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Abstract

This work presents a modular technique for minimizing a finite-
state machine (FSM) while preserving its equivalence to the original
system. Being modular, the minimization technique should consume
less time and space. Preserving equivalence, the resulting minimized
model can be employed in both temporal logic model checking and
sequential equivalence checking, thus reducing their time and space
consumption.

Most systems have a natural modular structure, and we suggest
using this structure in the minimization of their model. The complexity
of minimizing a single module can be exponentially smaller than that
of minimizing the entire system. (The actual reduction in complexity
depends on the module connectivity to the other parts of the system.)
Thus the method has great potential.

This modular algorithm has been implemented on an Intel system
in Intel Haifa, and it has been tested on real hardware designs.

1 Introduction

The fast development of the hardware and software industry has increase
the need for formal verification tools and techniques. Two widely used for-
mal verification methods are temporal logic model checking and sequential
equivalence checking. Both model checking and equivalence checking are
fully automatic. However, they both suffer from the state explosion prob-
lem, that is, their space requirements are high and limit their applicability
to large systems.

Many approaches for overcoming the state explosion problem have been
suggested, including abstraction, partial order reduction, modular verifica-
tion methods, and symmetry [6]. All are aimed at reducing the size of the



model to which formal verification methods are applied, thus extending their
applicability to larger systems. When reduction methods are applied, the
verification technique has to be able to deduce properties of the system by
verifying the reduced model. We therefore require the result of the reduction
to be equivalent to the original model.

Two of the most commonly used equivalence relations are language equiv-
alence and bisimulation [18]. The former is suitable for equivalence checking
as well as model checking for the linear-time logic LTL [19]. The latter is
suitable for model checking of the expressive u-calculus [12] logic and the
widely used logics CTL [3, 7] and LTL.

Minimizing a model with respect to language equivalence is PSPACE-
complete [21], while minimizing a model with respect to bisimulation is
polynomial. Thus, bisimulation minimization appears to be more tractable.
However, computing bisimulation minimization in a naive way may still be
quite costly in terms of time and space [9]. This motivated the development
of more refined reduction methods for a variety of equivalence relations. We
describe some of these works below.

The algorithm in [14] minimizes models with respect to bisimulation. In
order to improve efficiency, the algorithm refers only to reachable states and
computes equivalence classes for bisimulation instead of pairs of equivalent
states. This appears to consume less memory for BDD-based [4] implemen-
tations. In [8], the algorithm presented in [14] is applied to the intersection
of the model with an automaton representing the property that should be
satisfied by the model. In [5], a reduction with respect to symmetry equiva-
lence is performed. The symmetry equivalence is a bisimulation equivalence,
but not necessarily the maximal one. [5] reports that computing this reduc-
tion is more efficient in the BDD framework than reduction with respect to
bisimulation.

Other works exploit modularity for reduction. The modular reduction
in [1] preserves a given formula which should be checked for truth in the
model. This method can result in a small model; however, since it pre-
serves a single formula, it cannot be used for equivalence checking. In [2],
the equivalence relation is a combination of language equivalence and fair-
ness constraints. Since computing this relation is PSPACE-complete, an
approximation equivalence relation is computed and the quotient model is
defined with respect to it. [10] presents an algorithm that constructs an
abstract model of a system through a sequence of approximations, where
the final approximation is equivalent to the original system with respect to
the specification language. The approximations are constructed according



to interface specifications given by the user. [20] suggests decomposing the
model, reducing each module in separate and composing the result.

1.1 Modular minimization

In this paper we present a new modular minimization algorithm that im-
proves the naive modular algorithm. The naive modular algorithm [20] is
based on partitioning the system into components. It minimizes the model
in iterations. In each iteration two components are selected and composed.
Then the result is minimized. This process is repeated until all components
are composed to form the full minimized system. The advantages of this
approach are:

e Time and space requirements of minimization algorithms depend on
the size of the model to which they are applied. By minimizing compo-
nents instead of the full system, we expect a better overall complexity.
Moreover, we will be able to minimize a system in parts even when the
problem of minimizing the full system is intractable due to its size.

e It is sometimes impossible to complete the construction of the min-
imized system due to the size of intermediate components. In such
cases, it might still be possible to apply some formal verification pro-
cedures to a partially minimized model, composed of minimized and
unminimized components.

The improved algorithm we present improves each iteration in the naive al-
gorithm. Given two components, the improved algorithm constructs the
minimized model without ever constructing the non-minimized result of the
composition. Thus the algorithm avoids the bottleneck of the naive algo-
rithm. [13] presents a similar approach in which, before composing and
reducing two components, each component is reduced with respect to the
other. However, unlike the improved algorithm, this approach uses the full
composition for the reduction of each component. Moreover, the result of
composing the two reduced components needs to be further reduced. We
present two versions of the improved algorithm. The first is for deterministic
systems and the second is for nondeterministic ones. While the version for
nondeterministic systems is more general, it has worse complexity. Since
deterministic systems are widely used in the hardware industry, a special,
more efficient version for these systems is worth developing.

The paper includes an implementation of the improved algorithm, carried
out on an Intel verification platform at the sequential equivalence verification



CAD group of Intel design technology in Haifa. We tested our algorithm
on real designs. The results imply that this method has real potential in
making bisimulation minimization practical.

The rest of the paper is organized as follows: In Section 2 we define
the model, model composition, and bisimulation equivalence. Section 3
presents some properties of bisimulation and modularity. Section 4 presents
the modular minimization algorithm for deterministic and nondeterministic
FSMs. Section 5 describes the implementation and the experimental results.
Section 6 presents some conclusions.

2 Basic definitions

We model systems as finite-state machines (FSMs) in the form of Moore
machines in which the states are labeled with outputs and the edges are la-
beled with inputs. Such machines are commonly used for modeling hardware
designs.

Definition 2.1 [16] An FSM is a tuple M =< S, So, 1,0, L, R > where
e S is a finite set of states.

e So C S is a set of initial states.

1 is a finite set of input propositions.
e O is a finite set of output propositions.

e INO =10.

L is a labeling function that maps each state to the set of output propo-
sitions true in that state.

o RC S x2! xS isthe transition relation. We assume that for every
s € S andi C I there exists at least one state s’ such that (s,i,s") € R.

An FSM is deterministic iff for every state s and ¢ C I there exists exactly
one state s’ such that (s,¢,s") € R and |Sp| = 1.

Two FSMs are composed only if their outputs are disjoint. There is
a transition from a pair of states in the composed FSM if and only if the
output of each state matches the input on the transition leaving the other
state. This models the input-output connections between the two machines.



Definition 2.2 Let My =< Sy, 501, 11,01, L1, Ry > and
My =< 52750271270271/27]%2 > be two FSMs such that Ol N 02 = @ The
composition M = Mi||My =< S, S0, 1,0,L, R > is an FSM such that:

e 5 =5 x5

e Sp = 501 X Soa.

o [ =(I1\Oz)U(Iz\ Oy).

e O=0,UO0;,.

o L((s1,82)) = L1(s1) U La(s2).

((81782)7i7 (8/178/2)) € R fo (817 (’LU LQ(SQ)) N 1178/1) € Rl and (827 (’LU
Ll(Sl)) N 1278/2) € RQ.

Lemma 2.3 Let My and My be deterministic FSMs. Then the composi-
tion M of My and M is deterministic as well.

Proof : Obviously, |Sg| = 1. Let (s1, s2) be a state in S and ¢ C I be an in-
put. Let ¢y = (1ULg(s2))NIy and i3 = (¢UL1(s1))N1;. Since M is determin-
istic, there exists exactly one state s| such that (sq,71,s]) € Ry. Similarly,
there exists exactly one state s} such that (sg, i, s5) € Re. By the definition
of composition, (s}, s,) is the only state such that ((s1,s2),7, (s}, ) € R.
O

We now define the basic notion of equivalence that we use in this work,
namely, bisimulation.

Definition 2.4 Let My =< S1,501, 11,01, L1, R1 > and

My =< Sy, 509, 2,02, Ly, Ry > be two FSMs such that O1 N Oy # 0 and
I = I,. We say that My and M, are bisimulation equivalent with respect to
O' C O1 N Oy iff there exists a relation H C S; X Sy (called a bisimulation
relation) such that:

o For every state sg; € Sp; there exisls a state sgy € Spg such that
(s01,S02) € H and for every state soy € Sgy there exists a state sq; €
So1 such that (so1,502) € H.

e lor every pair (si,s2) in H the following three conditions hold:

- Ll(Sl) N O/ = LQ(SQ) N O/.



— For every i C Iy (recall that Iy = I3), and for every state s such
that (s1,1,8}) € Ry, there exists a state s, such that (sq,1,$5) €
Ry and (s},s4) € H.

— For every i C Iz, and for every state s, such that (sa,i,s5) € Ry
there exists a state sy such that (s1,1,s}) € Ry and (s}, s5) € H.

Proposition 2.5 Forevery FSM M, let s be a state in M that is not reach-
able from any initial state. The result of removing s from M is bisimulation
equivalent to M.

Consequently, we refer only to FSMs where all the states are reachable from
the initial states.

Bisimulation is an equivalence relation over FSMs. [15] shows that for
every two FSMs M; and Mj, there exists a maximal bisimulation relation
that contains every relation satisfying the conditions of Definition 2.4. The
maximal bisimulation relation H C S x S over the states of an FSM M
is an equivalence relation over 5. As such, it induces a partition of S to
equivalence classes. These classes can be used to form the quotient FSM of
M, which is the minimal FSM that is bisimulation equivalent to M.

We will denote by [s] the equivalence class of a state s.

Definition 2.6 Let M =< 5,50,1,0,L,R > be an FSM and let H C
S x S be the maximal bisimulation relation with respect to O C O over M.
The quotient FSM Mg =< Sq, Soq, 1g,0q¢, Lg, Rg > of M with respect to
H is defined as follows:

o So ={ala is an equivalence class in H}.

e So, = {[s0][s0 € So}-

o lg=1.

¢ 0g=0.

e Fora € Sy, Lg(a) = L(s)NO’, for some (all) states s € a.

o Rg = {(o,1,d)|there are states s € «a,s' € o such that (s,1,5") €

R}.

Definition 2.7 An FSM M is minimized iff it is isomorphic to its quotient
FSM.



3 Properties of modularity and reduction

The improved algorithm uses both modularity and bisimulation-based re-
duction. In the following we present some properties of the bisimulation
relation, bisimulation reduction, and the relationships between bisimulation
and modularity. The proofs for these claims are given in Appendix A.

Lemma 3.1 Let M be an F'SM, and let Mg be the quotient FSM of M.
Let (o, i, 0') be an element in Rg. Then for every state s in a there exists
a state s’ in o' such that (s,i,s') € R.

Proposition 3.2 If M is deterministic, then Mg is deterministic.

Lemma 3.3 M is minimized iff the maximal bisimulation relation over
M x M contains exactly the identity pairs.

Lemma 3.4 Let M be an FSM and Mg be the quotient FSM of M with
respect to O'. Then M and Mg are bisimulation equivalent with respect to

o'

Lemma 3.5 Let M be an FSM and Mg be the quotient FSM of M with
respect to O'. Then Mg is the smallest (in number of states and transitions)
FSM which is bisimulation equivalent to M with respect to O'.

Proposition 3.6 Let My and My be FSMs and let H C S X Sy be a
bisimulation relation over My and My with respect to O C O1 N Oy. Then
H is a bisimulation relation with respect to every O' C O.

Lemma 3.7 Let M, and My be minimized FSMs. If Oy NIy = 0 and
Oy NIy =0, then M = My ||My is minimized.

4 The improved algorithm

In this section we present the improved algorithm. Like the naive algorithm,
the improved algorithm receives a design, given as a set of n components.
The improved algorithm works in iterations. In each iteration two minimized
components, My and M, are selected and a new minimized component,
which is equivalent to Mj|[M;, is constructed. The algorithm terminates
when an iteration results in a single component. In this case, the final com-
ponent is the smallest, in terms of states and transitions, that is equivalent
to the composition of the n original components.



In this section we focus on a single iteration of the improved algorithm.
Unlike the naive algorithm, where the two components are first composed
and then the result is minimized, the improved algorithm constructs a mini-
mized FSM that is equivalent to M; || M; without constructing the full model.
Thus, the improved algorithm require less time and space.

By Lemma 3.7, if M is the result of a composition of two different FSMs
that do not interact with each other, then M can be minimized by minimiz-
ing My and M, separately. However, this does not hold in the general case:
given two minimized components M; and My, their composition M;||M; is
not necessarily minimized. This is demonstrated in Figure 1.

Figure 1 shows two FSMs, My and My, for which Oy NIy # 0. My and
M, are minimized but their composition M is not. Figure 1 also contains
Mg, which is the result of minimizing M. The FSMs in Figure 1 are Moore
machines, and we use the following convention in their description. The
labels in the states represent the outputs of the Moore machines. The inputs
are represented by a boolean formula on the edges. For states s, s’ € S and
i C 1, (s,i,5) is an element in R iff ¢ satisfies the formula on the edge from
s to s,

true
M,y

Figure 1: The composition of two minimized FSMs is not always minimized

The observation demonstrated in Figure 1 implies that a more sophisti-
cated algorithm is needed for interacting components. We will present two



versions of the improved algorithm, one for deterministic FSMs and another
for nondeterministic FSMs. While the former is less general, it has a better
complexity. Since hardware designs are often modeled by a deterministic
FSM, it worth developing a special algorithm for deterministic designs.

4.1 Deterministic FSMs

We now describe a single iteration of the improved algorithm. The version
for deterministic FSMs and the version for nondeterministic FSMs differ
only in the last stage of each iteration. We first present the version for
deterministic systems, which is simpler, and then we present the change in
the last stage for nondeterministic FSMs. In each iteration, the algorithm
is given two minimized FSMs, M; and Mj, such that Oy N Oy = (. We use
the notation M = M;||My, O] = O1N Iy, and O} = O3 N 1. The algorithm
performs the following steps:

1. Reduce M, with respect to Of, resulting in M.
2. Reduce M; with respect to Of, resulting in MJ.
3. Compose M} = M,||Mj.
4. Compose M5 = M7 || M,.
5. Reduce My with respect to Oy, resulting in M{.
6. Reduce M with respect to Oy, resulting in M.
7. Compose My = M{||My.

