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ABSTRACT� Temporal logic model checking is an automatic technique for verifying
�nite�state concurrent systems� Speci�cations are expressed in a propositional temporal
logic� and the concurrent system is modeled as a state�transition graph� An e�cient
search procedure is used to determine whether or not the state�transition graph sat�
is�es the speci�cation� When the technique was �rst developed ten years ago� it was
only possible to handle concurrent systems with a few thousand states� In the last few
years� however� the size of the concurrent systems that can be handled has increased
dramatically� By representing transition relations and sets of states implicitly using bi�

nary decision diagrams� it is now possible to check concurrent systems with more than
����� states� In this paper we describe in detail how the new implementation works and
give realistic examples to illustrate its power� We also discuss a number of directions
for future research� The necessary background information on binary decision diagrams�
temporal logic� and model checking has been included in order to make the exposition
as self�contained as possible�

Keywords� automatic veri�cation� temporal logic� model checking� binary decision
diagrams

� Introduction

Finite�state concurrent systems arise naturally in several areas of computer science� par�
ticularly in the design of digital circuits and communication protocols� Logical errors
found late in the design phase of these systems are an extremely important problem for
both circuit designers and programmers� Such errors can delay getting a new product
on the market or cause the failure of some critical device that is already in use� The
most widely used veri�cation technique is based on extensive simulation and can easily
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miss signi�cant errors when the number possible states of the circuit or protocol is very
large� Although there has been considerable research on the use of theorem provers� term
rewriting systems and proof checkers for veri�cation� these techniques are time consum�
ing and often require a great deal of manual intervention� During the past ten years�
researchers at Carnegie Mellon University have developed an alternative approach to
veri�cation called temporal logic model checking 	
�� 
�� In this approach speci�cations
are expressed in a propositional temporal logic� and circuit designs and protocols are
modeled as state�transition systems� An e�cient search procedure is used to determine
automatically if the speci�cations are satis�ed by the transition systems�

Model checking has several important advantages over mechanical theorem provers or
proof checkers for veri�cation of circuits and protocols� The most important is that the
procedure is completely automatic� Typically� the user provides a high level representation
of the model and the speci�cation to be checked� The model checking algorithmwill either
terminate with the answer true� indicating that the model satis�es the speci�cation�
or give a counterexample execution that shows why the formula is not satis�ed� The
counterexamples are particularly important in �nding subtle errors in complex transition
systems� The procedure is also quite fast� and usually produces an answer in a matter of
minutes� Partial speci�cations can be checked� so it is unnecessary to completely specify
the circuit before useful information can be obtained regarding its correctness� When
a speci�cation is not satis�ed� other formulas�not part of the original speci�cation�
can be checked in order to locate the source of the error� Finally� the logic used for
speci�cations can directly express many of the properties that are needed for reasoning
about concurrent systems�

The main disadvantage of this technique is the state explosion which can occur if
the system being veri�ed has many components that can make transitions in parallel�
Because of this problem� many researchers in formal veri�cation predicted that model
checking would never be practical for large circuits and protocols� Recently� however�
the size of the transition systems that can be veri�ed by model checking techniques
has increased dramatically� The initial breakthrough was made in the fall of ���� by
McMillan� who was then a graduate student at Carnegie Mellon� He realized that using an
explicit representation for transition relations severely limited the size of the circuits and
protocols that could veri�ed� He argued that larger systems could be handled if transition
relations were represented implicitlywith ordered binary decision diagrams �OBDDs� 	���
By using the original model checking algorithmwith the new representation for transition
relations� he was able to verify some examples that had more than ���� states 	

� ���
He made this observation independently of the work by Coudert� et� al� 	�� and Pixley
	��� ��� �� on using OBDDs to check equivalence of deterministic �nite�state machines�
Since then� various re�nements of the OBDD�based techniques by other researchers at
Carnegie Mellon have pushed the state count up to more than ����� 	���

��� Temporal Logic model checking

Temporal logics have proved to be useful for specifying concurrent systems� because they
can describe the ordering of events in time without introducing time explicitly� They
were originally developed by philosophers for investigating the way that time is used in
natural language arguments 	��� Although a number of di�erent temporal logics have



been studied� most have an operator likeG f that is true in the present if f is always true
in the future �i�e�� if f is globally true�� To assert that two events e� and e� never occur
at the same time� one would write G��e� � �e��� Temporal logics are often classi�ed
according to whether time is assumed to have a linear or a branching structure� This
classi�cation may occasionally be misleading since some temporal logics combine both
linear�time and branching�time operators� Instead� we will adopt the approach used in
	�� that permits both types of logics to be treated within a single semantical framework�
In this paper the meaning of a temporal logic formula will always be determined with
respect to a labelled state�transition graph� for historical reasons such structures are
called Kripke models 	���

Pnueli 	�� was the �rst to use temporal logic for reasoning about the concurrent
programs� His approach involved proving properties of the program under consideration
from a set of axioms that described the behavior of the individual statements in the
program� The method was extended to sequential circuits by Bochmann 	� and Owicki
and Malachi 	��� Since proofs were constructed by hand� the technique was often di�cult
to use in practice� The introduction of temporal logic model checking algorithms in the
early �����s allowed this type of reasoning to be automated� Since checking that a single
model satis�es a formula is much easier than proving the validity of a formula for all
models� it was possible to implement this technique very e�ciently� The �rst algorithm
was developed by Clarke and Emerson in 	
�� Their algorithm was polynomial in both
the size of the model determined by the program under consideration and in the length
of its speci�cation in temporal logic� They also showed how fairness could be handled
without changing the complexity of the algorithm� This was an important step since the
correctness of many concurrent programs depends on some type of fairness assumption�
for example� absence of starvation in a mutual exclusion algorithm may depend on the
assumption that each process makes progress in�nitely often�

At roughly the same time Quielle and Sifakis 	�� gave a model checking algorithm
for a similar branching�time logic� but they did not analyze its complexity or show how
to handle an interesting notion of fairness� Later Clarke� Emerson� and Sistla 	
� devised
an improved algorithm that was linear in the product of the length of the formula and in
the size of the global state graph� Clarke and Sistla 	�� also analyzed the model checking
problem for a variety of other temporal logics and showed� in particular� that for linear
temporal logic the problem was PSPACE complete�

A number of papers demonstrated how the temporal logic model checking procedure
could be used for verifying network protocols and sequential circuits �	��� 	��� 	�
� 	���
	
�� 	��� 	���� In the case of sequential circuits two approaches were used for obtaining
state�transition graphs to analyze� The �rst approach extracted a state graph directly
from the circuit under an appropriate timing model of circuit behavior� The second ap�
proach obtained a state�transition graph by compilation from a high level representation
of the circuit in a Pascal�like programming language� Early model checking systems were
able to check state�transition graphs with between ��� and ��� states at a rate of about
��� states per second for formulas� In spite of these limitations� model checking systems
were used successfully to �nd previously unknown errors in several published circuit
designs�

Alternative techniques for verifying concurrent systems were proposed by a number



of other researchers� The approach developed by Kurshan 	��� �
 was based on check�
ing inclusion between two automata� The �rst machine represented the system that was
being veri�ed� the second represented its speci�cation� Automata on in�nite tapes ���
automata� were used in order to handle fairness� Pnueli and Lichtenstein 	�� reanalyzed
the complexity of checking linear�time formulas and discovered that although the com�
plexity appears exponential in the length of the formula� it is linear in the size of the
global state graph� Based on this observation� they argued that the high complexity of
linear�time model checking might still be acceptable for short formulas� Emerson and Lei
	�� extended their result to show that formulas of the logic CTL�� which combines both
branching�time and linear�time operators� could be checked with essentially the same
complexity as formulas of linear temporal logic� Vardi and Wolper 	�� showed how the
model checking problem could be formulated in terms of automata� thus relating the
model checking approach to the work of Kurshan�

��� New implementations

In the original implementation of the model checking algorithm� transition relations were
represented explicitly by adjacency lists� For concurrent systems with small numbers of
processes� the number of states was usually fairly small� and the approach was often quite
practical� Recent implementations 	

� �� use the same basic algorithm� however� tran�
sition relations are represented implicitly by ordered binary decision diagrams �OBDDs�
	��� OBDDs provide a canonical form for boolean formulas that is often substantially
more compact than conjunctive or disjunctive normal form� and very e�cient algorithms
have been developed for manipulating them� Because this representation captures some
of the regularity in the state space determined by circuits and protocols� it is possible
to verify systems with an extremely large number of states�many orders of magnitude
larger than could be handled by the original algorithm�

The implicit representation is quite natural for modeling sequential circuits and pro�
tocols� Each state is encoded by an assignment of boolean values to the set of state
variables associated with the circuit or protocol� The transition relation can� therefore�
be expressed as a boolean formula in terms of two sets of variables� one set encoding the
old state and the other encoding the new� This formula is then represented by a binary
decision diagram� The model checking algorithm is based on computing �xed points of
predicate transformers that are obtained from the transition relation� The �xed points
are sets of states that represent various temporal properties of the concurrent system�
In the new implementations� both the predicate transformers and the �xed points are
represented with OBDDs� Thus� it is possible to avoid explicitly constructing the state
graph of the concurrent system�

The model checking system that McMillan developed as part of his Ph�D� thesis is
called SMV 	��� It is based on a language for describing hierarchical �nite�state con�
current systems� Programs in the language can be annotated by speci�cations expressed
in temporal logic� The model checker extracts a transition system from a program in
the SMV language and uses a OBDD�based search algorithm to determine whether the
system satis�es its speci�cations� If the transition system does not satisfy some speci�ca�
tion� the veri�er will produce an execution trace that shows why the speci�cation is false�
The SMV system has been distributed widely� and a large number of examples have now



been veri�ed with it� These examples provide convincing evidence that SMV can be used
to debug real industrial designs�

Perhaps� the most impressive example that has been veri�ed by model checking tech�
niques is the cache coherence protocol described in the IEEE Futurebus� standard �IEEE
Standard ������������ Although development of the Futurebus� cache coherence proto�
col began in ����� all previous attempts to validate the protocol were based entirely
on informal techniques� In the summer of ���
 researchers at Carnegie Mellon 	
� con�
structed a precise model of the protocol in SMV language and then used SMV to show
that the resulting transition system satis�ed a formal speci�cation of cache coherence�
They were able to �nd a number of previously undetected errors and potential errors in
the design of the protocol� This appears to be the �rst time that an automatic veri�cation
tool has been used to �nd errors in an IEEE standard�

��� Related veri�cation techniques

A number of other researchers have independently discovered that OBDDs can be used
to represent large state�transition systems� Coudert� Berthet� and Madre 	�� have de�
veloped an algorithm for showing equivalence between two deterministic �nite�state au�
tomata by performing a breadth �rst search of the state space of the product automata�
They use OBDDs to represent the transition functions of the two automata in their
algorithm� Similar algorithms have been developed by Pixley 	��� ��� ��� In addition�
several groups including Bose and Fisher 	�� Pixley 	��� and Coudert� et� al� 	�� have
experimented with model checking algorithms that use OBDDs� Although the results of
McMillan�s experiments 	
�� 

 were not published until the summer of ����� his work
is referenced by Bose and Fisher in their ���� paper 	��

Recently� Bryant� Seger and Beatty 	�� �� have developed an algorithm based on
symbolic simulation for model checking in a restricted linear time logic� Speci�cations
consist of precondition�postcondition pairs expressed in the logic� The precondition is
used to restrict inputs and initial states of the circuit� the postcondition gives the property
that the user wishes to check� Formulas in the logic have the form

p� �Xp� �X
�p� � � � � �X

n��pn�� �X
npn�

The syntax of the formulas is highly restricted compared to most other temporal logics
used for specifying programs and circuits� In particular� the only logical operator that
is allowed is conjunction� and the only temporal operator is next time �X�� By limiting
the class of formulas that can be handled� it is possible to check certain properties very
e�ciently� In many cases� however� these restrictions can be a disadvantage� since the
number of time units that a formula can �look ahead in the future� is bounded by the
maximum nesting of X operators�

It is di�cult to compare the performance of the various symbolic veri�cation methods�
Probably� the best method is to study how the CPU time required for veri�cation grows
asymptotically with larger and larger instances of the circuit or protocol� In most of the
example circuits considered in 	��� 
�� this growth rate is a small polynomial in the
number of components of the circuit� Of the other groups mentioned above� only Bryant�
Beatty and Seger 	� have demonstrated good asymptotic performance on a nontrivial



class of circuits� Berthet� Coudert and Madre 	� obtained veri�cation times that were
sublinear in the number of states in the system� but these times were still exponential in
the number of components�

��� Outline of paper

Our paper is organized as follows� The properties of OBDDs that are needed to under�
stand the paper are given in Section 
� The next section shows how relations over a �nite
domain can be encoded using OBDDs� Section � describes the logics that are used in
this paper� and Section � discusses some of the properties of predicate transformers that
are needed in model checking� The basic model checking algorithm for branching�time
temporal logic is given in Section �� The next two sections describe extensions of the
basic algorithm� Section � shows how fairness constraints can be handled� and Section �
describes how counterexamples and witnessnesses are generated� A model checking algo�
rithm for linear�time temporal logic is presented in Section �� and the following section
shows how model checking techniques can be used to test inclusion between ��automata�
Section �� gives a brief overview of the SMV model checking system� and Section �

shows how SMV was used to �nd errors in the IEEE Futurebus standard� The paper
concludes in Section �� with some directions for future research�

� Binary Decision Diagrams

Ordered binary decision diagrams �OBDDs� are a canonical form representation for
boolean formulas 	��� They are often substantially more compact than traditional nor�
mal forms such as conjunctive normal form and disjunctive normal form� and they can be
manipulated very e�ciently� Hence� they have become widely used for a variety of CAD
applications� including symbolic simulation� veri�cation of combinational logic and� more
recently� veri�cation of sequential circuit designs�

To motivate our discussion of binary decision diagrams we �rst consider binary deci�

sion trees� A binary decision tree is a rooted� directed tree that consists of two types of
vertices� terminal vertices and nonterminal vertices� Each nonterminal vertex v is labeled
by a variable var�v� and has two successors� low�v� corresponding to the case where the
variable v is assigned �� and high�v� corresponding to the case where v is assigned �� Each
terminal vertex v is labeled by value�v� which is either � or �� A binary decision tree for
the two�bit comparator� given by the formula f �a�� a�� b�� b�� � �a� � b��� �a� � b��� is
shown in Figure �� One can decide whether a particular truth assignment to the variables
makes the formula true or not by traversing the tree from the root to a terminal vertex�
If the variable v is assigned �� then the next vertex on the path from the root to the
terminal vertex will be low�v�� If v is assigned � then the next vertex on the path will be
high�v�� The value that labels the terminal vertex will be the value of the function for
this assignment� For example� the assignment ha� � �� a� � �� b� � �� b� � �i leads to
a leaf vertex labeled �� hence� the formula is false for this assignment�

Binary decision trees do not provide a very concise representation for boolean func�
tions� In fact� they are essentially the same size as truth tables� Fortunately� there is
usually a lot of redundancy in such trees� For example� in the tree of Figure � there are
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Fig� �� Binary decision tree for two�bit comparator

eight subtrees with roots labeled by b�� but only three are distinct� Thus� we can obtain
a more concise representation for the boolean function by merging isomorphic subtrees�
This results in a directed acyclic graph �DAG� called a binary decision diagram� More
precisely� a binary decision diagram is a rooted� directed acyclic graph with two types
of vertices� terminal vertices and nonterminal vertices� As in the case of binary decision
trees� each nonterminal vertex v is labeled by a variable var�v� and has two successors�
low�v� and high�v�� Each terminal vertex is labeled by either � or �� Every binary deci�
sion diagramB with root v determines a boolean function fv�x�� � � � � xn� in the following
manner�

�� If v is a terminal vertex�

�a� If value�v� � � then fv�x�� � � � � xn� � ��
�b� If value�v� � � then fv�x�� � � � � xn� � ��


� If v is a nonterminal vertex with var�v� � xi then fv is the function

fv�x�� � � � � xn� �  xi � flow�v��x�� � � � � xn� � xi � fhigh�v��x�� � � � � xn�

In practical applications it is desirable to have a canonical representation for boolean
functions� Such a representation must have the property that two boolean functions are
logically equivalent if and only if they have isomorphic representations� This property
simpli�es tasks like checking equivalence of two formulas and deciding if a given formula
is satis�able or not� Two binary decision diagrams are isomorphic if there exists a one�
to�one and onto function h that maps terminals of one to terminals of the other and
nonterminals of one to nonterminals of the other� such that for every terminal vertex



v� value�v� � value�h�v�� and for every nonterminal vertex v� var�v� � var�h�v���
h�low�v�� � low�h�v��� and h�high�v�� � high�h�v���

Bryant 	�� showed how to obtain a canonical representation for boolean functions by
placing two restrictions on binary decision diagrams� First� the variables should appear
in the same order along each path from the root to a terminal� Second� there should be
no isomorphic subtrees or redundant vertices in the diagram� The �rst requirement is
achieved by imposing a total ordering � on the variables that label the vertices in the
binary decision diagram and requiring that for any vertex u in the diagram� if u has a
nonterminal successor v� then var�u� � var�v�� The second requirement is achieved by
repeatedly applying three transformation rules that do not alter the function represented
by the diagram�

Remove duplicate terminals� Eliminate all but one terminal vertex with a given label
and redirect all arcs to the eliminated vertices to the remaining one�

Remove duplicate nonterminals� If nonterminals u and v have var�u� � var�v��
low�u� � low�v� and high�u� � high�v�� then eliminate one of the two vertices and
redirect all incoming arcs to the other vertex�

Remove redundant tests� If nonterminal vertex v has low�v� � high�v�� then elimi�
nate v and redirect all incoming arcs to low�v��

Starting with a binary decision diagram satisfying the ordering property� the canonical
form is obtained by applying the transformation rules until the size of the diagram can
no longer be reduced� Bryant shows how this can be done in a bottom�up manner by a
procedure called Reduce in time which is linear in the size of the original binary decision
diagram 	��� The term ordered binary decision diagram �OBDD� will be used to refer to
the graph obtained in this manner� For example� if we use the ordering a� � b� � a� � b�
for the two�bit comparator function� we obtain the OBDD shown in Figure 
� If OBDDs
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are used as a canonical form for boolean functions� then checking equivalence is reduced
to checking isomorphism between binary decision diagrams� Similarly� satis�ability can
be determined by checking equivalence to the trivial OBDD that consists of only one
terminal labeled by ��

The size of an OBDD can depend critically on the variable ordering� For example� if
we use the variable ordering a� � a� � b� � b� for the bit�comparator function� we get
the OBDD shown in Figure �� Note that this OBDD has �� vertices while the OBDD
shown in Figure 
 has only � vertices� In general� for n�bit comparator� if we choose the
ordering a� � b� � � � � � an � bn� then the number of OBDD vertices will be �n� 
� On
the other hand� if we choose the ordering a� � � � � � an � b� � � � � bn� then the number of
OBDD vertices is ��
n��� Finding an optimal ordering can be shown to be NP�complete
in general� Moreover� there are boolean functions that have exponential size OBDDs for
any variable ordering� One example is the boolean function for the middle output �or
n�th output� of a combinational circuit to multiply two n bit integers 	��� ���
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Several heuristics have been developed for �nding a good variable ordering when
such an ordering exists� If the boolean function is given by a combinational circuit�
then heuristics based on a depth��rst traversal of the circuit diagram generally give good
results 	��� ��� The intuition for these heuristics comes from the observation that OBDDs
tend to be small when related variables are close together in the ordering� The variables
appearing in a subcircuit are related in that they determine the subcircuit�s output�
Hence� these variables should usually be grouped together in the ordering� This may be
accomplished by placing the variables in the order in which they are encountered during



a depth��rst traversal of the circuit diagram� A technique� called dynamic reordering 	���
appears to be useful in those situations where no obvious ordering heuristics apply � When
this technique is used� the OBDD package internally reorders the variables periodically
in order to reduce the total number of vertices in use� The reordering method is designed
to be fast rather than to �nd an optimal ordering�

We next explain how to implement various important logical operations using OBDDs�
We begin with the function that restricts some argument xi of the boolean function f to
a constant value b� This function is denoted by f jxi�b and satis�es the identity

f jxi�b �x�� � � � � xn� � f �x�� � � � � xi��� b� xi	�� � � � � xn��

If f is represented as an OBDD� then the OBDD for the restriction f jxi�b can be easily
computed by a depth��rst traversal of the OBDD� For any vertex v which has a pointer
to a vertex w such that var�w� � xi� we replace the pointer by low�w� if b is � and by
high�w� if b is �� The resulting graph may not be in canonical form� so we apply the
Reduce function to it in order to obtain the OBDD representation for f jxi�b�

All �� two�argument logical operations can be implemented e�ciently on boolean
functions that are represented as OBDDs� In fact� the complexity of these operations is
linear in the size of the argument OBDDs� The key idea for e�cient implementation of
these operations is the Shannon expansion

f �  x � f jx�� �x � f jx�� �

Bryant 	�� gives a uniform algorithm calledApply for computing all �� logical operations�
Below we brie!y explain how Apply works� Let � be an arbitrary two argument logical
operation� and let f and f � be two boolean functions� To simplify the explanation of the
algorithm we introduce the following notation�

	 v and v� are the roots of the OBDDs for f and f �� and
	 x � var�v� and x� � var�v���

We consider several cases depending on the relationship between v and v��

	 If v and v� are both terminal vertices� then f � f � � value�v� � value�v���
	 If x � x�� then we use the Shannon expansion

f � f � �  x � �f jx�� �f
� jx��� � x � �f jx�� �f

� jx���

to break the problem into two subproblems� The subproblems are solved recursively�
The root of the resulting OBDD will be v with var�v� � x� Low�v� will be the OBDD
for �f jx�� �f

� jx��� and high�v� will be the OBDD for �f jx�� �f
� jx����

	 If x � x�� then f � jx��� f � jx��� f � since f � does not depend on x� In this case the
Shannon Expansion simpli�es to

f � f � �  x � �f jx�� �f
�� � x � �f jx�� �f

��

and the OBDD for f � f � is computed recursively as in the second case�
	 If x� � x� then the required computation is similar to the previous case�



Since each subproblem can generate two subproblems� care must be used in order
to prevent the algorithm from being exponential� By using dynamic programming� it is
possible to keep the algorithm polynomial� Each subproblem corresponds to a pair of
OBDDs which are subgraphs of the original OBDDs for f and f �� Since each subgraph is
uniquely determined by its root� the number of subgraphs in the OBDD for f is bounded
by the size of the OBDD for f � The same bound holds for f �� Thus� the number of
subproblems is bounded by the product of the size of the OBDDs for f and f �� A hash
table is used to record all previously computed subproblems� Before any recursive call�
the table is checked to see if the subproblem has been solved� If it has� the result is
obtained from the table� otherwise� the recursive call is performed� The result must be
reduced to ensure that it is in canonical form�

Several extensions have been developed to decrease the space requirements of Bryant�s
original OBDD representation for boolean functions 	�� A single multi�rooted graph
can be used to represent a collection of boolean functions that share subgraphs� The
same variable ordering is used for all of the formulas in the collection� As in the case
of standard OBDDs� the graph contains no isomorphic subgraphs or redundant vertices�
If this extension is used then two functions in the collection are identical if and only if
they have the same root� Consequently� checking whether two functions are equal can be
implemented in constant time� Another useful extension is adding labels to the arcs in the
graph to denote boolean negation� This makes it unnecessary to use di�erent subgraphs
to represent a formula and its negation� Modern OBDD packages permit graphs with
hundreds of thousands of vertices to be manipulated e�ciently�

OBDDs can also be viewed as a form of deterministic �nite automata 	��� An n�
argument boolean function can be identi�ed with the set of strings in f���gn that eval�
uate to �� Since this is a �nite language and all �nite languages are regular� there is a
minimal �nite automaton that accepts this set� This automaton provides a canonical rep�
resentation for the original boolean function� Logical operations on boolean functions can
be implemented by set operations on the languages accepted by the �nite automata� For
example� AND corresponds to set intersection� Standard constructions from elementary
automata theory can be used to compute these operations on languages� The standard
OBDD operations can be viewed as analogs of these constructions�

� Representing relations with OBDDs

OBDDs are extremely useful for obtaining concise representations of relations over �nite
domains 	

� ��� If R is n�ary relation over f���g then R can be represented by the
OBDD for its characteristic function

fR�x�� � � � � xn� � � i� R�x�� � � � � xn��

Otherwise� let R be an n�ary relation over the �nite domainD� Without loss of generality
we assume that D has 
m elements for some m � �� In order to represent R as an OBDD�
we encode elements ofD� using a bijection � � f���gm � D that maps each boolean vector
of length m to an element of D� Using the encoding �� we construct a boolean relation
R� of arity m	 n according to the following rule�

R�� x�� � � � �  xn� � R��� x��� � � � � �� xn��



where  xi is a vector ofm boolean variables which encodes the variable xi that takes values
in D� R can now be represented as the OBBD determined by the characteristic function
fR� of R�� This technique can be easily extended to relations over di�erent domains�
D�� � � � � Dn� Moreover� since sets can be viewed as unary relations� the same technique
can be used to represent sets as OBDDs�

In order to construct complex relations it is convenient to extend propositional logic to
permit quanti�cation over boolean variables� The resulting logic is called QBF �Quanti�ed
Boolean Formulas� 	�� �� and has the following syntax� Given a set V � fv�� � � � � vng of
propositional variables� QBF �V � is the smallest set of formulas such that

	 every variable in V is a formula�
	 if f and g are formulas� then �f � f � g� and f � g are formulas� and
	 if f is a formula and v 
 V � then �vf and �vf are formulas�

A truth assignment for QBF �V � is a function � � V � f���g� If a 
 f���g� then we
will use the notation �hv � ai for the truth assignment de�ned by

�hv � ai�w� �

�
a if v � w

��w� otherwise�

If f is a formula in QBF �V � and � is a truth assignment� we will write � j� f to denote
that f is true under the assignment �� The relation j� is de�ned recursively in the obvious
manner�

	 � j� v i� ��v� � ��
	 � j� �f i� � j� f �
	 � j� f � g i� � j� f or � j� g�
	 � j� f � g i� � j� f and � j� g�
	 � j� �vf i� �hv � �i j� f or �hv � �i j� f � and
	 � j� �vf i� �hv � �i j� f and �hv � �i j� f �

QBF formulas have the same expressive power as ordinary propositional formulas� how�
ever� they are sometimes much more concise� Every QBF formula determines an n�ary
boolean relation on the set V which consists of those truth assignments for the variables
in V that make the formula true� We will identify each QBF formula with the boolean
relation that it determines� In the previous section we showed how to associate an OBDD
with each formula of propositional logic� In principle� it is easy to construct OBDDs for
�vf and �vf when f is given as an OBDD�

	 �xf � f jx�� �f jx��

	 �xf � f jx�� �f jx��

In practice� however� special algorithms are needed to handle quanti�ers e�ciently 	
��
In this paper quanti�ers occur most frequently in relational products which have the
following form

� v
�
f � v� � g� v�

�
�

We will restrict our attention to this case� In Figure �� we give an algorithmRelProd that
performs this computation in one pass over the BDDs f� v� and g� v�� This is important



in practice since the relational product is computed without ever constructing the BDD
for

f � v� � g� v��

which is often fairly large� Like many OBDD algorithms� RelProd uses a result cache� In

function RelProd�f� g � OBDD � E � set of variables� � OBDD

if f � false� g � false

return false

else if f � true � g � true

return true

else if �f� g�E� h� is in the result cache
return h

else

let x be the top variable of f
let y be the top variable of g
let z be the topmost of x and y

h� �� RelProd�f jz��� gjz��� E�
h� �� RelProd�f jz��� gjz��� E�
if z � E

h �� Or �h�� h��
�� OBDD for h� � h� ��

else

h �� IfThenElse�z� h�� h��
�� OBDD for �z � h�� � ��z � h�� ��

endif

insert �f� g� E� h� in the result cache
return h

endif

Fig� �� Relational product algorithm

this case� entries in the cache are of the form �f� g� E�h�� where E is a set of variables
that are quanti�ed out and f � g and h are OBDDs� If such an entry is in the cache� it
means that a previous call to RelProd�f� g�E� returned h as its result�

Although the algorithm works well in practice� it has exponential complexity in the
worst case� Most of the situations where this complexity is observed are cases in which
the OBDD for the product is exponentially larger than the OBDDs for the arguments
f� v� and g� v�� In such situations� any method of computing the product must have ex�
ponential complexity�

� Computation Tree Logics

In this paper �nite�state systems are modeled by labeled state�transition graphs� called
Kripke Structures 	��� If some state is designated as the initial state� then the Kripke



structure can be unwound into an in�nite tree with that state as the root� as illustrated
in Figure �� Since paths in the tree represent possible computations of the program�
we will refer to the in�nite tree obtained in this manner as the computation tree of
the program� Temporal logics may di�er according to how they handle branching in
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State  Transition  Graph  or
Kripke  Model

(Unwind  State  Graph  to  obtain  Infinite  Tree)

Fig� �� Basic Model of Computation

the underlying computation tree� In a linear temporal logic� operators are provided for
describing events along a single computation path� In a branching�time logic the temporal
operators quantify over the paths that are possible from a given state� The computation
tree logic CTL� 	
�� 
�� �� combines both branching�time and linear�time operators�
a path quanti�er� either A ��for all computation paths�� or E ��for some computation
paths�� can pre�x an assertion composed of arbitrary combinations of the usual linear�
time operators G ��always��� F ��sometimes��� X ��nexttime��� and U ��until��� The
remainder of this section gives a precise description of the syntax and semantics of these
logics�

There are two types of formulas in CTL� � state formulas �which are true in a speci�c
state� and path formulas �which are true along a speci�c path�� Let AP be the set of
atomic proposition names� The syntax of state formulas is given by the following rules�

	 If p 
 AP � then p is a state formula�

	 If f and g are state formulas� then �f and f � g are state formulas�



	 If f is a path formula� then E�f � is a state formula�

Two additional rules are needed to specify the syntax of path formulas�

	 If f is a state formula� then f is also a path formula�
	 If f and g are path formulas� then �f � f � g� X f � and f U g are path formulas�

CTL� is the set of state formulas generated by the above rules�
We de�ne the semantics of CTL� with respect to a Kripke structure M � hS�R�Li�

where S is the set of states� R � S	S is the transition relation� which must be total �i�e��
for all states s 
 S there exists a state s� 
 S such that �s� s�� 
 R�� and L � S � P�AP �
is a function that labels each state with a set of atomic propositions true in that state�
Unless otherwise stated� all of our results apply only to �nite Kripke structures�

A path in M is an in�nite sequence of states� 	 � s�� s�� � � � such that for every i � ��
�si� si	�� 
 R� We use 	i to denote the su�x of 	 starting at si� If f is a state formula�
the notationM� s j� f means that f holds at state s in the Kripke structure M � Similarly�
if f is a path formula�M�	 j� f means that f holds along path 	 in Kripke structure M �
When the Kripke structure M is clear from context� we will usually omit it� The relation
j� is de�ned inductively as follows �assuming that f� and f� are state formulas and g�
and g� are path formulas��

�� s j� p � p 
 L�s��

� s j� �f� � s j� f��
�� s j� f� � f� � s j� f� or s j� f��
�� s j� E�g�� � there exists a path 	 starting with s such that 	 j� g��
�� 	 j� f� � s is the �rst state of 	 and s j� f��
�� 	 j� �g� � 	 j� g��
�� 	 j� g� � g� � 	 j� g� or 	 j� g��
�� 	 j� X g� � 	� j� g��
�� 	 j� g� U g� � there exists a k � � such that 	k j� g� and for all

� � j � k� 	j j� g��

The following abbreviations are used in writing CTL� formulas�

� f � g � ���f � �g� � F f � trueU f

� A�f � � �E��f� � Gf � �F�f

CTL 	�� 
� is a restricted subset of CTL� that permits only branching�time operators�
each of the linear�time operatorsG� F�X� andUmust be immediatelypreceded by a path
quanti�er� More precisely� CTL is the subset of CTL� that is obtained if the following
two rules are used to specify the syntax of path formulas�

	 If f and g are state formulas� then X f and f U g are path formulas�
	 If f is a path formula� then so is �f �

Linear temporal logic �LTL�� on the other hand� will consist of formulas that have
the form A f where f is a path formula in which the only state subformulas permitted
are atomic propositions� More precisely� a path formula is either�

	 If p 
 AP � then p is a path formula�



	 If f and g are path formulas� then �f � f � g� X f � and f U g are path formulas�

It can be shown 	
�� ��� �� that the three logics discussed in this section have di�erent
expressive powers� For example� there is no CTL formula that is equivalent to the LTL
formula A�FG p�� Likewise� there is no LTL formula that is equivalent to the CTL
formula AG�EF p�� The disjunction of these two formulas A�FGp� � AG�EF p� is a
CTL� formula that is not expressible in either CTL or LTL�

Most of the speci�cations in this paper will be written in the logic CTL� There are
eight basic CTL operators�

	 AX and EX�
	 AG and EG�
	 AF and EF�
	 AU and EU

Each of the eight operators can be expressed in terms of three operators EX� EG� and
EU�

	 AX f � �EX��f �
	 AG f � �EF��f �
	 AF f � �EG��f�
	 EF f � E	trueU f 
	 A	f U g � �E	�gU �f � �g � �EG�g

The four operators that are used most widely are illustrated in Figure �� Each computa�
tion tree has the state s� as its root�

Finally� some typical CTL formulas that might arise in verifying a �nite state con�
current program are given below�

	 EF�Started��Ready�� It is possible to get to a state where Started holds but Ready
does not hold�

	 AG�Req � AFAck�� If a request occurs� then it will be eventually acknowledged�
	 AG�AFDeviceEnabled�� The proposition DeviceEnabled holds in�nitely often on

every computation path�
	 AG�EFRestart�� From any state it is possible to get to the Restart state�

� Fixpoint characterization

Let M � �S�R� L� be an arbitrary �nite Kripke structure� We use Pred�S� to denote
the lattice of predicates over S where each predicate is identi�ed with the set of states
in S that make it true and the ordering is set inclusion� Thus� the least element in the
lattice is the empty set� denoted by False� and the greatest element in the lattice is the
set of all states� denoted by T rue� A functional F that maps Pred�S� to Pred�S� will be
called a predicate transformer� Let 
 � Pred�S� �� Pred�S� be such a functional� then

�� 
 is monotonic provided that P � Q implies 
 	P  � 
 	Q�

� 
 is ��continuous provided that P� � P� � � � � implies 
 	�iPi � �i
 	Pi�
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�� 
 is ��continuous provided that P� � P� � � � � implies 
 	�iPi � �i
 	Pi�

A monotonic predicate transformer 
 on Pred�S� always has a least �xpoint� lfpZ
�

 �Z�

�
�

and a greatest �xpoint� gfpZ
�

 �Z�

�
�see Tarski 	���� lfpZ

�

 �Z�

�
� �fZ j 
 �Z� �

Zg whenever 
 is monotonic� and lfpZ
�

 �Z�

�
� �i
 i�False� whenever 
 is also ��

continuous� gfpZ
�

 �Z�

�
� �fZ j 
 �Z� � Zgwhenever 
 is monotonic� and gfpZ

�

�Z�

�
�

�i
 i�True� whenever 
 is also ��continuous�
The following lemmas are useful in working with predicate transformers de�ned on

�nite Kripke structures�

Lemma�� Let M be a �nite Kripke structure and let 
 be a functional over Pred�S��
If 
 is monotonic then 
 is also ��continuous and ��continuous�

Lemma�� If 
 is monotonic� then for every i� 
 i�False� � 
 i	��False� and 
 i�True� �

 i	��T rue��

Lemma�� If 
 is monotonic and M is �nite� then there is an integer i� such that for

every j � i�� 

j�False� � 
 i��False�� Similarly� there is some j� such that for every

j � j�� 

j�True� � 
 j��True��



Lemma�� If � is monotonic and M is �nite� then there is an integer i� such that

lfpZ
�
� �Z�

�
� � i��False�� Similarly� there is an integer j� such that gfpZ

�
� �Z�

�
�

� j��True��

As a consequence of the preceding lemmas� if � is monotonic� its least �xpoint can
be computed by the program in Figure �� The invariant for the while loop in the body

function Lfp�Tau � PredicateTransformer� � Predicate
begin

Q �� False�
Q� �� Tau�Q��
while �Q �� Q�� do
begin

Q �� Q��
Q� �� Tau�Q��

end�
return�Q�

end

Fig� �� Procedure for computing least �xpoints�

of the procedure is given by the assertion

�Q� � � �Q	�� �Q� � lfpZ
�
��Z�

�
�

It is easy to see that at the beginning of the i
th iteration of the loop� Q � � i���False�
and Q� � � i�False�� Lemma � implies that

