the bottleneck of the naive algo�
rithm� �
�	 presents a similar approach in which� before composing and
reducing two components� each component is reduced with respect to the
other� However� unlike the improved algorithm� this approach uses the full
composition for the reduction of each component� Moreover� the result of
composing the two reduced components needs to be further reduced� We
present two versions of the improved algorithm� The �rst is for deterministic
systems and the second is for nondeterministic ones� While the version for
nondeterministic systems is more general� it has worse complexity� Since
deterministic systems are widely used in the hardware industry� a special�
more e�cient version for these systems is worth developing�

The paper includes an implementation of the improved algorithm� carried
out on an Intel veri�cation platform at the sequential equivalence veri�cation
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CAD group of Intel design technology in Haifa� We tested our algorithm
on real designs� The results imply that this method has real potential in
making bisimulation minimization practical�

The rest of the paper is organized as follows� In Section  we de�ne
the model� model composition� and bisimulation equivalence� Section �
presents some properties of bisimulation and modularity� Section � presents
the modular minimization algorithm for deterministic and nondeterministic
FSMs� Section � describes the implementation and the experimental results�
Section � presents some conclusions�

� Basic de�nitions

We model systems as �nite�state machines �FSMs� in the form of Moore
machines in which the states are labeled with outputs and the edges are la�
beled with inputs� Such machines are commonly used for modeling hardware
designs�

De�nition ��� ���� An FSM is a tuple M �� S� S�� I� O� L�R� where

� S is a �nite set of states�

� S� � S is a set of initial states�

� I is a �nite set of input propositions�

� O is a �nite set of output propositions�

� I � O � ��

� L is a labeling function that maps each state to the set of output propo�
sitions true in that state�

� R � S � I � S is the transition relation� We assume that for every
s � S and i � I there exists at least one state s� such that �s� i� s�� � R�

An FSM is deterministic i� for every state s and i � I there exists exactly
one state s� such that �s� i� s�� � R and jS�j � 
�

Two FSMs are composed only if their outputs are disjoint� There is
a transition from a pair of states in the composed FSM if and only if the
output of each state matches the input on the transition leaving the other
state� This models the input�output connections between the two machines�
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De�nition ��� Let M� �� S�� S��� I�� O�� L�� R� � and
M� �� S�� S��� I�� O�� L�� R� � be two FSMs such that O� � O� � �� The
composition M � M�jjM� �� S� S�� I� O� L�R � is an FSM such that	

� S � S� � S��

� S� � S�� � S���

� I � �I� nO��� �I� nO���

� O � O� �O��

� L��s�� s��� � L��s��� L��s���

� ��s�� s��� i� �s
�
�
� s�

�
�� � R i
 �s�� �i� L��s��� � I�� s

�
�
� � R� and �s�� �i�

L��s��� � I�� s
�
�
� � R��

Lemma ��� Let M� and M� be deterministic FSMs� Then the composi�
tion M of M� and M� is deterministic as well�

Proof � Obviously� jS�j � 
� Let �s�� s�� be a state in S and i � I be an in�
put� Let i� � �i�L��s����I� and i� � �i�L��s����I�� Since M� is determin�
istic� there exists exactly one state s�

�
such that �s�� i�� s

�
�
� � R�� Similarly�

there exists exactly one state s�
�
such that �s�� i�� s

�
�
� � R�� By the de�nition

of composition� �s�
�
� s�

�
� is the only state such that ��s�� s��� i� �s�

�
� s�

�
�� � R�

�

We now de�ne the basic notion of equivalence that we use in this work�
namely� bisimulation�

De�nition ��� Let M� �� S�� S��� I�� O�� L�� R� � and
M� �� S�� S��� I�� O�� L�� R� � be two FSMs such that O� � O� �� � and
I� � I�� We say that M� and M� are bisimulation equivalent with respect to
O� 	 O� � O� i
 there exists a relation H � S� � S� �called a bisimulation
relation� such that	

� For every state s�� � S�� there exists a state s�� � S�� such that
�s��� s��� � H and for every state s�� � S�� there exists a state s�� �
S�� such that �s��� s��� � H�

� For every pair �s�� s�� in H the following three conditions hold	

� L��s�� �O� � L��s�� �O��
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� For every i � I� �recall that I� � I�� and for every state s�
�
such

that �s�� i� s
�
�
� � R� there exists a state s�

�
such that �s�� i� s

�
�
� �

R� and �s�
�
� s�

�
� � H�

� For every i � I� and for every state s�
�
such that �s�� i� s

�
�
� � R�

there exists a state s�
�
such that �s�� i� s

�
�
� � R� and �s�

�
� s�

�
� � H�

Proposition ��� For every FSMM  let s be a state inM that is not reach�
able from any initial state� The result of removing s from M is bisimulation
equivalent to M �

Consequently� we refer only to FSMs where all the states are reachable from
the initial states�

Bisimulation is an equivalence relation over FSMs� �
�	 shows that for
every two FSMs M� and M�� there exists a maximal bisimulation relation
that contains every relation satisfying the conditions of De�nition ��� The
maximal bisimulation relation H � S � S over the states of an FSM M

is an equivalence relation over S� As such� it induces a partition of S to
equivalence classes� These classes can be used to form the quotient FSM of
M � which is the minimal FSM that is bisimulation equivalent to M �
We will denote by �s	 the equivalence class of a state s�

De�nition ��� Let M �� S� S�� I� O� L�R � be an FSM and let H �
S � S be the maximal bisimulation relation with respect to O� � O over M �
The quotient FSM MQ �� SQ� S�Q� IQ� OQ� LQ� RQ � of M with respect to
H is de�ned as follows	

� SQ � f�j� is an equivalence class in Hg�

� S�Q � f�s�	js� � S�g�

� IQ � I�

� OQ � O��

� For � � SQ LQ��� � L�s� �O� for some �all� states s � ��

� RQ � f��� i� ���jthere are states s � �� s� � �� such that �s� i� s�� �
Rg�

De�nition ��� An FSMM is minimized i
 it is isomorphic to its quotient
FSM�
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� Properties of modularity and reduction

The improved algorithm uses both modularity and bisimulation�based re�
duction� In the following we present some properties of the bisimulation
relation� bisimulation reduction� and the relationships between bisimulation
and modularity� The proofs for these claims are given in Appendix A�

Lemma ��� Let M be an FSM and let MQ be the quotient FSM of M �
Let ��� i� ��� be an element in RQ� Then for every state s in � there exists
a state s� in �� such that �s� i� s�� � R�

Proposition ��� If M is deterministic then MQ is deterministic�

Lemma ��� M is minimized i
 the maximal bisimulation relation over
M �M contains exactly the identity pairs�

Lemma ��	 Let M be an FSM and MQ be the quotient FSM of M with
respect to O�� Then M and MQ are bisimulation equivalent with respect to
O��

Lemma ��� Let M be an FSM and MQ be the quotient FSM of M with
respect to O�� Then MQ is the smallest �in number of states and transitions�
FSM which is bisimulation equivalent to M with respect to O��

Proposition ��
 Let M� and M� be FSMs and let H � S� � S� be a
bisimulation relation over M� and M� with respect to O � O� � O�� Then
H is a bisimulation relation with respect to every O� � O�

Lemma ��� Let M� and M� be minimized FSMs� If O� � I� � � and
O� � I� � � then M � M�jjM� is minimized�

� The improved algorithm

In this section we present the improved algorithm� Like the naive algorithm�
the improved algorithm receives a design� given as a set of n components�
The improved algorithm works in iterations� In each iteration twominimized
components� M� and M�� are selected and a new minimized component�
which is equivalent to M�kM�� is constructed� The algorithm terminates
when an iteration results in a single component� In this case� the �nal com�
ponent is the smallest� in terms of states and transitions� that is equivalent
to the composition of the n original components�
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In this section we focus on a single iteration of the improved algorithm�
Unlike the naive algorithm� where the two components are �rst composed
and then the result is minimized� the improved algorithm constructs a mini�
mized FSM that is equivalent toM�kM� without constructing the full model�
Thus� the improved algorithm require less time and space�

By Lemma ���� if M is the result of a composition of two di�erent FSMs
that do not interact with each other� then M can be minimized by minimiz�
ing M� and M� separately� However� this does not hold in the general case�
given two minimized components M� and M�� their composition M�kM� is
not necessarily minimized� This is demonstrated in Figure 
�

Figure 
 shows two FSMs� M� and M�� for which O� � I� �� �� M� and
M� are minimized but their composition M is not� Figure 
 also contains
MQ� which is the result of minimizing M � The FSMs in Figure 
 are Moore
machines� and we use the following convention in their description� The
labels in the states represent the outputs of the Moore machines� The inputs
are represented by a boolean formula on the edges� For states s� s� � S and
i � I � �s� i� s�� is an element in R i� i satis�es the formula on the edge from
s to s��

a

true

c d

d

true

true
true

d

a a

a

a

c

true

d
true true

da a a

c d
aa

d

true

d
M�

M � M�jjM�

b

�b

MQ

M�

�a � b

�a � �b �a

b

�b

Figure 
� The composition of two minimized FSMs is not always minimized

The observation demonstrated in Figure 
 implies that a more sophisti�
cated algorithm is needed for interacting components� We will present two
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versions of the improved algorithm� one for deterministic FSMs and another
for nondeterministic FSMs� While the former is less general� it has a better
complexity� Since hardware designs are often modeled by a deterministic
FSM� it worth developing a special algorithm for deterministic designs�

��� Deterministic FSMs

We now describe a single iteration of the improved algorithm� The version
for deterministic FSMs and the version for nondeterministic FSMs di�er
only in the last stage of each iteration� We �rst present the version for
deterministic systems� which is simpler� and then we present the change in
the last stage for nondeterministic FSMs� In each iteration� the algorithm
is given two minimized FSMs� M� and M�� such that O� �O� � �� We use
the notation M � M�jjM�� O

�
�
� O� � I�� and O�

�
� O� � I�� The algorithm

performs the following steps�


� Reduce M� with respect to O�
�
� resulting in M r

�
�

� Reduce M� with respect to O�
�
� resulting in M r

�
�

�� Compose M e
�
� M�jjM

r
�
�

�� Compose M e
�
� M r

�
jjM��

�� Reduce M e
�
with respect to O�� resulting in Md

�
�

�� Reduce M e
�
with respect to O�� resulting in Md

�
�

�� Compose Md � Md
�
jjMd

�
�

Table 
 presents the inputs and outputs of the FSMs constructed by the
improved algorithm�

An example for the improved algorithm is presented in Figure � The
intuition behind the improved algorithm is as follows� When two FSMs
are composed� each restricts the behavior of the other by providing a real
environment� rather than an open one� States that behaved di�erently from
one another are now indistinguishable and can be collapsed into the same
equivalence class�

Our goal is to minimize M� and M� in separation� while taking into
account the environment each runs in� While minimizing M�� it is su�cient
to consider only the part ofM� which in�uences M�� M r

�
is exactly that part�

Therefore� states in M� that become indistinguishable in M � M�kM� are

�



FSM Input Output

M� I� O�

M� I� O�

M r
�

I� O�
�

M r
�

I� O�
�

M �I� nO�� � �I� nO�� O� �O�

M e
�

�I� nO
�
�
� � �I� nO�� � �I� nO�� � �I� nO�� O� �O�

�

M e
�

�I� nO�� � �I� nO
�
�
� � �I� nO�� � �I� nO�� O� �O�

�

Md
�

�I� nO�� � �I� nO�� O�

Md
�

�I� nO�� � �I� nO�� O�

Md �I� nO�� � �I� nO�� O� �O�

Table 
� The inputs and outputs of the intermediate FSMs in the improved
algorithm

also indistinguishable inM e
�
� M r

�
kM�� These states are collapsed� resulting

in Md
�
� Similarly� in M e

�
� states of M� that are indistinguishable in M are

collapsed �resulting in Md
�
�� When Md

�
and Md

�
are �nally composed� Md is

the result of a composition of two minimized FSMs which do not interact�
and therefore Md is minimized�

The skeleton of the correctness proof for the algorithm is given in the
lemma below� In the rest of the section we prove each of the claims� thus
proving the correctness of our algorithm�

Lemma 	��

� M e
�
and M are bisimulation equivalent with respect to O� �O�

�
�

� M e
�
and M are bisimulation equivalent with respect to O� �O�

�
�

� Md
�
and M are bisimulation equivalent with respect to O��

� Md
�
and M are bisimulation equivalent with respect to O��

� Md and M are bisimulation equivalent with respect to O� � O�

� Md is minimized with respect to O� � O��

Lemma 	�� M e
�
and M are bisimulation equivalent with respect to O� �

O�
�
�


�
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a
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�
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�
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Figure � An example of the deterministic version of the improved algorithm	 M�

has input set I� � fcg and output set O� � fa� bg� M� has input set I� � fag
and output set O� � fc� dg� Note that even though M� and M� are minimized�
M is not� Md is the quotient model of M � It can also be obtained by composing
Md

�
and Md

�
� The states of Md

�
� Md

�
and Md are given as the sets of states in the

equivalence classes the states represent�

Proof � LetHe
�
� S�Se

�
beHe

�
� f��s�� s��� �s�� sr���js

r
�
is the equivalence class of s�g�

We prove that He
�
is a bisimulation relation�

� For every �s��� s��� � S�� we have ��s��� s���� �s��� �s��	�� � He
�
� Simi�

larly� for every �s��� ��� � Sr
��
� let s�� be the initial state in �� Then

��s��� s���� �s��� �s��	�� � He
�
�







Let ��s�� s��� �s�� s
r
�
�� � He

�
�

� Since the labeling of an equivalence class is equal to the labeling of the
states it contains� L��s���O�

�
� Lr

�
�sr

�
�� The de�nition of composition

therefore implies that L��s�� s���� �O� �O�
�
� � Le

�
��s�� s

r
�
���

� Let ��s�� s��� i� �s
�
�
� s�

�
�� be an element in R� This implies that for

i� � �i � L��s��� � I�� �s�� i�� s
�
�
� � R� and for i� � �i � L��s��� �

I�� �s�� i�� s
�
�
� � R�� Let s�

�r be the equivalence class of s�
�
� Then

�sr
�
� i�� s�

�r� � Rr
�
� Since L��s�� � I� � L��s��� O�

�
� Lr

�
�sr

�
�� i� � �i�

Lr
�
�sr

�
���I�� The de�nition of composition implies that ��s�� sr��� i� �s�

�� s�
�r�� �

Re
�
� By the de�nition of He

�
� ��s�

�
� s�

�
�� �s�

�� s�
�r�� � He

�
�

� Let ��s�� sr��� i� �s�
�� s�

�r�� be an element in Re
�
� This implies that for

i� � �i � Lr
�
�sr

�
�� � I�� �s�� i�� s

�
�
� � R� and for i� � �i � L��s��� � I��

�sr
�
� i�� s�

�r� � Rr
�
� By Lemma ��
� there exists a state s�

�
such that

�s�� i�� s
�
�
� � R� and s�

�r is the equivalence class of s�
�
� Since L��s�� �

I� � L��s�� � O�
�
� Lr

�
�sr

�
�� i� � �i � L��s��� � I�� By the de�nition

of composition� ��s�� s��� i� �s
�
�
� s�

�
�� � R� and by the de�nition of He

�
�

��s�
�
� s�

�
�� �s��r� s�

�r�� � He
�
� �

Lemma 	�� M e
�
and M are bisimulation equivalent with respect to O�

�
�

O��

The proof is similar to the proof of Lemma ���

Lemma 	�	 Md
�
and M are bisimulation equivalent with respect to O��

Proof � Proposition ��� together with Lemma �� implies that M e
�
and

M are bisimulation equivalent with respect to O�� Lemma ��� implies that
M e

�
and Md

�
are bisimulation equivalent with respect to O�� Since bisimu�

lation equivalence is transitive� then M and Md
�
are bisimulation equivalent

with respect to O�� �

Lemma 	�� Md
�
and M are bisimulation equivalent with respect to O��

The proof is similar to the proof of Lemma ����

Lemma 	�
 If M� and M� are deterministic then Md and M are bisim�
ulation equivalent with respect to O� �O��






Note that both Md
�
and Md

�
have the same input �I� and I � O� �

I �O� � ��
Proof � Let Hd

�
� S�Sd

�
and H�

d � S�Sd
�
be bisimulation relations over

M�Md
�
andM�Md

�
respectively� Let Hd � S�Sd be the following relation�

Hd � f��s�� s��� �sd�� s
d
�
��j��s�� s��� sd�� � H�

d and ��s�� s��� s
d
�
� � H�

dg� We
prove that Hd is a bisimulation relation�

� ��s��� s���� s�
d
�
� � H�

d and ��s��� s���� s�
d
�
� � H�

d imply that ��s��� s���� �s�
d
�
� s�

d
�
�� �

Hd�

Let ��s�� s��� �s
d
�
� sd

�
�� be a pair in Hd�

� ��s�� s��� s
d
�
� � H�

d implies thatL��s�� s����O� � Ld
�
�sd

�
�� ��s�� s��� s

d
�
� �

H�

d implies that L��s�� s����O� � Ld
�
�sd

�
�� Thus� L��s�� s��� � Ld��s

d
�
� sd

�
���

� Let ��s�� s��� i� �s
�
�
� s�

�
�� be an element in R� Since ��s�� s��� s

d
�
� � H�

d �
there exists a state s��d such that �sd

�
� i� s�

�d� � Rd
�
and ��s�

�
� s�

�
�� s��d� �

H�

d � Since ��s�� s��� s
d
�
� � H�

d � there exists a state s�
�d such that

�sd
�
� i� s�

�d� � Rd
�
and ��s�

�
� s�

�
�� s��d� � H�

d � The de�nition of compo�
sition implies that ��sd

�
� sd

�
�� i� �s�

�d� s�
�d�� � Rd and by the de�nition of

Hd� ��s�
�
� s�

�
�� �s��d� s�

�d�� � Hd�

� Let ��sd
�
� sd

�
�� i� �s�

�d� s�
�d�� be an element in Rd� Then �sd

�
� i� s�

�d� �
Rd
�
and �sd

�
� i� s�

�d� � Rd
�
� Since ��s�� s��� sd�� � H�

d � there exists a
state �s�

�
� s�

�
� such that ��s�� s��� i� �s

�
�
� s�

�
�� � R and ��s�

�
� s�

�
�� s�

�d� �
H�

d � Since ��s�� s��� s
d
�
� � H�

d � there exists a state �s��
�
� s��

�
� such that

��s�� s��� i� �s
��
�
� s��

�
�� � R and ��s��

�
� s��

�
�� s�

�d� � H�

d � Since M is determin�
istic� �s�

�
� s�

�
� � �s��

�
� s��

�
�� By the de�nition ofHd� ��s

�
�
� s�

�
�� �s�

�d� s�
�d�� �

Hd� �

Md
�
and Md

�
are minimized with respect to O� and O� respectively� Fur�

thermore� I � O� � I � O� � �� and thus Lemma ��� induces the following
corollary�

Corollary 	�� Md is minimized with respect to O� � O��

��� Time and space complexity

In this section we compare between the complexity of the naive algorithm
and the complexity of the improved algorithm�

The algorithms include two basic operations�


�




� Composing two FSMs� M �� � MkM �� The most costly part of this
operation is the computation of the transition relation R��� This can
be done in time and space complexity of O�jR��j��

� Minimizing an FSM M into its quotient FSM� MQ� The algorithms
have the same complexity as the one in �

� 
�	� Their space complexity
is O�jRj� and their time complexity is O�jRj 
 log�jSj���

Thus� the minimization is the dominant part of the algorithm� In the naive
algorithm there is only one minimization of M � M�kM�� In the improved
algorithm� however� there are � minimizations� The minimization ofM� that
results in M r

�
� the minimization of M� that results in M r

�
� the minimization

of M e
�
that results in Md

�
� and the minimization M e

�
that results in Md

�
�

Since the complexity of a minimization depends on the size of the mini�
mized FSM� we need to compare the sizes of M�� M�� M

e
�
� M e

�
� to the size

of M � We assume that the size of M� is equal to the size of M��
The di�erences in the sizes of M� and M� and the that of M depend

on the interactions between M� and M�� The interaction between M� and
M� is measured by the number of inputs of one that are outputs of the
other� The size of the state spaces of M� and M�� is the square root of the
size of the state space of M � However� the size of the transition relation
depends on the interactions� When the interaction between M� and M�

is high� many inputs of M� and M� are connected to the corresponding
outputs of M� and M�� These inputs are not part of the inputs of M

�� In
this case� every component in M� is an input of M� and vice versa� Thus�
jS�j
j