Table 1 presents the inputs and outputs of the FSMs constructed by the
improved algorithm.

An example for the improved algorithm is presented in Figure 2. The
intuition behind the improved algorithm is as follows. When two FSMs
are composed, each restricts the behavior of the other by providing a real
environment, rather than an open one. States that behaved differently from
one another are now indistinguishable and can be collapsed into the same
equivalence class.

Our goal is to minimize M; and M, in separation, while taking into
account the environment each runs in. While minimizing My, it is sufficient
to consider only the part of M; which influences My. M7 is exactly that part.
Therefore, states in My that become indistinguishable in M = M;||M; are



FSM ‘ Input ‘ Output ‘

My I O,
My I Oy
M7 | L O]
My |1, ;
M (Il\Og)U(IQ\Ol) 01U02
MP | (IL\NO)U (12 \O1) =1\ Ox) U 12\ Oy) | O1 U0
M5 | (I\O2) U (12\OF) = 11\ O2) U 12\ O1) | O3 U0}
M{ | (I\Oz) U (I\ 0y) O,
M§ | (I1\Oz) U (I)\ Oy) O3
My (Il\Og)U(IQ\Ol) 01U02
Table 1: The inputs and outputs of the intermediate FSMs in the improved

algorithm

also indistinguishable in M$ = M7 ||M;. These states are collapsed, resulting
in Mg. Similarly, in M, states of M; that are indistinguishable in M are
collapsed (resulting in M{'). When M{ and My are finally composed, M, is
the result of a composition of two minimized FSMs which do not interact,
and therefore M, is minimized.

The skeleton of the correctness proof for the algorithm is given in the
lemma below. In the rest of the section we prove each of the claims, thus
proving the correctness of our algorithm.

Lemma 4.1
o M7 and M are bisimulation equivalent with respect to Oy U O).
o MS and M are bisimulation equivalent with respect to Oy U O}
o M and M are bisimulation equivalent with respect to Oy.
o Mg and M are bisimulation equivalent with respect to O.
o My and M are bisimulation equivalent with respect to Oy U O-

o My is minimized with respect to O1 U Os.

Lemma 4.2 My and M are bisimulation equivalent with respect to Oy U

0.

10
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Figure 2: An example of the deterministic version of the improved algorithm: M;
has input set I; = {c} and output set O; = {a,b}. Ms has input set I» = {a}
and output set Oy = {¢,d}. Note that even though M; and Ms are minimized,
M is not. My is the quotient model of M. It can also be obtained by composing
M and M. The states of M{, M{ and My are given as the sets of states in the
equivalence classes the states represent.

Proof: Let Hf C SxS¢{be Hf = {((s1,52), (51, 55))|s5 is the equivalence class of sy }.
We prove that HY is a bisimulation relation.

e Lor every (s10,S20) € So, we have ((s10, S20), (510, [S20])) € Hi. Simi-
larly, for every (s10, ) € S7y, let sgo be the initial state in o. Then
((s10, 520), (510, [520))) € HY.

11



Let ((s1,s2), (s1,5%)) € Hy:

e Since the labeling of an equivalence class is equal to the labeling of the
states it contains, Ly(s2) NO% = L4 (s4). The definition of composition
therefore implies that L((sy, s2)) N (O1 UOY) = L{((s1,55)).

o Let ((s1,52),4,(s],55)) be an element in R. This implies that for
il = (’L U LQ(SQ)) N 117 (8177;178/1) € Rl and for iz = (’L U Ll(Sl)) N
I3, (s2,12,55) € Ry. Let s3' be the equivalence class of s). Then
(857 7:27 SQ/T) € Rg Since LQ(SQ) N Il = LQ(SQ) N 0/2 = Lg(Sg), il = (’L U
L5(s5))N1;. The definition of composition implies that ((s1, 5), ¢, (s1', 52™)) €
RS. By the definition of Hf, ((s},s5), (s, s2")) € Hf.

o Let ((s1,55),%, (s1',52")) be an element in Rf. This implies that for
il = (’L U LS(SS)) N 117 (8177;178/1) € Rl and for iz = (’L U Ll(Sl)) N 127
(s4,12,52"") € R5. By Lemma 3.1, there exists a state s} such that
(sg2,12,55) € Ry and s2” is the equivalence class of s. Since Ly(s2) N
Iy = La(s2) NOY = L5(sh), i1 = (¢U La(sg)) N 1;. By the definition
of composition, ((s1,s2),1,(s],55)) € R, and by the definition of Hf,
(4, ), (57, 527)) € H. O

Lemma 4.3 M$ and M are bisimulation equivalent with respect to O] U

Os.
The proof is similar to the proof of Lemma 4.2.
Lemma 4.4 M{ and M are bisimulation equivalent with respect to O;.

Proof : Proposition 3.6 together with Lemma 4.2 implies that M and
M are bisimulation equivalent with respect to O;. Lemma 3.4 implies that
Mg and M{ are bisimulation equivalent with respect to O;. Since bisimu-
lation equivalence is transitive, then M and M{ are bisimulation equivalent
with respect to Oy. O

Lemma 4.5 M and M are bisimulation equivalent with respect to Os.

The proof is similar to the proof of Lemma 4.4.

Lemma 4.6 If My and My are deterministic, then My and M are bisim-
ulation equivalent with respect to O1 U Os.

12



Note that both M{ and MJ have the same input (I) and I N O; =
INO; =10.

Proof: Let H} g Sx S and H? C SxS¢ be bisimulation relations over
M x M and M x M respectively. Let Hy C S xSy be the following relation:
Hy = {((s1,52)s (s, s2)) (st 52), ) € H3 and ((s1,52),58) € HZ}. We
prove that Hy is a bisimulation relation.

e ((501,502),507) € H} and ((so1, s02), s509) € H? imply that ((so1, So2)s (s0f,509)) €
Hy.

Let ((s1,52), (5¢,53)) be a pair in Hy.

e ((s1,52),5%) € H}implies that L((sy,52))NOy = L§(s%). ((s1,52),59) €
HZ%implies that L((s1, s2))N02 = L4(sd). Thus, L((s1,s2)) = La((s, s9)).

e Let ((s1,52),14,(s],s5)) be an element in R. Since ((sq,s2),s¢) € H},
there exists a state s1/? such that (s{, 1, s,/?) € R{ and ((s}, s4),51") €
HY. Since ((s1,52),s3) € H2, there exists a state sy’ such that
(sd,4,52Y) € Rd and ((s},5h),52"Y) € H2. The definition of compo-
sition implies that ((s{, s9), 1, (sl’d7 s9')) € Ry and by the definition of
Hy, ((s,55), (51, 89'%)) € Hy.

o Let ((s%,59),4, (51", 52"Y)) be an element in Ry. Then (s%,i,5') €
RY and (sd,4,5%) € RE. Since ((s1,52),s{) € H}, there exists a
state (s}, sh) such that ((sy,s2),1,(s],55)) € R and ((s],s5),51'%) €
H!. Since ((s1,s2),s9) € H2, there exists a state (s}, s}) such that
((817 s9), 4, (s, s4)) € Rand ((s},sY),s2') € H2. Since M is determin-
istic, (s}, s) = (s, s4). By the definition of Hy, ((s}, s}), (51", s5'%)) €
Hy. O

M{ and M{ are minimized with respect to O and O; respectively. Fur-
thermore, I N Oy = I N Oy = (), and thus Lemma 3.7 induces the following
corollary.

Corollary 4.7 M, is minimized with respect to O1 U Os.

4.2 Time and space complexity

In this section we compare between the complexity of the naive algorithm
and the complexity of the improved algorithm.
The algorithms include two basic operations:

13



1. Composing two FSMs, M" = M||M’'. The most costly part of this
operation is the computation of the transition relation R”. This can
be done in time and space complexity of O(|R"|).

2. Minimizing an FSM M into its quotient FSM, Mg. The algorithms
have the same complexity as the one in [11, 17]. Their space complexity

is O(|R|) and their time complexity is O(|R| - log(|S])).

Thus, the minimization is the dominant part of the algorithm. In the naive
algorithm there is only one minimization of M = M;||M;. In the improved
algorithm, however, there are 4 minimizations: The minimization of M; that
results in M7, the minimization of M, that results in M}, the minimization
of Mf¢ that results in M{, and the minimization M that results in M.

Since the complexity of a minimization depends on the size of the mini-
mized FSM, we need to compare the sizes of My, My, M7, M5, to the size
of M. We assume that the size of M; is equal to the size of Ms.

The differences in the sizes of My and M, and the that of M depend
on the interactions between M; and M. The interaction between M; and
My is measured by the number of inputs of one that are outputs of the
other. The size of the state spaces of My and Ms, is the square root of the
size of the state space of M. However, the size of the transition relation
depends on the interactions. When the interaction between M; and M,
is high, many inputs of M; and M, are connected to the corresponding
outputs of My and M;. These inputs are not part of the inputs of M. In
this case, every component in Ms is an input of M; and vice versa. Thus,
1S11-125] & S5+ [25] 2 |S-[21]. Since [Ry| & |S1]-[21 | and Ry ~ |S5]-[212],
|Ry| ~ |R2| ~ |R|, and | M| ~ | M| ~ |M].

Next we compare the sizes of M{ and M§ with the size of M. Note
that M = M,||Mz, M = M;||M5 and My = M{||Ms. This implies that
the difference in the sizes of M and M depends on the difference in the
sizes of My and M. Similarly, the difference between the sizes of M and
M3 depends on the difference between M; and M{. When there is no
redundancy, |My| = |M7| and |Ms| = |MJ}]|. In this case, |M{| = |MS| =

The worst-case scenario is when the interaction between M; and M; is
high and there is no redundancy in My and My, |M;| = |M]| and |M;| =
|MJ]. In this case the improved algorithm performs four minimizations, each
requiring the same time as the single minimization of the naive algorithm.

1Recall that ] = ([1 \02) W] ([2 \ 01)

14



Since we need to keep at most three different models at the same time, the
space requirement of the improved algorithm is three times that of the naive
algorithm.

In the best scenario, however, |[M;| = | M| = |M{| = |M§| = /[M]. In
this scenario, the time complexity of |R| - log(]S]) in the naive algorithm,
becomes 4-/[R]-log(+/]S]) in the improved algorithm. This time complexity
is significantly better.

4.3 Nondeterministic FSMs

In this section we extend the modular method to nondeterministic FSMs,
for which, Lemma 4.6 does not hold. The result My of composing M{ and
M3 might be inequivalent to M due to “illegal states” in My which are not
equivalent to any state in M.

In order to understand this inequality, we inspect the role of the states of
My in M (the role of the states of My is similar). Since M is a composition
of My and My, every state s; has two functions: the first is to determine
the outputs and the next state of Mj, and the second is to determine the
inputs of Ms.

In M, these two functions are fulfilled by two states of Sy. Let ([(s1, [s2])], [([t1], t2)])
be a state in My. Then s; determines the outputs and the next states of
My, and t; determines the inputs of M. A state ([(s1,[s2])], [([t1],t2)]) of
M, might be illegal when sy & [t;]. In this case, the combination of the next
state in My and the input of My does not occur in any state of 5.

The problem of illegal states is demonstrated in Figure 3. In this figure,
all the states of My and My are initial states. Therefore, My and My are
nondeterministic. M{ and MJ cannot be further reduced, and the same
holds for M{ and M§. Since the result M, of composing M{ and M is
minimized and contains 16 initial states, it cannot be bisimulation equivalent
to M = M ||M;. The error in the algorithm is due to illegal states such as
((0,2),(1,2)) in My. This illegal state is related to both sy and s; in M
and is not equivalent to any state in M.

We now present the nondeterministic systems version of the improved
algorithm. This algorithm restricts the states of My to legal states only.
As before, the minimized FSM is constructed without constructing the non-
minimized FSM M;||M; itself. First we define two functions.

Definition 4.8 The function f : S; x Sy — S{ is defined as follows:
Ji(s1,52) = [(s1, [s2])]-
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My = M Mg = M

(1,2)

i 0.3) ﬁi (1,3) |

(0,3) - (1,3)

Figure 3: An example of an inequivalent result of the deterministic systems
version of the improved algorithm, where M; and M5 are not deterministic.

Definition 4.9 The function fy : S; x Sy — S§ is defined as follows:
fals1,52) = [([s1], 52)].

Next, we define a new FSM M}, which is similar to M, except that the set
of states is restricted:

S = {(sil, s%)|§|sl, 59, 5% = fi(s1,s2) A 53 = f2(s1,s2)}. The definitions for
the other components of M), are straightforward. Sg/ = So? NS}, the inputs,
outputs, and labeling function remain the same, and R/, = Rq N (S} x 5)).
We now prove that M) is bisimulation equivalent to M.

Lemma 4.10 M) and M are bisimulation equivalent with respect to

01 UO0,.

Proof : Let H C S x S/ be defined as follows: H = {((sy, 52), (s{,53))| 5§ =
fi(s1,82) A 53 = fao(s1,82)}. We prove that H is a bisimulation relation.

e The definition of S/, implies that for every state (s19,520) € So there
exists a state (s%g,5%) = ([(s10,[520])]; [([510], 520)]) € S’ such that
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((s10, 520); (50, 5%9)) € H. For the other direction, assume that (s{,, s3,) =
([(s10, [s20])], [([s10], S20)]) is a state in S%,. Then, the state (s19,s20)
is in Sy and ((s10, $20), (530, 5%)) € H.

o Let ((s1,52), (sil,sz)) be an element in H. Since Ld([(sl,[SQ])]) =
Li(s1,[s2]) N O1 = Li(s1) and L§([([s1),52)]) = L5([s1),52) N Oz =
La(s2), L((s1,52)) = La(([(s1, [s2])], [([s1], 52)])).-

o Let ((s1,52), (s%,53)) be in H and let i be an element in I. Let iy =
(iULQ(SQ))ﬂIl (’LULT([ ]))ﬂll and

— iy = (1UL1(s1))NIz = (UL ([s1]))N 2. Then, ((s1,52),1, (s}, %)) €
Rifl

— (s1,11,5)) € Ry and (sg, ig, s5) € Ry iff (Definition 2.6 and Lemma 3.1)

— ([s1).71,[s1]) € Ry and ([s2] 42, [s3]) € R3. (s1,41,5)) € Ry and
([s2], 72, [53]) € Ry iff ((s1,[s2]), 4, (51, [s3])) € RY.

[s1], 1, [sl]) € R} and (sg,1,55) € Ry iff

— Similarly, ([s1
(([s1], 52), 4, ([s1], 53)) € RS,

— Therefore, ((s1, [s2]), 7, (s1,[s5])) € R and (([s1], s2), 7%, ([s1], 53)) €
RS iff

= (i s{) = (s, [sa)], 0 (5, [52D)]) s i Ry and
(4,57 = ([([su), s2)). 7. (), b)) s in R iff
(st 58,0, (s 58)) € R
Od

Next, we prove that M} is minimized. First, we show that the maximal
bisimulation over M includes a bisimulation over MJ.

Lemma 4.11 Let H) be the mazimal bisimulation relation over M). We
define a relation H{ over S{ x S{ as follows: ([(s1,[s2])], [(t1, [t2])]) € H{ iff
(([(s1, [s2D)1s [([sa) 52)]), ([t [E2D))s [([t4), £2)])) € H)y. Then Hf is a bisimu-

lation relation.
Proof :

e Since H), contains all identity pairs, H{ contains all identity pairs as
well. This implies that for every initial state, the pair consisting of the
initial state and itself is an element in H{.

Let ([(s1,[s2])], [(t1, [t2])]) be an element in H{:
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. Ld(([( 1y [s2])], [([s1)s s9)])) = La(([(t1; [t2])], [([ta]; £2)])) implies that
Ly([(s1, [s2D)]) = Ly([(t1, [L2])]).-

e Let ([(s1,[s2])], 4, [(s}, [s5])]) be an element in R{. Leti; = ({ULy(s2))N
Il = (’L U Lg([SQ])) N Il and iz = (’L U Ll(Sl)) N IQ = (’L U Lg([sl])) N IQ.
1. By Lemma 3.1, ((s1,[s2]), 1, (1, [s4])) € RS.
2. Thus, (s1,41,5]) € Ry and ([s2], i3, [s}]) € RS.
3. By Definition 2.6 and Lemma 3.1, ([s1],?1,[s]]) € R]) and
(827 7:27 8/2) € RQ.
4. This implies that ([([s1],52)], ¢, [([s1], s5)]) € R4.
5. Thus, ([(s1, [l (1) 52)]), 6, (% (D1 L4, s4)D) € RS

6. Since H) is a bisimulation relation, there exists a state ([(¢{, [t5])], [([t}], t5)])

such that (([(¢1, [t2])], [([ta], 22)]), 7, ([(#3, [#2])], [([14], 22)])) € £eg and
(([(s1s 2D, [(Tsals s9)]) (18 2D, ([, 1)) € Hy

7. This implies that ([(t1, [t2])], ¢, [(¢}, [t5])]) € R and
(L5, [, [(15, [ea])]) € HY.

e Similarly, we can prove that for every state [(¢], [t}])] such that
([(t1, [t2D)], 7, [(£1, [t5])]) € RY there exists a state [(s},[s5])] such that
([(s1, [s2D)], 8, [(s7, [s2D)]) € Ry and ([(s4, [s5])], [(#4, [ta])]) € HY.

a

Lemma 4.12 Let H) be the mazimal bisimulation relation over M). We
define a relation HY over S§ x S$ as follows: ([([s1], s2)], [([t1], t2)]) € HE iff
(([(s1, [s2D)1s [([sa), 52)]), ([t [22D))s [([t4), £2)])) € H)). Then Hy is a bisimu-

lation relation.
The proof of Lemma 4.12 is similar to the proof of Lemma 4.11.
Lemma 4.13 M) is minimized.

Proof Let H; be the maximal bisimulation over M}, x M. Assume to the
contrary that the lemma does not hold. Then by Lemma 3.3, there are
two different states (sil,sz) (t4,t3) such that ((s{,s3), (t{,t9)) € H,. Since
(5, 59) # (t{,t9), either s¢ # t¢ or s # t3. Assume w.l.o.g. that s§ # ¢¢.
Let H{ be the relation defined in Lemma 4.11. By Lemma 4.11, H{ is a
bisimulation. By the definition of H{, (s{,t%) € H{!. By Lemma 3.3, M{ is
not minimized, a contradiction. O
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4.4 Additional complexity

The additional complexity is due to the computation of S/, which forces us
to refer to the whole state space of M. Nevertheless, since we only compute
the state space and do not use it in the reduction method, the nondetermin-
istic systems version of the improved algorithm is still better than the naive
algorithm. f; and f;, can be computed during the construction of M] and
M3 and the construction of M{ and My without any additional time com-
plexity. However, since the function operates on the states of M ||M;, the
space complexity is |S| = |S1|-]S2|. In a worst-case scenario, the complexity
of the nondeterministic improved algorithm is identical to that of the de-
terministic improved algorithm. However, when M| < M; and M} < M,
this complexity is worse than that of the deterministic version.

5 An implementation of the improved algorithm

In this section we describe an implementation of the improved algorithm.
Our goal is to compare the improved algorithm, the naive algorithm, and the
ordinary algorithm. The ordinary algorithm minimizes a given FSM directly
and does not use modularity. The implementation was developed in the
sequential equivalence verification CAD group of Intel design technologies
in Haifa. The designs, which were tested in the equivalence department,
have the following properties:

1. 5o =5, i.e., every state in the model is an initial state.

2. The transition relation is a function, meaning that for every state s and
input 7 there exists exactly one state ¢, such that (s, 7,¢) is a transition
in R.
Note that the first property makes these designs nondeterministic. The
above two properties prompted us to choose the nondeterministic systems
version of the improved algorithm. However, we represent the transition re-
lation as a function, which can be represented more concisely than a regular
relation.

A general description of the implementation is given in Section 5.1. The
improved algorithm uses the ordinary algorithm as a subroutine. The same
ordinary algorithm is used for comparison with the improved algorithm.
Since we deal with FSMs that have a transition relation that is a function,
we use an algorithm that is similar to the algorithm presented in [11]. The
experimental results are presented in Section 5.2.
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typedef struct fsm {
VarList inputs;
BddFunction outputs;
BddFunction latches;
BDD domain;
BddFunction equivFunc;
}FSM;

Figure 4: The data structure that models FSMs

5.1 The implementation framework

The minimization algorithms (improved, naive, or ordinary) receive an FSM
from an Intel program, which compiles the RTL description of the design
into an FSM. The given FSM contains three lists: A list of inputs, a list of
latches, and a list of outputs. The list of inputs contains BDD variables only.
The list of latches, which encodes the state space, is consists of pairs, with
each pair containing a BDD variable and a BDD representing the next state
function. The list of outputs, which encodes the labeling function, consists
of pairs, with each pair containing a BDD variable and a BDD representing
the output function.