False � � �False� � ���False� � � � � �

Consequently� the maximum number of iterations before the while loop terminates is
bounded by the number of elements in the set S� When the loop does terminate� we will
have that Q � � �Q	 and that Q � lfpZ

�
��Z�

�
� It follows directly that Q � lfpZ

�
� �Z�

�

and that the value returned by the procedure is the required least �xpoint� The greatest
�xpoint of � may be computed in a similarmanner by the program in Figure �� Essentially
the same argument can be used to show that the procedure terminates and that the value
it returns is gfpZ

�
��Z�

�
�

If we identify each CTL formula f with the predicate fs j M�s j� fg in Pred�S��
then each of the basic CTL operators may be characterized as a least or greatest �xpoint
of an appropriate predicate transformer�

� A�f� U f�	 � lfpZ
�
f� � �f� �AXZ�

�

� E�f� U f�	 � lfpZ
�
f� � �f� �EXZ�

�

� AF f� � lfpZ
�
f� �AXZ

�

� EF f� � lfpZ
�
f� �EXZ

�



function Gfp�Tau � PredicateTransformer� � Predicate
begin

Q �� T rue�
Q� �� Tau�Q��
while �Q �� Q�� do
begin

Q �� Q��
Q� �� Tau�Q��

end�
return�Q�

end

Fig� �� Procedure for computing greatest �xpoints�

� AGf� � gfpZ
�
f� �AXZ

�

� EG f� � gfpZ
�
f� �EXZ

�

We will only prove the �xpoint characterizations for EG and EU� The �xpoint char

acterizations of the remaining CTL operators can be established in a similar manner�

Lemma�� � �Z� � f� �EXZ is monotonic�

Proof� Let P� � P�� To show that � �P�	 � � �P�	� consider some state s � � �P�	� Then
s j� f� and there exists a state s� such that �s� s�� � R and s� � P�� Since P� � P��
s� � P� as well� Thus� s � � �P�	�

Lemma�� Let � �Z� � f� �EXZ and let � i��True� be the limit of the sequence True �
��T rue� � � � � � For every s � S� if s � � i��True� then s j� f�� and there is a state s�

such that �s� s�� � R and s� � � i��True��

Proof� Let s � � i��T rue�� then since � i��True� is a �xpoint� � i��True� � � �� i��True�	�
Thus� s � � �� i��True�	� By de�nition of � we get that s j� f� and there is a state s�� such
that �s� s�� � R and s� � � i��True��

Lemma�� EG f� is a �xpoint of the functional ��Z� � f� �EXZ�

Proof� Suppose s� j� EG f�� Then by the de�nition of j�� there is a path s�� s�� � � �
in M such that for all k� sk j� f�� This implies that s� j� f� and s� j� EG f�� In
other words� s� j� f� and s� j� EXEGf�� Thus� EG f� � f� �EXEGf�� Similarly� if
s� j� f� �EXEG f�� then s� j� EG f�� Consequently� EG f� � f� �EXEG f��

Lemma�� EG f� is the greatest �xpoint of the functional � �Z� � f� �EXZ�

Proof� Since � is monotonic� by lemma  it is also �
continuous� Therefore� in order to
show that EGf� is the greatest �xpoint of � � it is su�cient to prove that EG f� �
�i� i�True��



We �rst show that EG f� � �i� i�True�� We establish this claimby applying induction
on i to show that� for every i� EGf� � � i�True�� Clearly� EG f� � True� Assume
that EG f� � �n�True�� Since � is monotonic� � �EGf�	 � �n���T rue�� By Lemma ��
� �EG f�	 � EG f�� Hence� EG f� � �n���True��

To show that �i� i�True� � EGf�� consider some state s � �i�
i�True�� This state

is included in every � i�True�� Hence� it is also in the �xpoint � i��True�� By Lemma
�� s is the start of an in�nite sequence of states in which each state is related to the
previous one by the relation R� Furthermore� each state in the sequence satis�es f��
Thus� s j� EGf��

Lemma	� E�f� U f�	 is the least �xpoint of the functional � �Z� � f� � �f� �EXZ��

Proof� First we notice that � �Z� � f� � �f� � EXZ� is monotonic� By Lemma � � is
therefore �
continuous� It is also straightforward to show that E�f� U f�	 is a �xpoint
of � �Z�� We still need to prove that E�f� U f�	 is the least �xpoint of � �Z�� For that� it
is su�cient to show that E�f� U f�	 � �i�

i�False�� For the �rst direction� it is easy to
prove by induction on i that for every i� � i�False� � E�f� U f�	� Consequently� we have
that �i� i�False� � E�f� U f�	�

The other direction� E�f�Uf�	 � �i� i�False�� is proved by induction on the length of
the pre�x of the path along which f�U f� is satis�ed� More speci�cally� if s j� E�f�Uf�	
then there is a path � � s�� s�� � � � with s � s� and j �  such that sj j� f� and for all
l � j� sl j� f�� We show that for every such state s� s � � j�False�� The basis case is
trivial� If j � � s j� f� and therefore s � � �False� � f� � �f� �EX�False���

For the inductive step� assume that the above claim holds for every s and every j 	 n�
Let s be the start of a path � � s�� s�� � � � such that sn�� j� f� and for every l � n � �
sl j� f�� Consider the state s� on the path� It is the start of a pre�x of length n along
which f�Uf� holds and therefore� by the induction hypothesis� s� � �n�False�� Since
�s� s�� � R and s j� f�� s � f� �EX��n�False��� thus s � �n���False��

Figure � shows how the set of states that satisfy E�pU q	 may be computed for a
simple Kripke structure by using the procedure Lfp� In this case the functional � is given
by

� �Z� � q � �p �EXZ��

The �gure demonstrates how the sequence of approximations � i�False� converges to
E�pU q	� The states that constitute the current approximation to E�pU q	 are shaded�
It is easy to see that ���False� � ���False�� Hence� E�pU q	 � ���False�� Because s� is
in ���False�� we see that M�s� j� E�pU q	�

� Symbolic Model Checking

Model checking is the problem of �nding the set of states in a state transition graph
where a given CTL formula is true� There is a program called EMC �Extended Model
Checker� that solves this problem using e�cient graph
traversal techniques� If the model
is represented as a state transition graph� the complexity of the algorithm is linear in
the size of the graph and in the length of the formula� The algorithm is quite fast in
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practice ���� ��	� However� an explosion in the size of the model may occur when the
state transition graph is extracted from a �nite state concurrent system that has many
processes or components�

In this section� we describe a symbolic model checking algorithm for CTL which
uses OBDDs to represent the state transition graph� Assume that the behavior of the
concurrent system is determined by n boolean state variables v�� v�� � � � � vn� The transition
relation R��v� �v�� for the concurrent system will be given as a boolean formula in terms of
two copies of the state variables� �v � �v�� � � � � vn� which represents the current state and
�v� � �v��� � � � � v

�
n� which represents the next state� The formulaR��v� �v

�� is now converted to
an OBDD� This usually results in a very concise representation of the transition relation�

The symbolic model checking algorithm is implemented by a procedure Check that
takes the CTL formula to be checked as its argument and returns an OBDD that repre

sents exactly those states of the system that satisfy the formula� Of course� the output of
Check depends on the system being checked� this parameter is implicit in the discussion
below� We de�ne Check inductively over the structure of CTL formulas� If f is an atomic
proposition vi� then Check �f � is simply the OBDD for vi� Formulas of the form EX f �



E�f U g	� and EG f are handled by the procedures�

Check�EX f � � CheckEX �Check�f ���
Check�E�f U g	� � CheckEU �Check�f ��Check�g���
Check�EG f � � CheckEG �Check�f ���

Notice that these intermediate procedures take boolean formulas as their arguments�
while Check takes a CTL formula as its argument� The cases of CTL formulas of the
form f � g or 
f are handled using the standard algorithms for computing boolean
connectives with OBDDs� Since AX f � A�f U g	 and AG f can all be rewritten using
just the above operators� this de�nition of Check covers all CTL formulas�

The procedure for CheckEX is straightforward since the formula EX f is true in a
state if the state has a successor in which f is true�

CheckEX �f ��v�� � ��v�
�
f��v�� �R��v� �v��

�
�

If we have OBDDs for f and R� then we can compute an OBDD for

��v�
�
f��v�� �R��v� �v��

�
�

by using the techniques described in Section ��

The procedure for CheckEU is based on the least �xpoint characterization for the
CTL operator EU that is given in Section ��

CheckEU �f ��v�� g��v�� � lfpZ��v�
�
g��v� �

�
f ��v� �CheckEX �Z��v��

��
�

In this case we use the function Lfp to compute a sequence of approximations

Q��Q�� � � � � Qi� � � �

that converges to E�fUg	 in a �nite number of steps� If we have OBDDs for f � g� and the
current approximation Qi� then we can compute an OBDD for the next approximation
Qi��� Since OBDDs provide a canonical form of boolean functions� it is easy to test for
convergence by comparing consecutive approximations� When Qi � Qi��� the function
Lfp terminates� The set of states corresponding to E�f U g	 will be represented by the
OBDD for Qi�

CheckEG is similar� In this case the procedure is based on the greatest �xpont char

acterization for the CTL operator EG that is given in Section ��

CheckEG�f ��v�� � gfpZ��v�
�
f ��v� �CheckEX �Z��v��

�
�

If we have an OBDD for f � then the function Gfp can be used to compute an OBDD
representation for the set of states that satisfy EGf �



� Fairness Constraints

Next� we consider the issue of fairness� In many cases� we are only interested in the cor

rectness along fair computation paths� For example� if we are verifying an asynchronous
circuit with an arbiter� we may wish to consider only those executions in which the
arbiter does not ignore one of its request inputs forever� This type of property cannot
be expressed directly in CTL� In order to handle such properties we must modify the
semantics of CTL slightly� A fairness constraint can be an arbitrary set of states� usually
described by a formula of the logic� A path is said to be fair with respect to a set of
fairness constraints if each constraint holds in�nitely often along the path� The path
quanti�ers in CTL formulas are then restricted to fair paths� In the remainder of this
section we describe how to modify the algorithm above to handle fairness constraints� We
assume the fairness constraints are given by a set of CTL formulas H � fh�� � � � � hng�
We de�ne a new procedure CheckFair for checking CTL formulas relative to the fair

ness constraints in H� We do this by giving de�nitions for new intermediate procedures
CheckFairEX � CheckFairEU � and CheckFairEG which correspond to the intermediate
procedures used to de�ne Check �

Consider the formula EGf given fairness constraints H� The formula means that
there exists a path beginning with the current state on which f holds globally �invari

antly� and each formula in H holds in�nitely often on the path� The set of such states S
is the largest set with the following two properties�

� all of the states in S satisfy f � and
�� for all fairness constraints hk � H and all states s � S� there is a sequence of states

of length one or greater from s to a state in S satisfying hk such that all states on
the path satisfy f �

It is easy to show that if these conditions hold� each state in the set is the beginning of an
in�nite computation path on which f is always true� and for which every formula in H
holds in�nitely often� Thus� the procedure CheckFairEG�f ��v�� will compute the greatest
�xpoint

gfpZ��v�
�
f ��v� �

n�

k��

CheckEX �CheckEU �f ��v��Z��v� �Check�hk���
�
�

The �xed point can be evaluated in the same manner as before� The main di�erence is
that each time the above expression is evaluated� several nested �xed point computations
are done �inside CheckEU ��

Checking EX f and E�fUg	 under fairness constraints is simpler� The set of all states
which are the start of some fair computation is

fair��v� � CheckFair�EGTrue��

The formula EX f is true under fairness constraints in a state s if and only if there is a
successor state s� such that s� satis�es f and s� is at the beginning of some fair compu

tation path� It follows that the formula EX f �under fairness constraints� is equivalent
to the formula EX�f � fair� �without fairness constraints�� Therefore� we de�ne

CheckFairEX �f ��v�� � CheckEX �f ��v� � fair��v���



Similarly� the formula E�f U g	 �under fairness constraints� is equivalent to the formula
E�f U �g � fair�	 �without fairness constraints�� Hence� we de�ne

CheckFairEU �f ��v�� g��v�� � CheckEU �f ��v�� g��v� � fair��v���

� Counterexamples and witnesses

One of the most important features of CTL model checking algorithms is the ability to
�nd counterexamples and witnesses� When this feature is enabled and the model checker
determines that a formula with a universal path quanti�er is false� it will �nd a com

putation path which demonstrates that the negation of the formula is true� Likewise�
when the model checker determines that a formula with an existential path quanti�er
is true� it will �nd a computation path that demonstrates why the formula is true� For
example� if the model checker discovers that the formula AGf is false� it will produce
a path to a state in which 
f holds� Similarly� if it discovers that the formula EF f is
true� it will produce a path to a state in which f holds� Note that the counterexample
for a universally quanti�ed formula is the witness for the dual existentially quanti�ed
formula� By exploiting this observation we can restrict our discussion of this feature to
�nding witnesses for the three basic CTL operators EX� EG� and EU�

In order to �nd the witness for some CTL formula we will need to examine the strongly
connected components of the transition graph determined by the Kripke structure� We
will say that two states s� and s� are equivalent if there is a path from s� to s� and
also from s� to s�� We will call the equivalence classes of this relation strongly connected

components � We can form a new graph in which the nodes are the strongly connected
components and there is an edge from one strongly connected component to another if
and only if there is an edge from a state in one to a state in the other� It is easy to see
that the new graph does not contain any proper cycles� i�e�� each cycle in the graph is
contained in one of the strongly connected components� Moreover� since we only consider
�nite Kripke structures� each in�nite path must have a su�x that is entirely contained
within a strongly connected component of the transition graph�

We start by considering the problem of how to �nd a witness for the formula EG f

under the set of fairness constraints H � fh�� � � � � hng� We will identify each hi with the
set of states that make it true� Recall that the set of states that satisfy the formula EG f

with the fairness constraints H is given by the formula

gfpZ
�
f �

n�

k��

EX�E�f U Z � hk	�
�

��

For brevity� we will use EG f to denote the set of states that satisfy EG f under the
fairness constraints H� Given a state s in EG f � we would like to exhibit a path �

starting with s� which satis�es f in every state� and visits every set h � H in�nitely
often� In general� such a path will consist of a �nite pre�x followed by a repeating cycle�
We construct the path incrementally by giving a sequence of pre�xes of the path of
increasing length until a cycle is found� At each step in the construction we must ensure
that the current pre�x can be extended to a fair path along which each state satis�es f �



This invariant is guaranteed by making sure that each time we add a state to the current
pre�x� the state satis�es EG f �

First� we evaluate the above �xpoint formula� In every iteration of the outer �xpoint
computation� we compute a collection of least �xpoints associated with the formulas
E�f U Z � h	� for each fairness constraint h � H� For every constraint h� we obtain an
increasing sequence of approximations Qh

� �Q
h
� �Q

h
� � � � �� where Q

h
i is the set of states from

which a state in Z � h can be reached in i or fewer steps� while satisfying f � In the last
iteration of the outer �xpoint when Z � EG f � we save the sequence of approximations
Qh for each h in H�

Now� suppose we are given an initial state s satisfying EG f � Then s belongs to the
set of states computed in equation ��� so it must have a successor in E�f U �EG f �� h	
for each h � H� In order to minimize the length of the witness path� we choose the
�rst fairness constraint that can be reached from s� This is accomplished by testing the
saved sets Qh

i for increasing values of i until one is found that contains some successor
t of s� Note that since t � Qh

i � it has a path to a state in �EGf � � h and therefore t
is in EG f � If i � �� we �nd a successor of t in Qh

i��� This is done by �nding the set
of successors of t� intersecting it with Qh

i��� and then choosing an arbitrary element of
the resulting set� Continuing until i � �� we obtain a path from the initial state s to
some state in �EGf � � h� We then eliminate h from further consideration� and repeat
the above procedure until all of the fairness constraints have been visited� Let s� be the
�nal state of the path obtained thus far�

To complete a cycle� we need a non
trivial path from s� to the state t along which each
state satis�es f � In other words� we need a witness for the formula fs�g�EXE�f U ftg	�
If this formula is true� we have found the witness path for s� This case is illustrated in
Figure �� If the formula is false� there are several possible strategies� The simplest is
to restart the procedure from the �nal state s�� Since fs�g � EXE�f U ftg	 is false� we
know that s� is not in the strongly connected component of f containing t� however s�

is in EGf � Thus� if we continue this strategy� we must descend in the directed acyclic
graph of strongly connected components� eventually either �nding a cycle �� or reaching
a terminal strongly connected component of f � In the latter case� we are guaranteed to
�nd a cycle� since we cannot exit a terminal strongly connected component� This case is
illustrated in Figure �

A slightly more sophisticated approach would be to precompute E��EG f �Uftg	� The
�rst time we exit this set� we know the cycle cannot be completed� so we restart from
that state� Heuristically� these approaches tend to �nd short counterexamples �probably
because the number of strongly connected components tends to be small�� so no attempt
is made to �nd the shortest cycle�

The witness procedure for EGf under fairness constraints H can be used to extend
witnesses for E�f U g	 and EX f to in�nite fair paths� Let fair be the set of states that
satisfy EGTrue under the fairness constraints H� We can compute E�f U g	 under H
by using the standard CTL model checking algorithm �without fairness constraints� to
compute E�fU �g� fair�	� Similarly� We can compute EX f by using the standard CTL
model checking algorithm to compute EX�f � fair��
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� LTL Model Checking

In this section we consider the model checking problem for linear temporal logic� Let A f

be a linear temporal logic formula� Thus� f is a restricted path formula in which the only
state subformulas are atomic propositions� We wish to determine all of those states s � S

such that M� s j� A f � By de�nition M� s j� A f i� M�s j� 
E
f � Consequently� it is
su�cient to be able to check the truth of formulas of the form E f where f is a restricted
path formula� If the Kripke structure is represented explicitly as a state transition graph�
this problem is known to be PSPACE
complete ���	 in general�

Lichtenstein and Pnueli ���	 developed an algorithm for the problem that was linear
in the size of the model M and exponential in the length of the formula f � Although
their algorithm was linear in the size of the model� it was still impractical for large
examples because of the state explosion problem� As in the case of CTL model checking�
representing the transition relation as an OBDD enables the procedure to be applied to
much larger examples� The exponential complexity of their algorithm in terms of formula
length is caused by a tableau construction which may require exponential space in the
size of the formula� Fortunately� the tableau can also be represented by an OBDD� This
leads to an additional reduction in space and time�

We begin with an informal description of the model checking algorithm� Given a
formula E f and a Kripke structure M � we construct a special Kripke structure T called
the tableau for the path formula f � This structure includes every path that satis�es f � By
composing T with M � we �nd the set of paths that appear in both T and M � A state in
M will satisfy E f if and only if it is the start of a path in the composition that satis�es
f � The CTL model checking procedure described in Section � is used to �nd these states�
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We now describe the construction of the tableau T in detail� Let APf be the set of
atomic propositions in f � The tableau associated with f is a structure T � �ST �RT � LT �
with APf as its set of atomic propositions� Each state in the tableau is a set of elementary

formulas obtained from f � The set of elementary subformulas of f is denoted by el�f �
and is de�ned recursively as follows�

� el�p� � fpg if p � AP �
� el�
g� � el�g��
� el�g � h� � el�g� � el�h��
� el�X g� � fXgg � el�g��
� el�gU h� � fX�gU h�g � el�g� � el�h��

Thus� the set of states ST of the tableau is P�el�f ��� The labeling function LT is de�ned



so that each state is labeled by the set of atomic propositions contained in the state�
In order to construct the transition relation RT � we need an additional function sat

that associates with each subformula g of f a set of states in ST � Intuitively� sat�g� will
be the set of states that satisfy g�

� sat�g� � f� j g � �g where g � el�f ��
� sat�
g� � f� j � �� sat�g�g�
� sat�g � h� � sat�g� � sat�h��
� sat�gU h� � sat�h� �

�
sat�g� � sat�X�gU h��

�
�

We want the transition relation to have the property that each elementary formula
in a state is true in that state� Clearly� if Xg is in some state �� then all the successors
of � should satisfy g� Furthermore� since we are dealing with LTL formulas� if Xg is not
in �� then � should satisfy 
Xg� Hence� no successor of � should satisfy g� The obvious
de�nition for RT is

RT ��� �
�� �

�

Xg�el�f 	

� � sat�X g� �� � sat�g��

Figure � gives the transition relationRT for the formula g � aUb� To reduce the number
of edges� we connect two states � and �� with a bidirectional arrow if there is an edge from
� to �� and also from �� to �� Each subset of el�g� is a state of T � sat�Xg� � f������g
since each of these states contains the formula Xg� sat�g� � f����� ���g since each of
these states either contains b or contains a and Xg� There is a transition from each state
in sat�Xg� to each state in sat�g� and from each state in the complement of sat�Xg� to
each state in the complement of sat�g��

Unfortunately� the de�nition of RT does not guarantee that eventuality properties are
ful�lled� We can see this behavior in Figure �� Although state � belongs to sat�g�� the
path that loops forever in state � does not satisfy the formula g since b never holds on
that path� Consequently� an additional condition is necessary in order to identify those
paths along which f holds� A path � that starts from a state � � sat�f � will satisfy f if
and only if

� For every subformula g U h of f and for every state � on �� if � � sat�gU h� then
either � � sat�h� or there is a later state � on � such that � � sat�h��

In order to state the key property of the tableau construction� we must introduce some
new notation� Let � � s�� s�� � � � be a path in a Kripke structure M � then label��� �
L�s���L�s��� � � �� Let l � l�� l�� � � � be a sequence of subsets of some set � and let �� � ��
The restriction of l to ��� denoted by l j�� � is the sequence l��� l

�

�� � � � where l
�

i � li ���

for every i � �� The following theorem makes precise the intuitive claim that T includes
every path which satis�es f �

Theorem
�� Let T be the tableau for the path formula f � Then� for every Kripke struc�

ture M and every path �� of M � if M��� j� f then there is a path � in T that starts in

a state in sat�f �� such that label���� jAPf� label����

Next� we want to compute the product P � �S�R�L� of the tableau T � �ST �RT �LT �
and the Kripke structure M � �SM � RM � LM ��
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� S � f��� ��� j � � ST � �
� � SM and LM ���� �APf � LT ���g�

� R���� ���� ��� � ��� i� RT ��� �� and RM ���� � ���
� L�������� � LT ����

P contains exactly the sequences ��� for which there are paths � in T and �� in M such
that label����� � label��� � label���� jAPf � We extend the function sat to be de�ned over
the set of states of the product P by ������ � sat�g� if and only if � � sat�g��

We next apply CTL model checking and �nd the set of all states V in P � V � sat�f ��
that satisfy EG true with the fairness constraints

fsat�
�gU h� � h� j gU h occurs in fg� ���

Each of the states in V is in sat�f �� Moreover� it is the start of an in�nite path that
satis�es all of the fairness constraints� These paths have the property that no subformula
g U h holds almost always on the path while h remains false� The correctness of our
construction is summarized by the following theorem�

Theorem

� M��� j� E f if and only if there is a state � in T such that ������ �
sat�f � and P� ������ j� EGTrue under fairness constraints fsat�
�g U h� � h� j g U
h occurs in fg�



To illustrate this construction� we check the formula g � aUb on the Kripke structure
M in Figure �� The tableau T for this formula is given in Figure �� If we compute the
product P as described above� we obtain the Kripke structure shown in Figure �� We use
the CTL model checking algorithm to �nd the set V of states in sat�g� that satisfy the
formula EG true with the fairness constraint sat�
�aU b�� b�� It is easy to see that the
fairness constraint corresponds to the following set of states f������� ������� ��� ��� ������g�
Thus� every state in Figure � satis�es EG true� However� only ������� ������ and ������
are in sat�g�� so the states �� ��� and �� of M satisfy E g � E�aU b	�

a

bb

1’

4’ 3’2’

Fig� �	� Kripke Structure M
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Fig� �
� The product P of the structure M and the tableau T

We now describe how the above procedure can be implemented using OBDDs� We
assume that the transition relation for M is represented by an OBDD as in the previous



section� In order to represent the transition relation for T in terms of OBDDs� we associate
with each elementary formula g a state variable vg� We describe the transition relationRT

as a boolean formula in terms of two copies �v and �v� of the state variables� The boolean
formula is converted to an OBDD to obtain a concise representation of the tableau� When
the composition P is constructed� it is convenient to separate out the state variables that
appear in APf � The symbol �p will be used to denote a boolean vector that assigns truth
values to these state variables� Thus� each state in ST will be represented by a pair ��p� �r��
where �r is a boolean vector that assigns values to the state variables that appear in the
tableau but not in APf � A state in SM will be denoted by a pair ��p� �q� where �q is a
boolean vector that assigns values to the state variables of M which are not mentioned
in f � Thus� the transition relation RP for the product of the two Kripke structures will
be given by

RP ��p� �q� �r� �p
�� �q�� �r�� � RT ��p� �r� �p

�� �r�� �RM ��p� �q� �p�� �q���

We use the symbolic model checking algorithm that handles fairness constraints to �nd
the set of states V that satisfy EG true with the fairness constraints given in ���� The
states in V are represented by boolean vectors of the form ��p� �q� �r�� Thus� a state ��p� �q�
in M satis�es E f if and only if there exists �r such that ��p� �q� �r� � V and ��p� �r� � sat�f ��

�� Checking language containment

An alternative technique for verifying �nite
state systems is based on showing language
inclusion between �nite 	
automata ���� ��� ��	� We model the system to be veri�ed by
an 	
automatonKsys� The speci�cation to be checked is given by a second 	
automaton
Kspec� The system will satisfy its speci�cation if the language accepted by Ksys is con

tained in the language accepted byKspec� i�e�L�Ksys� � L�Kspec�� In this section we show
how symbolic model checking techniques can be used to decide language containment be

tween 	
automata� Although there are many types of 	
automata� in this paper we only
consider B�uchi automata� Algorithms for other types of automata can be derived in a
similar fashion from results in ���	� In general� checking language inclusion between two
nondeterministic 	
automata is PSPACE
hard� For this reason we consider a restricted
case of the general problem in which the speci�cation automaton is deterministic� For
simplicity we also require that both automata are complete�

A �nite B�uchi automaton is a �
tuple K � hS� s����
�Bi� where

� S is a �nite set of states
� s� � S is the initial state
� � is a �nite alphabet
� 
 � S � � � S is the transition relation

� B � S is the acceptance set�

The automaton is deterministic if for all states s� t�� t� � S and input symbols � � ��
if hs� �� t�i and hs� �� t�i are two transitions in 
� then t� � t�� The automaton is complete

if for every state s � S and for every symbol � � �� there is a state s� � S such that
�s� �� s�� � 
� An in�nite sequence of states s�s�s� � � � � S� is a path of a B�uchi automaton
if there exists an in�nite sequence ������ � � � � �� such that �i � �� �si� �i� si��� � 
� A



sequence ������ � � � � �� is accepted by a B�uchi automaton if there is a corresponding
path s�s�s� � � � � S� with the property that the set states which occur in�nitely often
in s�s�s� � � � contains at least one element of B� The set of sequences accepted by an
automaton M is called the language of M and is denoted by L�M��

Let K and K � be two B�uchi automata over the same alphabet �� Let M �K�K�� be
a Kripke structure �S �S�� R�L� over AP � fq� q�g� where q� q� are two new symbols and

q � L�hs� s�i� i� s � B�
q� � L�hs� s�i� i� s� � B��
hs� s�iRhr� r�i i� �� � � � hs� �� ri � 
 and hs�� �� r�i � 
��

Recall that in Section � we showed how to encode Kripke structures symbolically� In ���	�
it is shown that� if K� is deterministic�

L�K� � L�K��M �K�K �� j� A�GFq �GFq��

Note that the formula above is not a CTL formula since there are temporal oper

ators that are not immediately preceded by path quanti�ers� However� it is equivalent
to AGAF q� ��in�nitely often q��� under the fairness constraint �in�nitely often q��
Checking the above formula with the given fairness constraint can be handled using the
techniques described in Section ��

Theorem
�� L�K� � L�K�� if and only if M �K�K�� j� AGAF q� with fairness con�

straint q�

�� The SMV Model Checker

SMV ��Symbolic Model Veri�er�� ��	 is a tool for checking that �nite
state systems
satisfy speci�cations given in CTL� It uses the OBDD
based symbolic model checking
algorithm in Section �� The language component of SMV is used to describe complex
�nite
state systems� Some of the most important features of the language are described
below�

Modules The user can decompose the description of a complex �nite
state system into
modules� Individual modules can be instantiated multiple times� and modules can
reference variables declared in other modules� Standard visibility rules are used for
naming variables in hierarchically structured designs� Modules can have parameters�
which may be state components� expressions� or other modules� Modules can also
contain fairness constraints which can be arbitrary CTL formulas �See Section ���

Synchronous and interleaving composition Individual �nite
state machines given
as SMV modules can be composed either synchronously or using interleaving� In a
synchronous composition� a single step in the composition corresponds to a single step
in each of the components� With interleaving� a step of the composition represents
a step by exactly one component� If the keyword process precedes an instance of a
module� interleaving is used� otherwise synchronous composition is assumed�



Nondeterministic transitions The state transitions in a model may be either deter

ministic or nondeterministic� Nondeterminism can re�ect actual choice in the actions
of the system being modeled� or it can be used to describe a more abstract model
where certain details are hidden� The ability to specify nondeterminism is missing
from many hardware description languages� but it is crucial when making high
level
models�

Transition relations The transition relations of modules can be speci�ed either ex

plicitly in terms of boolean relations on the current and next state values of state
variables� or implicitly as a set of parallel assignment statements� The parallel as

signment statements de�ne the values of variables in the next state in terms of their
values in the current state�

We will not provide a formal syntax or semantics for the language here� these can
be found in McMillan�s thesis ��	� Instead� we consider a simple two process mutual
exclusion program ��gure ��� Each process can be in one of three code regions� the
non�critical region � the trying region � and the critical region � Initially� both processes
are in their non
critical regions� The goal of the program is to exclude the possibility
that both processes are in their critical regions at the same time� We also require that a
process� which wants to enter its critical region� will eventually be able to do so� A process
indicates that it wants to enter its critical region by �rst entering its trying region� If one
process is in its trying region and the other is in its non
critical region� the �rst process
can immediately enter its critical region� If both processes are in their trying regions�
the boolean variable turn is used to determine which process enters its critical region� If
the value of turn is �� then process � can enter its critical region and change the value
of turn to � If the value of turn is � then process  can enter its critical region and
change the value to �� We assume that a process must eventually leave its critical region�
however� it may remain in its non
critical region forever�

To describe the syntax of SMV in more detail� consider the program in Figure ��
Module de�nitions begin with the keyword MODULE� The module main is the top
level
module� The module prc has formal parameters state�� state�� turn� and turn�� Vari

ables are declared using the keyword VAR� In the example� turn is a boolean variable�
while s� and s� are variables which can have one of the following values� noncritical�
trying or critical� The VAR statement is also used to instantiate other modules as
shown on lines � and �� In our example� the module prc is instantiated twice� once with
the name pr� and once with the name pr�� Since the keyword process is used in both
cases� the global model is constructed by interleaving steps from pr� and pr��

The ASSIGN statement is used to de�ne the initial states and transitions of the model�
In this example� the initial value of the boolean variable turn is �� The value of the
variable state� in the next state is given by the case statement in lines ������ The
value of turn in the next state is given by the case statement in lines ����� The value
of a case statement is determined by evaluating the clauses within the statement in
sequence� Each clause consists of a condition and an expression� which are separated by
a colon� If the condition in the �rst clause holds� the value of the corresponding expression
determines the value of the case statement� Otherwise� the next clause is evaluated� An
expression may be a set of values �e�g�� �� and ���� When a set expression is assigned to
a variable� the value of the variable is chosen nondeterministically from the set�



� MODULE main ��two process mutual exclusion program

� VAR

� s�� �noncritical� trying� critical��

� s	� �noncritical� trying� critical��

� turn� boolean�

� pr�� process prc
s�� s	� turn� ���

� pr	� process prc
s	� s�� turn� 	��

� ASSIGN

	 init
turn� �� ��

�
 FAIRNESS 
s� � critical�

�� FAIRNESS 
s	 � critical�

�� SPEC EF

s� � critical� � 
s	 � critical��

�� SPEC AG

s� � trying� �� AF 
s� � critical��

�� SPEC AG

s	 � trying� �� AF 
s	 � critical��

�� SPEC AG

s� � critical� �� A�
s� � critical� U

�� 

s� � critical� � A�
s� � critical� U 
s	 � critical�����

�� SPEC AG

s	 � critical� �� A�
s	 � critical� U

�� 

s	 � critical� � A�
s	 � critical� U 
s� � critical�����

�	 MODULE prc
state�� state	� turn� turn��

�
 ASSIGN

�� init
state�� �� noncritical�

�� next
state�� ��

�� case

�� 
state� � noncritical� � �trying�noncritical��

�� 
state� � trying� � 
state	 � noncritical�� critical�

�� 
state� � trying� � 
state	 � trying� � 
turn � turn��� critical�

�� 
state� � critical� � �critical�noncritical��

�� 	� state��

�	 esac�

�
 next
turn� ��

�� case

�� turn � turn� � state� � critical� turn�

�� 	� turn�

�� esac�

�� FAIRNESS running

Fig� ��� SMV code for two process mutual exclusion program



Fairness constraints are given by FAIRNESS statements� Using the proposition running
in the fairness constraint for module prc restricts the considered computations to only
those in which each instance of prc is executed in�nitely often� Without imposing addi�
tional constraints� the nondeterministic choice in line �� would allow a process to remain
in its critical region forever� The fairness constraints in lines �	 and �� are used to pre�
vent this possibility� The CTL properties to be veri�ed are given as SPEC statements� The
�rst speci�cation 
line ��� checks for a violation of the mutual exclusion requirement�
The second and third speci�cations 
lines �� and �� check that a process� which wants
to enter its critical region� will eventually be able to do so� The last two speci�cations

lines �� and ��� check whether processes must strictly alternate entry into their critical
regions�

�� specification EF 
s� � critical � s	 � critical� is false

�� specification AG 
s� � trying �� AF s� � critical� is true

�� specification AG 
s	 � trying �� AF s	 � critical� is true

�� specification AG 
s� � critical �� A
s� � critical U 
��� is false

�� specification AG 
s	 � critical �� A
s	 � critical U 
��� is false

resources used�

user time� 	�	� s� system time� ��� s

BDD nodes allocated� ����

BDD nodes representing transition relation� �� � 	

Fig� ��� Output generated by SMV for mutual exclusion program

When SMV is run on the program in Figure �� the output in Figure �� is produced�
Note that the mutual exclusion is not violated and that absence of starvation is guar�
anteed� Since the last two speci�cations are false� strict alternation of critical regions is
unnecessary� SMV produced counterexample computation paths in the last two cases�
One of the counterexamples is included in Figure ��� This counterexample demonstrates
that process 	 can enter its critical region several times without process � entering its
critical region� The computation path is described as a sequence of changes to state vari�
able� Thus� if a state variable is not mentioned in a state it means that its value has not
been changed� Although the �rst speci�cation is false� no counterexample is generated�
The negation of a formula with an existential path quanti�er will have a universal path
quanti�er� Therefore� no single computation path can serve as a counterexample�



�� specification AG 
s� � critical �� A
s� � critical U 
��� is false

�� as demonstrated by the following execution sequence

state ��	� s� � noncritical

s	 � noncritical

turn � �

state ���� �executing process pr��

state ���� �executing process pr��

s� � trying

state ���� s� � critical

state ���� �executing process pr��

state ���� s� � noncritical

turn � 	

state ���� �executing process pr��

state ���� �executing process pr��

s� � trying

state ���� s� � critical

Fig� ��� Counterexample for strict alternation of critical regions

�� A non�trivial example

This section brie�y describes the formalization and veri�cation of the cache coherence
protocol described in the draft IEEE Futurebus� standard 
IEEE Standard ������
����� ��	�� We constructed a precise model of the protocol in the SMV language and
then used model checking to show that the model satis�ed a formal speci�cation of cache
coherence� In the process of formalizing and verifying the protocol� we discovered a num�
ber of errors and ambiguities� We believe that this is the �rst time that formal methods
have been used to �nd nontrivial errors in a proposed IEEE standard� The result of our
project is a concise� comprehensible and unambiguous model of the cache coherence pro�
tocol that should be useful to both the Futurebus� Working Group members� who are
responsible for the protocol� and to actual designers of Futurebus� boards� Our experi�
ence demonstrates that hardware description languages and model checking techniques
can be used to help design real industrial standards� For a more detailed treatment of
this example� the reader is referred to the another paper ���� by the authors that deals
exclusively with this topic�

Futurebus� is a bus architecture for high�performance computers� The goal of the
committee that developed Futurebus� was to create a public standard for bus proto�
cols that was unconstrained by the characteristics of any particular processor or device



technology and that would be widely accepted and implemented by vendors� The cache
coherence protocol used in Futurebus� is required to insure consistency of data in hi�
erarchical systems composed of many processors and caches interconnected by multiple
bus segments� Such protocols are notoriously complex and� therefore� quite di�cult to
debug� Futurebus� is� in fact� the �rst bus standard to include this capability� Although
development of the cache coherence protocol began more than four years ago� to the best
of our knowledge all previous attempts to validate the protocol have been based entirely
on informal techniques ����� In particular� no attempt has been made to specify the entire
protocol formally or to analyze it using an automatic veri�cation system�

The major part of the project involved developing a formal model for the cache co�
herence protocol in the SMV language and deriving CTL speci�cations for its correctness
from the textual description of the protocol in the standard� Our model for the cache co�
herence protocol consists of ��		 lines of SMV code 
not counting comments�� The model
is highly nondeterministic� both to reduce the complexity of veri�cation 
by hiding de�
tails� and to cover allowed design choices 
indicated in the standard using the wordmay��
By using SMV we were able to �nd several potential errors in the hierarchical protocol�
The largest con�guration that we veri�ed had three bus segments� eight processors� and
over �	�� states�

The Futurebus� protocol� maintains coherence by having the individual caches snoop�
or observe� all bus transactions� Coherence across buses is maintained using bus bridges�
Special agents at the ends of the bridges represent remote caches and memories� In order
to increase performance� the protocol uses split transactions� When a transaction is split�
its completion is delayed and the bus is freed� at some later time� an explicit response is
issued to complete the transaction� This facility makes it possible to service local requests
while remote requests are being processed�

To demonstrate how the protocol works� we consider some example transactions for
a single cache line in the two processor system shown in �gure ��� A cache line is a
series of consecutive memory locations that is treated as a unit for coherence purposes�
Initially� neither processor has a copy of the line in its cache� they are said to be in the

P1 P2

M

Fig� ��� Single bus system

invalid state� Processor P� issues a read�shared transaction to obtain a readable copy of
the data from memory M� P� snoops this transaction� and may� if it wishes� also obtain
a readable copy� this is called snar�ng� If P� snarfs� then at the end of the transaction�



both caches contain a shared�unmodi�ed copy of the data� Next� P� decides to write
to a location in the cache line� In order to maintain coherence� the copy held by P�
must be eliminated� P� issues an invalidate transaction on the bus� When P� snoops
this transaction� it purges the line from its cache� At the end of the invalidate� P� now
has an exclusive�modi�ed copy of the data� The standard speci�es the possible states of
the cache line within each processor and how this state is updated during each possible
transaction�

We now consider a two�bus example to illustrate how the protocol works in hier�
archical systems� see �gure ��� Initially� both processor caches are in the invalid state�

P1

M

CA

MA

P2

Bus 1

Bus 2

Fig� ��� Two bus system

If processor P� issues a read�modi�ed to obtain a writable copy of the data� then the
memory agent MA on bus � splits the transaction� since it must get the data from the
memory on bus �� The command is passed down to the cache agent CA� and CA issues
the read�modi�ed on bus �� Memory M supplies the data to CA� which in turn passes it
to MA� MA now issues a modi�ed�response transaction on bus � to complete the original
split transaction� Suppose now that P� issues a read�shared on bus �� CA� knowing that
a remote cache has an exclusive�modi�ed copy� intervenes in the transaction to indicate
that it will supply the data� and splits the transaction� since it must obtain the data
from the remote cache� CA passes the read�shared to MA� which issues it on bus �� P�
intervenes and supplies the data to MA� which passes it to CA� The cache agent per�
forms a shared�response transaction which completes the original read�shared issued by
P�� The standard contains an English description of the hierarchical protocol� but does



not specify the interaction between the cache agents and memory agents�

The Protocol Speci�cation ��	� contains two sections dealing with the cache coherence
protocol� The �rst� a description section� is written in English and contains an informal
and readable overview of how the protocol operates� but it does not cover all scenarios�
The second� a speci�cation section� is intended to be the real standard� This section is
written using boolean attributes� A boolean attribute is essentially a boolean variable
together with some rules for setting and clearing it� The attributes are more precise� but
they are di�cult to read� The behavior of an individual cache or memory is given in
terms of roughly �		 attributes� of which about � deal with cache coherence�

In order to make the veri�cation feasible� we had to use a number of abstractions�
First� we eliminated a number of the low level details dealing with how modules communi�
cate� The most signi�cant simpli�cationwas to use a model in which one step corresponds
to one complete transaction on one of the buses in the system� This allowed us to hide
all of the handshaking necessary to issue a command� Another example concerns the
bus arbitration� The standard speci�es two arbitration schemes� but we used a model in
which a bus master is chosen completely nondeterministically� In addition� the standard
describes how models behave in various exceptional situations� such as when a parity
error is observed on the data bus� However� we did not consider such conditions�

The second class of simpli�cations was used to reduce the size of some parts of the
system� For example� we only considered the transactions involving a single cache line�
This is su�cient since transactions involving one cache line cannot a�ect the transactions
involving a di�erent cache line� Also� the data in each cache line was reduced to a single
bit� The third class of simpli�cations involved eliminating the read�invalid and write�

invalid commands�These commands are used in DMA transfers to and frommemory� The
protocol does not guarantee coherence for a cache line when a write�invalid transaction
is issued for that line�

The last class of abstractions involved using nondeterminism to simplify the models
of some of the components� For example� processors are assumed to issue read and write
requests for a given cache line nondeterministically� Responses to split transactions are
assumed to be issued after arbitrary delays� Finally� our model of a bus bridge is highly
nondeterministic�

Figure �	 shows a part of the SMV program used to model the processor caches�
This code determines how the state of the cache line is updated� Within this code� state
components with upper�case names 
CMD� SR� TF� denote bus signals visible to the cache�
and components with lower�case names 
state� tf� are under the control of the cache�
The �rst part of the code 
lines ����� speci�es what may happen when an idle cycle
occurs 
CMD�none�� If the cache has a shared�unmodi�ed copy of the line� then the line
may be nondeterministically kicked out of the cache unless there is an outstanding request
to change the line to exclusive�modi�ed� If a cache has an exclusive�unmodi�ed copy of
the line� it may kick the line out of the cache or change it to exclusive�modi�ed�

The second part of the code 
lines ������ indicates how the cache line state is updated
when the cache issues a read�shared transaction 
master and CMD�read�shared�� This
should only happen when the cache does not have a copy of the line� If the transaction is
not split 
�SR�� then the data will be supplied to the cache� Either no other caches will
snarf the data 
�TF�� in which case the cache obtains an exclusive�unmodi�ed copy� or



� next
state� ��

� case

� CMD�none�

� case

� state�shared�unmodified�

� case

� requester�exclusive� shared�unmodified�

� 	� �invalid� shared�unmodified�� �� Maybe kick line out of cache

	 esac�

�
 state�exclusive�unmodified� �invalid� shared�unmodified�

�� exclusive�unmodified� exclusive�modified��

�� 	� state�

�� esac�

�� ���

�� master�

�� case

�� CMD�read�shared� �� Cache issues a read�shared

�� case

�	 state�invalid�

�
 case

�� SR � TF� exclusive�unmodified�

�� SR� shared�unmodified�

�� 	� invalid�

�� esac�

�� ���

�� esac�

�� ���

�� esac�

�	 ���

�
 CMD�read�shared� �� Cache observes a read�shared

�� case

�� state in �invalid� shared�unmodified��

�� case

�� tf� invalid�

�� SR� shared�unmodified�

�� 	� state�

�� esac�

�� ���

�	 esac�

�
 ���

�� esac�

Fig� 	
� A portion of the processor cache model

some other cache snarfs the data� and everyone obtains shared�unmodi�ed copies� If the
transaction is split� the cache line remains in the invalid state�

The last piece of code 
lines �	���� tells how caches respond when they observe an�



other cache issuing a read�shared transaction� If the observing cache is either invalid or
has a shared�unmodi�ed copy� then it may indicate that it does not want a copy of the
line by deasserting its tf output� In this case� the line becomes invalid� Alternatively�
the cache may assert tf and try to snarf the data� In this case� if the transaction is not
split 
�SR�� the cache obtains a shared�unmodi�ed copy� Otherwise� the cache stays in
its current state�

Next� we discuss the speci�cations used in verifying the protocol� More exhaustive
speci�cations are obviously possible� in particular� we have only tried to describe what
cache coherence is� not how it is achieved� The �rst class of properties states that if a
cache has an exclusive�modi�ed copy of some cache line� then all other caches should not
have copies of that line� The speci�cation includes the formula

AG
p��writable � �p��readable�

for each pair of caches p� and p� � Here� p��writable is given in a DEFINE statement and
is true when p� is in the exclusive�modi�ed state� Similarly� p��readable is true when p�

is not in the invalid state�
Consistency is described by requiring that if two caches have copies of a cache line�

then they agree on the data in that line�

AG
p��readable � p��readable � p��data � p��data�

Similarly� if memory has a copy of the line� then any cache that has a copy must agree
with memory on the data�

AG
p�readable � �m�memory�line�modi�ed � p�data � m�data�

The variable m�memory�line�modi�ed is false when memory has an up�to�date copy of
the cache line�

The �nal class of properties is used to check that it is always possible for a cache to
get read or write access to the line�

AGEF p�readable �AGEF p�writable

Finally� we describe two of the errors that we found while trying to verify the protocol�
The �rst error occurs in the single bus protocol� Consider the system shown in �gure ���
The following scenario is not excluded by the standard� Initially� both caches are invalid�
Processor P� obtains an exclusive�unmodi�ed copy� Next� P� issues a read�modi�ed�
which P� splits for invalidation� The memory M supplies a copy of the cache line to
P�� which transitions to the shared�unmodi�ed state� At this point� P�� still having an
exclusive�unmodi�ed copy� transitions to exclusive�modi�ed and writes the cache line�
P� and P� are now inconsistent� This bug can be �xed by requiring that P� transition to
the shared�unmodi�ed state when it splits the read�modi�ed for invalidation� The change
also �xes a number of related errors�

The second error occurs in the hierarchical con�guration shown in Figure ��� P��
P�� and P� all obtain shared�unmodi�ed copies of the cache line� P� issues an invali�
date transaction that P� and MA split� P� issues an invalidate that CA splits� The bus
bridge detects that an invalidate�invalidate collision has occurred� That is� P� is trying
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Fig� 	�� Two bus system

to invalidate P�� while P� is trying to invalidate P�� When this happens� the standard
speci�es that the collision should be resolved by having the memory agent invalidate P��
When the memory agent tries to issue an invalidate for this purpose� P� sees that there
is already a transaction in progress for this cache line and asserts a busy signal on the
bus� MA observes this and acquires the requester�waiting attribute� When a module has
this attribute� it will wait until it sees a completed response transaction before retrying
its command� P� now �nishes invalidating and issues a modi�ed�response� This is split
by MA since P� is still not invalid� However� MA still maintains the requester�waiting
attribute� At this point� MA will not issue commands since it is waiting for a completed
response� but no such response can occur� The deadlock can be avoided by having MA
clear the requester�waiting attribute when it observes that P� has �nished invalidating�

�� Directions for Future Research

While symbolic representations have greatly increased the size of the systems that can be
veri�ed� many realistic systems are still too large to be handled� Thus� it is important to
�nd techniques that can be used in conjunction with the symbolic methods to extend the
size of the systems that can be veri�ed� Since model checkers must be used by engineers
who are often not trained in formal methods� it is equally important to develop tool
interfaces that are easy to use and that can provide information about the correctness of
a circuit or protocol in a convenient format� In this section� we discuss several possible
approaches that might be used in solving these problems�



���� Develop compositional reasoning techniques

The �rst approach exploits the modular structure of complex circuits� Many �nite state
systems are composed of multiple processes running in parallel� The speci�cations for
such systems can often be decomposed into properties that describe the behavior of
small parts of the system� An obvious strategy is to check each of the local properties
using only the part of the system that it describes� If we can deduce that the system
satis�es each local property� and if we know that the conjunction of the local properties
implies the overall speci�cation� then we can conclude that the complete system satis�es
this speci�cation as well� For instance� consider the problem of verifying a communica�
tions protocol that is modeled by three �nite state processes� a transmitter� some type
of network� and a receiver� Suppose that the speci�cation for the system is that data
is eventually transmitted correctly from the sender to the receiver� Such a speci�cation
might be decomposed into three local properties� First� the data should eventually be
transferred correctly from the transmitter to the network� Second� the data should even�
tually be transferred correctly from one end of the network to the other� Finally� the data
should eventually be transferred correctly from the network to the receiver� We might
be able to verify the �rst of these local properties using only the transmitter and the
network� the second using only the network� and the third using only the network and
the receiver� By decomposing the veri�cation in this way� we never have to compose all
of the processes and therefore avoid the state explosion phenomenon�

There are a number of di�culties involved in developing a veri�er that can support
this style of reasoning� First� we must be able to check whether every system containing
a given component satis�es a given local property� Since it is often the case that the local
property is only true under certain conditions� we need to be able to make assumptions

about the environment of the component when doing the veri�cation� These assump�
tions� which represent requirements on other components� must also be checked in order
to complete the veri�cation� In addition� we must provide a method for checking that the
conjunction of certain local properties implies a given speci�cation� Several tools have
been developed that permit this type of reasoning to be automated ��� ��� ���� Cur�
rently� all of the research uses the temporal logic ACTL 
CTL without existential path
quanti�ers�� Hopefully� these methods can be extended to handle full CTL including ex�
istential path quanti�ers� This is important in order to be able to verify the existence

of executions that satisfy certain properties� For example� consider an network routing
protocol� Such a protocol might not guarantee that any given message will be delivered�
but it is a design error if the message cannot possibly be delivered� Research is also
needed on automated and semi�automated methods for decomposing speci�cations into
local properties�

���� Investigate the use of abstraction for reasoning about data paths

Veri�cation techniques based on abstraction appear to be necessary for reasoning about
concurrent systems that contain data paths� Traditionally� �nite state veri�cation meth�
ods have been used mainly for control�oriented systems� The symbolic methods make
it possible to handle some systems that involve nontrivial data manipulation� but the
complexity of veri�cation is often high� This approach is based on the observation that



the speci�cations of systems that include data paths usually involve fairly simple rela�
tionships among the data values in the system� For example� in verifying the addition
operation of a microprocessor� we might require that the value in one register is eventually
equal to the sum of the values in two other registers� In such situations abstraction can
be used to reduce the complexity of model checking� The abstraction is usually speci�ed
by giving a mapping between the actual data values in the system and a small set of
abstract data values� By extending the mapping to states and transitions� it is possible
to produce an abstract version of the system under consideration� The abstract system
is often much smaller than the actual system� and as a result� it is usually much simpler
to verify properties at the abstract level� It is possible to prove that any properties ex�
pressible in the logic ACTL that are satis�ed by the abstract system must also be true
of the actual system ��	� ����

In order to use this technique in practice� we must be able to construct the OBDD for
an abstract model directly without �rst building the complete model� While representing
an abstraction mapping with OBDDs is usually feasible� applying it to a speci�c model is
often di�cult� This problem can usually be avoided by starting with a high level descrip�
tion of the model 
e�g� a program in a hardware description language� and combining
the abstraction process with compilation� Frequently� by introducing additional OBDD
variables� we can produce a single OBDD that represents an entire class of models� By
performing the veri�cation on this single representation� it is possible to check whether
some property holds for the entire class� The complexity of verifying a class of models
in this manner is often comparable to the complexity of verifying a single element in
the class� This idea has been used to verify a pipelined arithmetic�logical unit with over
			 state bits and �	���� reachable states ��	�� The veri�cation times for this example
scaled linearly with circuit size� Additional work is needed to extend these ideas and to
determine how applicable they are to other types of systems�

���� Find ways of exploiting symmetry in circuits and protocols

Finite state concurrent systems frequently exhibit considerable symmetry� It is possible
to �nd symmetry in memories� caches� register �les� bus protocols� network protocols�
anything that has a lot of replicated structure� It should be possible to use symmetry to
reduce the size of the state space that must be explored by temporal logic model checking
algorithms� Unfortunately� there has been relatively little research in the past on exploit�
ing symmetry for this purpose� Most of the work on this problem has been performed
by researchers investigating the reachability problem for Petri nets ���� However� their
work does not consider general temporal properties nor the complications that are caused
by representing the state space using OBDDs� Recently� the use of symmetry in model
checking has been investigated by several authors ���� 	��

We brie�y outline the results on the use of symmetry obtained in ����� Let G be a group
of permutations acting on the state space S of the Kripke structure M � A permutation
� � G is said to be a symmetry of M if and only if it preserves the transition relation
R� G is a symmetry group for the Kripke structure M if and only if every permutation
� � G is a symmetry for M � If s is an element of S� then the orbit of s is the set

�
s� � ft j 
�� � G�
�s � t�g



From each orbit �
s� a representative 
denoted by rep
�
s��� is selected�
If M � 
S�R� L� is a Kripke Structure and G is a symmetry group acting on M � it

is possible to de�ne a new structure MG � 
SG� RG� LG� called the quotient model of M

and G in the following manner�

� The state set is SG � f�
s�js � Sg� the set of orbits of the states in S�
� The transition relation RG has the property that 
�
s��� �
s��� � RG if an only if

s�� s�� � R�

� The labeling function LG is given by LG
�
s�� � L
rep
�
s����

An atomic proposition is invariant under the action of a symmetry group G� if the set
of states labeled by the proposition is closed under the application of the permutations
in G� It can be proved ���� that if h is a formula in the temporal logic CTL� and all of
the atomic propositions in h are invariant under the symmetry group G� then h is true
in M if and only if it is true in the quotient model MG� Thus� it is possible to determine
the correctness of properties in the original model M by checking them in the quotient
model MG� Since in the quotient model MG there is only one representative from each
orbit� the state space SG will� in general� be much smaller than the the original state
space S� In ���� a technique is described that permits MG to be constructed without
actually building M �

This approach is currently being testing on a simple cache coherency protocol based
on the Futurebus� IEEE standard� Previous research on veri�cation of cache coherence
protocols has made the simplifying assumption that there is only one cache line in the
system ���� ���� This assumption is necessary because the OBDDs that occur in verifying
these protocols grow exponentially in the number of cache lines� By using symmetry�
however� it is possible to avoid this assumption and reason about systems with multiple
cache lines� Since di�erent cache lines behave almost independently� the ordering of the
cache lines is relatively unimportant and this results in a small quotient model� The
initial results that have been obtained are encouraging� The size of the OBDDs that are
needed to represent the model are� in some cases� reduced by an order of magnitude or
more�

���� Develop techniques for verifying parameterized systems

A number of methods have been proposed for extending model checking based veri�cation
to parameterized designs that have an arbitrary number of similar or identical processes�
Systems of this type are commonplace�they occur in bus protocols and network pro�
tocols� I�O channels� and many other structures that are designed to be extensible by
adding similar components� After using a model checking system to determine the cor�
rectness of a system con�gured with a �xed number of processors or other components� it
is natural to ask whether this number is enough in some sense to represent a system with
any number of components� The �rst researchers to tackle this question were Browne�
Clarke and Grumberg ����� who extended the logic CTL to a logic called indexed CTL�
This logic allows the restricted use of process quanti�ers as in the formula

W
i
f 
i�� which

means that the formula f holds for some process i� Restricting the use of these quan�
ti�ers and eliminating the next�time operator makes it impossible to write a formula



which can distinguish the number of processes in a system� By establishing an appropri�
ate relationship between a system with n processes and a system with n � � processes�
one can guarantee that all systems satisfy the same set of formulas in the indexed logic�
This method was used to establish the correctness of a mutual exclusion algorithm by
exhibiting a bisimulation relation between an n�process system and a ��process system�
and applying model checking to the ��process system�

A disadvantage of the indexed CTL method is that the bisimulation relation must be
proved �by hand� in an ad hoc manner� Finite state methods cannot be used to check it
because it is a map between states of a �nite�state process and a process with an arbitrary
number of states� A method without this disadvantage was proposed by Kurshan and
McMillan ���� and independently by Wolper and Lovinfosse ��	�� This method uses a
process Q to act as an invariant� as the number of processes increases� If P represents one
process in the system� then by showing that the possible executions of P composed withQ
are contained in the possible executions of Q� it is possible to conclude by induction that
Q adequately represents a system of any number of processes� Since both P composed
with Q and Q are �nite state processes� the containment relation 
typically some form of
language containment� can be checked automatically� This method is demonstrated in ����
by applying it to the Encore Gigamax cache consistency protocol� By slightly generalizing
the model of one processor in the system� it is possible to obtain an invariant process to
stand for any number of processors on a bus�

The induction technique has been generalized somewhat by Marelly and Grum�
berg ��	� to apply systems generated by context�free grammar rules� The extra expressive
power of these grammars may be of use for describing hierarchically structured systems�
such as multi�level caches� or wide area networks� The main problem that requires ad�
ditional research is that of constructing the invariant process� particularly �nding auto�
mated techniques for this purpose� Currently� the invariant process must be constructed
by hand� The counterexamples produced by the veri�er are helpful for guiding the con�
struction� but more powerful techniques would be useful�

���� Use partial orders to avoid the state explosion problem

Automatic veri�cation techniques that explore the entire state space of a system are
often hindered by an explosion of states resulting from the many possible permutations
of concurrent events� Several researchers ��� ��� ��� ��� have investigated veri�cation
methods that avoid this explosion by disregarding the order of independent events� Petri
nets are a natural model for this approach� since they make independence of events
explicit� but other concurrency models can be used� The behavior of a Petri net can
be characterized by an in�nite unwinding of the net into an acyclic structure called
an occurrence net � This structure is similar to the unwinding of a sequential program�
but retains the concurrency which is inherent in the net� In ���� it is shown that the
in�nite unwinding can be e�ectively terminated when it is su�cient to represent all
reachable states of the original net� even though there is no explicit representation of
the states� Since the possible permutations of concurrent events are not enumerated� the
occurrence net can be much smaller than the state graph of the system� This technique
appears to be most promising for applications to asynchronous circuits and protocols�
Preliminary experiments with a prototype veri�er based on this approach have shown



that the occurrence net method can be exponentially more e�cient than state space
enumeration�

���	 Investigate techniques for verifying systems with real
time constraints

Many circuits and protocols have real�time constraints� Such systems are particularly
di�cult to verify because their correctness depends on the actual times at which events
occur� in addition to the other properties that a�ect the correctness of systems without
such constraints� There has been relatively little research on automatic veri�cation tech�
niques that are appropriate for this important class of �nite state systems� Tools that
are suitable for the veri�cation of such systems are just beginning to be developed ����

The real�time model that seems most useful in practice is based on discrete time and
represents the passage of time with clock ticks� Burch ���� has investigated the relation�
ship between this model of time and various continuous time models� He has proved that
this model is a conservative approximation of the more realistic continuous time model�
Since the complexity of automatic veri�cation techniques based on continuous time mod�
els is much greater than for discrete time models� this should make it possible to handle
much larger real�time systems�

���� Develop tool interfaces suitable for circuit and protocol designers

Since model checking avoids the construction of complicated proofs and provides a coun�
terexample trace when some speci�cation is not satis�ed� circuit designers should �nd
this technique much easier to learn and use than hardware veri�cation techniques based
on automated theorem proving or proof checkers� Several companies have already devel�
oped model checkers for languages that are widely used in industry like VHDL� Verilog�
SDL� and Lotos�

One problem with the current system is how to make the speci�cation language
more expressive and easier to use� The ability to express time�bounded properties of syn�
chronous circuits is important in many applications� and extensions to SMV have already
been implemented to allow veri�cation of such properties ���� �� in the case of discrete
time� It may be possible to develop better ways of representing circuits and protocols
by using continuous time models� Such models provide a more precise speci�cation of
the timing characteristics of the circuit and� therefore� generate more accurate results�
Model checking algorithms for continuous time are discussed in ���� Unfortunately� current
algorithms have high complexity and are not very useful in practice�

Finally� some type of timing diagram notation may be more natural for engineers
than CTL� It may be possible either to translate timing diagrams systematically into
temporal logic formulas or to check them directly using an algorithm similar to the
one used by the model checker ����� A similar problem arises in �nding a good way to
display the counterexamples that are generated when a formula is not true� This feature
is invaluable for actually �nding the source of a subtle error in a circuit design� However�
current model checkers just print out a path in the state transition graph that shows
how the error occurs� It is easy to imagine more perspicuous ways of displaying this
information�
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