I�j � jS�j
j
I�j � jSj
jIj� Since jR�j � jS�j
j

I�j and jR�j � jS�j
j
I�j�

jR�j � jR�j � jRj� and jM�j � jM�j � jM j�
Next we compare the sizes of M e

�
and M e

�
with the size of M � Note

that M � M�kM�� M
e
�
� M�kM

r
�
and M e

�
� M r

�
kM�� This implies that

the di�erence in the sizes of M and M e
�
depends on the di�erence in the

sizes of M� and M r
�
� Similarly� the di�erence between the sizes of M and

M e
�
depends on the di�erence between M� and M r

�
� When there is no

redundancy� jM�j � jM r
�
j and jM�j � jM r

�
j� In this case� jM e

�
j � jM e

�
j �

jM j�
The worst�case scenario is when the interaction between M� and M� is

high and there is no redundancy in M� and M�� jM�j � jM r
�
j and jM�j �

jM r
�
j� In this case the improved algorithm performs four minimizations� each

requiring the same time as the single minimization of the naive algorithm�

�Recall that I � �I� nO�� � �I� n O���


�



Since we need to keep at most three di�erent models at the same time� the
space requirement of the improved algorithm is three times that of the naive
algorithm�

In the best scenario� however� jM�j � jM�j � jM e
�
j � jM e

�
j �
p
jM j� In

this scenario� the time complexity of jRj 
 log�jSj� in the naive algorithm�
becomes �


p
jRj
log�

p
jSj� in the improved algorithm� This time complexity

is signi�cantly better�

��� Nondeterministic FSMs

In this section we extend the modular method to nondeterministic FSMs�
for which� Lemma ��� does not hold� The result Md of composing Md

�
and

Md
�
might be inequivalent to M due to �illegal states� in Md which are not

equivalent to any state in M �
In order to understand this inequality� we inspect the role of the states of

M� in M �the role of the states of M� is similar�� Since M is a composition
of M� and M�� every state s� has two functions� the �rst is to determine
the outputs and the next state of M�� and the second is to determine the
inputs of M��

InMd these two functions are ful�lled by two states of S�� Let ���s�� �s�	�	� ���t�	� t��	�
be a state in Md� Then s� determines the outputs and the next states of
M�� and t� determines the inputs of M�� A state ���s�� �s�	�	� ���t�	� t��	� of
Md might be illegal when s� �� �t�	� In this case� the combination of the next
state in M� and the input of M� does not occur in any state of S��

The problem of illegal states is demonstrated in Figure �� In this �gure�
all the states of M� and M� are initial states� Therefore� M� and M� are
nondeterministic� M r

�
and M r

�
cannot be further reduced� and the same

holds for M e
�
and M e

�
� Since the result Md of composing Md

�
and Md

�
is

minimized and contains 
� initial states� it cannot be bisimulation equivalent
to M � M�jjM�� The error in the algorithm is due to illegal states such as
���� �� �
� �� in Md� This illegal state is related to both s� and s� in M�

and is not equivalent to any state in M �
We now present the nondeterministic systems version of the improved

algorithm� This algorithm restricts the states of Md to legal states only�
As before� the minimized FSM is constructed without constructing the non�
minimized FSM M�kM� itself� First we de�ne two functions�

De�nition ��� The function f� � S� � S� � Sd
�
is de�ned as follows	

f��s�� s�� � ��s�� �s�	�	�
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Figure �� An example of an inequivalent result of the deterministic systems
version of the improved algorithm� where M� and M� are not deterministic�

De�nition ��� The function f� � S� � S� � Sd
�
is de�ned as follows	

f��s�� s�� � ���s�	� s��	�

Next� we de�ne a new FSM M �
d� which is similar to Md except that the set

of states is restricted�
S�
d � f�sd

�
� sd

�
�js�� s�� s

d
�
� f��s�� s�� � sd

�
� f��s�� s��g� The de�nitions for

the other components ofM �
d are straightforward� S

d
�

�
� S�

d�S�
d� the inputs�

outputs� and labeling function remain the same� and R�
d � Rd � �S�

d � S�
d��

We now prove that M �
d is bisimulation equivalent to M �

Lemma 	��� M �
d and M are bisimulation equivalent with respect to

O� �O��

Proof � Let H � S�S�
d be de�ned as follows� H � f��s�� s��� �s

d
�
� sd

�
��j sd

�
�

f��s�� s�� � sd
�
� f��s�� s��g� We prove that H is a bisimulation relation�

� The de�nition of S�
d� implies that for every state �s��� s��� � S� there

exists a state �sd
��
� sd

��
� � ���s��� �s��	�	� ���s��	� s���	� � S�

d� such that


�



��s��� s���� �s
d
��
� sd

��
�� � H � For the other direction� assume that �sd

��
� sd

��
� �

���s��� �s��	�	� ���s��	� s���	� is a state in S�
d�� Then� the state �s��� s���

is in S� and ��s��� s���� �s
d
��
� sd

��
�� � H �

� Let ��s�� s��� �s
d
�
� sd

�
�� be an element in H � Since Ld

�
���s�� �s�	�	� �

Le
�
�s�� �s�	� � O� � L��s�� and Ld

�
����s�	� s��	� � Le

�
��s�	� s�� � O� �

L��s��� L��s�� s��� � Ld����s�� �s�	�	� ���s�	� s��	���

� Let ��s�� s��� �s
d
�
� sd

�
�� be in H and let i be an element in I � Let i� �

�i� L��s���� I� � �i � Lr
�
��s�	��� I� and

� i� � �i�L��s����I� � �i�Lr
�
��s�	���I�� Then� ��s�� s��� i� �s�

�
� s�

�
�� �

R i�

� �s�� i�� s
�
�
� � R� and �s�� i�� s

�
�
� � R� i� �De�nition �� and Lemma ��
�

� ��s�	� i�� �s
�
�
	� � Rr

�
and ��s�	� i�� �s

�
�
	� � Rr

�
� �s�� i�� s

�
�
� � R� and

��s�	� i�� �s
�
�
	� � Rr

�
i� ��s�� �s�	�� i� �s

�
�
� �s�

�
	�� � Re

�
�

� Similarly� ��s�	� i�� �s�
�
	� � Rr

�
and �s�� i�� s�

�
� � R� i�

���s�	� s��� i� ��s
�
�
	� s�

�
�� � Re

�
�

� Therefore� ��s�� �s�	�� i� �s
�
�
� �s�

�
	�� � Re

�
and ���s�	� s��� i� ��s

�
�
	� s�

�
�� �

Re
�
i�

� �sd
�
� i� sd

�

�
� � ���s�� �s�	�	� i� ��s

�
�
� �s�

�
	�	� is in Rd

�
and

�sd
�
� i� sd

�

�
� � ����s�	� s��	� i� ���s

�
�
	� s�

�
�	� is in Rd

�
i�

� ��sd
�
� sd

�
�� i� �sd

�

�
� sd

�

�
�� � Rd�

�

Next� we prove that M �
d is minimized� First� we show that the maximal

bisimulation over M �
d includes a bisimulation over Md

�
�

Lemma 	��� Let H �
d be the maximal bisimulation relation over M �

d� We
de�ne a relation Hd

�
over Sd

�
�Sd

�
as follows	 ���s�� �s�	�	� ��t�� �t�	�	� � Hd

�
i


����s�� �s�	�	� ���s�	� s��	�� ���t�� �t�	�	� ���t�	� t��	�� � H �
d� Then Hd

�
is a bisimu�

lation relation�

Proof �

� Since H �
d contains all identity pairs� Hd

�
contains all identity pairs as

well� This implies that for every initial state� the pair consisting of the
initial state and itself is an element in Hd

