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Abstract

There are many methodologies whose main concern it is to reduce the complexity of a veri�cation
problem to be ultimately able to apply model checking� Here we propose to use a model checking like
procedure which operates on a small� truly symbolic description of the model� We do so by exploiting
systematically the separation between the �small� control part and the �large� data part of systems which
often occurs in practice� By expanding the control part� we get an intermediate description of the system
which already allows our symbolic model checking procedure to produce meaningful results but which is
still small enough to allow model checking to be performed�

� Introduction

This paper is about a close marriage of two well known veri�cation paradigms� that of model checking and
generation of veri�cation conditions � There is no need for reiterating the success story of model checking
in the veri�cation of reactive systems originating with the seminal paper by Clarke� Emerson and Sistla on
CTL model checking ���	 indeed it is safe to say that the combination of 
so�called� symbolic techniques ���
abstraction ��� and compositional reasoning ���� ��� have rendered this technology to a state where industrial
usage is feasible�

But beyond doubt even those combined approaches are inadequate for a complete veri�cation of the
majority of designs� In particular� applications with large or complicated data parts will escape them� We
will bring in the generation of veri�cation conditions to overcome some of the limitations�

The story of generation of veri�cation conditions dates back to Floyd�s seminal paper ���� from ���� A
large body of research has been conducted over the years on sequential program veri�cation for increasingly
more complex programming language constructs ���� More recently� parallel programming languages ���
have also been extensively investigated� However� the inherent complexity of the task and less stringent
commercial need for formally veri�ed software systems has impeded industrial applications of this technology�
A few exceptions mainly come from the area of secure systems�

The arguments impeding industrial applications of software ver�cation do not hold if we look at systems
closer to the hardware level� For such systems� the incentive to avoid errors is higher� Moreover� many
of them combine data and control in a way that enables simplifying or even automating large parts of the
veri�cation�

In this paper we will show a method that avoids some of the di�culties with veri�cation condition
generation� We will demonstrate how model checking techniques may be used to reduce automatically
�rst�order temporal logic speci�cations to simpler veri�cation conditions� These conditions concern either
purely sequential behavior of subsystems or �rst�order data properties� Our procedure is very di�erent
from what is usually called �symbolic� model checking� which operates on codes for the state sets of the
system� Here� we represent data and data operations by �rst�order formulas and substitutions� similar to
their respective representations in the speci�cation logic and the system description language� We called
this �truly symbolic� in contrast to the coding approach of �symbolic� model checking�
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The class of applications we aim at include processors where the data path is simply too wide to be reason�
ably considered �nite state� or embedded control applications� where complex interfacing logic is combined
with sometimes nontrivial computations on sampled data 
e�g� solving di�erential equations numerically��
These applications have in common� that there is a clear separation between the handling of control and
data� I�e��

� The pipelined execution of a RISC instruction is solely determined by the instruction type� the pipeline
stage� and other state information collected in the controller� which together constitute the control
part of the design	 register contents as well as address �elds etc� form the data part and are evaluated
separately and do in�uence control only sparsely�

� In embedded control applications it is the control part which governs the interaction between the
controller and the controlled system 
determining e�g� the sampling rate� strobes� etc��	 whenever
sampled data are latched into the controller� it initiates the data part of the computation� causing a
possibly complex but terminating evaluation�

We �nd the perfect match for our approach when the data part does not a�ect control at all� In this case� we
show that speci�cations can be tested by conventional model checking on the control part of the system� If
the test result is negative� not only the control part of the speci�cation� but also the complete speci�cation
involving data is not satis�ed by the system� A positive result� on the other hand� tells that the control part
of the speci�cation is true in the complete system�

Speci�cations 
and systems� which survive this test phase may then be analyzed more thoroughly� For
that� we propose a method that generates �rst�order veri�cation conditions� This phase does not require
a complete separation of control from data� The restriction on their interdependence is more relaxed�
Therefore� this phase is applicable also to systems for which the test phase is not�

The procedure we apply is based on a �rst�order extension of local model checking in the style of �����
using the control information present in the system description to investigate only those �rst�order aspects
of the model consistent with the required behavior of its control part� The �rst�order veri�cation conditions
to be generated appear as success conditions of the model checking procedure� A su�cient criterion for
the generation to be performed completely automatically is that the control part only allows a bounded
number of computations on the data� This criterion subsumes e�g� Wolper�s data independence property
����� which forbids any computation on data� Sometimes it is possible to transform a system description
which does not meet our criterion to one which does� A loop which computes on data may be replaced by a
�nite 
�rst�order� representation of its e�ects� This generates a sequential veri�cation condition which can
be treated separately�

Our approach di�ers from others addressing the veri�cation of �rst�order temporal logic speci�cationsmainly
by exploiting the above separation between control and data to achieve a high degree of automation of the
veri�cation process� Also� its scope of application certainly goes beyond what can be done in others�

Approaches based on abstraction ��� ��� and� to some extent� ���� try to reduce the state space to a small
resp� �nite one� where the proof engineer is required to �nd suitable abstractions for program variables� In our
approach� the verifyer�s main involvement is in deciding which variables to consider as control� Remaining
are of course �rst�order and sequential veri�cation conditions� But even these may often be discharged
automatically� e�g� if each single data loop can be handled by BDD�techniques after it is extracted from the
context of the rest of the system�

More similar results involving data�control separation can be found in ���� where another generalization
of Wolper�s data independence is pursued� Due to the di�erent system description format used there�
separation has a di�erent meaning and thus the results are complementary to ours� However� ���� does not
even attempt to cope with data computations� and does not include techniques for �rst�order veri�cation
condition generation�

Veri�cation techniques in the style of ���� which underly e�g� procedures of the STEP system ���� are
closer to our approach� Indeed� one could certainly integrate a variant of our generation method as one
subprocedure of STEP� suited to deal with a speci�c class of problems�

Although our techniques and results are rather independent from the overall framework� we chose one
particular for their demonstration�



Our speci�cation logic is FO�ACTL� a �rst�order version of ACTL 
which resembles CTL� but allows only
universal path quanti�ers�� The programming language might be thought of as being VHDL� stripped to its
semantical essence� a �at parallel composition of sequential processes� which are essentially while�programs
extended by one communication construct inspired from VHDL�s wait statement called step� A step can
only be executed jointly by all processes and thus serves as a synchronization barrier 	 whenever the processes
synchronize in a step� they exchange information through typed in� resp� outports� All local computations

between steps� work only on local variables�

A program is given as a transition system in which the transitions are annotated by the actions performed
between states� Such a program stands for a 
possibly in�nite�state� Kripke structure� whose states represent
the current position in the program and the current variable valuation� Halfway to this large Kripke structure�
we have the control�expanded program� where only control valuations are explicitly coded into the states and
operations on the data variables still annotate the transition symbolically� in the same way as in the original
program� This is the structure on which our veri�cation procedures operate�

The test whether a speci�cation is consistent with control of the system is performed by stripping the
control�expanded program from its data annotations 
e�g� turning branches governed by data dependent
predicates into nondeterministic choice�� This process may introduce nonterminating loops which� if data
were considered� would always terminate� In the stripped program� these loops get annotated by fairness
constraints ensuring their eventual termination� The validity of a similarly stripped formula will then be
evaluated using standard 
i�e� propositional� model checking� The data�control separation we require in the
original program guarantees that this evaluation approximates validity of the speci�cation in the desired
way�

The veri�cation condition generation essentially collects data operations on those paths through the
control�expanded model which justify the speci�cation� Besides the su�cient criterion mentioned above
which guarantees fully automatic veri�cation condition generation� the procedure works in several other
cases as well 
which do not seem to have a nice characterization��

The paper is organized as follows� Having developed the programming language and its semantics including
the control�expanded program and its stripped version in Section �� Section � de�nes the logic as well as
a stripping operator on formulas� reducing them to their control aspects� Section � develops the theory to
provide the quick test of validity of a FO�ACTL formula� while the generation of veri�cation conditions is
described in Section ��

A fully formal development of our method would require numerous de�nitions and constructions� which
would be impossible to �t into the available space� So we appeal to the reader�s intuition whenever a concept
is introduced not rigorously but informally or by example�

� Semantical Foundation

This section introduces the programming language and its semantics� We treat a toy language vaguely
similar to VHDL	 any other parallel programming language would serve the purpose of this paper� The
main novel notion introduced is that of a control�expanded program� which makes the distinction between
data and control aspects of a program explicit� thus providing the semantic basis of the subsequent sections�

Programs in our toy language consist of a �at parallel composition P�k � � � kPr of sequential processes�
We retain from VHDL that processes communicate over ports� which in our toy language almost reduce to
read�only variables modelling inports resp� write�only variables modelling outports� In contrast to variables�
updates of ports are possible only when executing a step�statement discussed below�

Process de�nitions are of the form

process �process�declarative�part� begin �sequential�statement� end�

The process declarative part of a process P de�nes in particular the sets of its in� resp� outports IP resp�
OP � and VP of P �s local variables � We require ports and variables to be initialized and omit the index P
whenever it is understood from the context� Its body is given by a so�called sequential statement � which is
executed continuously as if enclosed in a do forever loop� We allow� like VHDL� standard statements such
as variable assignments� if�� case�� and while� statements� and sequential composition� Given an assignment



v��e� we will call v the sink of the assignment� In our toy language we have collapsed signal assignments
and wait statements from VHDL in the step statement taking the form

step�in v�� � � � � vm� out e�� � � � � en� �

A step statement is executed i� all processes are willing to do a step	 in this case� P �s inports IP � fi�� � � � � img
are copied into the local variables v�� � � � � vm� while its outportsOP � fo�� � � � � ong take values determined by
expressions e�� � � � � en� For simplicity� we assume that �wiring� of ports is given by equality of port names�
hence the collection of all ports are variables shared between all processes� which are updated only in the
disciplined style provided by the step statement	 in VHDL jargon� this restriction would correspond to using
only signal assignments with delta delay� We also require that for each port p there is at most one process
assigning a value to p�

Our language is strongly typed	 for the purpose of this paper we simply assume a collection of types with
typical element � � Example types are bool� bit� integer� real� bitvector� array� and enumeration types�
At latest at veri�cation time we assume� that types are classi�ed in two modes� data and control � with the
obvious restriction that the domain D� of expressions of type � is �nite whenever � is of mode control � This
classi�cation of types induces a classi�cation of ports and variables�

As a simple example� consider the program from Fig� �� Depending on the value of the boolean input
op� until the next step the program either computes res��arg	
 or � by executing a terminating loop �
res��arg�
� A typical choice of modes is to consider the inport op and the corresponding local variable c

to be of mode control �

process small

in op� bool �� f� arg� nat �� �

out res� nat �� �

var x�y�z� nat �� �� c� bool �� f

begin

step	in c� x
 out z�


if c

then z�� x�x

else y�� x
 z�� �


while y�

do

y�� y��
 z�� z�x

od

�

end

y�
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c��op
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Figure �� Example program and its �owchart

We use a variant of labeled transition systems as intermediate models for the semantics of our toy
language� As a �rst step� a program is translated into a �owchart which represents the �ow of control
in a graphical format� see again Fig� � for an example� States in the �owchart correspond to positions in
the program� They are labeled by rts� step or none to indicate whether in that position� the program
is willing to engage in a step action� performing a step� or doing neither� To get the second intermediate
model� the values of variables and ports of mode control get expanded � Their values will then be represented
explicitly in the states� This results in a structure we call the control�expanded program� denoted CEP � It
is this control�expanded program on which the veri�cation condition generation will operate� Removing the
transition labels yields the stripped CEP or SCEP � which will allow tbe propositional test of speci�cations�
If� instead of removing the transition labels� we expand all variables� we get the fully expanded program�
or FEP � The FEP is a Kripke structure� Its states include a valuation of all variables and ports� and
its transitions are not labeled any more� This Kripke structure is the reference structure for de�ning the
satisfaction relation between �rst�order temporal logic formulas and processes of our toy language�



For the more formal development� we �x a set of inports I� outports O� and variables V � and abbreviate
V � I �O by Var �

A labeled symbolic transition system over I� O� V assumes a classi�cation of each element of Var as either
being expanded 
Varexp� or symbolic 
Varsymb�� It is an 
ordinary� labeled transition system whose state
space consists of pairs of so called control points from a �nite set S and valuations of the expanded variables
Varexp collected in the set �� Its transitions are labeled by an enabling condition on the symbolic variables
and a set of assignments to symbolic variables� We use s 
resp� �� as meta variables for control points 
resp�
valutations of expanded variables�� The initial value of expanded variables is given by a designated valuation
��� while the initial valuation of symbolic variables is given by a set of initial assignments Ainit� The initial
control point is designated s�� The 
standard� labeling function of states L assigns to any control point
atoms of our logic in the set frts� step�noneg� Assignments are of the form v��e s�t� v and all variables
occurring in e are symbolic� All sinks of assignments occuring in one transition label must be mutually
distinct� Moreover we require� that sinks of assignment are local variables� except for transitions originating
from control points labeled rts� where also assignments to outports are allowed�

Collecting all items into a structure yields an eight�tuple 
S��� L�R� V arexp� s�� ��� Ainit� as constituents
of a labeled symbolic transition systemM � Flowcharts� CEPs and FEPs are all instances of symbolic labeled
transition systems� So the �owchart in Fig� � constitutes an example with Varexp � � 
only that the initial
assigmnments �op �� c �� f� arg �� out �� x �� z �� y �� � have been omitted in the picture�� In
a CEP � the expanded variables are those of mode control � while in the FEP � the set Varexp consists of all
variables 
i�e� it equals Var and Varsymb is empty�

We translate processes of our toy language into �owcharts by induction on the structure of processes� With
each statement� we associate a canonically derived �owchart with a unique entry� and exit control�point�
which are used in the inductive de�nition as gluing points� Since the de�nition is otherwise routine� we only
discuss the semantics of the step statement in detail�

The �owchart of step
in v�� � � � � vm	 out e�� � � � � en� has three control points s�� s� se labeled rts� step�
none� respectively� In s� the process is willing to synchronize with its brother processes� If and only if this
happens � as modeled in the de�nition of the product of the transition systems at the end of this section �
it will pass to the designated control point s representing the passage of the synchronization barrier� The
transition from s� to s is labeled by random assignments for all inports� which guess the value produced by
some brother process during this synchronization step� as well as a collection of assignemts to its outports
with the expressions occuring in the step statement� More formally�

tt � i� �� ��� � � � im �� �� o� �� e��� � � � on �� en

labels the transition connecting s� and s� The subsequent postlude transition copies the values received
through inports into the local variables speci�ed in the step statement�

tt � v� �� i��� � � � vm �� im

Compound statements are handled trivially by appropriate gluing and possibly introduction of fresh control
points� e�g� using fresh s�� se in the semantics of if b then �� else �� � to relate s� with the entry point
of �� using a transition labeled with b and the entry point of �� labeled �b� The exit points of �i are linked
with the new exit point�

The �owchart semantics of process P � FC ��P �� � is obtained from the semantics of its body by relating its
exit point with its entry point and adding as set of initial assignments those canonically induced from P �s
process declarative part�

The semantics of programs is given by de�ning a parallel composition operator on labeled symbolic
transition systems capturing VHDL�s communication and synchronization semantics� Since synchronization
is only required at steps� all transitions except for those relating control�points labeled rts with step control
points can be taken in any order� e�g� in an interleaved fashion� Transitions handling the step are taken
in lock step� replacing random values assigned to inports by those expressions provided by the processes
running in parallel� Due to space restrictions� we do not discuss this in detail	 the reader might refer to ����
for a full de�nition of the comparable operator of VHDL�

Let us now turn to the process of expanding a labeled symbolic transition system M � Fig� � shows an
expansion of our example �owgraph�



To the right� the result of ex�
panding the variable c and the
port op in the �owgraph from
Fig� � is shown� This is the CEP
belonging to the example pro�
gram� The picture omits initial
assignments and does not con�
tain unreachable states�

Figure �� Example CEP
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Each symbolic variable v � V arsymb can be expanded separately� The expansion of M w�r�t� v is
obtained by essentially substituting each occurrence of v in transition labels by its value now represented in
the valuation component of states� The only situation deserving special attention arises� whenever v occurs
as the sink of an assignment v �� e in a transition label� In this case� the assignment is deleted from the
transition label� But the query d � e is added to the condition part of the transition leading to a state where
v is evaluated to a value d� Expanding the variables and ports of mode control in the �owchart FC ��P �� of
a program yields its control�expanded version� CEP��P ��� Expanding all variables gives the fully expanded
program FEP ��P ���

By abstracting from data annotations� any labeled symbolic transition structure turns into a classical Kripke
structure allowing safe model checking of properties related only to expanded variables and the synchroniza�
tion atoms� provided the expanded structure is �nite� The next section shows that this abstraction� called
the stripped transition system� enriched by suitable fairness constraints� may in fact be a precise abstraction
for such formulas under some additional assumptions� The de�nition of stripping is trivial� for a labeled
symbolic transition system M we simply delete all transition labels� thus replacing conditional selection by
nondeterminism� We are only interested in the stripped version of the control�expanded program� and will
denote this structure by SCEP��P ���

When the program P is understood from the context� the parameter ��P �� will be omitted and we will simply
write FEP or CEP � For ease of exposition we will assume in the following that all control variables are of
type bool 
instead of an arbitrary �nite type��

� The Logic

The logic FO�ACTL 
�rst�order ACTL� is a branching�time �rst�order temporal logic� It is similar to the
propositional temporal logic ACTL 
universal CTL� except that it is de�ned over �rst�order atomic formulas�
Following Emerson ����� a formula in the logic is interpreted over a Kripke structure and an interpretation
which is �xed for all states of the Kripke structure�

Similarly to propositional ACTL� FO�ACTL provides only universal path quanti�ers� To avoid the
invocation of existential path quanti�ers via negations� the logic is given in a positive normal form in



which negations are applied only to atomic formulas� Since only universal path quanti�ers are allowed� path
quanti�ers are left implicit in the syntax� Thus� �U � represents the ACTL formulaA
�U �� and similarly
for any other temporal operator�

De�nition � �FO�ACTL� Let L be a �rst�order language over some signature and let Var be a set of
�typed� variables	 A formula in our logic is de�ned inductively as follows


�	 Every �rst�order formula of L over Var is an atomic formula	

�	 rts� step� none are atomic formulas	

	 If p is an atomic formula then �p is a formula	

�	 If � and � are formulas and x � Var then � � �� � � �� �x��� 	x�� are formulas	

�	 If � and � are formulas then X �� �U � and �W � are formulas	

The operator U is the usual until � I�e� �U � requires to eventually reach a state satisfying � and not
violate � before that event� W is weak until and allows the formula to the left to hold forever�

We use the following abbreviations�

F� � tt U � and G� � �W � �

Let Int be an interpretation for L over domains D� for occurring type � � The semantics of FO�ACTL
formulas is de�ned with respect to an interpretation Int and a Kripke structureK� For simplicity we denote
T � S
� and omit the empty set of assignments Ainit in K� For t � 
s� ��� with a slight abuse of notation�
we use L
t� and t
v� instead of L
s� and �
v�� A Kripke structure has now the form K � 
T�L�R�Var � t���
A path in a Kripke structure K is a sequence� � � w�� w�� � � �� such that for every i� 
wi� wi��� � R�

K� Int� t j� � denotes that the formula � is true in state t of structure K under interpretation Int� If
clear from the context� Int is omitted�

We sometimes want to restrict our attention to fair paths only� based on some given fairness criterion
F that characterizes fair paths� We use K� t j�F � to denote that � holds at t in K with respect to the
fair paths only� In particular� the relation j�F for the temporal operators X � U � and W is de�ned with
respect to every fair path rather than with respect to every path�

In the sequel� we will only consider speci�cations that do not contain the next�time operator� This
operator will be used� however� in the tableau construction in Section ��

Stripped formulas Given a speci�cation written in FO�ACTL� we extract its propositional part by apply�
ing the strip operator� The strip operator eliminates all �rst�order components of the formula� thus results
in a propositional ACTL formula� Data�dependent parts of the formula are replaced by tt� so the stripped
formula will be more often true�

De�nition � �stripped formula� Let Varc � Var be a set of boolean �control� variables and let � be a
FO�ACTL formula� strip
�� with respect to Var c is de�ned as follows	

�	 strip
p
v�� � � � � vk�� � p
v�� � � � � vk�� strip
�
p
v�� � � � � vk��� � �
p
v�� � � � � vk�� if v�� � � � � vk � Varc	

�	 strip
p
v�� � � � � vk�� � strip
�p
v�� � � � � vk�� � tt if some variable vi �� Var c	

	 strip
l� � l� strip
�l� � �l for l � frts� step�noneg	

�	 strip
� � �� � strip
��� strip
��	

�	 strip
� � �� � strip
��� strip
��	

�	 strip
�x��� � strip
��tt	x��� strip
��� 	x�� for x � Varc	

�	 strip
	x��� � strip
��tt	x��� strip
��� 	x�� for x � Varc	



�	 strip
�x��� � strip
	x��� � strip
��� for x �� V arc	

�	 strip
�U �� � strip
��U strip
��	

��	 strip
�W �� � strip
��W strip
��	

Lemma 	 If � is a FO�ACTL formula then strip
�� with respect to V arc is a propositional ACTL formula
over V arc	

Example
 Consider two speci�cations for the example in Figure �� where op is a control variable and arg�

res and x are data variables� Let �� � 
F rts�W 
step � �op�� then strip
��� � ���
Consider now the formula �� � 	x�G 

step� arg � x � op� F 
step � res � x � ���� Then� strip
��� �
G 

step � tt � op� F 
step � tt�� which is equivalent to G 

step� op� F step��

� The Propositional Veri�cation Methodology

In this section� we restrict our concern to programs for which there is a clear separation between data and
control� In particular� data cannot in�uence control variables� For such programs� their veri�cation with
respect to �rst�order temporal speci�cation can take advantage of a preliminary phase in which propositional
temporal speci�cations are proved for the control part of the program�

More precisely� let a data�dependent condition be a boolean condition that contains 
also� data variables�
A program has the separation property if no control variable gets assigned a value depending on data� and
neither assignments to control variables nor step statements occur in the scope of a data�dependent condition�

The separation property ensures that data do not directly in�uence control values� But there is a more
subtle way in which the validity of a temporal formula not referring to data may be a�ected� by the
termination behavior of data�controlled loops it might be determined whether observable changes to control
might happen or not� This in�uence we eliminate by the assuming � which at least in a hardware context
is not unreasonable � that data�controlled loops always terminate� Formally� the assumption enters in the
form of fairness constraints�

In more detail� the situation is as follows� Let P have the separation property� Since the transition
labels in CEP��P �� contain no control variables� stripping the CEP from its transition labels eliminates data�
dependent conditions only� But the separation property implies that also no control variable changes its
value along a transition if the condition labeling it is di�erent from tt � Thus� the stripping does not introduce
changes of control which did not happen before� And if the stripping results in an in�nite loop that did
not occur before� then this must be a data loop in which only data variables may change their value� For
all these loops� we assume termination and check the stripped formula in the stripped CEP based on this
assumption 
To complete the veri�cation� we must of course later show that in the fully expanded Kripke
structure FEP ��P �� all data loops are indeed terminating�� As a result� control properties are not a�ected by
stripping the CEP �

For the veri�cation of formulas which also depend on data� we can conclude the following� If the check of
the stripped formula in SCEP 
the strippedCEP� returns tt � then we can conclude that the stripped formula
is true of FEP ��P ��� But if the check returns � � then we know that the original formula is � on FEP ��P ��� As
mentioned before� we consider the latter as a signi�cant contribution that enables model checking together
with termination proofs to debug any �rst�order temporal speci�cation�

Our methodology is summarized in the following theorem� where F denotes termination of all data loops�
We refer to the well�known notion of a generalized Kripke structure ���� to explain the meaning of validity
of a temporal logic formula under fairness assumptions�

Theorem � If FEP ��P �� j� F then

�	 SCEP ��P �� j�F strip
�� �� FEP ��P �� j� strip
��� and

�	 SCEP ��P �� �j�F strip
�� �� FEP ��P �� �j� �	



The proof of the theorem could not be included in this paper due to space limitations� The main technical
result in the proof states that� if all data loops terminate� then SCEP��P �� and FEP ��P �� are fair stuttering
bisimilar and therefore agree on all propositional ACTL formulas 
with no next�time operator��

Example
 Consider again the example of Figure �� Once we verify that the while loop always terminates�
we can use SCEP ��P �� to verify propositional ACTL formulas and to refute FO�ACTL formulas� SCEP ��P ��
is obtained from the CEP of Figure � in the appendix by eliminating all transition labels�

For instance� since SCEP ��P �� satis�es �� � 
F rts�W 
step��op� under loop termination assumption�
we can conclude that this formula is true also in FEP ��P �� 
recall that strip
��� � ����
Consider the FO�ACTL formula �� � 	x�G 

step � arg � x � op�  F 
step � res � x � ���� Since the
formula strip
��� � G 

step � op�  F step� is true of SCEP��P �� we can conclude that strip
��� is true
also in FEP ��P ��� Note that we cannot conclude that �� is true in FEP ��P ��� For that we must use the method
developed in Section ��
Consider also the FO�ACTL formula �� � GF 
step � �op � y � � � z � arg��� Then strip
��� �
GF 
step��op� tt�� Recall that our formulas have an implicit universal path quanti�er accompanied with
any temporal operator� Thus� strip
��� means that for every path� 
step � �op� is true for in�nitely many
states on that path� This does not hold� for instance� on the path s�� s�� s�� s�� s��� s�� � � � in Fig� �� Hence�
strip
��� is false in SCEP��P �� and as a result we can conclude that �� is false in FEP��P ���

� Veri�cation Condition Generation

To handle speci�cations including data� we propose to verify the temporal aspects relative to �rst�order
veri�cation conditions� As we did before� we start by expanding control variables to get the CEP � The key
idea then is to use an approach close to what is usually called local model checking � Local model checking
searches for a su�cient reason for the speci�cation to be satis�ed� It has the advantage over iterative model
checking that it may turn out that some parts of the program behavior are irrelevant to the speci�cation
considered� Here� it may be the case that control information alone can tell that a loop� which can not
be handled in general� does not a�ect validity of the speci�cation� In such and further cases� local model
checking will be successful without expanding every data domain� This is essential if some of the data
domains are in�nite or too large or complex to be completely expanded�

A tableau system for FO�ACTL Local model checking consists in constructing a tableau proving the
validity of the formula in question for the start state � or� in the negative case showing the nonexistence of
such a tableau� A tableau is essentially a proof tree� Ignoring data for the moment� the root of the tableau
is the sequent s� � �� where s� is the initial state of the system and � is the formula in question� The
successors of each node provide su�cient reason for the validity of that node� Rules are available for each
form of node which �x possible successor sets� If the expansion of a tableau is stopped at some point� a
success criterion tells whether the tableau constitutes a complete proof for the sequent at its root�

Our tableau system serves as the basic formalism to derive �rst�order temporal properties involving
data� by providing a well�de�ned method to generate pure �rst�order conditions from the system and a
speci�cation� Below we present our rules for tableaux construction� They di�er in two respects from the
usual rules for CTL� One is notational� Usually� the di�erent possibilities for proving a sequent 
i�e� the
di�erent possibilities for successor sets of one vertex� are given in di�erent rules which could be applied
alternatively� Our format comprises them in one schema� the alternatives being separated by � j �� Elements
in one successor set are separated by � � �� But the rules also re�ect that we deal with a �rst�order model�
The state component of a sequent consists of a control state 
an element of S� and a condition on a variable
valuation� given in the form of a �rst�order formula�

Or Rule

s� p � � � �

s� p � � j s� p � �

And Rule

s� p � � � �

s� p � � � s� p � �



Exists Rule

s� p � �x��

s� p � ��y	x�
� y �� free
p�

Forall Rule

s� p � 	x��

s� p � ��y	x�
� y �� free
p�

Until Rule

s� p � �U �

s� p � � � 
��X 
�U ���

Unless Rule

s� p � �W �

s� p � � � 
� �X 
�W ���

Next Rule

s� p � X �

s�� p� � � � � � � � sn� pn � �
� s � fs�� � � � � sng

where p � ci  subst
pi� Ai� for s
ci�Ai

� si� i � �� � � � � n�

Case Split Rule

s� p � �

s� p� � � � s� p� � �
� p p� � p�

subst
pi� Ai� in the rule dealing with �X � means the parallel substitution of e for v in pi for each assignment
v �� e � Ai� The rules above are chosen to be as simple rules as possible� For convenient application� usually
several of them would be combined� For instance� a more useful rule to deal with ��� like

s� p � � � �

s� p� � � j s� p� � �

� p p� � p�

is derived from our rule set by combining the Case Split and the Or Rule�
The reader may have noted that � and 	 as well as U and W are treated in the same way by the rules�

The di�erence between the operators is captured by 
global� success conditions� see below�
A tableau is a �nite tree of sequents s� p � � where the set of successors of each internal node are

instances of one of the alternative successor sets according to the rules� The nodes on the path from the
root of the tableau to a given node are called its predecessors�

To each tableau we associate a �rst�order formula which speci�es whether the tableau is successful � This
success formula is computed bottom�up� The success formulas of leaves are as follows�

� p
W
i pi for leaves s� p � �W �� where pi� i � �� � � � � n are the �rst�order conditions in predecessors

of the form s� p� � �W ��

� p rs for leaves s� p � r with a �rst�order formula r 
see below for the computation of rs�� and

� p � for other leaves s� p � ��

For a �rst�order formula r and a state s� replace the atoms rts and step as well as control variables in r by
their truth values in the state s to obtain the formula rs�

At inner nodes� the success formula is computed by conjuncting the success formulas of the subtableaux
following it� If case split is applied� the appropriate implication is added� At quanti�er steps� the respective
quanti�er is applied�

A tableau is successful in a data domain� if its success formula is valid in the domain� A sequent is
provable if it has a successful tableau� A formula � is provable if s�� tt � � is a provable sequent�

Theorem � �Soundness� The tableau system is sound	 I	e	� if a sequent s� p � � is provable� then all
copies of s in the full model where the data variable valuation satis�es p have property �	 If a formula is
provable� it is valid in the system	

The tableau system does not provide us with a decision method� though� One reason is that of course
the validity of success formulas can not be decided in general� Another one concerns the treatment of the



U operator� To achieve a stronger form of completeness than we do� we would have to allow a successful
recurrence of U �formulas in the style of the recurrence condition for minimal �xpoints of ��� ��� This�
however� would introduce a new dimension of undecidability� because successful U �recurrence would have
to involve a well�foundedness condition� We do not strive for completeness in general� though� We do achieve
completeness and even decidability relative to �rst�order questions for a certain class of interesting cases� as
indicated by the results below�

The construction of a generic tableau Roughly spoken� systematic tableau construction will provide
a proof or a refutation 
up to �rst�order veri�cation conditions� if all �nontrivial cycles� are �broken by
control�� This is a property of system and formula combined� A �nontrivial cycle� occurs when a data
variable value at one position in the program may result by applying a function other than identity to the
value the same variable had at that same location at an earlier stage of the execution of a program�� Such
cycles may cause unbounded expansion of the tableau during construction� A cycle like that one is �broken
by control�� if one can tell from control information that there is a bound on the number of iterations through
this cycle which are necessary to decide the validity of the formula� As an extreme case� the path through
the program which introduces the cyclic dependency might not be executable at all without violating an
essential control condition in the formula� giving zero as a bound�

A formalization of this informal concept will take several steps� First of these is the construction of a
generic tableau which comprises in some sense all tableaux which can be constructed for a given formula ��
It represents� essentially� the control part of each �rst�order tableau� Thus� it can later be used to detect
cycles broken by control� The rules for the generic tableau are derived from the above rules essentially by
removing all �rst�order aspects�

s � � � �

s � � j s � �

s � � � �

s � � � s � �

s � �x��

s � ��� 	x� j s � ��tt	x�
� x � Vc

s � 	x��

s � ��� 	x� � s � ��tt	x�
� x � Vc

s � �		x��

s � �
� x �� Vc

s � �U 	W �

s � � j s � � � s � X 
�U 	W ��

s � X �

s� � � � � � � � sn � �
� s � fs�� � � � � sng

With these rules� we construct the generic tableau for a given CEP and a temporal formula by the following
deterministic procedure� Starting with s� � �� the appropriate rule gets applied� But di�erent from the
�rst�order tableau� no choice is made between alternative successors� Instead� all alternatives are pursued�
The expansion of the generic tableau stops if the temporal formula is reduced to a pure �rst�order formula

�rst�order leaf � or if a node recurs� i�e� at a node which has a predecessor labeled by the same sequent

recurring leaf resp� recurrence node�� Since there is a �nite number of states and subformulas� the process
is bound to terminate�

Next� irrelevant branches are removed� This starts at non�recurring leaves� X �leaves can be replaced
by s � tt � Also� some of the �rst�order leaves s � p can be evaluated� To do this� �rst the formula ps
is constructed� Then� the control information present in ps is used to determine whether by propositional
reasoning and trivial �rst�order identities like 
�x�� � � the formula can be reduced to tt or ��

Then� tt and � are propagated upwards in the tableau� A successor set gets replaced by � 
resp� tt� if one

resp� all� of its components becomes � 
resp� tt�� If one of the alternative successor sets of a node becomes
tt� the node itself is replaced by tt� and if all alternatives become �� it is replaced by �� The resulting�
reduced structure is called the generic tableau for ��

�More general the value need not be computed from the previous value alone but also other variables might in�uence the
result�



Observation  For every system and formula� there is one �unique� generic tableau	

Let us return to our example program from Fig� �� and take �� � 
F rts�W 
step��op� as a speci�cation�
Fig� � shows the �rst steps of the construction of the generic tableau 
indicating the evaluation of �rst�order
leaves in boxes� and the �nal result� after removing irrelevant branches� The generic tableau contains one
pair of a recurring leaf and recurrence node� These are marked with ���� Note that other recurrences 
e�g� of
sequences involving F rts� occurring during its construction have been eliminated by the reduction process�

s� � 
F rts�W 
step � �op�

s� � F rts

s� � rts

tt

j s� � XF rts����

� s� � X 

F rts�W 
step � �op��
����

j s� � step � op � f

�

s� � 
F rts�W 
step � �op�

s� � tt � s� � X ��
s� � tt � s� � ��

s� � tt � s� � X ��
� s� � ��

s� � tt � s� � X ��
s� � ��

s� � tt � s� � X ��
s	 � ��
s	 � tt

� s�� � ��
s�� � tt � s�� � X ��

� s� � ��

j s�� � �

j s� � �

j s� � �

j s� � �

j s� � �

Figure �� Constructing the generic tableau

If the program has the separation property� the construction of the generic tableau can pro�t from the
results of the test computation according to Theorem �� They enable early detection of irrelevant or always
successful branches�

Instantiating the generic tableau The relevance of the generic tableau construction relies on the fact
that every successful tableau can be put in a form that it is an instance of the generic one� Instances are built
by adding �rst�order formulas to the state components of sequents and perhaps by unfolding the generic
tableau at its recurring leaves�

To be more precise� a �rst�order tableau T with root s� p � � is an instance of a subtableau 
to get an
inductive condition� of the generic tableau starting at node n if�

� n has the form s � �� and

� if n is not a leaf� the rule applied to n is matched by an appropriate rule combination in T � and
subtableaux starting at end nodes of the rule combination are instances of the corresponding end
nodes of the generic rule 
�Matching� requires choosing among the alternatives present in the generic
tableau� and we allow the matching combination to contain applications of Case Split�� And

� if n is a recurring leaf and T is not a leaf itself� it is an instance of the subtableau starting at the
recurrence node� And

� if n � s � tt where this is the result of a reduction� T is an instance of the subtableau reduced to n�

The restrictions imposed on a tableau to be an instance of the generic tableau are rather modest� They
require complete case distinction for control values� and that branches which are always successful 
and have
been reduced to tt in the generic tableau construction� have to be chosen� So we have�



Observation � If a formula is provable at all� it is also proved by an instance of its generic tableau	

Now we give a procedure which tries systematically to construct an instance of the generic tableau� It will
not terminate in general� The procedure operates on the generic tableau� It computes a �rst�order formula�
called instantiating formula� for each node of the generic tableau� These formulas can subsequently be used
to generate an instance�

First�order leaves s � p are instantiated with ps� Recurring U �leaves are initialized with � and recurring
W �leaves with tt� For inner nodes� the instantiating formulas are computed from those for their successor
nodes� Disjunction is used for �� conjunction for �� existential quanti�cation for �� and universal quanti�ca�
tion for 	� For a X �node with successor formulas p�� � � � � pn� the conjunction over ci  subst
pi� Ai� is taken�
Inner U � and W �nodes get instantiated with their successor formulas� But if such a node is a recurrence
node� the process of computing the instantiating formula is iterated after instantiating the corresponding
recurring leaves with the formula computed for the recurrence node� The iteration stops if a �xpoint is
reached for a recurrence node� Propositional and control reasoning is applied to detect a �xpoint�

Although this process does not literally generate an instance of the generic tableau� it performs all
necessary computations� Due to lack of space we can not show the formal construction of the instance� One
point to note is that the iteration steps at U �nodes during the computation process correspond to unfoldings
in the construction� Most importantly� we can prove that the result of a terminating instantiation provides
us with a �rst�order characterization of the correctness of the program�

Theorem � If the instantiation process terminates for a speci�cation �� the success formula of the gener�
ated instance characterizes validity of �	 I	e	 the success formula is valid in a data domain i� under this
interpretation the speci�cation � is valid �for the system�	

In our example in Fig� �� data do not matter at all� A successful tableau can be derived directly from the
generic tableau� One only has to restore branches which have been reduced to the form s � tt � As an
example for a nontrivial� but still terminating instantiation process the reader may consider the speci�cation
	x�G 

step � arg � x � op � t�  F 
step � res � x � ���� We have to leave the development of this
example to the reader�

The formulas computed for recurrence nodes form chains of monotonically weaker 
U � resp� stronger

W � approximations of the strongest resp� weakest �xpoint formula� For in�nite data domains� this process
need not come to an end� or the end� if reached� need not be detected� Below we will formalize the notion
of �cycles broken by control� by a criterion su�cient for the termination of the instantiation�

Termination of the instantiation The termination criterion is based on an annotation of the generic
tableau with variable sets� Basically� one just takes the sets of free variables of the instantiating formulas
which would be computed by the process sketched above� But it is not necessary to compute the formulas
themselves� Instead� one can operate on the �nite domain of sets of variables involved 
namely� the data
variables of the program and the bound variables of the formula� where termination is guaranteed�

The case of next nodes may serve as an example of how these sets are computed� If x annotates the
ith successor node of a next node in the CEP� and x �� e � Ai� all variables in e annotate the next node�
Additionally we take the variables from ci�

On the completed annotation sets� we draw edges indicating for each variable which other annotations
caused its introduction� E�g� if x annotates the ith successor node of a next node� and e gets assigned to x
along the edge� all variables in e have an edge pointing to x� Edges always go from inner node annotations to
their successor annotations and from recurring leaves to recurrence nodes� Edges originating at next nodes
which arise from some x �� e where e contains a function application get marked� Let us call the generic
tableau cycle�free if there is no cycle in the resulting graph contains a marked edge�

Theorem � The instantiation of the generic tableau of a formula terminates if the tableau is cycle�free	

Critical points for termination of the instantiation are the �xpoint computations at recurrence nodes�
During a �xpint computation� only substitutions and boolean operations are applied� If the generic tableau
is cycle�free� only a �nite number of terms will occur in those computations� Since only �nitely many



propositionally nonequivalent formulas can be constructedwith �nitely many terms� �xpoints will be reached
and detected�

The condition on the annotations of the generic tableau can be viewed as describing a set of speci�cations
having a �nite reason in every data domain� It gives rise to a proof procedure which subsumes properly
everything which can be gained by data independence reasoning ����� A program is said to be data inde�
pendent if� intuitively� its behavior does not depend on the identity of input values 
changes to input values
lead to similar changes of output values��

Any program which meets appropriate syntactic criteria on its data ports� will have only cycle�free
generic tableaux� regardless of the formula� On the other hand� there are programs with cycle�free tableaux
which perform a control�bounded number of computations and also tests on their data and which are thus
not data independent�

This becomes clear if we draw a value �ow graph of the CEP� similar to the graph on the annotations of
the generic tableau� I�e� we annotate each state with the full set of data variables and draw edges and marked
edges between variables annotating successive nodes according to the value �ow� Transferring the notion of
cycle�freeness to value �ow graphs� we get a class of programs which will have only cycle�free tableaux�

Proposition �� If the value �ow graph of a program is cycle�free� then each generic tableau built on its
CEP is cycle�free	

The proposition is implied by the observation that cycles in the generic tableau come from cycles in the
CEP� This criterion is not necessary� but close to� It should be kept in mind� though� that the automatic
instantiation process works in far more cases than just for programs having cycle�free value �ow graphs� To
decide speci�c properties� it is not necessary that each generic tableau is cycle�free�

Elaborations of the method The basic proof procedure described above� which is already quite powerful
and has the advantage of being completely automatic� can be improved in several ways� For instance� it
may be adapted to make use of the �rst�order theory of the data domain� Also� the user might be allowed
to propose invariants or other guidance�

� Conclusion

We envision the techniques described in this paper to be integrated into current design veri�cation environ�
ments� providing interfaces to standard design languages� Given a system in one of those languages� the
designer would provide formal speci�cations in FO�ACTL� Based on design knowledge and the properties
to be checked� the designer would then debug the system by model checking stripped versions of the speci��
cations in stripped control�expanded versions of the system� Note that the selection of the expanded set of
variables will typically depend on the formula to be veri�ed� In this phase� the full range of techniques for
�classical� symbolic model checking will come into play� Only after surviving this debugging phase� truly
symbolic model checking enters the stage�

Truly symbolic modelchecking will unfold the CEP in the veri�cation process	 data loops touched in
this unfolding process have to be contracted using guidance on the source language level by the designer
to a single transition labeled by the e�ect of the loop on the data variables and a condition guaranteeing
termination� The veri�cation of the purely sequential loop against such a total correctness formula is a
classical task handled by a dedicated prover component� which will also have to handle termination proofs
for loops claimed to be terminating by the introduction of fairness assumptions during the debugging phase�
Given the contraction of loops� the techniques described in Section � will automatically generate veri�cation
conditions reducing the correctness of the FO�ACTL formula to be checked to a pure �rst order formula�

The scenario described above will be realized on the basis of the FORMAT veri�cation tools ���� us�
ing symbolic timing diagrams ���� as graphical representations of FO�ACTL speci�cations� within a new
industrial project aiming at safety critical embedded control applications�

�These are� No computations on data variables no tests depending on them�



References

��	 Apt� K�R� Ten years of Hoare�s logic� A survey � part I � TOPLAS � ��
���� ������

��	 Apt� K�R� and Olderog� E��R� Veri�cation of sequential and concurrent programs� Springer� New York ��

���

�	 Brad�eld� J�C� Verifying temporal properties of systems� Birkh�auser� Boston ��

���

��	 Brad�eld� J�C� and Stirling� C�P� Verifying temporal properties of processes� CONCUR �
�� LNCS ��� ��

���
��������

��	 Brown�M�C�� Clarke� E�M� and Grumberg� O� Characterizing �nite Kripke structures in propositional temporal

logic� TCS �� ��
���� �������

��	 Burch� J�R�� Clarke� E�M�� McMillan� K�L� and Dill D�L� Sequential circuit veri�cation using symbolic model

checking DAC �
�� ������

��	 Clarke� E�M�� Emerson� E�A� and Sistla� A�P� Automatic veri�cation of �nite state concurrent systems using

temporal logics� POPL ��� ��������

��	 Clarke� E�M�� Grumberg� O� and Long� D�E� Model checking and abstraction� POPL �
�� �����

�
	 Damm� W�� D�ohmen� G�� Helbig� J�� Herrmann� R�� Josko� B�� Kelb� P�� Korf� F� and Schl�or� R� Correct system
level design with VHDL� Tech� Rep�� Oldenburg ��

��� ��p�

���	 Damm� W�� Josko� B� and Schl�or� R� Speci�cation and veri�cation of VHDL�based system�level hardware designs�
in B�orger �ed�� Speci�cation and Validation Methods� Oxford Univ� Press� ����� �to appear��

���	 Dingel� J� and Filkorn� T� Model checking for in�nite state systems using data abstraction� assumption�

commitment style reasoning and theorem proving� CAV �
�� to appear�

���	 Emerson� E�A� Temporal and modal logic� in� Handbook of Theor� Comp� Sc�� B� North Holland ��

��� 

��
�����

��	 Floyd� R�W� Assigning meanings to programs� Proc� AMS Symp� Applied Math� �
 ��
���� �
���

���	 Graf� S� Veri�cation of a distributed cache memory by using abstractions� CAV �
�� LNCS ��� ��

��� ������
�

���	 Grumberg� O� and Long� D�E� Model checking and modular veri�cation� TOPLAS �� ��

��� �������

���	 Herrmann� R� and Pargmann� H� Compiling VHDL data types into BDDs� EURO�VHDL �
�� �������

���	 Hojati� R� and Brayton� R�K� Automatic datapath abstraction in hardware systems� CAV �
�� to appear�

���	 Josko� B� Verifying the correctness of AADL modules using model checking� in� Stepwise re�nement of distributed
systems� models� formalisms� correctness� LNCS �� ��

��� �������

��
	 Manna� Z� Beyong model checking� CAV �
�� LNCS ��� ��

��� ��������

���	 Manna� Z� and Pnueli� A� The temporal logics of reactive and concurrent systems� Speci�cation� Springer� New
York �

��

���	 Schl�or� R� and Damm� W� Speci�cation and veri�cation of system�level hardware designs using timing diagrams�
EDAC �
� ��������

���	 Stirling� C� and Walker� D� Local model checking in the modal mu�calculus� TAPSOFT ��
� LNCS ��� �
���

��	 Wolper� P� Expressing interesting properties of programs in propositional temporal logic� POPL ���� �����
�


