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ABSTRACT
This paper presents a procedure for the verification of multi-process
systems based on considering a series of underapproximated mod-
els. The procedure checks models with an increasing set of al-
lowed interleavings of the given set of processes, starting from a
single interleaving. The procedure relies on SAT solvers’ ability
to produce proofs of unsatisfiability: from these proofs it derives
information that guides the process of adding interleavings on the
one hand, and determines termination on the other. The presented
approach is integrated in a SAT-based Bounded Model Checking
(BMC) framework. Thus, a BMC formulation of a multi-process
system is introduced, which allows controlling which interleavings
are considered. Preliminary experimental results demonstrate the
practical impact of the presented method.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model checking; F.3.1
[Specifying and Verifying and Reasoning about Programs]: Me-
chanical verification

General Terms
Algorithms, Reliability, Verification

Keywords
Abstraction, Bounded model checking, SAT proofs, Software Ver-
ification, Underapproximation-Widening
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1. INTRODUCTION
We present a procedure for model checking multi-process sys-

tems based on considering a series of underapproximated models.
The procedure checks models with an increasing set of allowed in-
terleavings of the given set of processes, starting from a single in-
terleaving. Only in the worst case, the procedure attempts to verify
a model with the same amount of concurrency as the original one
has.

The procedure considers underapproximations with increasing
amount of concurrency until one of two possible termination con-
ditions holds:

• The procedure finds a counterexample: in this case, since
the considered model is an underapproximation of the origi-
nal one, it concludes that the property is violated.

• The procedure proves that all traces in the underapproxi-
mated model satisfy the property, and the proof does not rely
on the underapproximation. In this case, the proof can also
serve as a proof for the original model. Hence, the procedure
concludes that the property holds.

The Underapproximation-Widening (UW) of the model (widen-
ing is the term we use for ‘adding behaviors’) progresses by adding
concrete behaviors, and this way removes ‘false positive’ results.
Unlike Abstraction-Refinement (AR), which is based on iterations
of overapproximation and narrowing (removing spurious behav-
iors) and can be fully automated [20, 10, 11, 3, 22, 4], we are not
aware of a completely automated UW procedure for model check-
ing of either a single or multiple processes. The reason for the
difference is that refinement of overapproximated models in AR is
easier to guide, because it can rely on spurious counterexamples
generated by the model checker. Indeed, work on counterexample-
guided AR [13, 11] showed how to gradually remove spurious
counterexamples by investigating the so called ‘failing state’, i.e.,
the first state in the spurious trace that cannot be simulated on the
concrete model. Such guidance does not naturally exist in the UW
framework, because there is no counterexample to show what went
wrong.

A recent investigation into deriving proofs of unsatisfiability from
state-of-the-art Boolean satisfiability solvers (SAT solvers) [2, 9]



enables us to design a fully automated UW process. SAT solvers
are used in model checking to verify the validity of a property. In
particular, we can check whether a generated proof of unsatisfiabil-
ity – which is a proof of the validity of the property – relies on the
underapproximation, and if so, we can guide the widening process
according to the variables that participate in the proof. Both of the
above references [2, 9] exploit proofs of unsatisfiability in an AR
process, in contrast to this paper.

To the best of our knowledge, the presented UW approach is
the first underapproximation model checking algorithm that is fully
automated. There are several approaches that use sequences of
underapproximations in the context of Binary Decision Diagrams
(BDDs) based model checking, in order to keep the size of the
BDDs small [25, 26, 5], but they include no explicit notion of au-
tomatic widening: the sequence is given a-priori by the user. Our
method, on the other hand, computes the initial underapproxima-
tion and successively widened underapproximations automatically.

Since we generate underapproximations by limiting the number
of interleavings of concurrent components, our work is aimed at
multi-process systems. Another technique, also addressing the ex-
ponential blow-up due to interleavings, is partial-order reduction
[17, 28, 24, 1, 18, 16]. The way we compute underapproximations
is similar to the way partial-order techniques compute a reduced
system. However, partial-order reduction does not work iteratively:
it simply generates a restricted model that is guaranteed to have
the same temporal properties over visible behavior (i.e. properties
expressed by the global variables of the system, disregarding vari-
ables that are local to the processes) as the original model. Our
technique is more aggressive than partial-order reduction, since it
considers models with fewer interleavings. In more fortunate cases
it finds errors in the underapproximated model, which reflects a
smaller state space and, hence, it is typically easier to analyze.
Moreover, we use information derived from the proof of unsatisfia-
bility to decide which additional behaviors to introduce at the next
iteration. We benefit from the fact that a bug in a multi-process sys-
tem typically corresponds to multiple counterexamples and every
counterexample corresponds to a single interleaving. The proposed
proof-guided approach for adding behaviors often results in under-
approximated models that exhibit the error but include much fewer
interleavings than the original model.

Since our approach relies on the ability of SAT solvers to gener-
ate proofs of unsatisfiability, it is incorporated in a Bounded Model
Checking (BMC) [8, 6] framework. BMC is an iterative proce-
dure that checks the validity of a property for traces of increas-
ing length. At each iteration the property is checked for traces
of fixed length by encoding them as a Boolean formula. A SAT
solver is used to determine satisfying assignments of such a for-
mula, which represent violations of the property. We use Under-
approximation/Widening to improve this verification step. Since
BMC is only able to prove a property for bounded executions, it
is mainly aimed at property falsification, i.e., finding counterexam-
ples. Our approach extends this technique for the case of multi-
process systems.

The remainder of the paper is organized as follows. Section 2
presents preliminaries. Section 3 describes the Underapproxima-
tion-Widening algorithm for the BMC/SAT framework. Section
4 describes how to apply the algorithm to multi-process systems.
Section 5 presents experimental results, and Section 6 gives con-
clusions.

Figure 1: The processes of a multi-process system. Each pro-
cess is given as a control-flow graph in which nodes are control
points and edges are statements.

2. PRELIMINARIES

2.1 Multi-Process Systems
We consider asynchronous multi-process systems, which can be

defined as the composition of N processes P1, . . . ,PN according
to the standard interleaving semantics. Processes communicate by
reading and writing to shared variables that are accessible to all
processes.

Processes are modeled in the guarded command framework [14].
Each process can be expressed as a control-flow graph: nodes rep-
resent control points, edges represent transitions (or statements).
At every control point, there can be none, one, or multiple enabled
transitions. Each transition has a guard associated to it: intuitively a
transition is enabled if the condition that guards it is true in the cur-
rent state and the process to which it belongs is at the control point
corresponding to its source. Consider, for example, the following
code fragment:

if

:: b > 1 -> a = 1;

:: b > 2 -> a = 2;

fi;

At the initial control point, if the current state is such that b > 2,
then both transitions are enabled, because their guards (the condi-
tions appearing to the left of ’->’) are true. In this case, one of the
two transitions is selected non-deterministically. If, on the other
hand, b ≤ 1, no transition is enabled and the process stops until,
possibly, b is updated by another process. We say that a process is
enabled in a state s if at least one of its transitions is enabled in s.

EXAMPLE 1. Figure 1 shows the control-flow graphs of three
simple processes: A, B, and C. Each has a single transition. The
guards of all transitions are TRUE, thus only the process’ control
point determines whether a transition is enabled or not. For in-
stance, the transition labeled a is enabled if and only if process A is
at control point Pa0. Figure 2 (top) presents the control-flow graph
of the multi-process system consisting of processes A, B, and C.
The top part of the figure includes all possible interleavings. Note
that, in the initial control point (upper left node) all transitions are
enabled since all processes are in their initial control points. Once
a transition a is taken, a becomes disabled and only transitions b
and c remain enabled. The middle and bottom control-flow graphs
in Figure 2 present two possible underapproximations of the orig-
inal control-flow graph, where only the marked transitions can be
taken.

2.2 Partial and Full Expansions
Although, in general, it is necessary to consider all possible inter-

leavings to verify the correctness of a multi-process system, there
has been a lot of work on reducing the number of interleavings that



Figure 2: All interleavings of a multi-process system and two
underapproximations, given as control-flow graphs.

are actually considered. This section introduces some basic termi-
nology.

For a given state of a multi-process system, we distinguish be-
tween full expansion and partial expansion steps:

• A full expansion generates the next states for all enabled tran-
sitions.1

• A partial expansion generates the next states for a subset of
all enabled transitions. We will consider only subsets that
correspond to all enabled transitions of one process.

In this paper, therefore, full expansions correspond to allowing
all enabled processes to execute next and partial expansions corre-
spond to fixing one process that is to execute next — each of the
enabled transitions of this process may be taken.

The technique presented in this paper uses partial expansion steps
to define underapproximations. Restricting the set of transitions
that can be executed at each state defines a reduced model that dis-
allows some of the interleavings that are allowed in the original
model. Another technique based on partial and full expansions is
partial-order reduction (POR) [15]. Unlike our approach, however,
partial-order reductions build a reduced model which agrees with
the original model on both property verification and refutation. As
mentioned earlier, the proposed UW approach is much more ag-
gressive than partial-order reduction in using partial expansions. In
particular, each underapproximation is guaranteed to agree with the
original model only on property refutation.

1Note that each process may have (multiple) enabled transitions –
each of the transitions in the union of the enabled transitions of all
processes may be executed next.

2.3 SAT and Proofs of Unsatisfiability
We assume that the reader is familiar with Boolean satisfiability

(SAT) and formulas in conjunctive normal form (CNF formulas).
Here we mention several well-known terms and observations that
we will use to justify the correctness of our method.

2.3.1 Underapproximation of CNF Formulas
Let ϕ be a CNF formula and let ϕ′ be a CNF formula obtained

from ϕ by adding to it additional clauses, i.e. ϕ′ = ϕ∧∧n
i=1(ci)

where c1, . . . ,cn are arbitrary clauses referring to ϕ’s variables. Then
it is easy to see that

ϕ is unsatisfiable→ ϕ′ is unsatisfiable (1)

Notice that the other direction does not hold. That is, it is pos-
sible that ϕ is satisfiable while ϕ′ is not due to the additional con-
straints c1, . . . ,cn. ϕ′ can be thought of as an underapproximation
of ϕ (or ϕ as a widening of ϕ′) since the set of satisfying interpre-
tations to ϕ′ is a subset of the satisfying interpretations to ϕ. If
ϕ′ underapproximates ϕ, every satisfying interpretation to the for-
mer, is a satisfying interpretation to the latter, or, more formally,
for every interpretation α it holds that:

α |= ϕ′ → α |= ϕ (2)

assuming the added clauses only refer to ϕ’s variables.