�
�

Let ���s�� �s�	�	� ��t�� �t�	�	� be an element in Hd
�
�


�



� Ld����s�� �s�	�	� ���s�	� s��	�� � Ld����t�� �t�	�	� ���t�	� t��	�� implies that
L�

d���s�� �s�	�	� � L�

d���t�� �t�	�	��

� Let ���s�� �s�	�	� i� ��s
�
�
� �s�

�
	�	� be an element in Rd

�
� Let i� � �i�L��s����

I� � �i � Lr
�
��s�	��� I� and i� � �i� L��s���� I� � �i� Lr

�
��s�	��� I��


� By Lemma ��
� ��s�� �s�	�� i� �s
�
�
� �s�

�
	�� � Re

�
�

� Thus� �s�� i�� s
�
�
� � R� and ��s�	� i�� �s

�
�
	� � Rr

�
�

�� By De�nition �� and Lemma ��
� ��s�	� i�� �s�
�
	� � Rr

�
� and

�s�� i�� s
�
�
� � R��

�� This implies that ����s�	� s��	� i� ���s
�
�
	� s�

�
�	� � Rd

�
�

�� Thus� ����s�� �s�	�	� ���s�	� s��	�� i� ���s
�
�
� �s�

�
	�	� ���s�

�
	� s�

�
�	�� � R�

d�

�� SinceH �
d is a bisimulation relation� there exists a state ���t

�
�
� �t�

�
	�	� ���t�

�
	� t�

�
�	�

such that ����t�� �t�	�	� ���t�	� t��	�� i� ���t��� �t
�
�
	�	� ���t�

�
	� t�

�
�	�� � R�

d and
����s�

�
� �s�

�
	�	� ���s�

�
	� s�

�
�	�� ���t�

�
� �t�

�
	�	� ���t�

�
	� t�

�
�	�� � H �

d�

�� This implies that ���t�� �t�	�	� i� ��t��� �t
�
�
	�	� � Rd

�
and

���s�
�
� �s�

�
	�	� ��t�

�
� �t�

�
	�	� � Hd

�
�

� Similarly� we can prove that for every state ��t�
�
� �t�

�
	�	 such that

���t�� �t�	�	� i� ��t
�
�
� �t�

�
	�	� � Rd

�
there exists a state ��s�

�
� �s�

�
	�	 such that

���s�� �s�	�	� i� ��s
�
�
� �s�

�
	�	� � Rd

�
and ���s�

�
� �s�

�
	�	� ��t�

�
� �t�

�
	�	� � Hd

�
�

�

Lemma 	��� Let H �
d be the maximal bisimulation relation over M �

d� We
de�ne a relation Hd

�
over Sd

�
�Sd

�
as follows	 ����s�	� s��	� ���t�	� t��	� � Hd

�
i


����s�� �s�	�	� ���s�	� s��	�� ���t�� �t�	�	� ���t�	� t��	�� � H �
d� Then Hd

�
is a bisimu�

lation relation�

The proof of Lemma ��
 is similar to the proof of Lemma ��

�

Lemma 	��� M �
d is minimized�

Proof Let Hd be the maximal bisimulation over M �
d �M �

d� Assume to the
contrary that the lemma does not hold� Then by Lemma ���� there are
two di�erent states �sd

�
� sd

�
�� �td

�
� td

�
� such that ��sd

�
� sd

�
�� �td

�
� td

�
�� � Hd� Since

�sd
�
� sd

�
� �� �td

�
� td

�
�� either sd

�
�� td

�
or sd

�
�� td

�
� Assume w�l�o�g� that sd

�
�� td

�
�

Let Hd
�
be the relation de�ned in Lemma ��

� By Lemma ��

� Hd

�
is a

bisimulation� By the de�nition of Hd
�
� �sd

�
� td

�
� � Hd

�
� By Lemma ���� Md

�
is

not minimized� a contradiction� �


�



��� Additional complexity

The additional complexity is due to the computation of S�
d� which forces us

to refer to the whole state space of M � Nevertheless� since we only compute
the state space and do not use it in the reduction method� the nondetermin�
istic systems version of the improved algorithm is still better than the naive
algorithm� f� and f�� can be computed during the construction of M r

�
and

M r
�
and the construction of Md

�
and Md

�
without any additional time com�

plexity� However� since the function operates on the states of M�jjM�� the
space complexity is jSj � jS�j 
 jS�j� In a worst�case scenario� the complexity
of the nondeterministic improved algorithm is identical to that of the de�
terministic improved algorithm� However� when M r

�
�M� and M r

�
� M��

this complexity is worse than that of the deterministic version�

� An implementation of the improved algorithm

In this section we describe an implementation of the improved algorithm�
Our goal is to compare the improved algorithm� the naive algorithm� and the
ordinary algorithm� The ordinary algorithm minimizes a given FSM directly
and does not use modularity� The implementation was developed in the
sequential equivalence veri�cation CAD group of Intel design technologies
in Haifa� The designs� which were tested in the equivalence department�
have the following properties�


� S� � S� i�e�� every state in the model is an initial state�

� The transition relation is a function� meaning that for every state s and
input i there exists exactly one state t� such that �s� i� t� is a transition
in R�

Note that the �rst property makes these designs nondeterministic� The
above two properties prompted us to choose the nondeterministic systems
version of the improved algorithm� However� we represent the transition re�
lation as a function� which can be represented more concisely than a regular
relation�

A general description of the implementation is given in Section ��
� The
improved algorithm uses the ordinary algorithm as a subroutine� The same
ordinary algorithm is used for comparison with the improved algorithm�
Since we deal with FSMs that have a transition relation that is a function�
we use an algorithm that is similar to the algorithm presented in �

	� The
experimental results are presented in Section ���


�



typedef struct fsm 	

VarList inputs


BddFunction outputs


BddFunction latches


BDD domain


BddFunction equivFunc


�FSM


Figure �� The data structure that models FSMs

��� The implementation framework

The minimization algorithms �improved� naive� or ordinary� receive an FSM
from an Intel program� which compiles the RTL description of the design
into an FSM� The given FSM contains three lists� A list of inputs� a list of
latches� and a list of outputs� The list of inputs contains BDD variables only�
The list of latches� which encodes the state space� is consists of pairs� with
each pair containing a BDD variable and a BDD representing the next state
function� The list of outputs� which encodes the labeling function� consists
of pairs� with each pair containing a BDD variable and a BDD representing
the output function�

We modeled an FSM by the FSM data structure shown in Figure �� In
addition to the inputs� latches� and outputs �elds� the FSM data structure
has the domain �eld� which is a BDD over the latches and represents the
set of states� and the equivFunc �eld� When a minimization of an FSM
is performed� a set of equivalence classes is constructed� These classes are
the states of the resulting FSM� The equivFunc �eld of the resulting FSM
contains a function that relates the states of the original FSM to their equiv�
alence classes�

The information about the modular structure of the tested designs was
lost during the development stage� Thus� instead of a set of components� the
improved algorithm receives one FSM� In order to perform the minimization�
it �rst partitions the FSM and then executes the improved algorithm� A ba�
sic description of the implementation of the improved algorithm is presented
in Figure ��

The algorithm receives an FSM om and partitions it into two FSMs�
m
 and m� Then it uses the improved algorithm to construct a minimized

�



model md� which is equivalent to om� The algorithm partitions the model
by partitioning the set of latches and the set of outputs� �it is possible for
m
 and m to share inputs�� The goal of the partition is to minimize the
interaction between the models� Since it is hard to �nd such a partition� the
algorithm uses a heuristic to �nd a partition with low interaction�

The improved algorithm uses the subroutine reduction� which executes
the ordinary algorithm� The algorithm is an adaptation of the algorithm
given in �

	 for constructing the quotient automaton for a given regular
deterministic automaton� The algorithm is adapted for FSMs for which the
transition relation is a function� Given an FSM� it constructs its quotient
FSM� The main di�erence between the algorithm in �

	 and the ordinary al�
gorithm is in the initial partitioning� While for automata the initial partition
forms two sets �accepting and rejecting�� for FSM� the states are initially
partitioned into jAP j sets� one for each state labeling�

Both minimization algorithms �the improve and the ordinary� minimize
the FSM with respect to its outputs� Thus� before they minimize M� into
M r

�
�M� into M

r
�
�� they need to remove the outputs in O� n I� �O�nI��� The

algorithms use the rmExternalOutputs subroutine to remove these external
outputs�

In order to construct the set rd of �legal states� of the form
���s�� �s�	�	� ���s�	� s��	�� the algorithm constructs two functions� f
d � S � Sd

�

and fd � S � Sd
�
� In order to construct f
d� the algorithm composes the

functions M
d�equivFunc � Se
�
� Sd

�
and the function mr�equivFunc �

S� � Sr
�
� Since Se

�
� S� � Sr

�
� the resulting function relates the states of

S��S� to the states of Sd� � The function fd is constructed in a similar way�
Then the algorithm calculates rd � fd�om�domain�� where fd � S � Sd is
de�ned as follows� fd�s� � �f
d�s�� fd�s���

The sets� functions and relations are represented by BDDs� We use
Intel�s BDD package for the implementation�

��� Experimental results

We compared the ordinary algorithm� the naive algorithm� and the improved
algorithm� During testing of the improved algorithm� we discovered that the
minimization of M r

�
and M r

�
does not improve performance� Thus� we also

tested the algorithm without these minimizations� In this case M e
�
�M e

�
�

are simply M with only some of the outputs� This test was performed with
the design partitioned only once �this appears in the tables as improved��
and with the design partitioned recursively until it has only one output �this






FSM improvedAlgorithm�FSM om��

FSM m�� m�� m�r� m�r� m�e� m�e� m�d� m�d� md�

BddFunction fd� f�d� f�d�

BDD re� rd�

	
 the recursion tail condition � based on the size of the model 
	

if ��shouldSplit�om��

return reduction�om��

	
 partition om to m� and m� 
	

partModel�om� m�� m���

m�r  rmExternalOutputs�m���

m�r  improvedAlgorithm�m�r��

m�e  modelComposition�m�r� m���

m�r  rmExternalOutputs�m���

m�r  improvedAlgorithm�m�r��

m�e  modelComposition�m�� m�r��

m�d  reduction�m�e��

m�d  reduction�m�e��

f�d  composeFunc�m�d�equivFunc� m�r�equivFunc��

f�d  composeFunc�m�d�equivFunc� m�r�equivFunc��

fd  joinBddFunc�f�d�f�d��

rd  bdd�image�om�domain� fd��

md  disjointComposition�m�d� m�d� rd��

return md�

�

Figure �� The improved algorithm





appears in the tables as improved���
The results are presented in the following tables� In Table  we present

general properties of the tested designs� Table � compares the minimization
times of the algorithms� Table � compares the space requirements of the
algorithms� The algorithms were tested on a machine with two CPUs of ���
MHZ each and GB memory�

The experimental results imply that in most designs� all versions of the
improved algorithm perform better than the ordinary and naive algorithms
in both time and space� The best time performance is for the improved
algorithm without the minimization of M r

�
and M r

�
and with recursive par�

titioning of the outputs� The best space performance is for the improved
algorithm without the minimization of M r

�
and M r

�
and with only one par�

tition of the outputs�
The di�erences between these two versions of the improved algorithm

demonstrate the tradeo� between the algorithm�s e�ciency and its overhead�
While the algorithm�s e�ciency results in a better run time� the overhead
results in larger space requirements� This tradeo� is taken into account
in the subroutine shouldSplit� This subroutine that decides whether to
reduce the sub�model by further partitioning it with the improved algorithm
or to use the ordinary reduction algorithm� In general� if the sub�model is
too small� then the overhead the improved algorithm become too large�

Note that� while the improved algorithm is up to 
 times faster than the
ordinary minimization algorithm in some cases� the di�erence between the
two algorithms is small in those cases when the ordinary algorithm perform
better�

� Conclusions

Modularity is used extensively in the development of systems� As a result�
most systems have a modular structure� In this work we show how this
structure can be used for a better minimization algorithm� Given an FSM
M � we construct two disjoint FSMs� M e

�
and M e

�
� such that M is equivalent

to the synchronized composition of M e
�
and M e

�
� Once we construct these

FSMs� the problem of minimizing M is reduced to minimizing M e
�
and M e

�

separately and composing the result� Since the complexity of minimizing M

might be quadratically greater than minimizing M e
�
and M e

�
separately� the

potential of the algorithm is huge�

�



Name No� of No� of No of
inputs latches outputs

s�� � 
� �
s��d � 

 �
s��d� � 
� �
s���d
 � 
� 
s���d � 
� 
s���d� � 
� �
s��� � 
 �
s��� 

 
� 


s���� � � �
s��� � 
 �

Table � General properties of the tested designs

Name ordinary naive improved improved improved�
algorithm algorithm algorithm algorithm algorithm

s�� �� � �� � �
s��d 
 �   �
s��d� � �
 � � �
s���d
 
�� ��� ��� �� ��
s���d 
�� ��� ��� �� ��
s���d� 
���� ���� 
��� ��� ��

s��� 
���� space over�ow ��� 
�
� ���
s��� ���� ����� 
���� 
���� ��
s���� ���
 ����� 
���� �� ���
s��� ���� space over�ow ���
 
���� 
����

Table �� The minimization time in seconds for the di�erent algorithms

�



Name ordinary naive improved improved improved�
algorithm algorithm algorithm algorithm algorithm

s�� 
�����
 
��
���� ��
���� ����� �������
s��d 
�
���� ����� ���
�� 
���� 
�����
s��d� ������ �
����� ����� ������ �����

s���d
 ����
���� 
��
���� 
��
����� ��

�
� ��

��
�
s���d �������
 
�������� ��������� ������� ��������
s���d� ��������� �
�������� 
�������� 
���
��
� ��
������
s��� 
���
������ space over�ow ����
��� 
�������� �����
���

s��� ��������� ���������� 
�����
� ������ ��������

s���� ���������� ��������
� 
��������� 
����
�� ���
����

s��� ��������� space over�ow 
����
 
��
����� ��������

Table �� The maximal number of BDD nodes required by the di�erent
minimization algorithms
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A Properties of bisimulation