We modeled an FSM by the FSM data structure shown in Figure 4. In
addition to the inputs, latches, and outputs fields, the FSM data structure
has the domain field, which is a BDD over the latches and represents the
set of states, and the equivFunc field. When a minimization of an FSM
is performed, a set of equivalence classes is constructed. These classes are
the states of the resulting FSM. The equivFunc field of the resulting FSM
contains a function that relates the states of the original FSM to their equiv-
alence classes.

The information about the modular structure of the tested designs was
lost during the development stage. Thus, instead of a set of components, the
improved algorithm receives one FSM. In order to perform the minimization,
it first partitions the FSM and then executes the improved algorithm. A ba-
sic description of the implementation of the improved algorithm is presented
in Figure 5.

The algorithm receives an FSM om and partitions it into two FSMs,
ml and m2. Then it uses the improved algorithm to construct a minimized
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model md, which is equivalent to om. The algorithm partitions the model
by partitioning the set of latches and the set of outputs, (it is possible for
ml and m2 to share inputs). The goal of the partition is to minimize the
interaction between the models. Since it is hard to find such a partition, the
algorithm uses a heuristic to find a partition with low interaction.

The improved algorithm uses the subroutine reduction, which executes
the ordinary algorithm. The algorithm is an adaptation of the algorithm
given in [11] for constructing the quotient automaton for a given regular
deterministic automaton. The algorithm is adapted for FSMs for which the
transition relation is a function. Given an FSM, it constructs its quotient
FSM. The main difference between the algorithm in [11] and the ordinary al-
gorithm is in the initial partitioning. While for automata the initial partition
forms two sets (accepting and rejecting), for FSM, the states are initially
partitioned into 24! sets, one for each state labeling.

Both minimization algorithms (the improve and the ordinary) minimize
the FSM with respect to its outputs. Thus, before they minimize M; into
M7 (Ms into M3), they need to remove the outputs in O\ I3 (Oz2\ I1). The
algorithms use the rmFzternalOutputs subroutine to remove these external
outputs.

In order to construct the set rd of “legal states” of the form
([(s1, [s2])], [([51], 52)]), the algorithm constructs two functions, f1d : S — S¢
and f2d : S — S{. In order to construct fld, the algorithm composes the
functions M1d.equivFunc : S§ — S¢ and the function m2r.equivFunc :
Sy — 55. Since ST = 51 X 53, the resulting function relates the states of
S1 % S to the states of S¢. The function f2d is constructed in a similar way.
Then the algorithm calculates rd = fd(om.domain), where fd:S — Sy is
defined as follows: fd(s) = (f1d(s), f2d(s)).

The sets, functions and relations are represented by BDDs. We use
Intel’s BDD package for the implementation.

5.2 Experimental results

We compared the ordinary algorithm, the naive algorithm, and the improved
algorithm. During testing of the improved algorithm, we discovered that the
minimization of M{ and MJ does not improve performance. Thus, we also
tested the algorithm without these minimizations. In this case My (MYJ)
are simply M with only some of the outputs. This test was performed with
the design partitioned only once (this appears in the tables as improved2),
and with the design partitioned recursively until it has only one output (this
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FSM improvedAlgorithm(FSM om){

FSM ml, m2, mlr, m2r, mle, m2e, mid, m2d, md;
BddFunction fd, fid, f2d;
BDD re, rd;

/* the recursion tail condition — based on the size of the model */
if (!shouldSplit(om))
return reduction(om);

/* partition om to ml and m2 */
partlodel(om, ml, m2);

mir = rmExternalOutputs(ml);
mir = improvedAlgorithm(mir);
m2e = modelComposition(mir, m2);

m2r = rmExternalOutputs(m2);
m2r = improvedAlgorithm(m2r);
mle = modelComposition(ml, m2r);

mld = reduction(mle);
m2d = reduction(m2e);

fid = composeFunc(mid.equivFunc, m2r.equivFunc);
£2d = composeFunc(m2d.equivFunc, mir.equivFunc);

fd = joinBddFunc(fid,f2d);
rd = bdd_image(om.domain, £d);
md = disjointComposition(mid, m2d, rd);

return md;

Figure 5: The improved algorithm
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appears in the tables as improved3).

The results are presented in the following tables. In Table 2 we present
general properties of the tested designs. Table 3 compares the minimization
times of the algorithms. Table 4 compares the space requirements of the
algorithms. The algorithms were tested on a machine with two CPUs of 550
MHYZ each and 2GB memory.

The experimental results imply that in most designs, all versions of the
improved algorithm perform better than the ordinary and naive algorithms
in both time and space. The best time performance is for the improved
algorithm without the minimization of M7 and MJ and with recursive par-
titioning of the outputs. The best space performance is for the improved
algorithm without the minimization of M| and MJj and with only one par-
tition of the outputs.

The differences between these two versions of the improved algorithm
demonstrate the tradeoff between the algorithm’s efficiency and its overhead.
While the algorithm’s efficiency results in a better run time, the overhead
results in larger space requirements. This tradeoff is taken into account
in the subroutine shouldSplit. This subroutine that decides whether to
reduce the sub-model by further partitioning it with the improved algorithm
or to use the ordinary reduction algorithm. In general, if the sub-model is
too small, then the overhead the improved algorithm become too large.

Note that, while the improved algorithm is up to 12 times faster than the
ordinary minimization algorithm in some cases, the difference between the
two algorithms is small in those cases when the ordinary algorithm perform
better.

6 Conclusions

Modularity is used extensively in the development of systems. As a result,
most systems have a modular structure. In this work we show how this
structure can be used for a better minimization algorithm. Given an FSM
M, we construct two disjoint FSMs, My and M§, such that M is equivalent
to the synchronized composition of M| and MJ. Once we construct these
FSMs, the problem of minimizing M is reduced to minimizing M7 and MS
separately and composing the result. Since the complexity of minimizing M
might be quadratically greater than minimizing M| and My separately, the
potential of the algorithm is huge.
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Name | No. of | No. of No of

inputs | latches | outputs
5298 5 14 7
5298d2 5 11 3
5298d3 5 13 5
s400d1 5 17 2
5400d2 5 17 2
s400d3 5 19 4
5400 5 21 6
$349 11 15 11
s444.2 5 20 5
s444 5 21 6

Table 2: General properties of the tested designs

Name ordinary naive improved | improved2 | improved3

algorithm algorithm algorithm | algorithm | algorithm
8298 46 72 34 27 27
$298d2 21 26 22 22 23
5298d3 32 41 29 26 26
s400d1 190 469 385 206 206
5400d2 173 575 500 239 239
s400d3 1,336 2,048 1,209 590 601
s400 12,396 space overflow 2,302 1,129 999
8349 2,640 4,496 1,759 1,474 255
s444.2 3,512 3,379 1,380 828 799
s444 9,362 space overflow 2,891 1,055 1,038

Table 3: The minimization time in seconds for the different algorithms
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Name ordinary naive improved | improved2 | improved3
algorithm algorithm algorithm | algorithm | algorithm
8298 1,482,712 1,919,032 451,793 326359 467,705
$298d2 151,885 209,452 85,108 125577 144,624
$298d3 759,032 716,557 278,283 337834 362,691
s400d1 | 8,691,398 12,521,457 10,105,732 | 5,118214 | 5,118,214
s400d2 | 9,368,512 12,775,984 7,009,955 | 4,820907 | 4,820,907
s400d3 | 28,436,930 41,089,896 12,540,649 | 10,714419 | 25,165,669
5400 105,175,584 | space overflow | 32,491,632 | 17,740753 | 44,641,501
8349 27,567,754 36,747,754 12,442,018 | 2,552658 | 3,876,761
s444.2 | 49,964,703 66,788,414 19,376,000 | 17,451240 | 33,190,412
s444 97,687,526 | space overflow | 21,972,212 | 17,168679 | 43,223,054

Table 4: The maximal number of BDD nodes required by the different
minimization algorithms
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A Properties of bisimulation

In this section we prove the claims presented in Section 3. Note that when-
ever two FSMs, My and M,, are composed, they must satisfy O1 N Q5 = 0.

Lemma 3.1 Let M be an FSM, and let Mg be the quotient F'SM of M.
Let (a,,0') be an element in Rg. Then for every state s in « there exists
a state s' in o' such that (s,i,s") € R.

Proof :Assume that («,7,0/) € Rg. Let H C S x S be the maximal
bisimulation relation over M x M. The definition of a quotient FSM implies
that there are states ¢,¢ in S such that ¢t € o, ' € o and (¢,4,t') € R. Let
s be a state in «. Since s and ¢ are in the same equivalence class, (¢,s) € H.
Thus, there exists a state s’ such that (s,¢,s") € R and (¢/,s") € H. Since
(t',s") € H, t" and s’ are in the same equivalence class, s’ € /. O

Proposition A.1 If M is deterministic, then Mg is deterministic.

Lemma 3.3 M is minimized iff the mazimal bisimulation relation over
M x M contains exactly the identity pairs.

Proof : For the first direction, assume that H is the maximal bisimu-
lation over M x M and that H contains exactly the identity pairs. Then
every equivalence class contains exactly one state. Let Mg be the quotient
FSM of M. We define a function f:.5 — Sg as follows: f(s) = a iff sisin
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a. Obviously f is a total and onto function. Since every equivalence class
contains exactly one state, f is also one to one. Furthermore, by Lemma 3.1
and the definition of quotient FSM, (s,7,s') € R iff (f(s),4, f(5')) € Ro.
Thus, M and Mg are isomorphic and M is minimized.

For the second direction, assume that there is a pair (s1,s2) € H such
that sy # sg. Then s1,s; are in the same equivalence class. Since the
equivalence classes partition the states set and at least one class contains
more than one state, |Sg| < |S|. Thus M and Mg are not isomorphic. O

Lemma A.2 Let M be an FSM. The identity relation Hip = {(s,s)|s €
S} is a bisimulation relation over M x M.

Proof :

e Lor every sq € S, (so0,50) € Hip.

Let (s, s) be a pair in Hrp:
o L(s)=L(s).

e Let (s,7,5) be an element in R. Then (s,1,s') is an element in R, and
(S/,S/) € Hip. O

Lemma A.3 Let Mg be the quotient FSM of M, and let Hgg be the
mazimal bisimulation relation over Mg x Mq. Let

H, = {(s1,52)|([s1],[s2]) € Hgq}. Then H, is a bisimulation relation over
M x M.

Proof :

e By the definition of the quotient FSM, for every sq € So, [so] € Sog.
Since ([so], [s0]) € Hgq, (s0,50) € H,.

Let (s1,s2) be a pair in H,.

o ([s1],[s2]) € Hgg implies that Lg([s1]) = Lo([sz]) which, implies that
L 81) = L(Sg).
L

et (s1,4,5)) be an element in R. Then ([s1],7,[s}]) € Rg. Since
([s1], [s2]) € Hgq, there exists a class of such that ([s3],,0a}) € Rg
and ([s1],05) € Hgqg. ([s2],7,05) € Rg, together with Lemma 3.1,
implies that there exists a state s} such that (sg,7,s)) € R. The
definition of H, implies (s, %) € H,.
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e Similarly, we can prove that for every successor s} of sy there exists a
successor s; of sy such that (s},s%) € H,. O

Lemma A.4 Let Mg be the quotient FSM of M, and let Hgg be the
mazximal bisimulation relation over Mg X Mq. Then Hgg is the identity
relation.

Proof : Lemma A.2 implies that the identity relation is a bisimulation
relation over Mg X Mg, and thus it is contained in Hgpg. Assume to the
contrary that Hgg contains a pair (ay, az) such that oy # ay. Let 59 and
sy be states in «; and ay respectively and let H, be the relation defined
in Lemma A.3. By the definition of H,, (s1,s2) € H,. By Lemma A.3,
H, is a bisimulation over M x M, and thus (sq,s2) is an element in the
maximal bisimulation over M x M. This implies that s; and sy are in the
same equivalence class, a contradiction. O

Corollary A.5 Fvery quotient FSM is minimized.

For the rest of this paper, we will use the term “minimized FSM” for quotient
FSM.

Lemma 3.4 Let M be an FSM and Mg be the quotient FSM of M with
respect to O'. Then M and Mg are bisimulation equivalent with respect to
o'

Proof: Let Hg C Sx.Sg be the following relation: Hg = {(s, )]s is in a}.
We prove that Hg is a bisimulation relation.

e By the definition of the quotient FSM, for every sqg € Sp, sg is in
ag € Sog. Similarly, for every ap € Spg there exists sg € Sp such that
So € Op.

Let (s, «) be a pair in Hg:

e By the definition of the quotient FSM, L(s) N O’ = Lg(«).

e Let (s,4,5') be an element in R. Let o/ be the equivalence class of s'.
Then by the definition of the quotient FSM, («,¢,a’) € Rg, and by
the definition of Hg, (s',a') € Hy.

e Let (a,7,0 ) be an element in Rg. By Lemma 3.1, there exists a state
s’ such that (s,7,s') € R and ¢ isin o/. Thus (¢',a/) € Hg. O
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Lemma A.6 Let My and My be two FSMs that are bisimulation equiva-
lent. Let H C S1 xSy be a bisimulation relation over My xM,. Then the rela-
tion H' = {(s1, s})|there exists sy € Sy such that (s1,s2) € H and (s}, s3) €
H} is a bisimulation relation over My with respect to Oy N Os.

Proof : We prove that H' is a bisimulation relation.

e Since H is a bisimulation relation, for every initial state sg1 € So1
there exists an initial state sg2 € Soz such that (se1,s02) € H. Thus,
for every initial state so1 € So1, (So1,501) € H'.

For every pair (s1,s]) € H’, the following holds:

e Since (s1,s]) € H', there exists a state s € Sy such that (sy,s2) € H
and (s7,s2) € H. This implies that Li(s1) N (01 N O3) = La(sz) N
(Ol N 02) = Ll(Sll) N (Ol N 02)

e Let (s1,7,11) be a transition in R;. Since (s1,s}) € H’', there exists a
state sy € Sy such that (s1,s2) € H and (s),s2) € H. Since H is a
bisimulation, there exists a state t3 € Sy such that (s, ,t2) € Ry and
(t1,t2) € H. This implies that there exists a state ¢§ € Sy such that
(sh,4,t]) € Ry and (t],t2) € H. Thus (t1,t}) € H'.

e Similarly, for every transition (s{,7,t]) € Ry there exists a transition
(s1,7,t1) € Ry such that (ty,t)) € H'.

O

Lemma 3.5 Let M be an FSM and Mg be the quotient F'SM of M with
respect to O'. Then Mg is the smallest (in number of states and transitions)
FSM which is bisimulation equivalent to M with respect to O’.

Proof : First we prove that Mg is smallest with respect to the number
of states. Assume to the contrary that there exists an FSM M’ that is
bisimulation equivalent to M and smaller than Mg. Since bisimulation is
transitive, Mg and M’ are bisimulation equivalent. Let H be a bisimulation
relation over Mg x M'. Then, there exist two different states s, and ¢, in Sg
that are equivalent to the same state in M’. Let H, be the relation H, =
{(sq4,ty)|there exists s’ € S’ such that (s,,s') € H and (t,,s') € H}. By
Lemma A.6, H, is a bisimulation relation. Thus s, and ¢, are bisimulation
equivalent, contradicting Lemma A .4.

Next, we prove that Mg is smallest with respect to number of transitions.
Assume to the contrary that there exists an FSM M’ that is bisimulation
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equivalent to M and smaller than Mg. Since bisimulation is transitive,
Mg and M’ are bisimulation equivalent. Let H be a bisimulation relation
over Mg x M’'. Since the number of states in Mg is not larger than the
number of states in M’, there exists a pair (s,,s’) € H such that the num-
ber of transitions from s, is greater than the number of transitions from
§'. Since for every transition (s',i,¢') € R’ there exists a matching transi-
tion from s,, there exists a transition (s',4,¢') € R’ having two transitions
(8q. 1, tq1) and (sg, 7, t42) in R, which match it. This implies that (t,1,¢") € H
and (ty2,t') € H. Let H, be the relation H, = {(s,,t,)|there exists s’ €
S’ such that (s,,s') € H and (t,,s") € H}. By Lemma A.6, H, is a bisimu-
lation relation. Thus t,; and ¢, are bisimulation equivalent, contradicting
Lemma A.4. O

A.1 Composition and bisimulation

Next we present some properties of composition and bisimulation.

Lemma A.7 Let M = M\||M; and let H, and Hy be the maximal bisimu-
lation relations over My X My and My X My with respect to O1 and Oy respec-
tively. Let H be the relation H = {((s1, $2), (t1,t2))|(s1,t1) € Hy, (s2,12) €
Hy}. Then H is a bisimulation over M x M.

Proof :

e Let (s10,520) € So. Since (s10, s10) € Hy and (sa0, S20) € Ha,
((s105 520)5 (510, 520)) € H.

Let ((s1,s2), (t1,%2)) be a pair in H.

e By the definition of H, (s1,t1) € Hy and (sg,t2) € Hy. Thus Li(s1) =
Ll(tl) and LQ(SQ) = Lz(tg). Since OlﬂOQ = @7 L((Sh 82)) = L((thtg)).

o Let ((s1,52),1, (], s5)) be an element in R. By the definition of compo-
SiJEiOIl7 (817 (iULQ(Sz))ﬂIhS/l) € Rl and (827 (iULl(Sl))ﬂIQ7S/2) € RQ.
Since (s1,t1) € Hy and Lg(sy) = Lo(ta), there exists a state ¢] such
that (¢1, (¢ULs(t2))N11,t)) € Ry and (s}, t]) € Hy. Similarly, there ex-
ists a state ¢}, such that (t2, (1ULq(t1)) N 12, t5) € Ry and (sh,th) € Ho.
The definition of composition implies that ((t1,t2),1, (t},t5)) € R and
by the definition of H, ((s},s}), (1,t5)) € H.
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e In asimilar way we can show that for every successor (¢],t}) of (¢1,2)
there exists a successor (8], s5) of (s1, s2) such that ((s], s5), (t],t5)) €
H. O

Lemma A.8 If M = M,||Ms is minimized, then M, and My are also
minimized.

Proof : Assume to the contrary that the lemma does not hold. W.l.o.g.
assume that M; is not minimized. By Lemma 3.3, there are two differ-
ent states sy,?; such that (s;,#1) € Hy. Since every bisimulation relation
contains the identity pairs, there exists a state sy such that (sg,s3) € Ha.
Let H be the relation defined in Lemma A.7. Then ((s1,s2), (t1,52)) €
H. By Lemma A.7 , H is a bisimulation relation, and thus it is con-
tained in the maximal bisimulation relation over M x M. This implies
that ((s1,s2), (t1,52)) is an element in the maximal bisimulation relation.
By Lemma 3.3, M is not minimized, a contradiction. O

Lemma A.9 Let M = M;||My and H be a bisimulation over M x M. If
OsNIy = 0, then the relation Hy = {(s1,t1)|s1,t1 € Sy and 3 s9,t3 ((s1, 82), (t1,12)) €
H} is a bisimulation relation over My x M.

Proof :

o Let sj9 € Stp and s99 € Sz. Since ((S10, 520), (S10, 520)) € H, (810, S10) €
Hi.

Let (s1,t;) be a pair of states such that (s;,t1) € Hy and let sg,t9
be states such that ((sy, s2), (t1,t2)) € H.

e ((s1,52), (t1,t2)) € H implies that L((s1,s2)) = L((t1,%2)). Since O1N
Og = (), we conclude that Ly(s1) = Ly(t1).

e Let (sy1,41,5]) be an element in Ry. Since O NIy =0, I} C I. Let
i C I be such that iy =iN 1. Since Oo NIy =0, (iU Ly(s2)) N1 =
iNnI; = i. Let s§ be a state such that (sg, (1 U L1(s1)) N Iz, 85) €
R3. Such an ) exists by the receptiveness of Moore machines. Then
((s1,82),1, (s}, 55)) € R. Since ((s1,s2), (t1,t2)) € H, there exists a
state (¢{,t5) such that ((t1,t2),14, (t],t5)) € R and ((s},s}), (t],t})) €
H. This implies that (¢y,141,t}) € Ry. By the definition of Hy, (s},t}) €
Hi.
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e In a similar way we can show that for every successor ¢ of ¢; there
exists a successor s} of s such that (s],#]) € Hy. O

Lemma 3.7 Let My and My be minimized FSMs. If Oy NIy = 0 and
O, N1y =0, then M = My||M; is minimized.

Proof Let H be the maximal bisimulation over M x M. Assume to the
contrary that the lemma does not hold. Then, by Lemma 3.3, there are
two different states (sy,s2), (t1,%2) such that ((sy, s2), (t1,t2)) € H. Since
(s1,82) # (t1,t3), either sq # t1 or sy # t3. We assume w.l.o.g. that s; # ¢;.
Let H; be the relation defined in Lemma A.9. By Lemma A.9, Hy is a
bisimulation. By the definition of Hy, (s1,t1) € Hy. By Lemma 3.3, M; is
not minimized, a contradiction. O
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