2.3.2 Resolution Proofs and Unsatisfiable Cores
A key notion in our discussion is the concept of resolution proofs.

When a complete SAT solver2 concludes that there is no satisfying
assignment to a given instance, its internal steps for reaching this
conclusion can be used to construct a resolution proof, i.e. a se-
quence of deduction steps based on the rule

a1∨ . . .∨an∨β b1∨ . . .∨bm ∨ (¬β)
a1∨ . . .∨an∨b1∨ . . .∨bm

where a1, . . .an,b1, . . .bm,β are literals. Modern SAT solvers such
as zChaff can output such a sequence that serves as an indepen-
dently checkable proof of unsatisfiability.

The sequence of deduction steps can be represented as a directed
acyclic graph (DAG), where the nodes are clauses and there is a
directed edge from node c to c′ iff the clause c participates in the
deduction of c′. Hence, every node is either a root or has two in-
coming edges. The root nodes are clauses from the original for-
mula. The internal nodes represent clauses that are deduced by the
SAT solver at run-time (typically these are deduced when the SAT
solver detects a conflict due to a bad assignment, and are therefore
known as conflict clauses).

An unsatisfiable core of an unsatisfiable CNF formula ϕ is a sub-
set of its clauses that is unsatisfiable. Let S be the set of clauses in
a given unsatisfiable CNF formula ϕ and let S be the set of root
nodes in the DAG corresponding to a resolution proof for the un-
satisfiability of ϕ. Since the conjunction of the clauses in the set S
is unsatisfiable by itself, S is an unsatisfiable core of ϕ. There are
three observations regarding S that are important for our discussion:

1. S is equal to or a subset of S (S ⊆ S). Typically the SAT
solver concludes that an instance is unsatisfiable without us-
ing all of its constraints. This is possible because some of the
constraints may be redundant.

2A complete SAT solver is a SAT solver that is guaranteed to find,
in a finite amount of time, a satisfying assignment if one exists.



2. By Equation 1, every CNF formula ϕ′, with a set of clauses
S′ such that S ⊆ S′, is unsatisfiable, and S is an unsatisfiable
core of ϕ′ as well. More formally:

THEOREM 1. Let ϕ and ϕ′ be two unsatisfiable CNF for-
mulas such that the set of clauses of ϕ is contained in the set
of clauses of ϕ′. Then if S is an unsatisfiable core of ϕ, it is
also an unsatisfiable core of ϕ′.

PROOF. S is contained in the set of ϕ’s clauses and hence
also in set of clauses of ϕ′. Therefore, since S is unsatisfiable,
it is an unsatisfiable core of ϕ′.

In the general case, the other direction of Theorem 1 does not
hold. However:

THEOREM 2. Let S
′
be an unsatisfiable core of a formula

ϕ′ = ϕ∧∧n
i=1(ci), and assume that for all 1≤ i≤ n, ci �∈ S

′
.

Then ϕ is unsatisfiable and S
′

is an unsatisfiable core of ϕ.

PROOF. S
′

is contained in the set of clauses of ϕ and is
unsatisfiable. Therefore, by Equation 1, ϕ is unsatisfiable
and S

′
is an unsatisfiable core of ϕ.

3. The set S is not unique. In particular, there can be more than
one proof of unsatisfiability, each of which can result in a dif-
ferent set of root nodes. It is an NP-hard problem3 to find the
minimum unsatisfiable core, and indeed SAT solvers do not
attempt to find such minimum cores. Rather, they produce
a proof that reflects the internal steps that led them to this
conclusion. These steps are determined by various heuristics
that typically do not find the shortest proof or the minimum
unsatisfiable core.

2.4 SAT-Based Bounded Model Checking
SAT-Based Bounded Model Checking (BMC) is a procedure that

given a model M, a Linear-time Temporal Logic (LTL) formula ϕ,
and a bound k, checks whether M |=k ϕ, i.e, if all possible traces
of M of length k satisfy ϕ (cf. Figure 3). The procedure check
constructs a propositional formula that is satisfiable if and only if
M �|=k ϕ. The formula can be expressed as the conjunction of two
sub-formulas:

• bmcM ,k whose satisfying assignments correspond to the pos-
sible execution traces of length k of model M ;

• violatesϕ whose satisfying assignments correspond to the set
of traces of length k that violate the property ϕ.

Their conjunction represents the bounded traces of length k of
the model which violate the property. This formula is then given to
a SAT solver:

• if the solver returns ‘Satisfiable’, it implies that the prop-
erty does not hold (in this case the satisfying assignment
serves as a counterexample to the proposition M |= ϕ);

• if, on the other hand, it returns ‘Unsatisfiable’, we can
conclude that M |=k ϕ, although we cannot conclude that
M |= ϕ because there might be a violation of length greater
than k.

Thus, in the latter case, k is increased and the procedure is re-
peated. BMC terminates either when an error is found, the Com-
pleteness Threshold CT [19, 12] is reached or, what is more com-
mon, the problem becomes intractable. Therefore BMC is mainly
used for falsification rather than for verification.
3To be more accurate, it is Σp

2 -complete problem, which is the same
complexity as one alternation QBF.

main (M ,ϕ) {
k = 0

repeat forever:

if check (M , ϕ, k) = ‘counterexample’:

return ‘property fails (M �|= ϕ)’
k = k + 1

}

check (M , ϕ, k) {
if SAT(bmcM ,k ∧ violatesϕ) = ‘Satisfiable’:

return ‘counterexample’

else

return ‘valid’

}

Figure 3: Bounded Model Checking algorithm. At each itera-
tion of the loop of the main procedure, check is invoked to test
if there exists a counterexample of length k.

3. BOUNDED MODEL CHECKING USING
UNDERAPPROXIMATION-WIDENING

3.1 Underapproximation-Widening
The Underapproximation-Widening (UW) procedure proves or

disproves a property by considering a series of underapproxima-
tions of a given model. The procedure uw (see Figure 4) consists of
a loop: at each step, an underapproximation of the original model
is considered and the validity of the property on the underapprox-
imated model is checked (verify procedure) with two possible out-
comes:

• a counterexample is found. Since the counterexample is a
valid execution of the underapproximated model, it must also
be a valid execution of the original model and therefore can
be used to disprove the property under consideration, and the
procedure terminates.

• no counterexample exists. It is then necessary to generate a
proof that the underapproximated model satisfies the prop-
erty (proof of procedure). Given such a proof, two cases are
possible:

– the proof depends on the underapproximation itself, i.e.,
it does not apply to the original model. In this case, in-
formation from the proof can be used to determine a
new underapproximated model (widen procedure), and
the procedure is repeated.

– the proof does not depend on the underapproximation
itself, i.e., it applies to the original model. In this case,
the proof can be used to show that the property holds
on the original model, and the procedure terminates.

The presented Underapproximation-Widening procedure can be
considered a dual approach to the Abstraction-Refinement (AR)
technique. However, while all model checkers are able to pro-
duce a counterexample if the property is violated, most approaches
do not produce a formal proof that the model does not violate the
property. This limits the applicability of the Underapproximation-
Widening algorithm to approaches that are able to produce such
proofs. Hence, in this paper, we apply this algorithm to SAT-based
Bounded Model Checking.



uw (M , M0) {
i = 0

while true:

if verify (Mi, ϕ):
proof = proof of (Mi, ϕ);
if is valid for (proof, M ):

return VALID;

else

Mi+1 = widen (Mi, proof);

i++;

else

return INVALID;

}

Figure 4: Underapproximation-Widening algorithm. The uw
procedure receives as arguments a model M and an initial un-
derapproximation M0. At each iteration of the loop, an un-
derapproximated model is analyzed, which either violates the
property, or can be proven to be correct. The proof is used to
either terminate or widen the model.

3.2 A Framework for BMC using Underap-
proximation-Widening

The Underapproximation-Widening (UW) procedure described
above can be used in the framework of Bounded Model Checking
to improve the verification for a given bound.

This section presents a general framework that can be instanti-
ated with various methods to perform underapproximation. This
framework is the basis for the procedure introduced in the next
section that can be used to improve Bounded Model Checking of
multi-process systems, by checking underapproximated models with
an increasing set of allowed interleavings of the given processes,
starting from a single interleaving.

Bounded Model Checking consists of a main loop which per-
forms the verification for an increasing bound k (procedure main in
Figure 3), and a procedure that performs the verification for a given
bound k (procedure check in Figure 3). The main loop is repeated
until an error is detected or the problem becomes intractable.

The Underapproximation-Widening procedure is used to perform
each of the verification steps for a given bound k more efficiently.
In particular, for a given bound k, procedure main uw calls the pro-
cedure check uw (in Figure 5), which tries to prove or disprove the
property M |=k ϕ by means of a finite sequence of underapproxi-
mations of the original model M .

The set P in procedure check uw denotes the set of additional
clauses that are used to define an underapproximation. The set
P is initialized with a finite set of clauses that may depend on
the model M and the bound k. The formula bmcM ,k is deter-
mined as usual, however, the SAT solver is given the conjunction
of bmcM ,k ∧

∧
ci∈P(ci), which encodes a subset of the bounded

traces of the original model M , and violatesϕ, which encodes the
bounded traces that violate the property.

If the SAT solver returns ‘Satisfiable’, the procedure returns
‘counterexample’. Otherwise, based on previous work [2, 9],
we derive an unsatisfiable core S of the SAT instance, i.e., a sub-
set of its clauses that are by themselves unsatisfiable. The set of
clauses in the unsatisfiable core corresponds to the roots of the
proof of unsatisfiability generated by the SAT solver. From this
core, we compute ψ, the set of clauses of P that belong to the un-
satisfiable core of the formula. If the set ψ is empty, the procedure
returns ‘valid’; otherwise one of the clauses belonging to ψ is
removed from P: we call this process widening, because at the next

main uw (M ,ϕ) {
k = 0

repeat forever:

if (check uw (M , ϕ, k) = ‘counterexample’:

return ‘property fails (M �|= ϕ)’
k = k + 1

}

check uw (M , ϕ, k) {
P = initial clauses (M , k)
repeat forever:

if SAT(bmcM ,k ∧
∧

ci∈P(ci)∧ violatesϕ) =

‘Satisfiable’:

return ‘counterexample’

S = unsatisfiable core

ψ = S∩P
if ψ = /0:
return ‘valid’

Remove from P a clause in ψ
}

Figure 5: Underapproximation-Widening algorithm. The proce-
dure check uw considers a set of underapproximations of model
M until it finds a counterexample or it is able to prove the prop-
erty without relying on the underapproximation.
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Figure 6: ψ1 . . .ψ3 are sets of clauses of P that belong to the
unsatisfiable core at each step. The boxes denote the initial set
of clauses in P. The widening step selects a single clause from
each unsatisfiable core (denoted by a black dot) and removes it
from the set P. A proof in step i cannot rely on clauses removed
from P in previous steps.

iteration a formula that represents additional behaviors is going to
be considered. The procedure is repeated until one of the previous
termination conditions becomes true.

The progress of check uw is depicted schematically in Figure 6.
This figure shows three successive iterations of widening and the
clauses that are removed at each step (see caption).

3.3 Correctness and Termination

PROPOSITION 3. If the procedure check uw(M ,ϕ,k) returns,
it returns ‘valid’ if and only if M |=k ϕ.

PROOF. (→) check uw returns ’valid’ only if for the current set
P, the formula bmcM ,k ∧

∧
ci∈P(ci)∧ violatesϕ is unsatisfiable and

none of the clauses in P belong to the unsatisfiable core of the for-
mula. By Theorem 2, the formula bmcM ,k ∧ violatesϕ must be un-
satisfiable, and, therefore, M |=k ϕ.

(←) If M |=k ϕ holds, the formula bmcM ,k ∧ violatesϕ must be
unsatisfiable. By Equation 1, the formula bmcM ,k ∧

∧
ci∈P(ci)∧

violatesϕ is also unsatisfiable for any set of clauses P. Therefore,
the procedure cannot return ‘counterexample’, because this only
occurs if, for some set P, the previous formula is satisfiable. Since
the procedure can only return ’counterexample’ or ’valid’, the pro-
cedure must have returned ’valid’.



PROPOSITION 4. The procedure check uw(M ,ϕ,k) always ter-
minates.

PROOF. In each iteration of its main loop, the procedure check uw
either returns ‘counterexample’ if the formula is satisfiable, re-
turns ‘valid’ if none of the clauses in P belongs to the unsatisfi-
able core of the formula, or removes one clause from P and repeats
the loop.

Since P is initialized with a finite set of clauses and at each step
the procedure either returns or removes one clause from P, the pro-
cedure must terminate after a finite number of iterations. Specif-
ically, if the set P is empty, the body of the loop corresponds to
checking the property ϕ on the original model M: if the property
does not hold, the corresponding formula is satisfiable and the pro-
cedure returns ‘counterexample’; otherwise the formula is un-
satisfiable and, since the set P is empty, the set ψ must be empty as
well and the procedure returns ‘valid’.

4. UNDERAPPROXIMATION-WIDENING
FOR MULTI-PROCESS SYSTEMS

This section describes how the Underapproximation-Widening
loop can be used to improve Bounded Model Checking of a multi-
process system. In particular, we will define a family of underap-
proximations obtained by limiting the allowed interleavings of the
different processes. The work presented here represents one possi-
ble way of defining underapproximations: it is however of particu-
lar interest since Bounded Model Checking is often unable to cope
well with concurrent systems. Other families of underapproxima-
tions can be defined, for both a single or multiple processes, but
they are beyond the scope of this paper.

4.1 Modeling a Multi-Process System
We formalize the model M of a multi-process system as follows:

M = 〈S, I,P ,V 〉 (3)

where

• S is a set of states;

• I ⊆ S is a set of initial states;

• P = {P1, . . . ,PN} is a set of processes.

• V = {v1, . . . ,vm} is a set of variables.

The set S is determined as follows. Given the set of variables V ,
let D1, . . . ,Dm be their domains. Then S = D1× . . .×Dm, i.e., S
is the cross-product of the domains of the variables, and represents
all the possible states. Note that not every state in S is necessarily
reachable from one of the initial states in I.

Each process itself is a tuple:

Pi = 〈Ti, pci,ni,〈ati,1, . . . ,ati,ni 〉 〉 (4)

where:

• Ti : S×S→{0,1} is the transition relation for process i, i.e.,
Ti(s,s′) holds if and only if s′ is a successor of s obtained by
executing a transition of process Pi;

• pci ∈V is a special variable called the program counter whose
domain is the set of control points in process Pi;

• ni ∈N is the number of control points in process Pi;

• ati, j : S→{0,1} is a predicate over the set of states that holds
for a state s if and only if process Pi is at control point j in
state s, i.e., pci has the value j in s.

In this model, we do not discriminate between local and global
variables; local variables are those variables that are syntactically
accessible only by one process. Such distinction is not necessary
for our approach, and a model that makes such a distinction can
always be translated into a model as we defined it by variable re-
naming. Moreover, we do not require for the transition relations Ti
to be total, i.e., a state s does not need to have a successor. How-
ever, we assume that processes have control points: in the case of
models of concurrent software, control points can correspond to the
nodes of a control-flow graph.

4.2 Bounded Model Checking for Multi-Process
Systems

In order to perform Bounded Model Checking, we need to de-
fine the formula bmcM ,k∧violatesϕ that encodes all possible coun-
terexamples of length k for model M . For simple invariant proper-
ties, the formula has the form:

I(s0)∧T (s0,s1)∧ . . .∧T (sk−1,sk)∧F(sk) (5)

where

• I(s0) enforces the first state to be one of the initial states;

• T (sh,sh+1) constraints consecutive states to be related by the
transition relation T ;

• F(sk) is derived from the property being checked and asserts
that the final state violates the property.

The satisfying assignments to Formula (5) are those valid bounded
traces of model M – i.e., the first state of the trace is an initial state
and each pair of successive states is related by the transition relation
– that violate the property.

A similar formula can be constructed in order to check a sys-
tem with respect to an LTL property: F(sk) is then replaced by a
more complex formula [7], which may also involve the intermedi-
ate states. The construction introduced in this section is concerned
with limiting the traces of the model, and is applicable to the veri-
fication of LTL formulas as well.

The model as described in Section 4.1 does not directly define
the transition relation T for the whole model, but only the transition
relations Ti for each of the processes. It is possible to compute the
transition relation T from the transition relations Ti in the following
way:

T (s,s′) = ∃1≤ i≤ N : Ti(s,s′)

=
N∨

i=1

(ps = i∧Ti(s,s′)) (6)

where ps is a free variable that can assume any value between 1
and N.

The meaning of this formula is that s′ is a successor of s, if there
exists a value for ps such that s′ is a successor of s when process Pps
is executed. The variable ps, called the process selector, indicates
which process is going to execute next. In Equation (6), since there
are no constraints on the values ps can assume, every interleaving
is possible. In order to build the transition relation for a model that
only contains a subset of the interleavings, we place restrictions on
the values that the variable ps can assume. This will be explained
in the next two subsections.



4.3 Introducing the Predicates
We want to define underapproximations by limiting the amount

of interleavings in a multi-process system. To do so, we will use the
concepts of partial and full expansion introduced in Section 2.2.

At each state, we have two possibilities:

• perform a full expansion step;

• perform a partial expansion step that corresponds to the tran-
sitions of a single process4.

Therefore, for each state, we need to determine what kind of step
we want to perform. This information will define an underapprox-
imation of the original model: for instance, if for every state we
perform a full expansion, we obtain the original model.

However, a simple mapping from each state to the particular type
of step that we need to perform would be too expensive to manage
since there is a large number of potentially reachable states.

Instead, we will use only part of the information from the current
state to make the decision: in particular, we will only consider the
current control points of the different processes. However, if the
system is made of n processes with m control points each, there are
still mn possible combinations: this is clearly not going to scale to
large systems. Therefore, instead of considering all combinations,
we will use the following strategy:

• each control point is associated with a predicate: the predi-
cate being true represents the fact that the process it belongs
to cannot be used for a partial expansion;

• for any given state, if none of the control points can be used
for a partial expansion, i.e., all predicates corresponding to
the current control points of each process are true, then a full
expansion is performed;

• if at least one of the processes can be used for a partial ex-
pansion, i.e., the predicate associated with its current control
point is false, then a partial expansion is performed that ex-
pands the transitions of the first process according to some
predefined fixed order that can perform a partial expansion.

Intuitively, the predicate associated with a given control point
being true means that the statements of the corresponding pro-
cess at that specific location should be interleaved with other pro-
cesses. This allows encoding an underapproximation using only
m×n boolean predicates.

Formally, given a model M , we introduce a set of predicates pi, j
for every i and j such that 1 ≤ i≤ N and 1≤ j ≤ ni. Predicate pi, j
is associated with control point j of process Pi. Let’s assume that in
state s each process Pi is at some control location j. Let P̂ (s) be the
set of processes that at state s are enabled5 and their corresponding
predicate pi, j is FALSE. The successors of state s are limited as
follows:

• if P̂ (s) is not empty, then only one of the processes from
P̂ (s) is expanded, i.e. a partial expansion is performed. Let
the transition relation of the underapproximated model be T′:
then ∀s′T ′(s,s′) = Ti(s,s′) must hold for some i such that
Pi ∈ P̂ (s).

4A partial expansion can be defined to expand any subset of the
enabled transitions, however, for simplicity, we chose to consider
only partial expansions that expand all enabled transitions of a sin-
gle process.
5A process is enabled in s, if it has at least one successor state for
s.

• otherwise, P̂ (s) is empty and ∀s′ T ′(s,s′) = T (s,s′) must
hold, i.e., all enabled transitions at s may execute.

As described in Section 3, the underapproximation is determined
by a set of clauses P. In our formulation of UW for multi-process
systems, the initial value for the set P will contain a negative unit
clause (¬pi, j) for each of the predicates corresponding to control
points in model M . When a clause is removed from the set P, the
corresponding predicate is left unconstrained, i.e., it can be either
TRUE or FALSE.

It can be shown that the formula we are constructing is equiv-
alent to the formula corresponding to the original model M if all
predicates are left unconstrained. Intuitively, if all predicates are
unconstrained, it is possible to perform both a partial and a full ex-
pansion: since the original model always performs a full expansion
and the set of next states corresponding to a partial expansion is a
subset of the ones corresponding to a full expansion, they allow the
same behaviors.

4.4 The Transition Relation of the Underap-
proximated Model

We now formalize the transition relation T ′. We construct T ′
in a way that enables us to control the amount of interleavings it
represents, by limiting the values the process selector variable ps
can assume.

The strategy described in the previous section can be formulated
by adding a predicate valid(s, ps) to the formula for the transition
relation. This predicate must be true for all values of ps if, at state
s, all enabled processes are at control points whose predicates are
true. Otherwise, it must be true only for a single value of ps, such
that Pps is at a control point whose predicate is false and at least
one transition of Pps is enabled. Therefore, the formula for T ′,
presented below, depends on whether the predicates pi, j are true or
false.

We first define a predicate enabledi : S→ {0,1} over the states
such that enabledi(s) is true if and only if there exists a transition
in Ti from state s to an arbitrary state s′:

enabledi(s) = ∃s′ ∈ S : Ti(s,s′) (7)

We then define partiali(s) as:

partiali(s) = enabledi(s)∧ (∀1≤ j ≤ ni : (ati, j →¬pi, j))

= enabledi(s)∧
⎛
⎝ ni∧

j=1

(ati, j→¬pi, j)

⎞
⎠ (8)

which is true if process Pi is enabled and at a control point whose
predicate is false, i.e. partiali(s)⇒ Pi ∈ P̂ (s).

If there is only one process in P̂ (s), then it is sufficient to as-
sert that partialps(s) holds, i.e., that process Pps, whose transi-
tions are going to be taken, can be partially expanded (the corre-
sponding pps, j is false). However, this is not sufficient for a state s
where multiple enabled processes are at control points whose pred-
icates are false. Therefore, we introduce an additional predicate
first partiali(s) defined as follows:

first partiali(s) = partiali(s)∧ (∀1≤ i′ < i : ¬partiali′(s))

= partiali(s)∧
(

i−1∧
i′=1

¬partiali′(s)

)
(9)

which is guaranteed to be true for at most one of the processes.



Finally, we need to discriminate between the case where, at state
s, there exists at least one enabled process that can be partially
expanded, and the case where all enabled processes must be ex-
panded. Therefore, we define:

exists partial(s) = ∃1≤ i≤ N : partiali(s)

=
N∨

i=1

partiali(s) (10)

We can now write the predicate that constrains ps as:

valid(s, ps) = (exists partial(s)→ first partialps(s)) (11)

Note that, if exists partial(s) holds then valid(s, ps) holds for ex-
actly one value of ps. On the other hand, if exists partial(s) does
not hold, then valid(s, ps) is true for every value of ps. The latter
is exactly the case where full expansion is performed.

The formula for the transition relation T ′(s,s′) can be expressed
as:

T ′(s,s′) = ∃ps

(
valid(s, ps)∧

N∨
i=1

(ps = i∧Ti(s,s′))

)
(12)

It is now possible to use the expression obtained for the transition
relation to write the formula that expresses all bounded traces of the
reduced model:

I(s0)∧T ′(s0,s1)∧ . . .∧T ′(sk−1,sk) (13)

Notice that this formula, if the predicates are left unconstrained,
corresponds to all the bounded traces of model M . This formula
will be conjoined during the execution of procedure check uw (cf.
Section 3) with the clauses in P. Initially, the set P will contain a
negative unit clause for each of the predicates corresponding to the
control points of M . The clauses in P constrain these predicates to
false, therefore limiting the amount of allowed interleavings.

EXAMPLE 2. Let us consider again the system from Figure 1
where we want to check that the invariant ¬(x = 2) holds. We will
describe how the Underapproximation-Widening algorithm of Fig-
ure 5 proceeds for the case k = 3.

Initially P contains negative unit clauses for each predicate pi, j
for i∈ {A,B,C} and j ∈ {Pa0,Pa1,Pb0,Pb1,Pc0,Pc1}, therefore con-
straining all predicates to be false.

As a result, at every state, only the transitions of the enabled
process with the smallest index are expanded (where we assume
A < B < C). For example, only transition a is expanded from the
initial state. The control-flow graph in the middle of Figure 2 shows
the transitions taken at each of the reachable states.

This iteration did not reveal any counterexamples. The proce-
dure will then analyze the unsatisfiable core for the generated for-
mula and determine if any of the negative unit clauses we intro-
duced was used by the proof of unsatisfiability. Let us assume that
the clause ¬pA,Pa0 was used by the proof, and therefore remove it
from P and continue to the next iteration. This means that pA,Pa0

may now be either TRUE or FALSE, while all other predicates must
be FALSE.

The control-flow graph at the bottom of Figure 2 shows which
transitions are taken in the next iteration. This is a superset of the
ones taken previously. For example, in the initial state, transition
a is expanded when pA,Pa0 is FALSE, while transition b is expanded

when pA,Pa0 is TRUE, since, in the latter case, B is the process with
the smallest index satisfying the conditions for partial expansion.

In the second iteration a counterexample is found: if transition b
is executed before transition a, the final value of x will be 2, which
is a violation of the invariant we were checking. At this point a
counterexample is generated and the procedure terminates without
having to ever consider all interleavings in the original model.

5. EXPERIMENTAL RESULTS
In this section, we compare the Underapproximation-Widening

loop against Bounded Model Checking with full interleaving. Given
a model and a property, Bounded Model Checking produces a CNF
formula which is satisfiable if and only if there is a violation of the
property in the given model. The proposed Underapproximation-
Widening loop is also based on Bounded Model Checking, but in-
stead of verifying the model directly as classical Bounded Model
Checking would do, it verifies a series of underapproximated mod-
els, increasingly including more behavior.

We have implemented UW using NuSMV and the SAT solver
zChaff. We use NuSMV to generate a CNF for the model M ,
which is parameterized on the values of the predicates introduced
in Section 4.3. We modify the generated CNF by adding the set
of negative unit clauses in P. We use zChaff ability to produce an
unsatisfiable core to decide either termination or which clause to
remove from the set P.

This approach, even if it might require an additional number of
iterations, can be advantageous in the following two cases:

• A counter-example is found that it is present in an heavily un-
derapproximated model. In this case, the SAT solver is given
a much simpler system and it is possible to find a satisfying
assignment more quickly.

• No counter-example is found, i.e., the formula is unsatisfi-
able, and, even if we analyzed a restricted model, the proof
of unsatisfiability does not depend on the underapproxima-
tion. Again, even if this may occur after a few iterations, the
reduced model verified at each iteration can be much simpler
than the original model, and therefore require less time and
resources.

Both of these cases appear in the examples presented below.
Table 1 contains the results obtained in the verification of a reach-

ability property for a model of a leader election protocol. We can
identify three different behaviors:

• BMC is faster for small values of k

For small values of k (5 or less), the UW loop additional
overhead is too high to compete with BMC. The formulas
generated for small values of k are simple enough for the
SAT solver to prove their unsatisfiability directly.

• UW can prove the property using a much simpler model
For intermediate values of k (between 6 and 8), the UW loop
is able to prove the property removing the unit clauses cor-
responding to only a few control points (at most 12 out of
30) and therefore it performs much better than BMC. Even if
the number of iteration increases, the number of iteration is
equal to the number of clauses that have been removed from
P, the models with a limited set of interleavings are much
simpler problems to solve.

• UW can produce a counterexample very quickly



Table 1: Comparison of the running time of BMC and UW on
a reachability property of a leader election protocol. The first
column represents the limit k; the second column reports the
result of the verification; the last column reports the number of
iterations needed to prove or disprove the property.

k Result BMC UW iter
0 valid 1.63s 1.99s 0
1 valid 1.65s 3.53s 1
2 valid 1.84s 4.63s 1
3 valid 2.28s 7.50s 2
4 valid 5.26s 13.75s 3
5 valid 18.87s 23.58s 4

6 valid 103.27s 55.10s 6
7 valid 191.69s 120.54s 12
8 valid 433.84s 144.83s 10

9 invalid 57.79s 11.10s 0
10 invalid 151.05s 11.07s 0
11 invalid 40.48s 21.27s 0
12 invalid 41.84s 22.18s 0

For k greater or equal to 9, the property is violated: UW is
able to find a counterexample without removing any of the
clauses from P. The CNF generated by UW is much simpler
than the one generated by BMC, and the SAT solver is able
to find a counterexample much faster.

In conclusion, one of the main advantages of this technique is
the ability to detect property violations without having to look at
the full model, but using a series of underapproximations. It is also
possible to find a restricted model that is sufficient to prove the
property. However, if the number of iterations necessary to reach
that result is too large or the restricted model is not simpler than the
original one, the overhead involved in additional iterations might
become too large to make the procedure advantageous.

6. CONCLUSIONS AND FUTURE WORK
We presented a new efficient procedure for the verification of

multi-process systems based on an Underapproximation-Widening
loop. While a lot of successful work on automating Abstraction-
Refinement loops for model checking has recently been done, the
presented approach is, to the best our knowledge, the first fully
automated approach based on underapproximations and widening.
The procedure is mainly effective in discovering bugs due to the
nature of BMC.

The UW approach is not limited to the verification of multi-
process systems. The context of multi-process system verification
has been chosen as it is straightforward to introduce ‘clauses’ that
limit the state space.

Since our algorithm relies on the ability of SAT solvers to gener-
ate proofs of unsatisfiability, it is incorporated in a Bounded Model
Checking framework, which, in its classical form, is incomplete.
As future work, we plan to extend this framework to produce a
complete BMC procedure, possibly based on existing work such as
McMillan’s work on interpolation and SAT-based model checking
[23], the work of Sheeran et al. on k-induction [27], and the work
of Kroening et al. on finding the Completeness Threshold [19, 12].

The procedure, as presented in the context of Bounded Model
Checking, tries to prove or disprove the property for traces of a
given length k, and then proceeds to analyze longer traces. Bounded
Model Checking is therefore very effective in detecting shallow

counterexamples. However, since the UW procedure analyzes dif-
ferent models of increasing complexity for the same length k, it is
possible to explore the generated models in a different order. We
plan to investigate this idea.

Another topic for future research are heuristics to update the set
of clauses in P to be used at the next iteration: in the presented
work, when multiple clauses from the set P belong to the unsat-
isfiable core generated by the SAT solver, no indication is given
on how to choose the clause to be removed. Moreover it is not
strictly necessary to remove a single clause at each step, as long as
the set of clauses removed from the initial value of P are sufficient
to eliminate all the previous proofs. We intend to investigate such
heuristics as well as alternative ways of updating the set P at each
iteration.

There are similarities between the way underapproximations are
built by the presented algorithm and the way partial-order reduction
approaches construct a reduced model. Partial-order reduction ap-
proaches exploit static analysis as well as syntactic information to
determine a set of control points at which it is sufficient to perform
partial expansions instead of full expansions. These techniques will
perform a partial expansion only when it is guaranteed that the va-
lidity of the property is preserved. While our approach is based
on partial expansions as well, a main difference is that the reduced
models that the proposed approach considers are not known a priori
to preserve a property. However, partial order algorithms that de-
termine partially and fully expanded control points statically [21],
may be exploited to improve our procedure, e.g. its termination
conditions. Exploiting partial order algorithms in the UW frame-
work will be studied in future work.
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