In this section we prove the claims presented in Section �� Note that when�
ever two FSMs� M� and M�� are composed� they must satisfy O� ��� � ��

Lemma ��
 Let M be an FSM and let MQ be the quotient FSM of M �
Let ��� i� ��� be an element in RQ� Then for every state s in � there exists
a state s� in �� such that �s� i� s�� � R�

Proof �Assume that ��� i� ��� � RQ� Let H � S � S be the maximal
bisimulation relation over M�M � The de�nition of a quotient FSM implies
that there are states t� t� in S such that t � �� t� � �� and �t� i� t�� � R� Let
s be a state in �� Since s and t are in the same equivalence class� �t� s� � H �
Thus� there exists a state s� such that �s� i� s�� � R and �t�� s�� � H � Since
�t�� s�� � H � t� and s� are in the same equivalence class� s� � ��� �

Proposition A�� If M is deterministic then MQ is deterministic�

Lemma ��� M is minimized i
 the maximal bisimulation relation over
M �M contains exactly the identity pairs�

Proof � For the �rst direction� assume that H is the maximal bisimu�
lation over M �M and that H contains exactly the identity pairs� Then
every equivalence class contains exactly one state� Let MQ be the quotient
FSM of M � We de�ne a function f � S � SQ as follows� f�s� � � i� s is in

�



�� Obviously f is a total and onto function� Since every equivalence class
contains exactly one state� f is also one to one� Furthermore� by Lemma ��

and the de�nition of quotient FSM� �s� i� s�� � R i� �f�s�� i� f�s��� � RQ�
Thus� M and MQ are isomorphic and M is minimized�

For the second direction� assume that there is a pair �s�� s�� � H such
that s� �� s�� Then s�� s� are in the same equivalence class� Since the
equivalence classes partition the states set and at least one class contains
more than one state� jSQj � jSj� Thus M and MQ are not isomorphic� �

Lemma A�� Let M be an FSM� The identity relation HID � f�s� s�js �
Sg is a bisimulation relation over M �M �

Proof �

� For every s� � S�� �s�� s�� � HID�

Let �s� s� be a pair in HID�

� L�s� � L�s��

� Let �s� i� s�� be an element in R� Then �s� i� s�� is an element in R� and
�s�� s�� � HID� �

Lemma A�� Let MQ be the quotient FSM of M  and let HQQ be the
maximal bisimulation relation over MQ �MQ� Let
Hq � f�s�� s��j��s�	� �s�	� � HQQg� Then Hq is a bisimulation relation over
M �M �

Proof �

� By the de�nition of the quotient FSM� for every s� � S�� �s�	 � S�Q�
Since ��s�	� �s�	� � HQQ� �s�� s�� � Hq�

Let �s�� s�� be a pair in Hq�

� ��s�	� �s�	� � HQQ implies that LQ��s�	� � LQ��s�	� which� implies that
L�s�� � L�s���

� Let �s�� i� s
�
�
� be an element in R� Then ��s�	� i� �s

�
�
	� � RQ� Since

��s�	� �s�	� � HQQ� there exists a class ��
�
such that ��s�	� i� ��

�
� � RQ

and ��s�
�
	� ��

�
� � HQQ� ��s�	� i� �

�
�
� � RQ� together with Lemma ��
�

implies that there exists a state s�
�
such that �s�� i� s�

�
� � R� The

de�nition of Hq implies �s�
�
� s�

�
� � Hq�

�



� Similarly� we can prove that for every successor s�
�
of s� there exists a

successor s�
�
of s� such that �s�

�
� s�

�
� � Hq� �

Lemma A�	 Let MQ be the quotient FSM of M  and let HQQ be the
maximal bisimulation relation over MQ �MQ� Then HQQ is the identity
relation�

Proof � Lemma A� implies that the identity relation is a bisimulation
relation over MQ �MQ� and thus it is contained in HQQ� Assume to the
contrary that HQQ contains a pair ���� ��� such that �� �� ��� Let s� and
s� be states in �� and �� respectively and let Hq be the relation de�ned
in Lemma A��� By the de�nition of Hq� �s�� s�� � Hq� By Lemma A���
Hq is a bisimulation over M � M � and thus �s�� s�� is an element in the
maximal bisimulation over M �M � This implies that s� and s� are in the
same equivalence class� a contradiction� �

Corollary A�� Every quotient FSM is minimized�

For the rest of this paper� we will use the term �minimized FSM� for quotient
FSM�

Lemma ��� Let M be an FSM and MQ be the quotient FSM of M with
respect to O�� Then M and MQ are bisimulation equivalent with respect to
O��

Proof � LetHQ � S�SQ be the following relation� HQ � f�s� ��js is in �g�
We prove that HQ is a bisimulation relation�

� By the de�nition of the quotient FSM� for every s� � S�� s� is in
�� � S�Q� Similarly� for every �� � S�Q there exists s� � S� such that
s� � ���

Let �s� �� be a pair in HQ�

� By the de�nition of the quotient FSM� L�s� �O� � LQ����

� Let �s� i� s�� be an element in R� Let �� be the equivalence class of s��
Then by the de�nition of the quotient FSM� ��� i� ��� � RQ� and by
the de�nition of HQ� �s

�� ��� � HQ�

� Let ��� i� ��� be an element in RQ� By Lemma ��
� there exists a state
s� such that �s� i� s�� � R and s� is in ��� Thus �s�� ��� � HQ� �

�



Lemma A�
 Let M� and M� be two FSMs that are bisimulation equiva�
lent� LetH � S��S� be a bisimulation relation overM��M�� Then the rela�
tion H � � f�s�� s�

�
�jthere exists s� � S� such that �s�� s�� � H and �s�

�
� s�� �

Hg is a bisimulation relation over M� with respect to O� �O��

Proof � We prove that H � is a bisimulation relation�

� Since H is a bisimulation relation� for every initial state s�� � S��
there exists an initial state s�� � S�� such that �s��� s��� � H � Thus�
for every initial state s�� � S��� �s��� s��� � H ��

For every pair �s�� s�
�
� � H �� the following holds�

� Since �s�� s�
�
� � H �� there exists a state s� � S� such that �s�� s�� � H

and �s�
�
� s�� � H � This implies that L��s�� � �O� � O�� � L��s�� �

�O� �O�� � L��s
�
�
� � �O� �O���

� Let �s�� i� t�� be a transition in R�� Since �s�� s
�
�
� � H �� there exists a

state s� � S� such that �s�� s�� � H and �s�
�
� s�� � H � Since H is a

bisimulation� there exists a state t� � S� such that �s�� i� t�� � R� and
�t�� t�� � H � This implies that there exists a state t�

�
� S� such that

�s�
�
� i� t�

�
� � R� and �t�

�
� t�� � H � Thus �t�� t

�
�
� � H ��

� Similarly� for every transition �s�
�
� i� t�

�
� � R� there exists a transition

�s�� i� t�� � R� such that �t�� t
�
�
� � H ��

�

Lemma ��� Let M be an FSM and MQ be the quotient FSM of M with
respect to O�� Then MQ is the smallest �in number of states and transitions�
FSM which is bisimulation equivalent to M with respect to O��

Proof � First we prove that MQ is smallest with respect to the number
of states� Assume to the contrary that there exists an FSM M � that is
bisimulation equivalent to M and smaller than MQ� Since bisimulation is
transitive� MQ and M � are bisimulation equivalent� Let H be a bisimulation
relation overMQ�M �� Then� there exist two di�erent states sq and tq in SQ
that are equivalent to the same state in M �� Let Hq be the relation Hq �
f�sq� tq�jthere exists s

� � S� such that �sq� s
�� � H and �tq� s

�� � Hg� By
Lemma A��� Hq is a bisimulation relation� Thus sq and tq are bisimulation
equivalent� contradicting Lemma A���

Next� we prove thatMQ is smallest with respect to number of transitions�
Assume to the contrary that there exists an FSM M � that is bisimulation

��



equivalent to M and smaller than MQ� Since bisimulation is transitive�
MQ and M � are bisimulation equivalent� Let H be a bisimulation relation
over MQ �M �� Since the number of states in MQ is not larger than the
number of states in M �� there exists a pair �sq� s

�� � H such that the num�
ber of transitions from sq is greater than the number of transitions from
s�� Since for every transition �s�� i� t�� � R� there exists a matching transi�
tion from sq� there exists a transition �s�� i� t�� � R� having two transitions
�sq� i� tq�� and �sq� i� tq�� in Rq which match it� This implies that �tq�� t

�� � H

and �tq�� t
�� � H � Let Hq be the relation Hq � f�sq� tq�jthere exists s

� �
S� such that �sq� s�� � H and �tq� s�� � Hg� By Lemma A��� Hq is a bisimu�
lation relation� Thus tq� and tq� are bisimulation equivalent� contradicting
Lemma A��� �

A�� Composition and bisimulation

Next we present some properties of composition and bisimulation�

Lemma A�� LetM � M�jjM� and let H� and H� be the maximal bisimu�
lation relations over M��M� and M��M� with respect to O� and O� respec�
tively� Let H be the relation H � f��s�� s��� �t�� t���j�s�� t�� � H�� �s�� t�� �
H�g� Then H is a bisimulation over M �M �

Proof �

� Let �s��� s��� � S�� Since �s��� s��� � H� and �s��� s��� � H��
��s��� s���� �s��� s���� � H �

Let ��s�� s��� �t�� t��� be a pair in H �

� By the de�nition of H � �s�� t�� � H� and �s�� t�� � H�� Thus L��s�� �
L��t�� and L��s�� � L��t��� Since O��O� � �� L��s�� s��� � L��t�� t����

� Let ��s�� s��� i� �s�
�
� s�

�
�� be an element in R� By the de�nition of compo�

sition� �s�� �i�L��s����I�� s�
�
� � R� and �s�� �i�L��s����I�� s�

�
� � R��

Since �s�� t�� � H� and L��s�� � L��t��� there exists a state t�
�
such

that �t�� �i�L��t����I�� t��� � R� and �s�
�
� t�

�
� � H�� Similarly� there ex�

ists a state t�
�
such that �t�� �i�L��t����I�� t

�
�
� � R� and �s�

�
� t�

�
� � H��

The de�nition of composition implies that ��t�� t��� i� �t��� t
�
�
�� � R and

by the de�nition of H � ��s�
�
� s�

�
�� �t�

�
� t�

�
�� � H �

�




� In a similar way we can show that for every successor �t�
�
� t�

�
� of �t�� t��

there exists a successor �s�
�
� s�

�
� of �s�� s�� such that ��s�

�
� s�

�
�� �t�

�
� t�

�
�� �

H � �

Lemma A�� If M � M�jjM� is minimized then M� and M� are also
minimized�

Proof � Assume to the contrary that the lemma does not hold� W�l�o�g�
assume that M� is not minimized� By Lemma ���� there are two di�er�
ent states s�� t� such that �s�� t�� � H�� Since every bisimulation relation
contains the identity pairs� there exists a state s� such that �s�� s�� � H��
Let H be the relation de�ned in Lemma A��� Then ��s�� s��� �t�� s��� �
H � By Lemma A�� � H is a bisimulation relation� and thus it is con�
tained in the maximal bisimulation relation over M � M � This implies
that ��s�� s��� �t�� s��� is an element in the maximal bisimulation relation�
By Lemma ���� M is not minimized� a contradiction� �

Lemma A�� Let M � M�jjM� and H be a bisimulation over M �M � If
O��I� � � then the relationH� � f�s�� t��js�� t� � S� and  s�� t� ��s�� s��� �t�� t��� �
Hg is a bisimulation relation over M� �M��

Proof �

� Let s�� � S�� and s�� � S��� Since ��s��� s���� �s��� s���� � H � �s��� s��� �
H��

Let �s�� t�� be a pair of states such that �s�� t�� � H� and let s�� t�
be states such that ��s�� s��� �t�� t��� � H �

� ��s�� s��� �t�� t��� � H implies that L��s�� s��� � L��t�� t���� Since O��
O� � �� we conclude that L��s�� � L��t���

� Let �s�� i�� s
�
�
� be an element in R�� Since O� � I� � �� I� � I � Let

i � I be such that i� � i � I�� Since O� � I� � �� �i � L��s��� � I� �
i � I� � i�� Let s�

�
be a state such that �s�� �i � L��s��� � I�� s

�
�
� �

R�� Such an s�
�
exists by the receptiveness of Moore machines� Then

��s�� s��� i� �s
�
�
� s�

�
�� � R� Since ��s�� s��� �t�� t��� � H � there exists a

state �t�
�
� t�

�
� such that ��t�� t��� i� �t��� t

�
�
�� � R and ��s�

�
� s�

�
�� �t�

�
� t�

�
�� �

H � This implies that �t�� i�� t
�
�
� � R�� By the de�nition ofH�� �s

�
�
� t�

�
� �

H��

�



� In a similar way we can show that for every successor t�
�
of t� there

exists a successor s�
�
of s� such that �s�

�
� t�

�
� � H�� �

Lemma ��� Let M� and M� be minimized FSMs� If O� � I� � � and
O� � I� � � then M � M�jjM� is minimized�

Proof Let H be the maximal bisimulation over M �M � Assume to the
contrary that the lemma does not hold� Then� by Lemma ���� there are
two di�erent states �s�� s��� �t�� t�� such that ��s�� s��� �t�� t��� � H � Since
�s�� s�� �� �t�� t��� either s� �� t� or s� �� t�� We assume w�l�o�g� that s� �� t��
Let H� be the relation de�ned in Lemma A��� By Lemma A��� H� is a
bisimulation� By the de�nition of H�� �s�� t�� � H�� By Lemma ���� M� is
not minimized� a contradiction� �

��


